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Research Statement

Steven A. Frank
∗

I study the natural processes that design organisms. My theoretical work solves particular biologi-

cal puzzles and synthesizes disciplines. Puzzles include genome conflict and sterility, mitochondria

and male disease, and somatic mosaicism and cancer. Syntheses cover conflict and cooperation, im-

munology and pathogen variability, cancer progression and inheritance, and my current project on the

evolutionary design of regulatory control. My work sometimes leads to mathematical expressions that

unify analysis. Through focus on symmetry, I clarified the fundamental evolutionary principles of nat-

ural selection and social interaction. I also found the general forms of commonly observed probability

distributions and scaling relations, which help to interpret natural pattern.

Study of organismal design leads to new biological

and mathematical problems. The biology and math

perspectives provide inseparable insight. However, it

is easier to explain the perspectives separately. Two

distinct research statements follow, one for the biol-

ogy and one for the math.

Biological problems

I discuss puzzles, syntheses, and current projects in

the following sections.

Puzzles

I have identified several key puzzles and proposed

potential solutions. I list four examples. Each exam-

ple has stimulated new empirical work.

Mitochondria and male disease1. Mitochondria typ-

ically transmit through the female line. Mutations

that cause disease in males and are nearly neutral

in females drift in frequency. By contrast, selection

removes mutations that are deleterious in females.

That sex-biased selective sieve predicts a widespread

association between mitochondria and male disease.

Our work identified this puzzle, which had not pre-

viously been noted.

This topic has become a mini-discipline, some-

times known as Mother’s curse. Several empirical
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studies designed to test this idea found support2,3.

Numerous theoretical articles have developed the

mathematical biology of this topic.

Meiotic drive, Haldane’s rule, and speciation4. The

first step in hybrid species incompatibility is typ-

ically sterility of the heterogametic sex, a pattern

known as Haldane’s rule. I suggested that genomic

conflict arising from sex-chromosome meiotic drive

may explain this sex-biased pattern of hybrid steril-

ity. Conflicts often associate with rapid evolution-

ary change. Meiotic drive within species would likely

lead to rapid divergence between species (see also

ref. 5).

This idea about genomic conflict and speciation

founded a mini-discipline. Several labs now devote

their research to this topic. Although the idea was

originally controversial, it is now widely accepted as

one of the best supported theories for the genetics

of speciation.

Infective dose6. The number of pathogens required

to start an infection varies widely between species.

No general theory explained that wide variation. We

suggested that the particular molecular virulence

mechanisms during initial pathogen invasion may ex-

plain variation in infective dose.

We predicted that virulence factors directly in-

jected into neighboring host cells require few initial

pathogens to start an infection. By contrast, viru-

lence factors that act distantly on host immune reg-

ulation may require many initial pathogens to gen-

erate a sufficient concentration of diffusible factors.
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Local versus global virulence factor action may corre-

spond to small versus large minimum infective dose.

Our work is the only theory to explain the widely

varying infective dose observed among pathogens.

Existing data support our theory7, but more direct

experimental studies are needed. Mathematical mod-

els of pathogen invasion dynamics and immune re-

sponse will help to develop the topic.

Somatic mosaicism8. A human body has about 100

trillion cells derived from the single zygote. The vast

number of cell divisions introduces many mutations,

causing widespread somatic mosaicism. Our theory

predicts great diversity in mosaicism between indi-

viduals. That mosaic diversity may explain a signifi-

cant fraction of the variance in predisposition to dis-

ease.

We were the first to relate mosaicism to the math-

ematical theory of branching cellular lineages, with

emphasis on cancer risk8–10. Our theory provided

the first clear predictions about the high level of mo-

saicism expected within individuals and the great

variability in mosaicism and the risk of disease be-

tween individuals. My later article provided the first

direct connection between neurodegeneration and a

fully realized theory of mosaicism11.

With the advances in single-cell genomics, this

topic has developed into a major research field. So

far, empirical studies have mostly confirmed the ex-

istence of mosaicism. Going forward, I outlined sev-

eral key problems that have yet to be analyzed em-

pirically12.

Syntheses

My books and series synthesize key topics and set

the direction for future work.

Foundations of social evolution13. This book unified

the mathematical theory of natural selection applied

to economic problems of organismal resource alloca-

tion, game theory aspects of social cooperation, and

population aspects of demography. The mathemat-

ical methods that I developed in this book became

the standard for much of the subsequent work in the

field, leading to many testable empirical predictions

for sex allocation, life history, and social behavior.

This book has also influenced the mathematical de-

velopment of evolutionary models in economics14.

Immunology and evolution of infectious disease15.

This book focuses on pathogen variation to escape

host immune recognition. It integrates molecular bi-

ology, immunology, pathogen biology, and popula-

tion dynamics within a quantitative framework.

With regard to my general interest in organismal

design, the immune system provides an excellent

case study. The immune system deploys a variety

of search, recognition, and defense tactics, raising

interesting problems about the evolutionary design

and integration of those components.

Each chapter of the book finishes with a listing of

key unsolved research topics. Those topics provide

the basis for new research and also present a series

of interesting challenges that can be used in teach-

ing. I have also published additional research articles

on pathogen variability and immune escape16–19.

Dynamics of cancer10. This book provides the only

comprehensive synthesis of age-specific cancer in-

cidence patterns with mathematical theory for the

causes of cancer progression dynamics. To achieve

that synthesis, I developed novel quantitative ap-

proaches to analyze epidemiological data. For exam-

ple, my focus on the acceleration of cancer with age

naturally develops the duality between acceleration

and force, allowing direct study of biological causes.

To develop testable theories about cause, I built a

comprehensive mathematical framework for the dy-

namics of cancer progression. To set the basis for

future work, I integrated the epidemiology and math-

ematical theory of causation with the molecular de-

tails of regulatory controls and how those controls

break down in cancer.

With regard to my general interest in organismal

design, cancer is one of the great subjects of modern

biology. As I say in the first paragraphs of the book:

Through failure we understand biological

design. Geneticists discover the role of a

gene by studying how a mutation causes

a system to fail. Neuroscientists discover

mental modules for face recognition or lan-

guage by observing how particular brain le-

sions cause cognitive failure.

Cancer is the failure of controls over cel-

lular birth and death. Through cancer, we

discover the design of cellular controls that
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protect against tumors and the architecture

of tissue restraints that slow the progress of

disease.

Many opportunities remain to develop new evolu-

tionary and quantitative analyses of cancer and the

related topic of regulatory control20.

Natural selection. I wrote a series of seven articles

on the theory of natural selection21–27. In my Math-

ematical problems research statement below, I men-

tioned related work on fundamental aspects of sym-

metry, dynamics, and information.

The first article presents my framework for math-

ematical models of evolution when natural selection

varies over time or space22,28. That framework re-

mains the standard approach in the current litera-

ture for analyzing variable selection in a unified way.

My work also develops the connection between the

mathematics of natural selection and the mathemat-

ics of economic returns under risk and uncertainty.

The second article develops a novel synthesis of

how phenotypic variability influences the rate and

direction of evolutionary change by natural selec-

tion21. I used that new theory as the basis for under-

standing how resistance to cancer therapy evolves29.

The evolution of drug resistance relates to the more

general problem of how new traits arise and spread

to meet the challenge of novel and extreme environ-

ments. The topic of resistance evolution is very ac-

tive and provides many opportunities for theory on

biomedically relevant problems.

Other articles include a novel analysis of the lev-

els at which natural selection acts23, classic causal

modeling and path analysis descriptions of natural

selection26, and a modern summary of kin selection

theory along with a historical perspective on that

topic27. Together, the articles present a compre-

hensive synthesis of natural selection with regard to

problems of organismal design.

Control theory tutorial30. I recently taught myself

engineering control theory. I am using that theory

to develop new projects on the evolutionary design

of regulatory control (see below). To teach myself, I

wrote a tutorial and software package, which I pub-

lished as a small book30.

The theory of engineering control builds large

models of dynamical systems by transforming lin-

ear components in the time domain into the complex

Laplace domain. The advantage of the transformed

expressions is that one can multiply complex Laplace

signals expressed by transfer functions through a se-

quence of processes. That approach allows study of

dynamics in large systems with respect to signal fre-

quency and intensity. One can then easily analyze

the evolutionary consequences of alternative sensor,

filter, and control designs for various tradeoffs in

performance measures.

Current projects

The paradox of robustness. The better a system is

at correcting errors, the more that system can toler-

ate mistakes made by its components. Because the

mistakes by components of a robust error-correcting

system do not matter so much, such systems tend to

accumulate variable components that decay in per-

formance. Better error correction begets more errors,

the paradox of robustness31–33.

The tendency for robustness to cause the accu-

mulation of mutations has been discussed previ-

ously34–36. However, the paradox of robustness ap-

plies much more broadly, because greater robustness

at the system level reduces the pressure of natural

selection on the performance of the system’s com-

ponents. That change in the intensity of natural se-

lection alters the costs and benefits of component

design.

I introduced this broader notion of the paradox

of robustness in my prior publications31–33. How-

ever, the theory has not been developed. No com-

pelling applications to specific systems have been

completed.

Beyond my prior work, the leading geneticist

Michael Lynch made the strongest case. He empha-

sized that cells have many layered mechanisms of

error correction. He recognized the difficulty of un-

derstanding how such layered, protective robustness

could evolve based on current theories of evolution-

ary dynamics.

Lynch37 said: "If, however, drift prevents natural

selection from inexorably moving cellular features

toward a state of molecular perfection, how do we

account for the abundant examples of organisms us-

ing layered mechanisms for dealing with intracellular
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problems?...As pointed out by Frank32, an apprecia-

tion for the internal evolutionary dynamics of redun-

dant systems provides an alternative perspective on

the origin and maintenance of the myriad of molecu-

lar attributes often interpreted as acquired enhance-

ments of cellular robustness."

Layered error-correcting controls over traits occur

throughout cell biology, physiology, behavior, and

social systems. No theory explains how such layered

controls arise by evolutionary dynamics. My project

advances this topic.

As a first step, I am currently developing a control

theory analysis for the evolutionary design of regula-

tory control.

Evolutionary design of regulatory control. Much

of modern biology focuses on the molecular mech-

anisms that regulate biochemical and physiological

processes. Progress on mechanism and immediate

function raises the problem of how such complex

controls evolve by natural processes.

To study the evolutionary design of regulatory

control, it is useful to divide the problem into two

steps: the general abstract theory and the applica-

tion of that theory to particular biological systems.

The work must begin with the basic abstract the-

ory. If we do not understand, even in simple theo-

ries, how evolutionary processes may shape system

design, then we certainly cannot understand the de-

tails of particular systems. As the basic theoretical

work progresses, the challenge will shift to applica-

tion. How can we use the abstract theory to make

testable predictions about real systems?

Currently, I am focusing on the first step of ab-

stract theory. How does natural selection sort among

the many tradeoffs in performance that shape the

broad features of regulatory control? How does

the evolutionary design of regulatory control archi-

tecture influence broadly observable patterns, such

as genetic variability of system components and

stochasticity of trait expression between individuals?

An abstract evolutionary theory of regulatory con-

trol is not a trivial problem. Consider error-

correcting feedback, perhaps the single greatest

principle of control system design in both human-

engineered and biological systems.

In an error-correcting feedback system, the error

measures the difference between a system’s actual

output and its target. By feeding back the error as

an input, the system can move in the direction that

reduces the error. Error correction compensates ro-

bustly for misinformation about system dynamics

and for perturbations to system components. Excel-

lent performance often follows in spite of limited in-

formation, sloppy components, and noisy signals.

A robust error-correcting feedback system com-

pensates for sloppy, error-prone components. That

robust compensation weakens the pressure of nat-

ural selection on the components, the paradox of

robustness. Thus, the evolution of each additional

error-correcting feedback loop at the system level

will tend to associate with the evolution of cheaper,

lower performing system components. Those com-

ponents may also tend to accumulate greater genetic

variability and stochasticity of expression.

To build a theoretical framework, I am working to-

ward a series of articles.

• Design tradeoffs and control theory: combining

evolutionary analysis with engineering control

theory provides the essential methods38.

• Genetic variability and stochasticity of trait ex-

pression: the paradox of robustness increases

component variability and the heritability of dis-

ease39.

• Decay of costly components: the paradox of ro-

bustness favors substitution of cheaper, lower

performing components within systems.

• Learning as a robustness mechanism: systems

that acquire information and adjust control have

an additional robustness layer with further con-

sequences from the paradox of robustness.

• Wiring of control architecture: the evolutionary

process of building layered control architectures

yields seemingly haphazard, complex wiring of

control.

After developing the initial theory, the challenge

then becomes how to turn the abstract theory into

testable predictions for specific systems. One likely

path is to find simple regulatory control systems that

vary in architecture between closely related popula-

tions or species. Microbial systems often provide the

best opportunities.

4



git • master @ WebInterests-1.1-1::9656427-2019-09-15 (2019-09-15 04:26Z) • safrank

Additionally, the theory may potentially be applied

to the extensive modern datasets on genetic variabil-

ity and single-cell stochasticity of gene expression. In

principle, it should be possible to make comparative

predictions about the relative levels of variability of

particular genes in relation to the function of those

genes within particular regulatory control architec-

tures.

Microbial design. Basan’s40 summary from his re-

cent review of bacterial metabolism highlights a key

puzzle:

In the past, changes in gene expression and
metabolic strategies across growth conditions
have often been attributed to the optimiza-
tion of steady-state growth rates. However,
mounting evidence suggests that cells are capa-
ble of significantly faster growth rates in many
conditions, including supposedly ‘poor’ carbon
sources. Based on these observations, it is
clear that objectives other than optimization of
steady-state growth rates must be considered to
explain these phenotypes.

Why don’t microbial cells grow as fast as possible?

Perhaps fitness can be increased by trading growth

rate for other attributes of success.

One widely discussed tradeoff concerns growth

versus yield. Growing faster requires increased reac-

tion rates. Driving reactions faster demands energy.

The use of energy to increase growth rate reduces the

energy available for building new biomass, lowering

yield.

Suppose we observe a microbe that grows more

slowly than the maximum rate that it could achieve.

We see minor mutational changes that enhance

growth. How can we know if the tradeoff be-

tween growth rate and yield shapes the design of

metabolism in this microbe?

Typically, we cannot know. There are many pos-

sible tradeoffs. Perhaps growth trades off with dis-

persal. Maybe the organism typically grows under

iron-limited conditions and must trade growth rate

for traits that scavenge iron. It could be that the

microbe usually must pump out many antimicrobial

toxins to compete with other species. Those other

species are absent in our study, so increased growth

and reduced toxin production are favored under our

conditions.

How can we understand why growth rate is some-

times maximized and other times reduced in return

for alternative benefits? In general, how can we un-

derstand the forces that shape the design of micro-

bial traits, such as dispersal, resource acquisition,

defense, and survival?

The great recent progress in microbial biology has

brought us up against these essential questions. Yet,

there does not seem to be a coherent and widely un-

derstood approach by which we can make progress

in understanding the fundamental forces that shape

microbial design.

Theories from evolutionary biology provide some

clues. Many individual empirical studies provide sig-

nificant insight. But we do not have a well developed

framework on which we can build our understanding

of microbial design.

This first step in my project clarifies the concep-

tual challenges and potential applications, based on

my extensive prior work on natural selection13,21–27

and demographic aspects of microbial life his-

tory41–46. Subsequent steps analyze key microbial

traits, such as resource acquisition, metabolism,

cross feeding, quorum sensing, and immunity. Each

application develops testable comparative predic-

tions that reveal the fundamental forces of microbial

design.

Common patterns: invariance and scale. Below, I

discuss my mathematical theory of common proba-

bility patterns. To extend that topic, I am looking for

applications to biology. How can the abstract theory

of common patterns help to understand natural phe-

nomena? To give a sense of possible directions for

this work, I briefly summarize my recent article on

perception47.

The probability that an organism perceives two

stimuli as similar typically decays exponentially with

separation between the stimuli. The exponential de-

cay in perceptual similarity is often referred to as the

universal law of generalization48,49.

Both theory and empirical analysis depend on the

definition of the perceptual scale. For example, how

does one translate the perceived differences between

two circles with different properties into a quantita-

tive measurement scale?

There are many different suggestions in the lit-

erature for how to define a perceptual scale. Each

5
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of those suggestions develops very specific notions

of measurement based, for example, on information

theory, Kolmogorov complexity theory, or multidi-

mensional scaling descriptions derived from obser-

vations48–50.

I showed that the inevitable shift invariance of any

reasonable perceptual scale determines the exponen-

tial form for the universal law of generalization in

perception47. All of the other details of informa-

tion, complexity, and empirical scaling are superflu-

ous with respect to understanding why the universal

law of generalization has the exponential form.

In some cases, the probability of perceived simi-

larity is Gaussian rather than exponential. I showed

that, when the separation between stimuli depends

on various underlying perceptional dimensions, it

sometimes makes sense to assume that the percep-

tual scale will also obey exchangeability or rotational

invariance. When that additional invariance holds,

the universal law takes on the Gaussian form47,51.

The exponential and Gaussian forms are particu-

lar expressions of the canonical form for probabil-

ity patterns that I presented in eqn 6. However, not

all commonly observed patterns are exponential or

Gaussian. Other patterns arise through scaling rela-

tions between observed measurements and meaning-

ful shift-invariant scales, represented by w in eqn 6.

The interesting problem, for both biology and

mathematics, is how to understand the genesis of

various forms for w in different applications. I gave

a couple of examples in recent articles52,53. But the

more general problem remains unsolved. Perhaps

there is some way to understand the commonly ob-

served macroscopic scaling relations as asymptotic

functional forms when aggregated over the micro-

scopic variability in functional relations.

Recently, I applied my framework for common pat-

terns to the classic problem of species abundances in

ecological communities54. My work provides a con-

ceptual unification of prior theories, such as maxi-

mum entropy and neutrality. More importantly, this

example shows the potential power of my invari-

ance framework for understanding how to separate

generic aspects of pattern from the role of specific

biological mechanisms. Such separation is a neces-

sary step in understanding how biological processes

cause observed patterns.

Mathematical problems

My studies of organismal design and evolutionary

process have often led to conceptual challenges.

How can we understand the fundamental principles

of natural selection? When studying the mathemat-

ical theory of natural selection, how can we un-

derstand the deeper relations between that theory

and other apparently similar mathematical theories

from different disciplines? How does deeper abstract

mathematical understanding improve our ability to

analyze evolutionary problems?

I have also faced the difficulty of understanding

why certain common patterns recur in data and in

predictions from theory. Those common patterns

typically arise as probability distributions or scaling

relations. To evaluate the causes of natural pattern,

I had to struggle with the general theory of com-

monly observed patterns. That struggle led me to

new mathematical work on the common patterns of

nature.

Natural selection

Natural selection may be described abstractly as the

change in some characteristics of a population in re-

sponse to a force. We can think of a population as a

probability distribution of characteristics. The force

of natural selection drives the evolutionary dynamics

of change in probability distributions.

Many of the particular properties of natural sec-

tion and the evolutionary dynamics of probability

distributions arise from simple underlying invari-

ances, or symmetries. For example, the conservation

of total probability, the summing of all probabilities

to one, imposes a universal invariance on changes in

populations and on the dynamics of probability dis-

tributions.

Once one recognizes the universal invariance un-

derlying the evolutionary change in populations, one

can show the unity of natural selection, information

theory, entropy, the forms of common probability

distributions, and classic descriptions of dynamics

in physics55. Here, I summarize a few results from

my past work.
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Set mapping for evolutionary change

Start with a population as a set of things. Each thing

has a property indexed by i. Those things with a

common index comprise a fraction, qi, of the pop-

ulation and have average value, zi, for whatever we

choose to measure by z. Write q and z as the vectors

over all i. The population average value is z̄ = q · z.

A second population has matching vectors q′ and

z′. For frequency, q′i = wiqi, in which wi describes

frequency change and, in biology, is realized relative

fitness. Here, q′i is the fraction of the second popu-

lation derived from entities with index i in the first

population, a set mapping. Likewise, z′i is the average

value in the second population of members derived

from entities with index i in the first population. Let

∆ be the difference between the derived population

and the original population.

We can write the abstract description for the

change in average value as25

∆z̄ = ∆(q · z) = ∆q · z+ q′ ·∆z. (1)

To express this description in terms of the forces act-

ing on frequency change, we use the above q′i = wiqi
to define

ai = wi − 1 =
q′i
qi
− 1 = ∆qi

qi
, (2)

which, in biology, is Fisher’s average excess in fit-

ness.

We can use any values for z. Choose z ≡ a. Then

∆ā = ∆(q · a) = ∆q · a+ q′ ·∆a = 0. (3)

The equality to zero expresses the conservation of

total probability

ā = q · a =
∑
i
qi
∆qi
qi
=
∑
i
∆qi = 0,

because the total changes in probability must cancel

to keep the sum of the probabilities constant at one.

Thus, eqn 3 appears as a seemingly trivial result, a

notational spin on
∑
∆qi = 0. However, many gen-

eralities of the genetical theory of natural selection

follow from the partition of conserved probability

into the two terms of eqn 3. In addition, the parti-

tion unifies many formal relations between natural

selection and information theory, the dynamics of

entropy and probability, and basic aspects of phys-

ical dynamics55.

Force and inertial frame in mechanics

The power of eqn 3 derives from its partition of

the balancing components of change into two parts,

∆q · a and q′ · ∆a. With a bit more notational ma-

nipulation, we arrive at an abstract nondimensional

analogy of D’Alembert’s principle of mechanics for

conservative systems55

∆ā = (F+ I) ·∆q = 0, (4)

which describes the balance between the change by

direct forces, F, and the change with respect to accel-

eration in the inertial frame of reference, I.

D’Alembert generalizes Newton’s force equals

mass times acceleration to multiple dimensions and,

here, to a more abstract interpretation. According

to Lanczos56, the power of D’Alembert’s partition is

that it “focuses attention on the forces, not on the

moving body. . . ” In the analysis of complex dynam-

ics, it often helps to focus on abstract notions of

force that drive system change, such as fitness or en-

tropy production. I mention three examples.

Fisher’s fundamental theorem

The most famous result in population genetics the-

ory, Fisher’s fundamental theorem of natural selec-

tion, follows immediately. The first terms of eqns 3

and 4 yield

∆ā = ∆q · a = ∆q · F =
∑
i
∆qi

(
∆qi
qi

)

=
∑
i
qi

(
∆qi
qi

)2

=
∑
i
qia2

i

= Vw ,

which shows that the rate of change in average fit-

ness, ∆ā, caused by the direct force of natural selec-

tion, equals the variance in fitness, Vw .

Here, I described fitness by the average excess,

a. Fisher’s theorem actually states that the rate of

change in fitness caused by the direct force of nat-

ural selection is equal to the variance in the average

7
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effects of fitness. We easily obtain the average effects

as the partial regressions of fitness on some predic-

tors, such as various genes. We can then substitute

the average effects directly into the equations above

to get Fisher’s theorem57 (not shown here). The im-

portant conceptual point is that we have a general-

ization of Fisher’s partition of total change in fitness

into direct and inertial components, focusing on the

forces and not on the “moving bodies,” or moving

gene frequencies.

We can generalize Fisher’s theorem to the change

in any value or quantitative character that we assign

to entities. Simply make a change of coordinates

a , z, getting us back to eqn 1 in a way that we

can use what we learned from studying the invari-

ant, conserved form of eqn 3. That generalization al-

lowed me to unify the theory of social evolution13,27.

I discussed interpretations of the inertial compo-

nent of total change and the analysis of nonconser-

vative systems in Frank55.

Dynamics of information

We can connect classic mathematical models of natu-

ral selection and evolutionary dynamics to classic ex-

pressions for changes in information. The key arises

from my abstract partition of change between sets,

constrained by invariant total probability.

Start with the direct force component of total

change

∆q · a =
∑
i
∆qi

(
∆qi
qi

)
.

For small ∆qi, we can write

ai =
∆qi
qi
→ log

q′i
qi
, (5)

thus24

∆q · a =
∑
i
(q′i − qi) log

q′i
qi
= D

(
q′||q

)
+D

(
q||q′

)
,

in which D is the Kullback-Leibler divergence, the

most fundamental measure for the change in infor-

mation from classic information theory58. For small

∆qi, the value of D is the Fisher information met-

ric, the foundation for information geometry59 and

much of the classic theory of statistical inference60.

The variance in fitness, Vw , from Fisher’s funda-

mental theorem of natural selection, is better un-

derstood as the divergence or distance between two

sets. In biology, the sets are ancestral and descen-

dant populations. The separation between popula-

tions, or sets, can be described by classic measures

of information theory.

We may say that the direct force of natural selec-

tion causes populations to accumulate information

about the environment equal to the sum of the for-

ward and backward D measures24,55,61. That sum is

also known as the Jeffreys divergence. In the limit of

small changes, the Jeffreys divergence becomes the

Fisher information metric.

The match between selection and information fol-

lows from the simple underlying invariance of con-

served probability and the partition of that invari-

ant quantity into two terms, matching D’Alembert’s

partition. This abstract generalization clarifies the

wide variety of vague statements about how natural

selection, information, statistical inference, and clas-

sic mechanics relate to each other.

Maximum entropy probability distributions

Many problems in biology turn on understanding the

genesis of particular probability distributions. In my

work on cancer, I noted the strong tendency for age

of cancer onset patterns and mortality patterns to

match a gamma distribution or one of the extreme

value distributions10,52. Variants of power-law pat-

terns often arise in biological data53. How can we

understand those common patterns of nature62?

Jaynes63 argued that we can understand com-

monly observed probability distributions by suppos-

ing that dynamics tends to maximize entropy subject

to constraints. Jaynes sought to overthrow Boltz-

mann’s canonical ensemble for statistical mechanics.

The canonical ensemble describes macroscopic prob-

ability patterns by aggregation over a large number

of equivalent microscopic particles.

The theory of statistical mechanics, based on the

microcanonical ensemble, yields several commonly

observed probability distributions. However, Jaynes

emphasized that the same probability distributions

commonly arise in economics, biology, and many

other disciplines. In those nonphysical disciplines,

there is no meaningful canonical ensemble of identi-

cal microscopic particles. According to Jaynes, there

8
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must another more general cause of the common

probability patterns. The maximization of entropy

is one possibility.

In ref. 55, I showed that the fundamental expres-

sion of change in eqn 1 includes Jaynesian maximum

entropy as a special case.

From eqn 2, we can write ∆qi = qiai. The con-

dition for equilibrium with regard to frequencies is

ai = 0, or, from eqn 5, logqi = logq′i. Noting that

q′i = qi+∆qi, a constraint on the vector of frequency

changes, ∆q, will constrain the equilibrium probabil-

ity distribution, q∗. In eqn 1, suppose that ∆z̄ = 0,

which means that the average value, z̄ = q · z, is con-

stant. That invariance of average value constrains

the pattern of change in frequencies.

It turns out that the constraint on average value

can be expressed by55

logq′i = log k̃i − λzi,

in which the k̃i are constants chosen to satisfy the

conservation of total probability. At equilibrium, the

probability distribution, q∗, is

q∗i = ke−λzi .

We can match this equilibrium probability distribu-

tion to a Lagrangian for the dynamics associated with

eqn 1 as

L = E + k̃
(∑

qi − 1
)
− λ

(∑
qizi − µ

)
,

in which the first term, E = −
∑
qi logqi, is the

classic definition of information entropy, the sec-

ond term is the constraint on total probability, and

the third term is the constraint on the mean value,

z̄. This Lagrangian is Jaynes’ expression for how

to obtain maximum entropy probability distributions

subject to constraint. Alternative constraints yield

alternative probability distributions. I showed that

Jaynes’ results follow from the basic abstract expres-

sion for change in populations55.

I used the Jaynesian maximum entropy framework

to study common probability patterns in biological

problems62,64. However, it was not clear how to

develop meaningful constraints to match the vari-

ety of commonly observed probability distributions.

Also, Jaynesian maximum entropy does not reveal

the deeper relations between the different forms of

commonly observed distributions. To understand

those problems, I looked for the simple underly-

ing symmetries that unify understanding of common

probability patterns.

Common probability patterns

We can obtain the canonical form for nearly all com-

mon continuous probability distributions from a few

simple invariances51. Suppose the probability distri-

bution function (pdf) for a continuous variable y is

f(Ty), in which Ty is a function of y that defines the

“natural” measurement scale. For example, y may

have a natural logarithmic scaling, Ty = log(1+y).
Assume that a natural scale, Ty , means that the

associated pdf is affine invariant to a constant shift

and a constant stretch, Ty , a+ bTy , that is, f(a+
bTy) , f(Ty). From these assumptions, I showed51

that the pdf value associated with y is

qy = f(Ty) = ke−λTy ,

in which the constant k is set by the conservation

of total probability, associated with shift invariance,

and the constant λ is set by the conservation of av-

erage value, associated with stretch invariance51.

Affine invariance is often a sensible requirement

for a natural scale. For example, suppose that, as-

sociated with y , we have measurements of temper-

ature on the Celsius scale, Ty . Then we would ex-

pect that transforming to the Fahrenheit scale, T̃y =
32 + 1.8Ty , would leave the associated probability

pattern unchanged.

Affine invariance of the pdf with respect to Ty im-

plies additional structure. Write the affine invariance

in terms of a generator process, G(y), such that each

application of the generator leaves the pdf invariant,

because

T
[
G(y)

]
= T ◦G = a+ bTy .

After n applications of G, the probability pattern re-

mains unchanged. An infinitesimal application of the

generator also retains the invariant pdf form. We can

write the infinitesimal transformation as a differen-

tial equation with respect to a base scale65, w(y),
as

T ◦Gε = dT
dw

= α+ βT,

which, dropping shift and stretch constants, has the

9
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solution

T = eβw ,

with T → w as β → 0 when accounting for the shift

and stretch factors that are not shown here. Us-

ing this general form for T , we obtain the canon-

ical expression that describes nearly all commonly

observed continuous probability distributions51,52

qdψ = ke−λeβwdψ, (6)

when we add a few additional details about the mea-

sure, dψy , and the commonly observed base scales,

w(y). Understanding the abstract form of common

probability patterns clarifies the study of many bio-

logical problems47,52,53.

Summary

The results in this mathematical section can be

thought of as a broad framing of conjectures. The

conjectures show the potential for a symmetry-based

unification of diverse scientific and mathematical

topics.
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