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Abstract 

Developmental selection is the differential survival and proliferation of developmental units, such as cellular 
lineages. This type of internal selection has been proposed as an explanation for diverse examples of self-organization, 
from the wiring of brains to the formation of pores on leaf surfaces. A general understanding of developmental 
selection has been slowed by failure to understand its relationship to familiar forms of genetical selection and 
evolution. I show the formal analogies between models of developmental selection and genetical selection. The general 
method I outline for the analysis of selective systems partitions self-organizing selective systems into generative rules 
that create variation and selective filters that move the population toward a target design. The method also 
emphasizes aggregate statistical measures of evolving systems, such as the covariance between particular traits and 
fitness. The identification of useful aggregate measures is a crucial step in the analysis of selective systems. I apply 
these concepts to a model of self-organization in ant colonies. Copyright © 1997 Elsevier Science Ireland Ltd 
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1. Introduction 

How do multicellular organisms develop com­
plex form and purposeful, coordinated behavior 
from a single zygote? How do ant colonies build 
and defend nests as coordinated, superorganismal 
units? In each case the group of cells, or individuals, 
functions as an integrated unit without an explicit 
master plan or centralized, controlling agent. Indi-
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viduals or colonies are said to 'self-organize' be­
cause large-scale group organization emerges from 
small-scale processes among the individual units. 

Several candidate processes have been proposed 
for the development of pattern and the ontogeny of 
behavior. Network models emphasize pathways of 
stimulation and repression between pairs of units 
(Kauffman, 1993). Simple rules for pairwise inter­
actions create an internal environment in which 
structure inevitably develops toward particular 
form. Gradient models emphasize changing con­
centrations of chemical signals in which local 
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reaction centers interact with spatial diffusion 
(Meinhardt, 1995). Each reaction and diffusion 
process is itself simple, but the cascade of events 
organizes pattern on a large scale. 

In this paper I analyze developmental selection 
as a self-organizing process (Changeux and 
Danchin, 1976; Edelman, 1987; Michaelson, 1987; 
Sachs, 1988). Developmental selection organizes 
by a two-step algorithm. Generative mechanisms 
create a population of alternative trajectories. Se­
lective filters choose, from an excess of possibili­
ties, those trajectories that satisfy particular 
design criteria. Large-scale pattern and behavior 
emerge from local rules for variation and selec­
tion. 

In the next section I discuss the defining fea­
tures of selective systems. I present a model for 
the development of ant colonies in the second part 
of the paper. Ants provide one of the most inter­
esting and empirically tractable examples of self­
organization. 

2. What are the defining characteristics of 
selective systems? 

2.1. Generative rules and selective filters 

Generative rules and selective filters provide a 
reasonable description of selective systems. But 
the boundaries are not sharp among alternative 
descriptions for dynamical systems and self-orga­
nizing principles. Consider the following example 
from population genetics 

dq,fdt=0-1t)q;(ll';/ll'- l)-fl(q,-ij) (1) 

where, in this model of haploid genetics, q; is the 
frequency of the ith allele, ir; is the fitness of the 
ith allele, fl is the mutation rate from the ith allele 
to another allele (including i ), and overbars 
specify average values. If there are, for example, 
two alleles, then the fitnesses might be w 1 = I + s 
and w2 = 1 - s. The dynamics are easily described, 
with the equilibrium determined by a balance 
between the relative strength of mutation, fl, and 
selection, s. 

There is nothing inherent in Eq. (I) to suggest 
that it forms a system of variation and selection. 

The system is simple, standard dynamics in which 
the interpretation of selection arises from a widely 
shared understanding about how to describe the 
underlying biology. For example, I referred to the 
term - ft(q; - ij) as random mutation. But with 
regard to the dynamics it might just as well be a 
frequency dependent Lamarckian process by 
which common types are induced by their neigh­
bors to switch to rare types. A system is usually 
called Lamarckian when new variants arise in a 
manner that matches environmental stimuli. But 
Lamarckian systems also have dynamics deter­
mined by fitness differences among variants, that 
is, by an interaction between variation and selec­
tion. 

The distinction between Lamarckian systems 
and genetical selection concerns the key process 
that leads to a good fit between the system and 
environmental challenge. In the Lamarckian 
scheme, good fit arises when the environment 
induces a matching change in a member of the 
population. Good fit arises in a genetical system 
when a random variant happens to match the 
environment; the beneficial variant is then deter­
ministically increased by selective filters. 

Selective enhancement in population genetics 
occurs because of differential reproductive suc­
cess. Differential productivity is, in any system, a 
description of frequency change. but it may some­
times be appropriate to assign the cause of differ­
ential productivity to a selective filter designed 
specifically for that purpose. I illustrate this point 
about designed selective filters by interpreting Eq. 
( 1) in terms of self-organization of ant colonies. 

Suppose each worker works at a single task. 
The frequency of workers on task i is q;. Workers 
signal the need for additional help to complete 
their task in proportion to the amount of uncom­
pleted work. Signalling of need follows a purely 
'local' rule, by which each individual signals ac­
cording to the rate at which it encounters cues 
that indicate work to be done. For example, a 
worker signals in proportion to the rate at which 
it encounters untended larvae. 

These recruitment signals cause workers to shift 
from tasks with low need to tasks with high 
priority. The changes in task distribution caused 
by these shifts can be described by q; = q;w;/1v. 
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This is identical to selection in a model of haploid 
genetics, where there is a population of entities 
labeled with the subscript i, with differential pro­
ductivity measured by ir;. The set { W;} forms a 
selective filter that determines the colony dynam­
ics of task allocation and self-organization. The 
selective filter is itself subject to evolutionary 
modification by natural selection of genetic vari­
ants, that is, the selective filter may be designed by 
adaptive processes. 

As with any selective system, selective changes 
in task allocation within colonies depend on suffi­
cient variation in task distribution. In Eq. (1 ), 
variation is generated by 'mutational' processes in 
the 11 term. One interpretation for ant colonies is 
that individuals randomly change their task to 
another task with probabilityµ. Mutational varia­
tion is crucial for self-organization in this model 
because an important task can only be enhanced 
by selection (recruitment) after it has been discov­
ered by at least one worker who can signal further 
need. 

Signalling, recruitment, search and discovery 
are well-known attributes of task allocation in ant 
colonies (reviewed by Wilson, 1971; Bourke and 
Franks, 1995; Gordon, 1996). These processes 
have been understood without the need to de­
scribe dynamics in terms of selective language. 
What is gained by analyzing task dynamics in 
terms of selection? 

Selective analysis emphasizes one path to self­
organization: a clear division and synergy between 
generative mechanisms and selective filters. As 
noted above, selective analysis is usually reserved 
for dynamics in which the direction of search is 
partly uncoupled from the ultimate target defined 
by the selective filter (fitness). This kind of system 
is sometimes called blind variation and selection 
to emphasize that discovery arises by random 
search (Campbell, 1974). The idea that develop­
ment and self-organization proceed by blind vari­
ation of developmental trajectories coupled with 
innately designed selective filters remains a minor­
ity view, although it has been discussed indepen­
dently by many authors (e.g., Changeux and 
Danchin, 1976; Edelman, 1987; Michaelson, 1987; 
Sachs, 1988; Seeley et al., 1991; Wagner and 
Misof. 1993; Frank, 1996a; Frank, l 996b ). 

My analysis below will also highlight the sepa­
ration between generative mechanisms and selec­
tive filters. But my main point is to emphasize 
that selective analysis calls attention to important 
aggregate properties in the dynamics of self-orga­
nization. 

2.2. Aggregate quantities of selective systems 

Useful analysis of complex dynamics usually 
depends on finding crucial aggregate properties. 
For example, the behavior of gases follows simple 
laws when one analyzes the aggregate quantities 
of the individual molecules, such as pressure and 
temperature. At a finer scale, the dynamics of 
individual particles are unpredictable and, with 
respect to practical problems, unimportant. 

Many important phenotypes of organisms de­
pend on the interaction of several genes. Useful 
theory has been almost impossible when studying 
dynamics at the level of the individual genes, and 
measurement of changing gene frequencies in the 
context of phenotypic evolution is often beyond 
hope. Yet considerable theoretical and empirical 
success has been achieved by studying aggregate 
properties of populations. Fisher ( 1918) was the 
first to show the logical relationship between the 
individual particles (genes) and the dynamics of 
aggregate properties such as the mean and vari­
ance of quantitative traits. The resulting field of 
quantitative genetics has been highly successful in 
the analysis of natural populations and in practi­
cal applications to plant and animal breeding 
(Falconer, 1989). 

The Price equation is a powerful method for 
analyzing aggregate quantities of selective sys­
tems. I review the Price equation in the next 
section and, in the following section, summarize a 
standard application to the problem of mutation 
and selection. 

2.3. The Price Equation 

The Price equation is an exact, complete de­
scription of evolutionary change under all condi­
tions (Price, 1970; Price, 1972; Frank, 1995). The 
equation adds considerable insight into many evo­
lutionary problems by partitioning change into 
meaningful components. 
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Here is the derivation. Let there be a population 
(set) where each element is labeled by an index i. 
The frequency of elements with index i is q;, and 
each element with index i has some character, z;. 
One can think of elements with a common index 
as forming a subpopulation that makes up a 
fraction q; of the total population. No restrictions 
are placed on how elements may be grouped. 

A second (descendant) population has frequen­
cies q; and characters z;. The change in the average 
character value, z, between the two populations is 

(2) 

Note that this equation applies to anything that 
evolves, since z may be defined in any way. For 
example, z; may be the gene frequency of entities 
i, and thus z is the average gene frequency in the 
population, or z, may be the square of a quantita­
tive character, so that one can study the evolution 
of variances of traits. Applications are not limited 
to population genetics. For example, z, may be 
the value of resources collected by bees foraging 
in the ith flower patch in a region (Frank, I 996a ). 

Both the power and the difficulty of the Price 
equation come from the unusual way it associates 
entities from two populations, which are typically 
called the ancestral and descendant populations. 
The value of q; is not obtained from the frequency 
of elements with index i in the descendant popula­
tion, but from the proportion of the descendant 
population that is derived from the elements with 
index i in the parent population. If we define the 
fitness of element i as w;. the contribution to the 
descendant population from type i in the parent 
population is q; = q;11·;/1'i'. where 1i'' is the mean 
fitness of the parent population. 

The assignment of character values z; also uses 
indices of the parent population. The value of z; is 
the average character value of the descendants of 
index i. Specifically, for an index i in the parent 
population, :::; is obtained by weighting the char­
acter value of each entity in the descendant popu­
lation by the fraction of the total fitness of i that 
it represents (see examples in later sections). The 
change in character value for descendants of i is 
defined as fiz; = .:; - .:,. 

Eq. (2) is true with these definitions for q; and 
z;. We can proceed with the derivation by a few 
substitutions and rearrangements: 

which, using standard definitions from stat1st1cs 
for covariance (Cov) and expectation (E), yields 
the Price equation 

1vfiz = Cov(w, z) + E(wfiz ). (3) 

The two terms may be thought of as changes due 
to selection and transmission, respectively. The 
covariance between fitness and character value 
gives the change in the character caused by differ­
ential reproductive success. The expectation term 
is a fitness weighted measure of the change in 
character values between ancestor and descendant. 

2.4. Aggregate quantities in a genetic model of 
mutation and selection 

The Price equation can be applied to genetic 
models of mutation and selection (Frank and 
Slatkin, 1990). Assume a model of haploid genet­
ics with a variety of alleles, i, each with frequency 
q; and phenotype z;. For a simple model of direc­
tional selection, we can set w; = I + sz;. The mu­
tation process is such that the descendants of 
i have phenotype z;=(l-µ)z;+(µ/2)(z 1+ 1)+ 
(µ ;2)(z; _ 1 ), with the difference between successive 
pairs of alleles .:;+ 1 - z; = 1. With these assump­
tions fiz, = 0, and substituting into the Price equa­
tion yields 

1i'· ti.:= s Var(z ), 

showing that the trait increases at a rate propor­
tional to the selection coefficient s multiplied by 
the variance i1!._z. We might also be interested in 
how Var(z) = z 2 

- 22 changes. The change in z is 
given in the previous equation, so we need the 
change in z2

. We first calculate that fiz~ = µ and 
then substitute, yielding 

1i'·.: 2 = sCov(z 2, z) + p 

ignoring terms of order µs. 
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There is an extensive theory of quantitative 
genetics (Barton and Turelli, 1987; Falconer, 
1989). My only purpose here is to show that such 
models highlight in a natural way the properties of 
generative mechanisms, µ. the selective filter, w;, 
and natural summary statistics on the population 
such as variances and covariances of trait values. 

In the following section I use this approach to 
study a simple model of self-organization in ant 
colonies. 

3. Recruitment signals and selection among tasks 

Eq. (1) describes the dynamics of a recruitment 
model for task distribution. Each worker works at 
a single task. She signals need for additional 
workers to help her according to the rate at which 
she locally encounters unfinished work. Signal 
strength per worker in task i, w;. is in proportion 
to the amount of unfinished work in that task. 
Frequency changes caused by differential recruit­
ment are q; = q,w;/1i·. Random task switching oc­
curs at rate fl, which allows discovery of tasks at 
which no workers are currently employed. These 
assumptions lead to the dynamics given by Eq. (I). 

The recruitment signal (fitness) of each task 
depends on the amount of unfinished work, 6;. 
Uncompleted work is determined by the difference 
between the colony's need for a task and the 
current allocation of workers to that task. The 
relative signal intensity for each task is defined as 
6; = p; - q; for the ith task, where pis the need for 
work and q is the current allocation. The p's and 
q's are given as frequencies such that LP;= L q; = 
1. The strength of the recruitment signal for the 
ith task is ir; = 1 + s6;. The colony-level measure­
ment of unfinished work, 6;, arises solely from the 
local rules that determine individual signalling 
strength, that is, the workers signal according to 
local need rather than the colony-level measures p; 
and lJ;· Local need is determined by the environ­
ment formed by the aggregate properties p and q. 
These aggregate properties subsequently change in 
response to individual behavior, completing the 
complex loop that determines the dynamics of 
colony-level behavior. 

The need for work at a particular task de­
pends on what other tasks are currently being 
performed. For example, the need for foraging 
and brood care increases as additional eggs are 
laid. The need for work also depends on factors 
extrinsic to the colony, for example, new food 
sources, weather changes, or attack by another 
colony. Thus, the need for work can be defined 
as 

where bu is the need for the ith task created by 
work at the jth task, and c;k is the need for the 
ith task created by the environmental variable ek. 
The environmental variables e and the coeffi­
cients b and c are normalized so that L p, = 1. 

The next step is to find a useful aggregate 
quantity of colony task distribution. For exam­
ple, a weighted average of the deviations between 
need and current allocation is ~ = L; a16;. One 
choice is to weight each deviation, 6 ;, by current 
colony allocation to that task, a; = q,. Analyzing 
that measure does provide some useful insight, 
but here I will focus on squared deviations, 6f, 
with equal weights for each task, a;= l/n, where 
n is the number of tasks. This is a distance 
measure between optimal and current allocation. 
The change in this distance measure in each time 
step is 

Following the Price equation conventions dis­
cussed above, primed variables denote expected 
values in the subsequent time period for descen­
dants of index i variables in the previous period. 
In particular, 

6;2 = o - oJ} + (6 2
• 

where J} is the value of the squared deviation for 
index i in the subsequent time period, and ( is the 
rate at which tasks change from one index to 
another. In this case, tasks do not change between 
generations, ( = 0, but it is important to maintain 
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the distinction between hat and prime measures of 
descendants. 

To calculate the distance measure, we need 

£(6'2) = E(J2) = E(ft- q)2. 

Colony task allocations change according to 

q =(I - p)q' + pij =(I - p)q1r/1t· + pij, 

where, as before, H'; = I + s6; and p is the rate at 
which individuals randomly switch tasks. To keep 
the model simple, for the purposes of illustration, 
I assume that the need for tasks, p, depends only 
on extrinsic, environmental factors, e, and is inde­
pendent of colony task distribution, q. Random 
changes in the environment change the need for 
tasks according to 

fi=p+/J. 

where fJ is a random variable with average value 
of zero and is bounded such that p is a probability 
(p tends to increase when near zero and decline 
when near one). Thus 

E(p + fJ - q)2 
- 6 2 = E(c5 + /])2 

- J2 

= Var(/i) + 2Cov(J, fJ), 

where Var(/J) is the environmental variance. When 
6 2 is large, p will tend to be near zero or one, thus 
environmental fluctuations will tend to reduce the 
variation in p through a _.!!._egative value for Cov(J, 
fi) and therefore lower '52. When c>2 is small, the 
Cov(J, /J) will be low. Environmental variation 
will therefore tend to increase J 2 . 

Putting all terms together yields an approximate 
change in the distance measure 

fiJ 2 
:::::: V ar(/J ) + 2Cov( J, /J) 

+ 2p[Cov(p, q) - Var(q)] 

- 2s[Cov(q, 1:52) + ij6 2
], (4) 

where I have assumed that the magnitudes of s, !' 
and fJ are small relative to one. The effect of 
random changes in task, 11. can be understood by 
noting that 

6 2 = Var(p) + Var(q) - 2Cov(p, q). 

Random task switching will decrease the covari­
ance, the match between p and q, raising 6 2

• 

Random task switching narrows the distribution 
of q because, on average, individuals will move 
from common to rare tasks. This reduces Var(q), 
which reduces '52. 

For the selection term, Cov(q, 6 2
) + ij6 2 = 

E(q6 2
), which is always positive. This term de­

scribes the rate at which selection steadily reduces 
the distance between optimal colony allocation, p, 
and current allocation, q, measured by 6 2

• 

4. Conclusion 

This analysis demonstrates a rational method 
for dissecting the complex processes involved in 
colony development. The resulting description 
clearly separates the generative mechanism and 
the selective filter. The effects are all expressed in 
simple statistical quantities that provide natural 
aggregate descriptions of colony state. 

This approach is not a substitute for standard 
dynamical analysis. Rather, it is a formal tool that 
allows comparison among different partitions of 
complex systems. For example, I prefer the split 
between generative mechanisms and selective 
filters, but perhaps an alternative view would 
provide a better description. The method also 
suggests a natural level for aggregation and the 
associated statistical quantities that measure cru­
cial properties of the system. Again, alternative 
aggregations are possible. Each partition-aggrega­
tion pair provides a metaphor that suggests natu­
ral extensions in conceptual and empirical 
domains. The method outlined here provides a 
rational way to translate competing metaphors 
into formal analysis. 
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