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Abstract.--A general framework is presented to unify diverse models of natural selection. This framework is based
on the Price Equation, with two additional steps. First, characters are described by their multiple regression on a set
of predictor variables. The most common predictors in genetics are alleles and their interactions, but any predictor
may be used. The second step is to describe fitness by multiple regression on characters. Once again, characters may
be chosen arbitrarily. This expanded Price Equation provides an exact description of total evolutionary change under
all conditions, and for all systems of inheritance and selection. The model is first used for a new proof of Fisher's
fundamental theorem of natural selection. The relations are then made clear among Fisher's theorem, Robertson's
covariance theorem for quantitative genetics, the Lande-Arnold model for the causal analysis of natural selection, and
Hamilton's rule for kin selection. Each of these models is a partial analysis of total evolutionary change. The Price
Equation extends each model to an exact, total analysis of evolutionary change for any system of inheritance and
selection. This exact analysis is used to develop an expanded Hamilton's rule for total change. The expanded rule
clarifies the distinction between two types of kin selection coefficients. The first measures components of selection
caused by correlated phenotypes of social partners. The second measures components of heritability via transmission
by direct and indirect components of fitness.
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There are many different mathematical approaches to the
study of natural selection. Each point of view provides its
own ke)i result. There is Fisher's (1958) fundamental theorem
for population genetics, Robertson's (1966) covariance the-
orem for quantitative genetics, and Hamilton's (1964) rule
for kin selection. Systems of gene-culture inheritance or ar-
bitrary selective systems must also follow these fundamental
results. However, such systems have rarely been studied in
full generality and tied to the well-developed results of ge-
netics.

One issue is that each mathematical approach tends to fo-
cus on a partial analysis of total change. Since the parts
included and excluded by different approaches may differ,
relationships among approaches are often obscure. This sug-
gests that a proper framework begin with an exact, complete
model for total evolutionary change. Various approaches can
then be compared against this touchstone.

A second problem for a general theory is how to partition
the causes of character values among predictor variables. The
standard approach is to fit a regression model, describing a
character by the individual contributions of various predictors
(Fisher 1918, 1958). The typical predictors are alleles and
interactions among alleles, but any predictor may be used.
The regression approach, based on least squares analysis, has
the advantages of maximizing the use of information about
phenotype available in the data, and rendering additive the
individual contributions of various factors.

Once a regression model has been fit for a particular char-
acter and its predictor variables, total change in the character
can be partitioned into two components. The first is the direct
effect of natural selection in changing the frequency of the
predictor variables, for example, a change in allele frequency.
The second component is the difference in the contribution

of each predictor variable in the context of the changed pop-
ulation, the fidelity of transmission. This partition is the cen-
tral feature of Fisher's (1958) fundamental theorem of natural
selection (Price 1972a; Ewens 1989), yet the properties of
this partition have rarely been exploited (Frank and Slatkin
1992).

I begin with the Price Equation, which is an exact, complete
description of natural selection and its evolutionary conse-
quences. When a regression model is fit for a character using
any arbitrary set of predictors, the Price Equation describes
the total change in the character by analysis of the predictor
variables. A natural partition follows between the two com-
ponents mentioned above, frequency change of predictors
caused directly by natural selection and changes in the effects
of each predictor after transmission. The natural selection
component can itself be partitioned into distinct causes. This
partition is the familiar causal analysis of fitness by multiple
regression (Lande and Arnold 1983).

I use the Price Equation to link Fisher's fundamental the-
orem, multiple regression models of natural selection, and
kin selection. I also expand these results to arbitrary selective
systems and types of inheritance. My expansion is an exact
framework that uses both alleles and contextual variables to
explain the evolutionary change of characters. Contextual
variables include maternal effects, group-level traits, cultural
beliefs, or any other factor that can explain some of the vari-
ance in character values and fitness (Heisler and Damuth
1987; Goodnight et al. 1992).

PREDICTORS AND PARTITIONS

A brief example of predictors and partitions is useful before
starting. Let z be a variable influenced by a set of predictors,
{x1 }7 1 , where each xi takes values of zero or one for presence
or absence of some factor. Each instance of the variable, zi,
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has among its predictors xis, a total of k factors present and
n – k factors absent, thus iy_1 x 11

= k. By the standard theory
of least squares we can write

zi =
	 bjxij + 8i,

where k is the partial regression of z on xj and 8 i is the
unexplained residual. The average of z is Z = because
we may set 8 = 0. Each ij is the frequency of the jth predictor
in the population. If we use primes to denote the population
at a later time, then we can also write a second regression
equation in which Z' = I b.'. . It will be useful to have a
symbol for the change in each quantity: AZ = Z' Z,	 =
xi	 and Abp = b.; – b./ . The change in the average value
of the variable over time is

AZ =	
J J

(b j + Abj)(t j + Alf) –	 bj.t1

bj(L4) +	 .t";(Abj).
	 (1)

This example shows the partition between two components
of total change in a variable. The first component is the
change in the frequency of predictors, bAl. The second com-
ponent is the difference in the effect of predictors, Mb, in the
context of the changed population, x'. This partition is always
true, but is difficult to interpret in terms of selection. For a
selective analysis, it is useful to have a measure of fitness
and a measure of transmission. Fitness describes differential
reproductive success as a function of character values. Trans-
mission describes the degree to which an offspring is similar
to its parent.

The Price Equation is the same partition for Az, but written
in a more general form and in a manner that emphasizes
selection and transmission. I develop the Price Equation in
the next section. I then apply Price's partition to a character
that is expressed in terms of predictors and regression co-
efficients, yielding the partition in equation (1) written in
terms of selection and transmission. A simple proof of
Fisher's fundamental theorem follows immediately.

I then use the Lande-Arnold (1983) partition of selection
into multiple components. That partition provides a very gen-
eral theory when combined with the previous analyses. I show
the power of this formalism by clarifying two aspects of
Hamilton's rule of kin selection. First, the rule may be viewed
as a partition of selection into social components (Queller
1992a,b). Second, the rule may be interpreted as a partition
of transmission into components of heritability. Some prob-
lems can be interpreted equivalently by partition of selection
or by partition of heritability. Other problems require clear
separation between selection and transmission, a point that
is often confused in the literature. I also develop an exact
analysis of social evolution, and show that the standard ap-
proximation for kin selection is formally equivalent to one
part of Fisher's fundamental theorem.

THE PRICE EQUATION

The Price Equation is an exact, complete description of
evolutionary change under all conditions (Price 1970,

1972b). The equation provides insight into many evolution-
ary problems by partitioning change into meaningful com-
ponents (Frank 1995).

Here is the derivation. Let there be a population (set) in
which each element is labeled by an index i. The frequency
of elements with index i is qi, and each element with index
i has some character, z i . One can think of elements with a
common index as forming a subpopulation that makes up a
fraction qi of the total population. No restrictions are placed
on how elements may be grouped.

A second (descendant) population has frequencies q; and
characters Z:. The change in the average character value, Z,
between the two populations is

Az = I q; z; - I q i zi .	 (2)

Note that this equation applies to anything that evolves, since
z may be defined in any way. For example, z i may be the
gene frequency of entities i, and thus Z is the average gene
frequency in the population, or zi may be the square of a
quantitative character, so that one can study the evolution of
variances of traits. Applications are not limited to population
genetics. For example, z i may be the value of resources col-
lected by bees foraging in the ith flower patch in a region
(Frank 1997), or cash flow of a business competing for market
share.

Both the power and the difficulty of the Price Equation
come from the unusual way it associates entities from two
populations, which are typically called the ancestral and de-
scendant populations (see Appendix A). The value of q; is
not obtained from the frequency of elements with index i in
the descendant population, but from the proportion of the
descendant population that is derived from the elements with
index i in the parent population. If we define the fitness of
element i as wi, the contribution to the descendant population
from type i in the parent population, then q; = qi wi lW, where
171) is the mean fitness of the parent population.

The assignment of character values z; also uses indices of
the parent population. The value of z; is the average character
value of the descendants of index i. Specifically, for an index
i in the parent population, z: is obtained by weighting the
character value of each entity in the descendant population
by the fraction of the total fitness of i that it represents (Ap-
pendix A). The change in character value for descendants of
i is defined as Az i = z; – zi.

Equation (2) is true with these definitions for q; and z:.
We can proceed with the derivation by a few substitutions
and rearrangements:

= E	 + Azi ) – E qizi

= E	 — ozi + E qi(wilW)Azi

using standard definitions from statistics for covariance (Coy)
and expectation (E), yields the Price Equation

WAZ = Cov(w, z) E(wzz). 	 (3)

The two terms may be interpreted in a wide variety of ways
because of the minimal restrictions used in the derivation
(Hamilton 1975; Wade 1985; Frank 1995). One interpretation
partitions total change into parts caused by selection and
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transmission, respectively. The covariance between fitness
and character value gives the change in the character caused
by differential productivity. The expectation term is a fitness-
weighted measure of the change in character value between
ancestor and descendant 	 a measure of the transmission fi-
delity of a character between parent and offspring.

The Price Equation's notation and abstract description of
selection may seem unfamiliar on first reading. Appendix A
provides a brief tutorial that illustrates several concepts and
notational conventions, particularly the unusual method of
labeling descendant types. Appendix B summarizes various
partitions of evolutionary change, and lists some of the sym-
bols used throughout the paper.

CAUSAL ANALYSIS

I describe two types of partition in this section. The first
is the Lande-Arnold (1983) regression for assigning com-
ponents of fitness to multiple traits. The second is Fisher's
(1958) regression for assigning components of trait values
to multiple predictors, which I briefly outlined in an earlier
section.

These two partitions are the foundation of quantitative ge-
netics. I make two additions to the theory. First, I obtain a
simple and general proof of Fisher's fundamental theorem by
using Fisher's regression for characters in the Price Equation.
Second, I combine the Lande-Arnold regression for fitness
with Fisher's regression for characters. The Price Equation
shows precisely how these two regressions must fit together.
Indeed, from the abstract perspective of the Price Equation,
one can see how each partition arises naturally in a complete
analysis of any kind of selective system.

Predictors of Fitness

It is often convenient to consider explicitly the various
factors that influence fitness. Multiple regression provides a
useful set of tools, where one describes or estimates from
data the direct effects of various predictors on fitness

of groups can be used, allowing analysis of the direct effects
of selection on group properties and the consequences for
evolutionary change. I will return to this topic in a later
section on kin selection.

Lande and Arnold (1983) extended their analysis to de-
scribe the response to selection, that is, the change in char-
acter values from one generation to the next. They used a
partial form of heritability to transform changes within a
generation into approximate changes between generations. I
take the same approach, but derive my formulation of heri-
tability with the formally abstract and precise methods of the
Price Equation, by which one can see that T in equation (5)
is E (wLz). This provides an exact analysis, with new insight
into Fisher's fundamental theorem and kin selection.

Predictors of Characters

The difficulty for any method of describing character
change between generations is that observed character values,
z, will have many causes that are not easily understood. Fur-
ther, some of those causes, such as random environmental
effects, will not be transmissible to the next time period, so
that Az in the second term of equation (3) will be erratic and
difficult to understand. It would be much better if instead of
working with z as the character under study we focus on
those predictors of the character that can be clearly identified.
It would also be useful if the transmissible properties of the
predictive factors could be easily understood, so that some
reasonable interpretation is possible for Az.

Let a set of potential predictors be x = (x 1 , . . . ,x,i ) T. Then
any character z can be written as z = b'x 8, where the b'
are partial regression coefficients for the slope of the char-
acter z on each predictor, x, and 8 is the unexplained residual.
The additive, or average, effect of each predictor, bx, is un-
correlated with the residual, 8.

In genetics the standard predictors are the hereditary par-
ticles (alleles). We write the regression equation for the char-
acter z of the ith individual in the usual way as

= a + irz + P'y +	 (4)	
zi =
	 bjxii + 8 i – g i + 8 i ,	 (6)

where 7 is the direct (partial regression) effect on fitness by
the character under study, z, holding the other predictors y
= (y i , , yn) T constant, 13' = ([3 1, , i3„) are the partial
regression coefficients for the predictors, y, and E is the error
in prediction.

Lande and Arnold (1983) developed the analysis of selec-
tion and change in character values within generations by
study of

1,P0z = Cov(w, z) + T

= IT Cov(z,	 + E p i cov(y i , z) + Cov(z, €) + T (5)

where T is change during transmission (see next paragraph).
This equation describes the direct effect of the character, z,
on its own change, and the effect of correlated characters, y,
on the character z. Heisler and Damuth (1987) and Goodnight
et al. (1992) noted that one is free to use any predictors, y,
of interest. In particular, they emphasized that characteristics

J

where gi biz,' is the called the breeding value or additive
genetic value. The breeding value is the best linear fit for the
set of predictors, xi, in the ith individual. Each x1J is the
number of copies of a particular allele j, in an individual i.
If we add the reasonable constraint that the total number of
alleles per individual is constant, = k, then the degree
of freedom "released" by this constraint can be used among
the bs to specify the mean of z. Thus, we can take z = g and

= 0.
The breeding value, g, is an important quantity in applied

genetics (Falconer 1989). The best predictor of the trait in
an offspring is usually (1 2)(gr„ + gf), where g,, and gf are
genetic values of mother and father. There is, of course, noth-
ing special about genetics in the use of best linear predictors
in the Price Equation. The trait z could be corporate profits,
with predictors, x, of cash flow, years of experience by man-
agement, and so on.
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Price Equation Analysis of Predictors

A slightly altered version of equation (3) will turn out to
be quite useful in the following sections. First, any trait can
be written as z = g + 8, where g, the sum of the average
effects, is uncorrelated with the residuals, 8. Average trait
value is z = g, as explained in the previous section. In the
next time period z' = g' + 8' and f' = Thus the change
in average trait value is Z' – z = Az = fig. To study the
change in average trait value we need to analyze only fig,
so we can use z g in the Price Equation, yielding

fv- Az = wAg Cov(w, g) + E(wAg)	 (7)

= 13,,g Vg + E(wzg),	 (8)
where, by definition of linear regression, Cov(w, g) can be
partitioned into the product of the total regression coefficient,
13 wg, and the variance in trait value that can be ascribed to
our set of predictors, Vg . In genetics, g is the (additive) genetic
value and Vg is the genetic variance.

Robertson (1966), in a different context, derived Cov(w,
g) as the change in a character caused by natural selection.
This covariance result is called Robertson's secondary the-
orem of natural selection, and is the form used by Lande and
Arnold (1983) to describe evolutionary change between gen-
erations. Robertson did not provide a summary of the re-
mainder of total change not explained by the covariance term.
Crow and Nagylaki (1976), expanding an approach developed
by Kimura (1958), specified a variety of remainder terms that
must be added to the covariance. They provided the remain-
ders in the context of specific types of Mendelian genetic
interactions, such as dominance, epistasis, and so on. The
Price Equation has the advantages of being simple, exact,
and universal, and we can see from equation (7) that, for total
change, it is the term E(wAg) that must be added to the
covariance term (see the section below, Predictors and Ad-
ditivity).

Heritability: Variance Components and Fidelity of
Transmission

These two aspects of heritability are sometimes confused.
The covariance term, when analyzed with respect to additive
genotype, g, implicitly accounts for variance components

Cov(w, g) f3wgVg

13 wg Vz(Vg l Vz)

= VgVzVh,
where vz is the phenotypic variance in z, and Vh = Vg /Vz is
the proportion of phenotypic variance accounted for by ad-
ditive genotype. The ratio, Vh, often denoted by h2 , is a com-
monly used measure of heritability.

It may be that fitness is described only by its slope on
phenotype rather than additive genotype. Thus w = a + 13wzz

Ez , and

Cov(w, g) = COV(PwzZ Ez, g)

= Cov((3,(g + 8) + Ez , g)

= 13, Vg + Cov(Ez, g)

= 13,Vz Vh + Cov(Ez, g

FIG. 1. Path diagram for the standard model of genetic transmis-
sion. Parental phenotype, z, is caused by genotype, g, which de-
termines the genotypic value, g' transmitted to offspring. Each par-
ent contributes one-half of the genotype of the offspring, so off-
spring genotypic value is F = (1/2)(gi + gD. One measure of total
heritability is the regression of parental contribution to offspring
genotypic value on parental phenotype, I3 g , z . The slope I3 zg is nor-
malized to one, and thus 13, z = 13zg Vg /Vz = Vh. Therefore total
heritability is the product of the fidelity of transmission and the
variance ratio, 13g , z = 13g ,, 13g, = I3g , g Vh. The distinction between F
and g' is discussed in Appendix A. Li (1975) provides a good
introduction to path analysis.

where Cov(Ez, g) is sometimes called genotype-by-environ-
ment interaction.

These standard equations of quantitative genetics do not
account for how the additive, or average, effect of genotype
may change between parent and offspring. In other words,
Ag = g' – g in the E(wAg) term of the Price Equation is
ignored. An alternative approach from classical quantitative
genetics is to measure heritability by offspring-parent phe-
notypic regressions. This can potentially confound two dis-
tinct factors, the proportion of phenotypic variance explained
by additive genotype among the parents, Vh = Vg /Vz, and the
change in the average effect of predictors between parent and
offspring, Zig.

A clear separation between genetic variance and trans-
mission is crucial in the causal analysis of selection. In par-
ticular, I will show later that two different kinds of kin se-
lection coefficients have been confused because of a failure
to separate between the effects of selection and the fidelity
of transmission.

Separation of variance components and transmission is ac-
complished by starting with three basic regressions

w = a + 13 wgg + E

g' = p g,gg ±

z = g + 8,	 (9)

where in the last regression the slope is implicitly f3 zg = 1.
The fidelity of transmission, 13g , g , is illustrated in Figure 1.
Using the first two regressions directly in the standard Price
Equation, equation (7), yields
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FIG. 2. Path diagram for selection and transmission. The diagram
corresponds to equation (13). FIG. 3. Path diagram for selection and transmission, with explicit

use of phenotype, Z. The diagram corresponds to equation (14).

p wg 17g fl g , g lw + Dg + CO*, 'y)/w,	 (10)

where

Dg	 E(Ag)	 iry 	 (1	 fig,g)g

is the average difference in the effect of predictors between
parent and offspring. The average is taken with respect to
parental frequencies, qi.

Direction of Selection

One advantage of equation (10) is that the first term on
the right side combines all effects of fitness, w. This allows
analysis of the evolutionary direction favored by selection
according to whether this term is positive or negative. A bit
of algebra and two path diagrams clarify the interpretation
of this important term, which I develop in a later section on
kin selection.

An alternative partition of total change can be obtained by
starting with the first step in the derivation of the Price Equa-
tion, but collecting effects in a different way

= E gyi E qigi

E	 — g
= Cov(w, g')I0 +	 q i (g;	 gi)

fl wg ,Vg,hi) + Dg.
	 (12)

The role of fitness is entirely summarized by the term 13wg.
This regression is clarified in Figure 2, based on the regres-
sion equations in equation (9). Genotype, g, affects fitness
according to I3 wg, and g affects g' according to the fidelity
of transmission, 13g , g . Using the standard statistical definitions
of regression coefficients yields the algebraic description of
the diagram in Figure 2

13 wg ,Vg ,	 13 wg Vg 13g ,g + COV(E, 1y)•
	 (13)

Typically, in the analysis of how selection influences the
direction of evolutionary change, one ignores the error co-
variance, Cov(E, 'y). One also assumes that offspring-parent
regression of genotype is greater than zero, 13 g , g > 0. Thus
the direction of evolutionary change caused by selection is
described by I3wg Vg, as in the covariance term of the standard
Price Equation. However, I will show later that keeping track
of 13g , g is often crucial for successful analysis of the direction
of selection.

We can also include phenotype in the causal analysis, as
in Figure 3, which matches the expression

l3 wg ,Vg, = I3wzVz VhI3g'g + Cov(, .y) + Cov(E, 8). (14)

Predictors and Additivity

Confusion sometimes arises about the flexibility of pre-
dictors and of the Price Equation. The method itself adds or
subtracts nothing from logical relations; the method is simply
notation that clarifies relations. For example, in equation (6),
I partitioned a character into the average, or additive, effect
of individual predictors (alleles). One could just as easily
study the multiplicative effect of pairs of alleles, including
dominance and epistasis, by

Zi =
	

b:x.. + E
J 1J	 jkXijXik ± 8i = gi

j	 k

	 8i,

where 443.ik is the partial regression for multiplicative effects,
and mi is the total multiplicative effect of alleles. Then the
analogous, exact expression for equation (7) is

ii)AZ = 171-?0(g + in) = Cov(w, g + m) + E[ (Ag + Am)].

Examples of the Price Equation applied to dominance and
epistasis are in Frank and Slatkin (1990). That paper showed
how to calculate character change during transmission by
direct calculation of E[w(Ag + Am)]. With respect to the
general problem of additivity of effects, it is useful to recall
the nature of least squares analysis in regression. This anal-
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ysis makes additive the contribution of each factor, for ex-
ample, g + m. But a factor, such as m, may be created by
any functional combination of the individual predictors.

What is additivity? Unfortunately the term is used in dif-
ferent ways. Consider two contrasting definitions. First, one
can fit a partial regression (average effect) for each predictor
in any particular population. The effects of each predictor
can then be added to obtain a prediction for character value.
Interactions among predictors (dominance and epistasis) can
also be included in the model, and these partial regression
terms are also added to get a prediction. The word additivity
is sometimes used to describe the relative amount of variance
explained by the direct effects of the predictors versus in-
teractions among predictors.

Second, one can compare regression models between two
different populations, for example, parent and offspring gen-
erations. If the partial regression coefficients for each pre-
dictor remain constant between the two populations, then the
effects are sometimes said to be additive. This may occur
because the context has changed little between the two pop-
ulations, or because the predictors have constant effects over
very different contexts.

Constancy of the average effects implies E(wzg) = 0 in
many genetical problems. This sometimes leads people to
say that the equality requires or assumes additivity, but I find
little meaning in that statement. Small changes in E(wzg)
simply mean that the partial regression coefficients for var-
ious predictors have remained stable, either because the con-
text has changed little or because the coefficients remain
stable over varying contexts. Constancy may occur whether
the relative amount of variance explained by the direct effects
of the individual predictors is low or high.

FISHER'S FUNDAMENTAL THEOREM

R. A. Fisher (1930) stated his famous fundamental theorem
of natural selection: "The rate of increase in fitness of any
organism at any time is equal to its genetic variance in fitness
at that time." He claimed that this law held "the supreme
position among the biological sciences" and compared it with
the second law of thermodynamics. Yet for 42 years no one
could understand what the theorem was about, although it
was frequently misquoted and misused to support a variety
of spurious arguments (Frank and Slatkin 1992; Edwards
1994). Approximations and special cases were proved, but
those sharply contradicted Fisher's claim of the general and
essential role of his discovery. Price (1972a) was the first to
explain the theorem and its peculiar logic. Price's work,
known only to a few specialists, was clarified by Ewens
(1989). Yet this history leaves two important paradoxes un-
resolved. First, the current proofs, although following
Fisher's outline, lack the elegance and generality expected
of a fundamental law. Second, Price's (1970) own great con-
tribution, the Price Equation, has a tantalizingly similar struc-
ture to the fundamental theorem, yet Price himself did not
relate the two theories in any way. In this section I provide
a new proof of the fundamental theorem, following directly
from the Price Equation.

The Fundamental Theorem from the Price Equation

We can prove the fundamental theorem of natural selection
directly from equation (8). The trait of interest is fitness itself,
z w, and, as for other traits, we write w = g + 8. Thus
13wg = 1 and Vg is the genetic variance in fitness. Fisher was
concerned with the part of the total change when the average
effect of each predictor is held constant (Price 1972a; Ewens
1989). Since g is simply a sum of the average effects, holding
the average effect of each predictor constant is equivalent to
holding the breeding values, g, constant, thus E(wAg) = 0
(see next section for details). The remaining partial change
is the genetic variance in fitness, Vg, thus we may write

fw = Cov(w, g)/0 Vg 10,	 (15)

where Af emphasizes that this is a partial, fisherian change
obtained by holding constant the contribution of each pre-
dictor.

Although equation (15) looks exactly like Fisher's fun-
damental theorem, I must add important qualifications in the
next sections. But first let us review the assumptions. The
Price Equation is simply a matter of labeling entities from
two sets in a corresponding way. The two sets are usually
called parent and offspring. With proper labeling, the co-
variance and expectation terms follow immediately from the
statistical definitions. For any trait we can write z = g + 8,
where g is the sum of effects from a set of predictor variables,
the effects obtained by minimizing the summed distances
between prediction and observation. This guarantees g is un-
correlated with 8. If we substitute into the Price Equation,
the result in equation (8) follows immediately. Fisher was
concerned with the part of the total change in fitness obtained
when the effect of each predictor is held constant, yielding
equation (15). Thus equation (15) is obtained by using the
best predictors of the trait substituted for the trait itself, and
holding constant the effects of the predictors.

The Fisher-Price-Ewens Form

We could move directly from the simple results of the
previous section to a discussion of the fundamental theorem.
However, the history of the fundamental theorem is long and
confused. Price (1972a) and Ewens (1989) have cleared up
most issues, and it is useful to connect my results to theirs.
This requires a bit of tedious algebra, but it does bring out
one interesting conceptual issue regarding whether the fun-
damental theorem is truly universal in scope, as Fisher
claimed, or is in fact limited by particular assumptions. This
issue concerns whether frequency change in the predictors
(alleles) must be fully described by differential fitness.

In the previous section, I used qi for the frequency of the
ith unit in the population. The index i can be applied to
arbitrary groupings of predictors, for example the genotype
of individuals, the genotype of mating pairs, social groups
of individuals, and so on. In each case i labels units with the
same set of predictor values, for example, the same genotype.

The standard form of Fisher's fundamental theorem of nat-
ural selection (FTNS) is given in terms of alleles or, in my
usage, in terms of the individual predictors. Population ge-
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netic models assume that each particular allele can occur only
at a particular locus, and each locus has n alleles. In diploid
genetics, n = 2, for tetraploids or for mating pairs with two
individuals forming a group, n = 4. Thus the frequency of
a particular allele (predictor) is

r • 	qix,i1n,

where the usage of xij is established in equation (6).
Fisher described the theorem in terms of two quantities,

the average effect and the average excess of an allele. The
average effect is simply a standardized regression coefficient
from equation (6)

allelic form is the version proved by Price (1972a) and Ewens
(1989).

I now show that my very simple proof, given in the prior
section as equation (15), is equivalent to Fisher's form. I
operated on inclusive groupings, indexed by i, and expanding
equation (15)

Atli) = Cov(w, g)/vP

E qiAsihr,

(Aqi)gi

= Vg/W.	 (20)

z i =
	 bjxij +	 = (16) Formal equivalence to equation (19) is easy to prove by ex-

panding with prior definitions

E q iA i g i =where j 009 = 0 and thus the average effect, of allele
j, is a standardized form of the regression coefficient bj, such
that oti = bj – b.

The average excess in fitness is a basic part of the Price
Equation. Recall that, for entities i, the frequency of descen-
dants that come from i is q; = qi wi l0, so that the change in
frequency is

Aqi = q;	 qi	qi = qi (wi	=

where A i = wi - w is the average excess in fitness for the
entity i. It is also useful to note that, for any trait, z, and any
arbitrary level of indexing, i,

Cov(w, z)/0 =	 qi (wi – vv)z i /vP = 2 qiA i zi /O. (17)

The average excess of allele (predictor) j is simply the
marginal excess. In standard n-ploid genetics, the marginal
excess for allele j is

E qiAixiiln

W	 ,	 (18)
rj

with the marginal fitness as

	

giwixijln	 giwixijln

	

g i xij ln	 r•

Thus, for alleles, j, we have a similar expression as for group-
ings i,

rj =	 rj = rj Wi lvi)	 = rj (Wi	= riaj10.

The frequency after selection, IT; , is the frequency deter-
mined solely by differential fitness. This quantity may or may
not be equal to the true frequency in the next generation,
R. For example, a biased mutation process not described in
the W terms may change frequencies such that R. 0 /1. Fisher
simply asserted, in his proof, that R. 	 a point to which
I will return in the following section.

Fisher stated his theorem as

r•a•ot•IW =
J J J

	 (Arj)aj = V g lvf,,	 (19)

where n = 2 for the diploid genetics studied by Fisher. This

g iA i
	 b • ij

giAixijbj

r•ab •
J J J

r• a •((x • + b)
J J J

(21)rjajaj.

This extended analysis simply shows that we can operate
equivalently at any inclusive level of indexing that is con-
venient for a particular problem, as implied by the simple
Price Equation proof given in equation (15).

Discussion of the Fundamental Theorem

Fisher assumed that the frequency of alleles in the next
time period, RI, is fully determined by changes that can be
ascribed to differential fitness. In particular, the frequency
caused by differential fitness is, by definition, rj =
and the frequency change caused by differential fitness is Ari

riaj10. I mentioned above that other forces, such as biased
mutation, may change frequency, so that RI 0

Thus it is useful to separate two results. If we follow Fisher
and assume that RI =	 then in

Af vt, = n I (Arj )aj = Vg	(22)

the terms Arj describe the total changes in allele frequency.
If we assume that natural selection changes allele frequencies
but does not directly change average effects, then the partial
change in fitness caused by natural selection is the total fre-
quency change of alleles weighted by the average effect of
each allele. Ewens (1989, 1992), in particular, has empha-
sized this total frequency interpretation, and Fisher himself
certainly discussed the theorem from this point of view.

If we insist that R.; = ri must hold for the FTNS to be true,
then the scope of FTNS is limited to systems in which
changes in predictor (allele) frequencies are fully described
by the average excess in fitness, ap If, on the other hand, we
interpret Af in equation (22) to be the partial change in fitness
caused by natural selection, then it is reasonable to define

a• =	
qixiiln



Ord = = rj(VVi — vP)/vP as the partial change in allele
frequencies caused directly by natural selection, where nat-
ural selection is interpreted as differential fitness. Under this
broader interpretation, we do not require R.; = r.; . This leads
to a universal result, true in all circumstances: the partial
increase in mean fitness caused by natural selection is equal
to the genetic variance in fitness.

I call this universal result the partial frequency fundamental
theorem (PFFT) to emphasize that this applies to any selec-
tive system. In the PFFT, predictor frequency changes are
assumed to be partial changes caused directly by natural se-
lection and fully described by the average excess in fitness.

To put the matter another way, for a single factor one can
obtain an exact, universal result only for a partial change. It
is hopeless to look for an exact, universal expression for total
change when the analysis is limited to one of many factors
influencing total change. For FTNS, this limitation applies
both to the total change in fitness, and to the total change in
fre uenccl	 31-
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The PFFT is always true. To show the narrower, total fre-
quency FTNS, we need only prove R.; = . For example,
Lessard and Castilloux (1995) have recently studied FTNS
for a traditional fertility selection model of population ge-
netics. This model assumes that the number of offspring pro-
duced by a couple depends on interactions between the ge-
notypes of the mother and father. Fitness can therefore not
be ascribed to any individual but must be assigned to the
joint genotype of mating pairs. In the Price Equation this is
handled easily by defining w i as the fitness of the i th kind
of mating pair, where each kind of pair is defined by joint
genotype. Given a traditional diploid model, in which each
parent has n = 2, the mating pair can be described by a
tetraploid genotype, n = 4. The proof for PFFT follows im-
mediately from the Price Equation result in equation (15),
and the total frequency FTNS follows by simply showing
that R.; = a result included in Lessard and Castilloux's
proof. Lessard and Castilloux's proof is, however, much more
complicated because they started from standard population
genetics theory and had to derive many results particular for
the fertility selection model.

I have discussed the FTNS and the algebra at length. But
we were done with the proof of the universal PFFT in equa-
tion (15) after a few brief and simple steps from the standard
Price Equation. The remaining discussion and algebra was
required to clarify the history and relate my simple Price
Equation approach to the proofs given by Fisher, Price, and
Ewens. This comparison highlighted the great flexibility of
the Price Equation in working with any inclusive grouping,
from alleles, to individuals, to mating pairs in fertility
models, to any units defined by any set of arbitrary pre-
dictors.	 CORRELATED PHENOTYPES AND SOCIAL COMPONENTS OF

FITNESS

rB — C > 0,	 (23)

where r is the kin selection coefficient of relatedness between
actor and recipient, B is the reproductive benefit provided to
the recipient by the actor's behavior, and C is the reproductive
cost to the actor for providing benefits to the recipient.

On the other side, various exceptions to Hamilton's rule
have been given (reviewed by Seger 1981; Michod 1982;
Grafen 1985; Queller 1992a,b). This has led either to the
conclusion that equation (23) is an approximate condition
that must be treated with caution, or to the conclusion that
equation (23) is exact subject to a few common guidelines
that apply to most of the general results of population ge-
netics. Suggested guidelines include the assumption of weak
selection, additivity of allelic effects or fitness components,
ignoring meiotic drive and genetic drift, and assuming that
variance component measures of heritability hold sufficiently
well when selection is occurring.

Each particular guideline was obtained within the context
of a special case. Here I analyze the logical status of Ham-
ilton's rule with the exact Price Equation. I show that there
exist two different forms of Hamilton's rule, each with its
own distinct coefficient of relatedness (Frank, in press a,b).

The first type of Hamilton's rule arises in social groups in
which participants have correlated phenotypes. This type of
selection influences what is sometimes called neighbor-mod-
ulated or direct fitness. The coefficients of relatedness in this
case measure phenotypic correlation among participating be-
havioral actors.

The second type of Hamilton's rule arises when the fitness
consequences of a phenotype can be divided into distinct
components. Each component must be weighted by the trans-
mission aspect of heritability for that component. For ex-
ample, a mother may have different offspring-parent regres-
sions for sons and daughters. Her fitness through each sex
must therefore be weighted by the proper offspring-parent
regression to calculate the evolutionary consequences of a
behavior. This type of partition by transmission components
is often called inclusive fitness.

The two types of Hamilton's rule have coefficients de-
scribed by statistical regressions. The similarity in the form
of these coefficients often leads to the mistaken conclusion
that direct and inclusive fitness models are the same process
described in two different ways. The formal treatment here,
following from an exact and general formulation, clearly
shows the logical distinction and the proper methods of anal-
ysis. The key is a clear separation of the predictors of fitness
from the predictors of character value.

KIN SELECTION: THE DISTINCTION BETWEEN FITNESS AND

TRANSMISSION

The literature on kin selection is full of discussion and
controversy about the logical status of the theory. On one
side, there is Hamilton's (1964, 1970) famous rule, which
provides a condition for the increase of altruistic characters

I show that the direct fitness form of Hamilton's rule has
the same logical status as FTNS: it is an exact, partial con-
dition for change ascribed to social selection. The partial
change is obtained holding constant the average effect of
predictors, a point that Queller (1992b) mentioned but did
not develop. I will also derive, with the full Price Equation,
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FIG. 4. Path diagram for the effect of correlated characters on
fitness. The total regression of fitness on breeding value, f3,, g is rB
— C, which is a form of Hamilton's rule. This rule accounts only
for the effect of correlated characters on fitness. In this case, the
correlated character is y, the average phenotype of social partners.
See Figure 5 for a partition of r = I3yg into genetic and other com-
ponents.

an exact condition for total change. This total change re-
sultprovides a formal, universal theorem against which Ham-
ilton's partial result can be checked.

Exact-Partial and Exact-Total Models of Direct Fitness

Queller (1992a,b) developed a framework for analyzing
Hamilton's rule and comparing it with standard approaches
of quantitative genetics. This approach was also mentioned,
but not developed, by Goodnight et al. (1992).

Queller worked with the covariance part of the Price Equa-
tion, in my notation -1,1,64 = Cov(w, g), dropping the second
term, E(wLg). I follow his approach, but keep the expectation
term and work fully with equation (3). This guarantees that,
at every step, we have an exact, total result for change in
character values. From this context of total change, it is much
easier to be clear about the partial nature of the direct fitness
rule.

We start, as before, by writing the character under study
as zi = gi + 8 i . For offspring derived from parental type i,
z; = g; 8;. Because 8' = 8 = 0, we have Az = Ag-, so we
can work at the level of breeding values. Following Queller

(a)

(1992a,b), and the general approach of Lande and Arnold
(1983), we begin with a regression equation for fitness

W = 01.	 13wz•yz	 Pwy.zy	 E,

where a is a constant part of fitness unaffected by social
interaction, y is the average phenotypic value of the local
group with which an individual interacts, 13 wz .y is the partial
regression of fitness on individual phenotype, holding group
phenotypic value constant, 13 wy .z is the partial regression of
fitness on group phenotypic value, holding individual phe-
notypic value constant, and E is the error term that, by least
squares theory, is uncorrelated with y and z. Goodnight et al.
(1992) developed a similar model, in which they emphasized
that y is a contextual variable for individual fitness.

We can match this notation to standard models of kin se-
lection (Queller 1992a,b). The direct effect of an individual's
phenotype on its own fitness, P wz . y , determines the repro-
ductive cost of the phenotype. To match the convention that
cost reduces fitness, we set flwz .y = C. The direct effect of
average phenotypic value in the local group on individual
fitness, 13 wy . z , measures the benefit of the phenotype on the
fitness of neighbors, thus r3 wy . z = B. The fitness regression
can now be written as w = – Cz + By + E. The condition
for AZ to increase is, from the Price Equation, ITthig > 0, thus

ft/Ag = 13 wg Vg + E(wAg) > 0.

We see from Figure 4 that

Pwg = Pygi3wy•z 	 Pzg Pwz•y	 rB –C,

where r= I3yg is a common form of the kin selection coef-
ficient (reviewed by Seger 1981; Michod 1982; Queller
1992a). Dividing by Vg yields the condition for wig > 0 as

E(wAg)
rB – C >	 (24)

Vg

This is an exact, total result for all conditions, using any
predictors for breeding value. The predictors of phenotype
may include alleles, group characteristics, environmental

(b)

FIG. 5. Partition of the phenotypic relatedness coefficient, r = I3yg , into additive genetic and other components, where y is partner
phenotype and g is recipient breeding value. (a) The diagram shows that fl yg can be partitioned as r = Pyg = 13Gg PyG.g Pyg.G. (b)

The slope of partner phenotype on partner breeding value is one by convention. Thus, from the diagram, 1 = 13yG = 13gG pyg . G + r3yG•g,
which can be rearranged as 13yG .g = 1 — fIgG i3yg . G . Substituting this identity into the path in (a) yields r = 13 Gg + 13yg . G(1 - p 2), where
P 2 = 13 G,13gG is the square of the correlation coefficient between g and G. The term 1 — p 2 is the fraction of the variance in G not
explained by g. The Hamilton's rule condition, rB — C > 0, is independent of whether r is caused by additive genetic correlation
among partners, 13 Gg , or some other process that associates the phenotype of social partners with the breeding value of the recipient,
summarized in 13.G .yg
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FIG. 6. Path diagram combining components of social fitness, rB
— C, and the fidelity of transmission, r3g,g.

variables, cultural beliefs, and so on. If we use the Fisherian
definition of partial change caused directly by natural selec-
tion, holding average effects constant, then the right side is
zero and we recover the standard form of Hamilton's rule.
This form of Hamilton's rule is an exact, partial result that
applies to all selective systems, just as the partial frequency
fundamental theorem is an exact, partial result with universal
scope.

This form of Hamilton's rule is a purely phenotypic result.
In particular, the components of fitness and the kin selection
coefficient, r, depend only on phenotypic correlations. A fre-
quent cause of phenotypic correlation is common ancestry
and shared genotype. But the associations may just as well
be between different species, and one obtains exactly the
same form of the rB C rule (Frank 1994). Figure 5 illus-
trates genetic and nongenetic pathways by which r is deter-
mined (see below, Partition of Kin Selection and Correlated
Selection).

Equation (24) can be expressed differently by starting with
the equation (12) form of the Price Equation, using equation
(13), and dropping the correlation of residuals, Cov(E,
giving

Ag =	 + Dg

= 13wg fig , g Vg 1W + Dg.

The condition for Ag > 0 is

Dg(rB – C)3 g , g1W > 

	

Ti
vg

This form has two advantages. First, the left side, illustrated
in Figure 6, shows the distinction between phenotypic com-
ponents of fitness, rB – C, and fidelity of transmission, (3g,g.
Later I will develop the fidelity of transmission and show
that it is a different kind of relatedness coefficient that arises
frequently. The second advantage of this form is that it allows
easy calculation, in which each term can be readily under-
stood. I illustrate the use of this condition in the next section.

Kin Selection of a Culturally Inherited Trait: The
Rebellious Child Model

I have mentioned that the predictors used for traits can be
alleles, cultural beliefs, or other variables. Here I study the

0.02	 0.04	 0.06	 0.08	 0.1

Rebellion Frequency, g
FIG. 7. The equilibrium frequency of altruism, p* in a model of
cultural inheritance. From equation (26) with r = 0.1, B = 1.1,
and C = 0.1. Solid curve, a = 0, dashed curve, a = 1. Note that
r is treated as a parameter in the spirit of comparative statics. A
fully dynamic model might define r as a function of rebellion
frequency, pd.

evolution of a culturally inherited trait for altruistic behavior.
The trait is inherited directly from parent to offspring, but
children are rebellious and switch to the opposite behavior
from their parents with probability R. For simplicity, I assume
that each offspring has only one parent.

Let p be the frequency of the altruistic trait. Breeding value,
g, is zero or one if the trait is, respectively, absent or present
in an individual. The change in average breeding value be-
tween parent and offspring, g' – g Ag, is if parental
value, g, is zero, and II, if parental value is one. The general
equation for fitness, from the prior section, is

w =	 Cg + BG + E,

where I have taken individual phenotype as equivalent to
breeding value, z = g, and group phenotype, y, as equivalent
to group breeding value, G. With this setup, p = g = G, and
a is chosen so that E = 0.

We can obtain the equilibrium frequency of the altruistic
character, p*, when the condition in equation (25) is an equal-
ity. The terms are

= rB – C

f3g , g = (1 – 211)

W = + p(B – C)

Dg = tl( 1 – 2p)

Vg = p(1 p).

This provides all the information we need to substitute into
equation (25) and solve for the equilibrium frequency of al-
truism. The solution is a quadratic in p. When a = 0, the
solution is

(rB – C)(1 –	 + µ(B– C) 
P* = (rB – C)(1 –	 + 211(B – C)•

(25)

(26)
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FIG. 8. Kin selection coefficients measure the components of heritability. An individual's phenotype, influenced by g, affects two
different components of fitness, w 1 and w2 . These fitness components have different transmission fidelities, T1 =	 g and T2 =

Simple numerical calculations provide values of p* for a
0. Figure 7 shows how the frequency of rebellion, influ-
ences the cultural evolution of altruism. Note how quickly
the frequency of altruism declines when the frequency of
rebellion increases from zero.

GENOTYPIC COMPONENTS OF TRANSMISSION

A second type of kin selection coefficient arises when a
phenotype influences different components of fitness. For ex-
ample, an individual may be able to split resources between
daughters and nieces, or an individual may be able to take
some resources from a partner. In this case the recipients—
daughters, nieces, partners—do not themselves have a phe-
notype. Following Hamilton (1964), we can assign the re-
cipient fitnesses as components of the actor's inclusive fit-
ness.

Figure 8 shows how an actor's breeding value, g, influences
components of fitness and components of transmission. We
can obtain the total change in a character by starting with
equation (12):

Ag = 13,,g,Vglo + Dg.

If we assume that there is no bias in transmission, Dg = 0,
and that the implicit error terms not shown in Figure 8 are
uncorrelated, then from the diagram we start by writing fit-
ness as a sum of components

W = E kiwi,

where the ks weight the components properly for reproductive
value (see Taylor and Frank 1996). Then from the path di-
agram we obtain

(-1,P(A/Fg) = 13 w g rI7 g r = E ;13,,T1 vg ,	 (27)

where AIF is the partial, inclusive fitness change in a character,
R; = 13,,,g is the effect of the actor's breeding value on the
jth component of fitness, and Ti = 13 g g is the fidelity of trans-
mission through the jth component. The Ti are a common

FIG. 9. A model combining correlated selection on class 1, influenced by an extrinsic phenotype, y, and the direct effect of class 1 on
class 2, measured by the benefit B caused by the class 1 character, Z.



NATURAL SELECTION
	

1723

type of kin selection coefficient, the slope of recipient ge-
notype on actor genotype. In this case gi measures the trans-
missible part of the recipient's genotype with respect to the
jth fitness component..

If we ignore the reproductive value weightings, the con-
dition for the actor genotype to increase, zg > 0, is

13,T; > 0,	 (28)

which is a commonly written form of Hamilton's rule. For
example, suppose component one is the actor's own fitness,
with T 1 = 1, and component two is a partner's fitness, with
T2 < 1, and

w1 = — cz

w2 = a2 + Bz.

Because 13, = 1, the condition for increase is

T2/3 – C > 0.

This appears to match the rB — C rule in the prior section
on phenotypes, with the phenotype correlation r of individual
to social partner equivalent to the genotypic correlation, T2

of actor to offspring of the recipient. Under some conditions
r and T can be made to match, but in general they measure
very different aspects of evolutionary change. This can be
seen by writing the actor's fitness to match the phenotypic
model in the prior section

= ± By — Cz +

and the recipient fitness as

w2 = a2 hZ ± €2.

The model is illustrated in Figure 9. The condition for in-
crease is I p•T• > 0, which can be written explicitly asJ J

VigTi	 Pw2gT2 > 0,

which is, from the diagram

(rB — C)T 1 +	 > 0.

Here rB measures the effect of the correlated phenotype, y,
on class 1 fitness. The phenotype y may be controlled by
another species or by a different trait from the one under
study. The term – C measures the effect of the class 1 phe-
notype, z, on its own fitness. The term B measures the effect
the class 1 phenotype, z, on the class 2 recipients that are
influenced by that trait. In this case we have assigned all
progeny to class 1, which is the active class. Thus T 1 measures
the heritability component, or fidelity of transmission, for the
active class to its own progeny, and T2 measures the heri-
tability component of the active class to class 2 progeny.

In summary, r measures the association between an actor's
phenotype and a recipient's genotype within a generation. By
contrast, T measures the association between an actor's ge-
notype and the genotype that a recipient transmits to the next
generation (Appendix B; Frank, in press a,b).

COMPONENTS OF TRANSMISSION: RECIPIENTS VERSUS
OFFSPRING

I have defined the standard measure of transmission as
13g;g . This is the slope of the average effects transmitted by
the i th fitness component on the actor's breeding value. For
example, if the ith component is the actor itself, then p g , g is
the slope of the actor's contribution to offspring measured
in the context of the offspring generation, g', on parent breed-
ing value, g.

It is common in the kin selection literature to define an
actor's relatedness to offspring based on the offspring's entire
genotypic value rather than a particular parent's direct con-
tribution. Thus, from Figure 1, I use parent 1 's transmission
coefficient as 13g1,gi , whereas a common measure is the slope
of the entire offspring genotypic value, F, on parental value,
g

The common measure is attractive because we normally
think of a parent's relatedness to an outbred offspring as 0.5.
But the common measure of whole offspring genotype on
parent genotype can be confusing in the analysis of kin se-
lection. For example, suppose a female actor aids her sister.
The actor gains through the increased contribution to off-
spring by her sister. The actor also gains by the increased
contribution of her sister's mates to offspring, weighted by
the actor's relatedness to her sister's mates. In this case, we
can either partition the actor's gain into two components--
sister plus sister's mates—or we can simply measure the re-
latedness of the actor to the whole breeding value of her
sister's offspring.

What if a female aids her brother? This may increase the
brother's mating success but not change the fecundity of the
brother's mates. In this case we obtain the correct weighting
by measuring only the brother's direct contribution to off-
spring. It would be a mistake to measure the actor's relat-
edness to the brother's offspring.

A similar problem arises when accounting for an effect on
the actor itself. For example, a fitness cost to a male may
not influence his mate's fecundity. The proper measure for
this cost is only through the male's direct contribution. It
would be a mistake to use his relatedness to his whole off-
spring. By contrast, a cost to a female may influence her
mate's fecundity. A proper analysis would measure her direct
component plus her mate's component. In general, the val-
uation of offspring should always be considered as two sep-
arate fitness components, one for each parent (Frank, in press
b).

PARTITION OF KIN SELECTION AND CORRELATED SELECTION

Queller (1992a,b) provided a useful partition between the
direct effects of correlated genotype and phenotype. He as-
sumed that average effects do not change between parent and
offspring, g' = g, thus his analysis is equivalent to the Fish-
erian definition of partial change. The previous sections ex-
panded the analysis of selection to an exact evolutionary
model, combining the partial effects of selection with the
partial effects of transmission.

I follow Queller in this section to separate the direct effects
of correlated genotype and phenotype. Because we assume
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g' = g, the condition for the increase of a trait, Ag > 0, is,
by the Price Equation, Cov(w, g) > 0. We had, from an earlier
section, the phenotypic model of direct fitness

w = – Cz + By + E

and the condition for Cov(w, g) > 0 is

rB– C > 0,

where r = I3yg is the phenotypic relatedness coefficient. A
similar model, in the spirit of inclusive fitness is

w i = a Cz +

1422 = a2 + Bz + €29

where the phenotype z is a property of class 1, affecting itself
and the recipients in class 2. The canonical solution for this
formulation, from equation (28) is / 13 i T i > 0, thus f increases
if T2B TIC > 0. Because we assume g' = g in this section,
T i = 1 and the condition is

T2B C > 0.

The conditions for increase match when r = T2. Figure 5
shows that r = I3Gg + Pyg . G(1 – p2), where p is the correlation
coefficient between g and G. If we interpret partner genotype,
G, as equivalent with a random recipient of class 2 in the
inclusive fitness formulation, then G g2 and, because we
assume here that g' = g, we can write G = g2 thus f3 Gg =

= T2, and

r = T2 + yg	 - p2).

The condition from the direct fitness model, rB – C > 0,

can be expanded as

[T2 + 13yg.G( 1 	 p2)1B – C > 0,	 (29)

thus the purely genotypic inclusive fitness model matches the
direct fitness model when 13 yg .G = 0. This term would be
nonzero when, for example, some individuals are able to
control the phenotype of their partners, or individuals are
matched with partners based on a component of partner phe-
notype not explained by partner genotype (Frank, in press
a,b).

I have described g and G as the (additive) genetic com-
ponents of phenotype. This usage matches the convention of
quantitative genetics, in which the only predictors of phe-
notype are the effects of individual alleles. But any predictors
of phenotype may be used in constructing g and G, including
multiplicative effects among alleles, maternal effects, func-
tions of measurable phenotypes over any grouping of indi-
viduals, and environmental or cultural factors. The use of
individual alleles is a natural choice in many cases. But one
must distinguish between a useful class of applications and
the essential structure of the theoretical system.

CONCLUSIONS

The Price Equation provides a simple, exact framework to
unify models of natural selection. Each individual model
could, of course, be obtained by other methods. The Price
Equation is nothing more or less than artful notation, showing
the simple relations among seemingly disparate ideas.

Fisher (1918, 1958) made the first step in the development
of general methods for the analysis of selective systems. He
expressed characters by their regression on a set of predictors.
The standard genetic predictors are alleles and interactions
among alleles, but other predictors can be used without
change in concept or notation. Fisher then partitioned the
direct effect of natural selection, which causes change in
predictor frequencies, and extrinsic forces that change the
effect of each predictor. This led immediately to the funda-
mental theorem: the partial increase in fitness caused directly
by natural selection equals the genetic (predictor) variance
in fitness.

Hamilton (1964), interested in social selection, partitioned
the components of natural selection into direct effects on the
individual and direct effects on social partners. In retrospect,
Hamilton's approach can be described by the regression of
fitness on different predictor variables, in this case, the be-
havior of individuals and the behavior of social partners.
Hamilton also worked with the partial increase in fitness,
holding the effect of each genetic predictor constant. Thus
Hamilton's rule is a type of fundamental theorem, but the
object of study is a social character rather than fitness, and
the causes of fitness are separated between individual and
social effects.

Lande and Arnold (1983) developed the separation of dif-
ferent effects on fitness by a generalized multiple regression
of fitness. They used approximate methods of quantitative
genetics to translate the direct effect of selection, mediated
by various causes, into evolutionary change between gen-
erations.

The Price Equation subsumes the particular results, by
Fisher, Hamilton, Lande and Arnold, and many others, and
generalizes these results to arbitrary systems of inheritance
and selection. This generalization follows simply from the
fact that one can choose arbitrarily the predictors of char-
acters and the predictors of fitness. Generalized results follow
immediately for Fisher's fundamental theorem, Hamilton's
rule, and the Lande-Arnold method. These general results are
always coupled with an exact expression for total change
when the Price Equation is applied properly. Exact expres-
sions provide a touchstone for comparison among ideas and
methods of approximation. The exact expression can also be
useful for solving particular problems, as shown by the re-
bellious child model. There I applied a modified, exact, Ham-
ilton's rule to obtain the equilibrium frequency of altruism
for a culturally inherited trait.
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APPENDIX A
The abstract and general formulation of evolution in the Price

Equation necessarily subsumes classical Mendelian genetics as a
special case. But, on first encounter, the correspondence may be
difficult to grasp. This appendix illustrates the relation between
classical population genetics and predictors and partitions in the
Price Equation. This is simply an exercise in deriving correspon-
dences that must be true given the general proofs in the text. This
analysis plays no role in the general arguments of the paper, but
may be useful for readers unfamiliar with the particular definitions.

Most of the terms in the Price Equation and related models arise
in the theory of quantitative genetics (see, e.g., Falconer 1989).
The key terms average excess and average effect were introduced
by Fisher (1930, 1941, 1958). These terms are developed in the
context of Mendelian genetics in many texts and papers on popu-
lation genetics (e.g., Crow and Kimura 1970; Crow and Nagylaki
1976; Ewens 1989).

The two examples below analyze a one-locus model with two
alleles and dominance. The first example describes phenotypic
changes caused by a change in the mating system in the absence
of selection. In this case allele frequencies do not change. All phe-
notypic changes can be ascribed to shifts in the effect of alleles
that arise from reassortment during transmission. The second ex-
ample describes allele frequency change under selection. Pheno-
typic evolution is partitioned into the direct effects of selection on
allele frequency change, and changes in allelic effects caused by
the new context of genotype frequencies present after selection,
reassortment, and transmission.

Change in Mating System with No Selection

Let there be a single locus with two alleles, A and B, with sub-
scripts 1 and 2 used respectively for the two alleles. The main terms
for this numerical example are shown in Table Al. The phenotypes,
Z, for the three genotypes show that B is completely dominant to
A. The phenotypes for the three genotypes are labeled z 11 , z 12 , and
Z22 for AA, AB, and BB, with values shown in the first line of the
upper table. The upper table lists values for genotypic attributes.

The initial allele frequencies for the alleles A and B are r1 =
and r2 = 3/4, shown in the upper line of the lower table. The lower
table shows attributes for individual alleles. Initially, mating is ran-
dom, with genotypic frequencies given by q. For example, the fre-
quency of heterozygotes is q12 = 2r1 r2 = 12/32.

The lower table provides three different ways to describe the
effect of each allele on phenotype. The average excess is the dif-
ference between the average phenotype associated with an allele
and the average phenotype for all alleles. For example; to calculate
the average excess for allele A, each phenotype is weighted by the
number of A alleles and the frequency of the genotype, in particular

	

2q iizii	 q12Z12a l = Z	 (Al)

	

1711	 q12
with a similar definition for a2.
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TABLE Al. Dominance, nonrandom mating, and no selection.

AA	 AB	 BB

Phenotype (z)
Phenotype (z')
Phenotype (e)
Frequency (q)
Frequency (q')
Frequency co
Breeding value (g)
Breeding value (F)
Breeding value (g')
Breeding value (g)
Marginal prediction ('P)
Marginal prediction (f)

A

Frequency (r)
Frequency (r')
Average excess (a)
Average excess (a')
Average effect (b)
Average effect (b')
Average effect (a = b — b)
Average effect (a' = b' — b')

The average excess is sometimes referred to as the marginal
allelic effect. One can use the marginal effects to predict the phe-
notype Zu as

= Z ai +	 (A2)

where the prediction is obtained by adding the marginal effects of
the alleles. These predictions are based on two degrees of freedom
because the as are constrained by r i a i + r2 a2 = 0, so one is left
with one degree of freedom for the mean and one degree of freedom
for the as. Marginal predictions are shown in the upper table.

Fisher (1941, 1958) noted that better prediction can be obtained
by using the two degrees of freedom in a different way. One can
partition the character values as

z ip = Z+ a i +ai + 8 11 ,	 (A3)

where the predicted value of the character is

g, = z
	 aj	 (A4)

and the distance (error) between prediction and observation is

SiJ = ZiJ -g^^ .
	 (A5)

The prediction, g, is the breeding value.
Fisher (1941, 1958) defined the best prediction for phenotype,

using only two degrees of freedom, as the values of a that minimized
the Euclidean distance between all observed and predicted phe-
notypes. This is equivalent to finding the as that minimize the sum
of the g where the sum is weighted by the frequency of each
genotype. This is the standard least squares theory of regression,
with the as as regression coefficients for the partial effect of each
allele.

The as are constrained such that ri ot ' + r2a2 = 0, and each a is
a phenotypic deviation from the mean. When working with changes
in the coefficients over time it is often easier to use average effects
(regression coefficients) that include the contribution to the mean,
bi = a i + Z/2, thus gisi = bi + bp

Calculation of average effects requires minimizing the sum of
squares. For this two allele system, Crow and Kimura (1970, p.
131) provide these formulas for calculation

(r 1 + r2f)Zii	 r2(1	 DZI2 a1 = 	
1 + f

a2 = 
r (1 -	 (r2 + r if)Z22	 Z	 (A6)

1 + f

where f the standard inbreeding coefficient of population genetics,
can be calculated as the correlation of alleles that unite to form
offspring.

These formulas allow calculation of g, a, and b in Table Al. The
initial generation was formed by random mating, and the normalized
values of average excess and average effect are equal, a = a.

The next generation is formed by self-fertilization of all indi-
viduals. The changed variables are separated into two classes in
the upper, genotypic table. The hats denote the actual value of the
variables among the progeny. The primes denote offspring values
according to the rules for parent-offspring assignment in the Price
Equation. For most cases, the value of a primed variable for a
particular genotype is the value of offspring derived from a parent
of that genotype. For example, the AB genotype produces offspring
of genotypes AA, AB, and BB in a ratio of 1:2:1 under self-fertil-
ization, so z1 2 = (1/4)211 + (1/2 )212 + ( 1A) 22 . The definition of q' in
the Price Equation is q; = In this model fitnesses are equal
for all genotypes, so q' = q.

There are two different ways to calculate the breeding value of
offspring derived from a parent (see Figure 1). The actual values

/4)g11

of offspring breeding value, r, may be used, with a calculation
similar to z'. For example, under self-fertilization, F 1 2 = (1
(1 )g 12	 (14)g22. With this definition, 1g = F — g. Alternatively,
the breeding value transmitted by each parent, g', can be calculated
directly. In particular, gb = g i1 = b; + b.; for a Mendelian model
with no transmission bias. This measures the average effect of pa-
rental alleles transmitted to offspring, in which the effects are de-
scribed in the context of the offspring generation. The transmitted
breeding value allows one to distinguish between the effect of pre-
dictors passed from parent to offspring, and the role of reassortment
of predictors in the formation of offspring.

The lower, allelic portion of Table Al reports only primed vari-
ables. There is no distinction at the allelic (predictor) level be-
tween offspring assignments to parents (primes) and actual off-
spring values (hats) in most models, including this one. It is only
when predictors are aggregated, such as in genotypes, that the
distinctions between prime and hat offspring definitions are com-
mon.

The allele frequencies, r' do not change because there is no
selection, but the genotype frequencies among offspring, 4, do
change because self-fertilization causes an increase in the cor-
relation between alleles that combine to form offspring. A standard
calculation from population genetics shows that, under self-fer-
tilization, the correlation between alleles in each generation is f'
= (1/2)(1 + f), where the prime denotes the current generation and
the unprimed variable denotes the previous generation. In this
model, f = 0 and f' = 1/2. With this value, and the previous for-
mulas, all values in Table Al can be filled in for the offspring
generation.

Note that, with nonrandom mating, average excess (a') and av-
erage effect (a') differ. In this case, a = a(1 + f) (Crow and
Kimura 1970). The average effects provide a better estimate of
phenotype in terms of minimizing the Euclidean distance between
prediction and observation, indeed, it is guaranteed to be optimal
in this regard. For this case, the ratio of the distances for the
marginal predictions, (14 and the breeding values, g, is approxi-
mately 4:3.

The disadvantage of the average excess is that it confounds the
independent contribution of each allele with the correlation between
alleles. By contrast, Fisher emphasized that the average effect mea-
sures the expected change in phenotype when a single allele in a
population is chosen randomly and transformed from one allelic
state to another. Thus average effect measures change given the

o	 1	 1

o	 3/4	 1
0	 1	 1

2/32

2/32

5/32
54/96

21/96
21/96

21/96

54/96

9/96

12/32 18/32

12/32
18/32

6/32 21/32

78/96 102/96

61/96
101/96

61/96 101/96

61/96 101/96

78/96
102/96

51/96 111/96

1/4

1/4

- 36/192

3/4
3/4

12/192

90/192 30/192
54/192 102/192

21/192 101/192

36/192
12/192

___ 60/192 20/192
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and Nagylaki 1976). In this example there is no variation in fitness,
so the covariance term is zero. We are left with the identity AZ =
E(Az). This equality requires that q; = q i , because AZ = I q; z; —
I qi z i , and E(Az) = q i (z; — zi ). It is a useful exercise to study
this identity carefully, because the Az is sometimes confusing in
application.

Another point of generality, and confusion, arises from the flex-
ible way in which z may be interpreted. It is a placeholder for any
quantity consistently defined to match the derivation of the Price
Equation, which puts very few restrictions on its use. I show how
one may consider this term as phenotype, breeding value, or average
effect.

One can calculate from Table Al that Z- = 15/16 and Z' = 27/32,
thus Az = —3/32. The right side is

E(Az) = I q i Az i ,	 (A9)

where Az i = z; — z,. The term z i is simply a measurement on the
adult, for example, the adult phenotype. The term z, is the same
measurement on all members of the offspring generation assigned
to adults with index, i. From Table Al, it immediately follows that

q i Az i = —3/32, and we obtain the consistent result AZ = E(Az)
= —3/32.

We can work with breeding values instead of phenotypes by
substituting g for z in the above analysis. Note that, from the def-
inition of breeding value above, g = z, so Az = Ag. The identity
we must establish to show consistency of the Price Equation is Az
= Ag = E(Ag), where Ag = g' g. The identity is easily verified
from the table and the style of calculation summarized in the pre-
vious paragraph.

We can also work directly at the allelic level with average effects.
By the definition of average effect, Z = 2b, thus AZ = 20b = 2E(zb).
Calculations from Table Al support these identities.

The ability to work alternatively with phenotype, breeding value
or average effect, is an attractive feature of partitioning characters
by regression analysis in the Price Equation.

Reassortment of alleles during transmission causes all change in
these examples. The calculations are relatively easy because there
is no selection and thus no partitioning of change into components.
Also, whole offspring are assigned to a single parent because in-
dividuals self-fertilize. The following example shows how to handle
the analysis when there is selection and biparental inheritance.

TABLE A2. Dominance, random mating, and selection.

	

AA	 AB	 BB

Fitness (z	 0
	

1	 1
Fitness (z'	 w')
	

8/10
	

910	 1
Fitness (t'	 IV)
	

0
	

1	 1
Frequency (q)
	

1/16
	

6/16	 9/16
Frequency (q')
	

0
	

6/15	
9/15

Frequency (4)
	

1/25
	 8/25 	16/25

Breeding value (g)
	

9/16
	

13/16 	 17/16
Breeding value (F)
	

8/10
	

910	 1
Breeding value (g')
	

16/25	 21/25 	26/25

Breeding value (g)
	

16/25	 21/25 	26/25

Average excess (A)
	

15/16
	

1/16	 1/16

	

A
	

B

Frequency (r)
	

1/4	
3/4

Frequency (r')
	

1/5	 4/5

Average effect (b)
	

9/32
	 17/32

Average effect (b')
	

8/25	
13/25

Average effect (a = b — b)_	 — 3/16
	

1/16
Average effect (a' = b' — b')

	
4/25	 1/25

current context of the population, in this case, the breeding struc-
ture, f

Let us now consider how the Price Equation subsumes various
formulations. The standard form of the equation is

AZ = Cov(w,	 + E(wAz)/w,	 (A7)

which matches equation (3) after dividing each side by -0. First note
that, as in equation (17)

Cov(w, z)/IT; =	 q i (w i — 1,1))Zi/0 =	 q i A j Zi hi),	 (A8)

showing that the covariance can be written as the expected product
of the average excess in fitness, w i 1,P, and the character, z (Crow

TABLE B 1. Partitions of evolutionary change.

Change	 Partition

Cov(w, z) + E(wzz)
Tr Cov(z, z) +	 P iCov(y i, z) + Cov(w, E)	 E(wzz)

IT;Az = IT,Ag
	

R wgVg + E(wAg)
13,„g Vg r3g , g + IT,Dg + Cov(E., )/)
13„, Vg , + IT,Dg

n Cov(w, b) + nE(wzb)
Cov(w, g) = I q iA i g i = I (Aq i)g i = n Cov(w, b)

= nI riajbi =	 riajai =	 (Ari)oli
(rB — C)Vg + E(wzg)
(rB	 C)13g , g Vg + ODg + Cov(E, -y)
13,g , Vg, =	 kj i3i Ti)Vg

Equation

3a

5
8

10b
12
30
17, 20c
19,21
24
25
27d

a Table B2 defines the notation used here.
b Note that Dg = E(U), see Table B2.
c The Fisherian partial change applied to mean fitness is A fvt,, yielding the fundamental theorem. Here Af is applied to an arbitrary character with breeding

value g. This form is sometimes called Robertson's secondary theorem of natural selection.
d This equality requires that one ignore correlations among residuals (see discussion of Eq. [27] in the text) and certain causal paths (see discussion of

Eq. [29] in the text).



1728
	

STEVEN A. FRANK

Selection Followed by Reassortment during Transmission

This example differs from the prior section in two ways. First,
mating is random in all generations. Second, the phenotype is equiv-
alent to fitness, so there is differential success among genotypes.

Table A2 shows the calculations for this example. The average
excess of alleles is not shown because, with random mating, a =
a. The average excess of genotypes is given in the upper table,
where A i = wi	 and, as noted above, the covariance term of the
Price Equation is Cov(w, z)/0 =	 qiAizi/vP.

The calculation of primed variables is similar in principle to the
previous section, but the details differ. For frequencies, q; = qiwil
1;P. For phenotypes, one must take into account the kinds of offspring
that each phenotype produces, which requires using the allele fre-
quencies available among mates after selection, ri and 	 For ex-
ample, z	 " /2 +i l =	 + /-212 and 4 2, = [ri(t'11 + 12)1	 Cr(t‘i2
222)/2]. Similar methods are used for .Z 2 and values of F, and g' = g.

The net change in character value can be calculated directly from
the genotype frequencies, q, yielding AZ = 24/25 – 15/16 = 9/400.
We can derive this total change by working with either phenotypes,
breeding values or average effects, as in the prior section.

For phenotypes, Cov(w, z)/0 = giA i zi lw = 1/16. This describes
the increase in the phenotype caused by selection among adults,
before the adults reproduce. The second term describes changes
during reassortment of alleles and transmission, E(wAz)/-0 =

qi wi Azi hP = I q; Az i = –1/25. Thus total change is AZ = 1/16
– 1/25 = 9/400, satisfying the consistency check for calculations
on phenotypes.

The same calculation for breeding values, g, yields Cov(w, g)/1,P
= I giAigi lw = 1/40 and E(wAg)/17t) =I q; Agi = –1/400, thus AZ
= 1/40 – 1/400 = 9/400. We can use either definition for assigning
offspring breeding values to parents, with E(wAg)/iT) = I q; (Fi –
gi ) = I q; (g; – gi ). Note that breeding values change less than

phenotypes (see prior paragraph). Breeding values usually provide
a better (more predictable) measure of the effect of individual alleles
than obtained directly from phenotypes.

The calculation for average effects is obtained from
A z = 2 Cov(W, b)/IT, + 2E(WAb)/0

= 2 E ria i b i lw + 2 E	 (A10)
where Z = 2b, marginal allelic fitness is Wi /W = 1 + ai l0 and,
under random mating, a = a. This partition is equivalent to the
partition of breeding values. Calculations from Table A2 support
this equivalence. Note that the two in these equations arises from
diploidy. In the general case two is replaced by n for the number
of predictors.

Many other interpretations of the Price Equation are possible.
Consistency checks provide useful exercises to learn the meaning
of the terms. But the consistency of the Price Equation was not in
question because the original, abstract proof guarantees success for
any evolutionary system that meets the limited requirements im-
posed in the proof.

APPENDIX B
Many theoretical studies of natural selection develop alternative

partitions of evolutionary change. Table B1 lists some of the re-
lations among these partitions.

Table B2 summarizes the important notations of this paper. The
previous appendix and tables emphasize the distinction between
values assigned to parents and values that occur in the descendant
population (hat versus prime variables in tables Al and A2). Some
of the notation for kin selection differs in Frank (in press a,b). I
prefer the notation of the latter articles. I was constrained in the
present paper by the need to relate concepts and notation across
several topics: quantitative genetics, the fundamental theorem, the
Price Equation, and kin selection.
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TABLE B2. Important notations. TABLE B2. Continued.

Symbol
	

Description
	

Symbol

Measurable quantity, can be replaced by character 	 Aid
value, breeding value, average effect, fitness, or
any quantity

zi
	 Measurement on the ith entity, where i can repre-

sent a label for any unit or grouping, such as an 	 G
allele, a genotype, a family, a species, etc.

z;
	

Average value of z in the descendant population
for entities assigned to parent with value z i (see	 a
Appendix A)

Zi
	 Value of z i in the descendant population, differs 	 Vz

from z; when i is an aggregate grouping such as 	 Vg
alleles in a genotype (see Appendix A)

qi
	 Fraction of the population consisting of entities as- 	 Vg/V,

signed index i
wi	 Fitness of entity i, such that q; =
xii	 Predictor variable for the jth character of the ith

entity
bj	 Average effect, the partial regression of a character

value on a predictor variable, see Appendix A
aj	 Normalized average effect, bj – b
gi
	 Breeding value, the predicted value of a character

gi =	 bj xij

g;
	

Breeding value transmitted to offspring by ith pa-
rental type, measured in context of offspring
generation

Fi Average value of g in the descendant population
for entities assigned to parent with value gi (for
the difference between F and g', see Appendix
A and Fig. 1)

8i	 Difference between observed and predicted charac-
ter value, 8i = zi – gi

Ai	 Average excess, z i –
aj	 Marginal average excess of a predictor, see equa-

tion (18) and Appendix A
Dg	 Average difference in breeding value between par-

ent-offspring pairs, see equation (11)
n	 Ploidy level, the number of alleles per locus, two

for diploidy
Wi
	 Marginal allelic fitness, marginal average excess in

fitness for allele j is aj = Wj – ft)
Afw
	 Partial Fisherian change, holding constant average

effects, yields the fundamental theorem when
applied to average fitness, IT), Robertson's sec-	 kj
ondary theorem when applied to arbitrary char-
acters, g

Description

Partial inclusive fitness change, see equation (27)
Predictors of fitness in addition to z, often used for
phenotype of social group or social partners of an
individual
Breeding value of social group or social partners of
a recipient
Error in predicting fitness
Intercept for fitness regression, distinguish from av-
erage effect by context, see equation (4)
Variance in measured character
Variance in breeding values, additive genetic (ge-
notypic) variance
Portion of phenotypic variance explained by breed-
ing value, a measure of heritability
Variance in transmitted breeding values
Regression coefficient of fitness on breeding value
Regression of fitness on transmitted breeding value
Regression of transmitted breeding value on parental
breeding value, a measure of heritability related to
offspring-parent regressions
Fitness benefit to recipient associated with partner's
phenotype y, holding constant the recipient's phe-
notype, z (partial regression)
Fitness cost to recipient associated with its own phe-
notype z, holding constant the partner's phenotype,
y
Regression of partner (actor) phenotype on recipient
genotype, a relatedness coefficient for fitness effects
within generations
Regression of partner genotype on recipient genotype
Regression of partner phenotype on recipient geno-
type, holding constant partner genotype, measures
factors other than partner breeding value that influ-
ence r
Relatedness coefficient for inclusive fitness, in which
g is an actor's breeding value and is the breeding
value transmitted through the actor's jth fitness com-
ponent; an actor's fitness component may be off-
spring produced by a social partner, thus Po off-
spring-parent heritability regression in the inclusive
fitness sense of assigning nondescendant progeny to
a "parent"
Reproductive value of jth fitness component

Vg,
Rwg

R wg'

Pg'g

R wy•z

P w.y

13 yg = r

PGg

Pyg•G

= Pgig
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