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Some aspects of learning and development are based on evolutionary change within the organism. In
trial and error learning, variant ideas or behaviors are generated and selective filters (learning rules)
choose among the population of variants. Development may, in some cases, proceed by selection within
a population of variant cellular lineages. This paper analyses abstract properties of selective systems
to understand the evolutionary dynamics that occur within organisms. The Price Equation and Fisher’s
fundamental theorem of natural selection, two of the most powerful concepts in evolutionary genetics,
are applied in a general way to internal selective systems in learning and development. This analysis
emphasizes generative mechanisms and selective filters as genetically controlled phenotypes of individual
organisms. Generative mechanisms create the variation on which selection acts. Selective filters
determine the extent to which selection within the organism optimizes organismal performance. The
methods of Price and Fisher provide a general way in which to partition evolutionary change into
improvements caused by selection and the tendency of high performance variants to deteriorate because
of competition or environmental change. This balance between selective improvement, at a rate equal
to the variance in fitness, and a matching deterioration in performance, provides general insight into
the common properties of adaptive systems in genetics, learning and development. These ideas are
applied to a model of honey bee foraging. This example clarifies the relation between genes and
phenotypes controlled by internal selective systems.
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Introduction

Organisms use systems of variation and selection to
develop their phenotype and learn about their
environment. For example, the vertebrate immune
system includes a complex adaptive system that
generates a population of random molecular shapes
and affinities. Those variants that bind invaders are
selected, their frequency increasing to provide
protection against pathogens (Golub & Green, 1991).

Honey bee colonies use a trial and error learning
method for discovery and exploitation (Seeley et al.,
1991). The colony finds a population of food sources
by using scout bees that have a random component

to their searching. Good sources are selectively
amplified by recruiting other bees, poor sources
attract declining numbers of bees and eventually ‘‘die
out’’.

Certain pattern forming processes of development
may be a special kind of adaptive system. According
to this speculative idea, form is created by generating
a population of alternative, competing developmental
trajectories, and selecting those trajectories that meet
innately determined design criteria (Sachs, 1988). The
idea is attractive because it replaces the notion of a
genetic blueprint for form with simpler generative
rules for alternative trajectories and selective rules to
promote or retard various pathways. Pattern for-
mation of plant stomata (Kagan et al., 1992), fish fins
(Wagner & Misof, 1993), and wiring of nervous
systems (Changeaux & Danchin, 1976; Edelman,†E-mail: safrank.uci.edu

Copyright Notice
Copyright and all rights therein are retained by Academic Press.  This material may not be copied or reposted without explicit permission.

To close this window:  click on this window, then click on the box in the title bar of the window.



. . 32

1987) have been explained by developmental
selection.

Adaptive systems in learning and development are
phenotypes of organisms subject to the usual
processes of genetical evolution. In each case the
evolving traits are the generative mechanisms that
create a population of alternatives and the selective
filters that channel phenotypes toward innate design
criteria (Frank, 1996).

The idea that certain phenotypes can be analysed
as adaptive systems has been around for a long time
(Spiegelman, 1945; Gordon, 1966; Lewontin, 1970;
Michaelson, 1987). Interestingly, the idea has neither
died out nor gained widespread favor. One barrier to
increase is the lack of a theoretical foundation for the
analysis of selective systems. That claim may seem a
bit surprising, since population genetics theory is
highly developed and one of the great conceptual
achievements of the biological sciences. But popu-
lation genetics is very specific in its assumptions about
generative rules, selection, and the forms of
inheritance and reproduction.

The great success and specificity of population
genetics has made it difficult to recognize the general
properties of selective systems. The analogies between
selection and various phenotypic processes is fre-
quently acknowledged, but the analogy rarely leads
directly to useful analysis. This failure favors the
belief that the analogy is only a loose one, best
abandoned when faced with a particular problem
(Crick, 1989). The only useful efforts to develop
selective theory beyond genetics have been the study
of cultural evolution (Cavalli-Sforza & Feldman,
1981; Boyd & Richerson, 1985) and computer models
of optimal design by simulated evolution (Holland,
1975).

I make a start on developing the formal theory of
selective systems. My work begins with the Price
Equation (Price, 1970), the most general and abstract
description of selective systems. This equation has
been used successfully in a wide variety of difficult
problems in evolutionary genetics (Frank, 1995). But
the extension to an abstract theory of selection, first
suggested by Price (1995), has not been developed
previously.

My development of abstract selective theory leads
immediately to insights analogous to Fisher’s (1958)
famous fundamental theorem of natural selection.
That theorem, which has been universally misunder-
stood in genetics and in the growing field of computer
evolution (Holland, 1975), is illuminated by formal
study in a new context.

In the second part of the paper I apply this new
theory to a generalized version of the honey-bee

foraging problem. This application shows that the
concepts and the mathematics of selective theory can
be useful in understanding the development of
interesting phenotypes. In addition, the two-level
nature of adaptive systems as phenotypes is
emphasized: selection of genetic variants controls the
generative rules and selective filters of the individual
phenotype; the generative rules and selective filters
control learning and development.

The Price Equation

The Price Equation is an exact, complete
description of evolutionary change under all con-
ditions (Price, 1970, 1972a). The equation adds
considerable insight into many evolutionary problems
by partitioning change into meaningful components.

Here is the derivation. Let there be a population
(set) where each element is labeled by an index i. The
frequency of elements with index i is qi, and each
element with index i has some character, bi. One can
think of elements with a common index as forming a
subpopulation that makes up a fraction qi of the total
population. No restrictions are placed on how
elements may be grouped.

A second (descendant) population has frequencies
q'i and characters b'i . The change in the average
character value, b, between the two populations is

Db= sq'i b'i − sqibi. (1)

Note that this equation applies to anything that
evolves, since b may be defined in any way. For
example, bi may be the gene frequency of entities i,
and thus b is the average gene frequency in the
population, or bi may be the square of a quantitative
character, so that one can study the evolution of
variances of traits. Applications are not limited to
population genetics. For example, bi may be the value
of resources collected by bees foraging in the ith
flower patch in a region.

Both the power and the difficulty of the Price
Equation come from the unusual way it associates
entities from two populations, which are typically
called the ancestral and descendant populations. The
value of q'i is not obtained from the frequency of
elements with index i in the descendant population,
but from the proportion of the descendant population
that is derived from the elements with index i in the
parent population. If we define the fitness of element
i as wi, the contribution to the descendant
population from type i in the parent population, then
q'i = qiwi/w, where w is the mean fitness of the parent
population.
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The assignment of character values b'i also uses
indices of the parent population. The value of b'i is the
average character value of the descendants of index i.
Specifically, for an index i in the parent population,
b'i is obtained by weighting the character value of each
entity in the descendant population by the fraction of
the total fitness of i that it represents (see examples in
later sections). The change in character value for
descendants of i is defined as Dbi = b'i − bi.

Equation (1) is true with these definitions for q'i and
b'i . We can proceed with the derivation by a few
substitutions and rearrangements:

Db= sqi(wi/w)(bi +Dbi)− sqibi

= sqi (wi/w−1)bi + sqi(wi/w)Dbi

which, using standard definitions from statistics for
covariance (Cov) and expectation (E), yields the Price
Equation

wDb=Cov(w,b)+E(wDb). (2)

The two terms may be thought of as changes due to
selection and transmission, respectively. The covari-
ance between fitness and character value gives the
change in the character caused by differential
reproductive success. The expectation term is a fitness
weighted measure of the change in character values
between ancestor and descendant.

Fisher’s Fundamental Theorem of Natural Selection

The rate of increase in the average fitness of a
population is equal to the genetic variance in fitness.
That is the usual interpretation of Fisher’s (1958)
fundamental theorem of natural selection. Indeed,
Fisher did make that statement, but the idea has been
taken out of context and interpreted as a way to
describe how natural selection improves the average
quality of a population.

Fisher was actually concerned with a differnt
problem. He was interested in the specific role of
natural selection in the context of evolutionary
change. By his definitions, natural selection inevitably
increases fitness, but environmental changes act
simultaneously in a way that usually reduces fitness
by approximately the same amount. This must be so
because, as Fisher noted, if average reproductive rate
(fitness) were continually increasing or decreasing,
then populations would either overrun the earth or
quickly disappear.

Price (1972b) was the first to recognize the true
meaning of Fisher’s theorem. The instantaneous

change in average fitness caused by natural selection
is an increase proportional to the variance in fitness.
The full evolutionary change in average fitness is the
sum of the ‘‘partial’’ change in fitness caused by
selection and a second term that is the partial change
in fitness caused by changes in the environment
(Ewens, 1989).

Fisher’s theorem and its interpretation in evol-
utionary genetics have been analysed extensively in
the past several years (Ewens, 1989, 1992; Frank &
Slatkin, 1992; Edwards, 1994). The particular details
of the theorem depend on aspects of Mendelian
genetics that may or may not be applied easily to
abstract selective systems that lack explicit genetics.
Rather than force the general selective systems into
genetical language, in order to get an exact match to
Fisher’s theorem, I will pursue only a broad analogy
with Fisher’s theorem. I will show that Fisher’s
partitioning of evolutionary change into selective and
environmental components is generally useful.

The Price Equation has a similar, although not
identical, partitioning between selective and environ-
mental effects on evolutionary change. If, for
example, we take fitness as the character under study,
b0w, then

wDw=Cov(w,w)+E(wDw)

=Var(w)+E(wDw), (3)

where the first term is the variance in fitness and the
second is the component of evolutionary change
caused by changes in the environment.

This is all a bit abstract. I will show in the next
section how these definitions can be useful in the
context of a particular example. Before turning to
that example, I conclude here with a few additional
statements.

If we are interested in the evolution of a character,
then we need a particular assumption about the
relation between the character and fitness. A common
assumption is that fitness depends linearly on
character value, w=1+ sb, yielding

wDb=Cov(w,b)+E(wDb)

= sVar(b)+E(wDb). (4)

When ‘‘parent’’ and ‘‘offspring’’ have identical
character values because the environment does not
influence characters, Db=0, then one obtains a
standard equation from evolutionary genetics,
wDb= sVar(b), which is often cited incorrectly as
Fisher’s fundamental theorem.

Another result from eqn (3) is that, at equilibrium,

Var(w)+E(wDw)=0,
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thus selective improvements in fitness, Var(w), must
be exactly balanced by what Fisher called ‘‘deterio-
ration of the environment’’, here represented by
E(wDw). This is best explained by example.

An Allocation Problem in a Changing Environment

Many learning problems take the following form.
The organism must allocate its limited resources
among different strategies, for example the investment
in exploiting energy reserves in different spatial
locations. The value returned increases at a
diminishing rate for each strategy or location.
Changes in weather, season, or other extrinsic
conditions change the potential value of each strategy
or location.

Inherent in the problem is a trade-off between
exploration, the search for new strategies, and
optimally efficient exploitation of known, successful
strategies (Holland, 1975). This type of learning
problem is often discussed as a problem of variation
and selection—the generation of variant strategies
and the selection of the most successful ones
(Staddon, 1983). However, such analyses have not
been tied to the most powerful and general concepts
of selection, the Price Equation and Fisher’s
fundamental theorem.

Foraging in honey bees provides a good example
for analysis. The colony must find patches of flowers
producing nectar and extract the energy in an efficient
way. Seeley et al. (1991) described this system
explicitly as learning by variation and selection. All
bees, after return from a foraging trip, perform a
dance that contains information about the location
and quality of a patch of flowers. The colony allocates
a certain portion of its foraging bees to act as
searching scouts. These bees do not necessarily follow
the information provided by dances, but instead
search in a way that is partly random. These bees
create new ‘‘variants’’ in the selective system. The
remainder of the bees tend to follow the dances that
indicate the best floral reserves. Thus foraging in
successful patches increases by ‘‘reproduction,’’
whereas trips to unsuccessful patches ‘‘die out’’. The
dance and foraging decisions create a selective filter
on the existing variation.

There are several formal models of honey bee
foraging. Camazine & Sneyd (1991) and Seeley et al.
(1991) discuss variation and selection in their theories,
but their formal models do not relate general
properties of selective systems to selective models of
learning. I now introduce such a model in the context
1of the Price Equation.

       

The problem is how to allocate foraging bees
among flower patches. Label the patches i=1, . . . ,N,
and let the fraction of bees in each patch be qi. The
goal is to find values of qi that satisfy certain criteria
based on the harvesting of resources from flower
patches. The total value of resources obtained from a
patch in one time period is vi, and the success per bee
is bi = cvi/qi, where c is a proportionality constant
(c=1 without loss of generality). The total resources
obtained by the colony is

Vt = sN
i=1vi.

Optimizing total colony success, Vt, is a standard
allocation problem that depends on marginal values.
Let the marginal rate of change in success per patch
be mi =dvi/dqi. If marginal returns increase at a
diminishing rate, mi Q 0, then optimal allocation of
bees occurs when the marginal values for all patches
are the same.

A process of variation and selection does not
necessarily lead to optimization of group success. As
noted by Bartholdi et al. (1993), colony success is
maximized by equalization of marginal values, but
selective change in foraging behavior based on
foraging dances leads to the equalization of per bee
fitness for each patch, wi. The tendency of selection to
equilibrate fitnesses is a general property (Slatkin,
1978). This can be seen from the Price Equation,
eqn (3), where, under the assumption that no force is
changing the value of traits between ‘‘parent’’ and
‘‘offspring’’, Dw=0, the condition for equilibrium is
Var(w)=0.

When fitness is linearly related to foraging success,
wi =1+ sbi, then selection equilibrates per bee
foraging success, bi, and at equilibrium Var(b)=0, as
in eqn (4).

When does selection optimize colony success?
When the equilibration of individual fitnesses by
selection causes the equilibration of per patch
marginal values. This occurs when Var(w)=0 implies
that Var(m)=0. Under linearity, wi =1+ sbi,
equilibration of fitnesses implies Var(b)=0, so a
sufficient condition for selection to maximize colony
success is bi = kmi, where k is a proportionality
constant. Using the definitions for bi = vi/qi and
mi =dvi/dqi above, this expands to

vi

qi
= k0dVi

dqi1.
This condition is satisfied when v is a power function
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of q, as in an example below. For most functional
relations between v and q the condition is not
satisfied, and learning by selection among foraging
bees does not optimize colony success.

 

The fitness function wi relates per bee foraging
success, bi, to the tendency of other foraging bees to
copy or avoid the foraging behavior of an individual.
This fitness function may, itself, be subject to
modification by colony learning. But at some level the
mechanisms by which the colony adjusts its behavior
must be influenced by genetic (innate) factors subject
to evolutionary modification. In a changing environ-
ment the optimal fitness function for the colony may
depend on many details, and the solution to this
general problem remains unknown.

I proceed by introducing an explicit, linear fitness
function. I then turn my attention to a model in which
the environment continuously changes. This allows
study of the mechanisms by which variants are
produced, in this case the scouts of honey bee
colonies. In addition, the explicit model clarifies the
Price Equation’s unusual approach to separating
selection from environment.

The two quantities that describe foraging success
are

vi = ai(qi/ai)a = qa
i a

1− a
i

bi = vi/qi =(ai/qi)1− a,

where vi is the total value extracted by the colony from
the ith flower patch, ai is the quality of the patch, and
qi is the fraction of all foraging bees that go to the ith
patch (Fig. 1). The fraction (qi/ai)a is the relative
proportion of resources extracted from the ith patch,
where 0Q aQ 1 so that returns increase at a
diminishing rate as the number of foragers in a patch
increases. The per-bee success in patch i is bi, which

is the character value b that I will use in the Price
Equation, matching eqn (2).

In a constant environment, selection equilibrates
the bi’s, which implies that foragers are allocated in
direct proportion to patch quality

q*i = ai/sai.

When the environment varies, the colony is
continuously adjusting its allocation of foragers by
selection among per bee successes. The colony must
also allocate some of its foragers to the scouting role,
to locate in time and space patches that are increasing
in quality.

I use the beta function (Lindgren, 1976, pp. 328–
330) to create a distribution of patch qualities

b(x)= cxg−1 (1− x)h−1 =0 0Q xQ 1

=0 otherwise,

where c is chosen so that f1
0b(x)dx=1. I use

g= h=2 for beta distribution parameters through-
out my numerical analysis.

The patch array i=1, . . . ,N can be thought of as
a circle with index N mapping to 0 to repeat the cycle.
A fraction p of the patches have resources and 1− p
are empty, so that the number of patches with
resources is P= pN. Specifically the patch qualities
are given by

ai =g
i/P

(i−1)/P

b(x)dx

which can be calculated by commonly available
numerical methods for the incomplete beta function
(Press et al., 1992). The environment changes by
‘‘moving’’ the distribution in each time period t
according to

at+1
i = at

i−1.

F. 1. Shapes of curves for per bee success, b, and per patch value, v, vs. the abundance of foragers in the patch, q. The shape parameter
is a=0.5 for these examples. The per bee success, b is proportional to the marginal value of v, that is, b= kdv/dq.
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      

With this definition for change in patch quality we
can now summarize properties of ‘‘environmental
deterioration’’ in the Price Equation that must
balance selection at equilibrium

sVar (b)+E(wDb)=0. (5)

Selective improvement occurs according to variance
in the foraging success of individual bees, Var(b).
Those bees with higher success have more followers
back to their patch in the next time period. This
selective improvement must be balanced by deterio-
rating success among the followers of selectively
favored bees, in other words, Db must often be
negative.

The difference in success between bees from the ith
patch and their followers is Dbi = b'i − bi, where the
followers’ success is

b'i =(1− m)bt+1
i + mb
 ,

where bt+1
i is the per bee success in the next time

period for bees going to patch i. This can be expanded
using the explicit definition of bi given above

bt+1
i =0at+1

i

qt+1
i 1

1− a

.

We can use these definitions to clarify three distinct
aspects of environmental deterioration in Db.

First m is the scouting or ‘‘mutation’’ rate at which
followers choose a patch at random rather than copy
returning bees according to their recent foraging
success. Random choice typically provides lower
success than following a high quality forager, but is
needed to explore the changing environment and
maintain sufficient variation for effective selection.
The success of a bee going to a random patch is b
 ,
where

b
 =sbt+1
i /N

is the per bee success in the next time period taken as
an unweighted average over patches.

Second, the quality of a particular patch is likely to
vary over time, such that at+1

i $ at
i .

Third, there is a density dependent effect.
Successful bees will attract many followers, increasing
the number of bees in the patch and decreasing the per
bee success. This is accounted for by changing bee
densities, qt+1

i $ qt
i .

 

I first draw a few general insights from the Price
Equation analysis before turning, in the next

section, to the numerical properties of the honey bee
problem.

It is useful to distinguish among equilibrium,
perfection and optimality. The condition for equi-
librium is given by eqn (5), which can also be
written as Cov(b,b')=0. When Cov(b,b')q 0 there
is a positive correlation in the success of a bee and
its followers, and selection will enhance the
average value of b in the future by favoring
‘‘reproductively’’ those entities with high b in the
present. When the correlation is negative, a positive
selective coefficient s causes a decline in average
performance by enhancing those bees with followers
that are below average. A correlation of zero implies
that selective improvements achieved by choosing
high quality foragers are balanced by deterioration in
the returns obtained by followers, as shown explicitly
in eqn (5).

Perfection occurs when the marginal returns on all
patches are equal. For the particular assumptions
above, Var(b)=0 implies equality of marginal
values. If the environment deteriorates, E(wDb)Q 0,
then Var(b)q 0 and perfection is not possible. In
this model the parameters s and m, selection and
mutation in the internal colony learning system, are
assumed to change by genetical evolution. Thus,
the optimality problem is to find the values of s and
m that minimize environmental deterioration and
Var(b).

Learning by this type of selective system cannot
achieve perfection in a changing environment. This
can be seen by noting that environmental change
implies at+1

i $ at
i for some i. The perfect solution was

derived above as

q*i = ai/sai.

If, at time t, the distribution of q’s is perfect, then
Var(b)=0 and there will be no change in the q’s
except for random mutation. When, in the next time
step, some of the a’s change, the q’s will no longer
match perfectly. The problem is that a selective
system necessarily lags the environment. A selective
change can provide a closer match to the environment
in the future only through the current mismatch.
Thus, the optimality problem is not to match the
environment perfectly but to track its changes as
closely as possible.

Consider a situation at time t when the match is
perfect. At time t+1 the environment changes, but
there is no selective change in the q’s because
Var(b)=0 at time t. Suppose a increased in patch, i,
that is, Dat

i = at+1
i − at

i q 0. Positive selection, sq 0,
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will increase qt+2
i based on the discrepancy during

time t+1. This will provide a closer match to the
extent that the direction and magnitude of Dat

i is a
good predictor of at+2

i . Too large an increase in qt+2
i

will cause severe environmental deterioration in that
patch because of density dependent interactions.

No single predictor can be optimal for all types of
environmental change. For a smoothly changing
environment with a stationary distribution of a

values, the Corr(Dat,Dat+1) describes the extent to
which an environmental change in one time step
correlates with a change in the following time step.
Positive selection, sq 0, can track environments with
positive difference correlations, and negative selec-
tion, sQ 0, can track environments in which increases
regularly alternate with decreases. In the case of bees,
negative selection would cause foragers to avoid
patches that are currently providing better than
average returns. Mutation may be required to track
an environment to the extent that patch qualities near
zero increase substantially, that is, exploration is
required to accommodate unpredictable aspects of the
environment. Better measures can probably be
developed to ma
tch optimally the variation and selection parameters
to the correlational structure of a changing environ-
ment. My main purpose here is simply to describe
some general properties of learning and development
in selective terms.

      

 

The quantitative solution to our problem is an
equilibrium distribution of bees, q*i , over the N
patches. A solution requires N−1 constraints plus
the fact that

sqi =1.

The Price Equation, as we have used it, provides us
with only a single equilibrium constraint, wDb=0,
which is not sufficient for solution. The problem is
that evolutionary dynamics depend on the full details
of the distribution of trait values in the population
(Barton and Turelli, 1987; Frank, 1995).

There are two basic methods of solution. The first
is essentially a method of moments. The Price
Equation gives us a way to use information about
variance and transmission to calculate changes in
character means—information about the second
moment is sufficient for describing changes in the first
moment. But in the next time-step the variance
(second moment) will have changed, so we cannot
calculate further changes in the first moment without

dynamic equations for the second moment. For
example, if we assume linear fitness, w=1+ sb, then
we can generalize the Price Equation to describe
changes in the moments of the distribution of trait
values as

wDbn =Cov(b,bn)+E((1+ sb)Dbn),

so that changes in the nth moment of b will typically
depend on the n+1st moment (Frank, 1995). Closure
requires some way of relating higher moments to
lower moments.

The second approach is to obtain N−1 explicit
recursions that set constraints at equilibrium. These
recursions require many additional assumptions
beyond the few simple conditions to establish that a
system possesses properties of variation and selection.
This fundamental fact of selective systems is, I think,
why it is so easy to suggest that a process is controlled
by selection within a population, yet such a
suggestion inevitably appears to be rather loose and
incomplete. On the formal side, a person setting out
to model the dynamics of a system is inevitably so
intent on the full set of assumptions required that one
quickly loses sight of the basic selective properties
that I have outlined above. Thus most models of
variation and selection end up looking like physical
models of dynamics because of the modeling process.

I use the recursion approach here to obtain a
solution to the honey bee problem. It would have
been possible to skip some of the general comments
on selection vs. environmental deterioration and
move directly to solution by recursion. I think that
would be a mistake because formal models in biology
must have a dual role. The first is to formalize and test
a style of thinking by expressing the ideas rigorously.
The second is the numerical consequences implied by
particular parameter values. My claim is that too
much modeling skips the first part to emphasize the
second. General properties of selection are not easy to
grasp, and the problem is exacerbated by the fact that
so little work has focused on general selective systems
outside the confines of mendelian genetics (Price,
1995).

     

Returning to the honey bee problem, our solution
will follow from the constraint on environmental
change, at

i−1 = at+1
i . This is useful for calculation, but

actually we only need the much weaker stationary
condition that at+1

j = at
i for any arbitrary one-to-one

mapping of j to i, where the mapping can change in
each time step. But for convenience I continue to map
i−1 in the current period to i in the next period.

With this steady shifting of patch quality in space
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F. 2. Total value obtained by the colony for scouting rate, m, and selection intensity, s. There are N=100 patches; the fraction of
patches with resources is p. The shape parameter a is 0.5. In panel (a), Corr(Dat, Dat+1)=−0.5 and consequently a selective value of
sQ 0 is favored. For panel (b), Corr(Dat, Dat+1)=0.2, and for panel (c), Corr(Dat, Dat+1)=0.1.

and constancy of the distribution of quality at
different points in time, the equilibrium conditions are
clearly qt

i−1 = qt+1
i , which can be expanded as

qi−1 = (1− m)q'i + mq

=(1− m)qiwi/w+ mq,

where q'i = qiwi/w is the fraction of bees that follow
foragers from the ith patch among those bees
influenced by selection, m is the fraction of bees that
are scouts and choose patches at random, and
q=1/N. Using wi =1+ sbi and the definition of bi

given above, we have a complete set of nonlinear
constraints that must be solved numerically for the
equilibrium distribution of bees in patches, qi. With
that solution we can calculate the per bee success, bi,
and the total value extracted by the colony, Vt.

The total value extracted by the colony is shown in
Fig. 2 for various assumptions, where the value of Vt

is the proportion of the maximum value that the
colony could obtain by perfect allocation. The
optimum values of selection, s, and scouting
(mutation), m, are given by the maximum value over
the surface.

Figure 3 shows the distributions of patch quality
and forager allocations for two sample parameter
combinations. The values of m and s are optimal for
the parameters illustrated. Figure 3(a) is interpreted
as follows. The dashed distribution shows the quality
of patches, ai, with

sai =1.

This distribution is shifted to the right by one patch
in each time step, wrapping around so that patch 10
shifts to patch 1. The solid distribution shows the
frequency of foragers in each patch at equilibrium.
The forager distribution shifts to the right by one
patch in each time step, keeping pace with the
changing patch qualities. Maximum colony success,
Vt =1, occurs when the patch quality and forager
distributions are identical. In Fig. 3(a), Vt =0.78 and
in Fig. 3(b), Vt =0.93.

In Fig. 2(a) patch quality is ephemeral. At any time
only one patch has resources and all others are empty,
that is, pN=1. The patch with resources will be
empty in the following time step, thus recruiting
foragers to a quality patch actually decreases colony

F. 3. Distributions of patch quality and forager frequency. Here N=10, a=0.5, scouting rate m=0.2, and selection intensity s=10.
These parameters for m and s are approximately optimal, that is, they yield the highest Vt obtainable. Key: – – – patch quality, ai; ——
forager frequency, qi.
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success. The only information the colony can obtain
is that a quality patch in one time step will have no
resources in the following time step. The best fitness
function has sQ 0, with new foragers avoiding the
patch from which successful foragers just returned.

Conclusion

I have emphasized learning with a particular
example of honey bee behavior. But the same general
problems apply to development, in which the relative
success of different cellular lineages strongly influ-
ences the ontogeny of form. The cellular level of
success and the organismal level of success will often
conflict in the same way that per bee success differs
from colony success. Organismal control depends on
generative mechanisms that create variants and
selective filters that assign fitnesses to lineages.
Evolution at the lineage level affects organismal
performance. To the extent that such internal
selection occurs, genetic control will act directly on
generative mechanisms and selective filters and only
indirectly on final form. The performance, based on
final form, then influences the selection of genetic
variants among organisms (Plotkin & Odling-Smee,
1981; Frank, 1996).

This analysis of learning and development as
selective systems makes explicit the idea that genes do
not encode a complete blueprint for the organism.
Rather, for many traits an organism may begin life
with only broad rules for a dynamic system that
adapts to its environment.

The general properties of selective systems have not
received much attention. The Price Equation provides
a natural way to explore such properties and to gain
a deeper understanding of selective systems.

My research is supported by NSF grants DEB-9057331,
and DEB-9627259 and NIH grant GM42403.
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