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Adaptive Systems
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I. Introduction

The design of adaptive systems will be among the key research problems of the
21st century. This new field is emerging from several distinct lines of work.

• Modern immunology is based on the theory of clonal selection and
adaptive immunity. The remarkable recognition abilities of the vertebrate
immune system depend on the programmed mechanisms of antibody
variation and selection that occur within each individual.

• The design of intelligent computer systems and robots depends on a
balance between adaptive improvement by exploration and efficient
exploitation of known solutions. Many of the current computer
implementations use evolutionary algorithms to achieve adaptation to
novel or changing environments.

• The adaptive response of genetic systems to environmental challenge
depends strongly on the tempo and mode of sex and recombination.
Sexual systems vary widely in nature. Which processes have shaped this
variation is a major puzzle in evolutionary biology.

• Wiring a brain during development and using that brain to learn are great
problems of information management. Recent studies in neuroscience
suggest that programmed mechanisms of stochastic variation and
controlled selection guide neural development and learning. If true, then
nature has solved these informational problems by using somatic adaptive
systems that are programmed to work in the same way as natural selection.

What do these different fields have in common? Will there be a new science
of adaptation shared by biology and engineering? Can a unified theory guide the
study of so many different phenomena? What will be the central tenets of such a
theory?
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These are difficult questions. To make a start, I survey the range of adaptive
systems as they are currently understood: adaptive immunity, learning,
development, culture and symbiosis, the origin and evolution of genetic systems,
and artificial adaptive systems in engineering. The facts that I present in my
survey, fascinating in their own right, provide the database from which more
general insights must be built.

II. Challenges to Adaptive Systems

Before starting on the survey, it is useful to have a conceptual framework. I begin
with a rough definition. An "adaptive system" is a population of entities that satisfy
the three conditions of natural selection: the entities vary, they have continuity
(heritability), and they differ in their success. The entities in the population can
be genes, competing computer programs, or anything else that satisfies the three
conditions.

A. Types of challenge

In this section I propose a classification of the challenges that have shaped
adaptive systems and the ways in which adaptive systems have responded to these
challenges. A surprisingly small number of challenges and responses cover the
main features of adaptive systems ranging from genetics to robotics. I illustrate the
concepts with brief examples that will be discussed in more detail during the
survey.

Information decay is one kind of challenge. For example, genetic systems suffer
information decay when random mutations occur. If mutations accumulate too
rapidly then adaptive improvement by natural selection is impossible. The
population suffers an "error catastrophe" (Eigen, 1992) or "mutational meltdown"
(Lynch et al., 1993).

Predictable complexity is another type of challenge. For example, the
information required to specify the point-to-point neural connections of a human
brain greatly exceeds the amount of information encoded by the genome. Thus
the genetic system must cope with the problem of creating a complex pattern
during development from a relatively limited set of instructions.

Unpredictable challenges are the third type of problem faced by adaptive
systems. For example, parasites vary unpredictably over space and time. To give an
engineering example, a robot engaged in war cannot have prewired responses for
all possible attack strategies that the enemies may use. A successful robot must
adjust to unpredictable events.

I will argue during my survey that this small list—information decay,
complexity, and unpredictability—describes the main challenges faced by adaptive
systems (Table 1). The next step is to consider how adaptive systems respond to
these challenges (Table 2).
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TABLE I

Challenges to Adaptive Syst

Challenge 

Information Decay

Predictable complexity

Unpredictable challenge

A ubiquitous "tax" on information storage and transmission.

Challenge is to learn predictable pattern or achieve predictable form,

but complexity of pattern greatly exceeds the available information
storage.

(a) Environmental—abiotic challenges and biotic interactions without

feedback. (b) Coevolutionary—biotic interactions with feedback
between systems.

B. Responses of adaptive systems

Enhancing transmission fidelity is one way to overcome the problem of information
decay. For example, Bernstein et al. (1988) suggest that sex is the genetic system's
way of enhancing transmission fidelity in response to the information decay
imposed by mutation. In their theory sex brings together two different copies of
the genetic material, which allows a damaged copy to be corrected by the
undamaged copy.

The problem of balancing exploration versus exploitation recurs in all adaptive
systems (Holland, 1975). Exploration of new ways to solve problems often carries a
cost because competitors may devote more energy to the efficient exploitation of
known solutions. For example, sex increases genetic variability among offspring
compared with asexual reproduction. Greater variability improves the chances that
some of the offspring will have genotypes that match an unpredictable
environment. Thus sexual systems may be a form of exploration, but this
exploration is costly because asexuality is usually a more efficient mode of
reproduction. There is much controversy among evolutionary biologists about
whether sexual systems have evolved as a method of exploration in response to
unpredictable challenge or as a method to enhance transmission fidelity in
response to the to challenge of information decay.

TABLE 2
Responses to Challenge

Response	 Comments
Transmission fidelity

Exploration versus exploitation

Generative rules

Instructional subsystem

Adaptive subsystem

Symbiosis

Mechanisms to reduce errors in the storage and transmission of
encoded solutions.

The balance between costly exploration for improved efficiency

and the cheap exploitation of known solutions.
Simple rules to generate complex phenotypes. Genotypes do not

specify explicit blueprints for structure.

Mechanism to store information obtained directly from the
environment.

A system of variation and selection "spawned" by an evolving
system to solve a particular problem.

Cooperation between separate evolving entities to achieve

greater group efficiency. Conflicts among group members
often arise.
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The transmissible information (genotype) of an adaptive system often
contains generative rules for the design of phenotypic structure (Thompson, 1961;
Lindenmayer, 1971). In organisms each detail of morphology and behavior is not
coded by an explicit DNA sequence; there is no blueprint for design. Fingerprints
are generated by the biochemical rules of morphogenesis contained in the
genome. Those rules may be fairly simple, but the outcome is complex and partly
influenced by chance.

Simple environmental patterns may directly influence the internal
information store through an instructional subsystem. For example, repeated
stimulation of some neurons causes an increase in the stimulus required to evoke
a response. The instructional subsystem takes a direct measure of environmental
pattern.

Adaptive systems may spawn adaptive subsystems to handle difficult challenges
(Gell-Mann, 1994). For example, the immune system of vertebrates has a
specialized set of mechanisms to generate variability among recognition molecules
and a second set of mechanisms to select and amplify recognition molecules that
react with invading parasites. These controls of the adaptive immune system are
specified by the underlying genetic system, or, put another way, the genetic system
has spawned an adaptive subsystem to handle the unpredictable challenges of
parasitic attack. In later sections I will discuss certain aspects of development and
learning as adaptive subsystems spawned by the genetic system.

Symbiosis is the living together of two or more dissimilar organisms. An
interesting theory about the origin of life illustrates the importance of symbiosis
(Eigen, 1992). Information decay was a severe problem for the first replicating
molecules because of high mutation rates. The mutation rate sets an "error
threshold" that determines the upper limit on the size of informational molecules
and thus the storage capacity of genetic systems. The early replicators were limited
to very small genome sizes because of the error threshold. This creates a paradox:
small genomes do not have sufficient information to code for an error-correcting
replication machinery; without error correction larger genomes cannot evolve.

Symbiosis appears to be the solution. A set of small replicators, each below
the error threshold, may have cooperated to produce error-correcting enzymes.
This symbiotic group, with a reduced rate of transmission errors, could then
increase in size and complexity.

Cooperation among early replicators was the first successful symbiosis. The
most recent example of symbiosis in adaptive systems comes from research on
robot design. Teamwork among robots boosts efficiency for tasks that require
division of labor and specialization, such as automated manufacturing, search and
rescue, or surveillance (Parker, 1993). Both biological symbiosis and robot
teamwork must resolve the tension between the autonomy of components and the
control of the symbiotic group. I will discuss this problem for both genomes and
robots in later sections.

C. Outline of survey

I turn next to my survey of adaptive systems. I start with the transformation of
genotype into phenotype. The first of these sections describes vertebrate
immunity, an adaptive subsystem of variation and selection that occurs within each
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individual's body. The following section considers the problems of neural
development and learning. I raise the possibility that adaptive subsystems play a
role in these complex informational processes. The final section of this group
focuses on morphology. I contrast simple generative rules for development with
more complex processes of developmental variation and selection.

After the genotype-phenotype transformations, I turn to the evolution of
genetic systems. There is a natural tendency to view a genetic system as a stable,
well-defined core of hereditary information. But each apparent system is actually a
complex symbiosis of partly conflicting and partly cooperating hereditary systems.
Each has its own pattern of continuity (transmission) and its own generative rules
for the production of phenotype. Sex and recombination define one widespread
pattern of hereditary mixture and symbiosis. I consider how sex fits into the
recurring challenges and responses of adaptive systems outlined in Tables 1 and 2.

The final section places some new aspects of human engineering in the
framework of adaptive systems. At one level these new methods are simply the use
of variation and selection as an engineering tool for problems such as robotics.
The effective use of selection follows in many ways the design of natural adaptive
systems. At another level the new forms of "artificial life," with their new symbioses
and their higher-order adaptive subsystems spawned by humans, are simply the
next historical stage in the evolution of adaptive systems.

III. Adaptive Immunity in Vertebrates

How does a host recognize foreign molecules that signal a parasitic invasion? How
does an individual distinguish self from nonself to avoid attacking its own tissues?
A vertebrate host solves these problems with an adaptive system that causes
evolutionary change among the populations of cells within its body. These
evolutionary changes within the body—somatic evolution—are controlled by a
complex set of mechanisms that are encoded within the genome. In my language
of environmental challenge and adaptive response, the genetic system spawned an
adaptive subsystem to handle the unpredictable challenges of parasitic invasion.

In this section I summarize many details about vertebrate immunity. The
details are fascinating and provide the basis on which theories of adaptive systems
must be built. But in a general survey of adaptive systems the details can also be
overwhelming. So in this introduction I provide a link between the abstract
discussion about challenges and responses in the previous section and the details
of adaptive immunity that follow.

The response of an adaptive subsystem depends on two levels of evolutionary
change. At the somatic level of vertebrate immunity, cellular clones undergo
programmed genetic recombination and enhanced mutation during particular
periods. These mechanisms create variation in the ability to recognize and bind
foreign molecules. Variants that bind invaders are amplified by programmed
controls that enhance the replication rate of some cellular clones while reducing
the replication of other clones. The mechanisms that control somatic
recombination, mutation, and selection (amplification) are coded at the genetic
level. Thus evolutionary modifications at the genetic level ultimately control the
responses of the somatic system.

This two-level system provides special opportunities to study the forces that
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shape adaptive systems. The challenge—parasitic invasion—is clearly defined. The
response requires recognition of invaders. Adaptive immunity uses a number of
techniques to adjust exploration for better recognition of invaders versus
exploitation of existing recognition tools. This dynamic balancing between
exploration and exploitation occurs on short time scales. Although studying
immunology is not easy, we will see that other adaptive systems rarely provide such
clear challenge-response couples.

The vertebrate immune system is actually a complex mixture of adaptive
subsystems and traits that are encoded directly by the genome. For example,
several important aspects of recognition depend on subsystems of random
variation and selective amplification, but at least one key aspect of recognition is
controlled directly by a genetically encoded set of alleles (MHC). This mix of
somatic exploration and the exploitation of fixed recognition presents several
interesting and unsolved problems in this two-level adaptive system. I will discuss
these problems later in the section, but first some biological background is needed
to set the stage.

A. Positive Selection and Clonal Expansion

I will describe a measles infection to introduce some of the details of adaptive
immunity. Measles viruses invade the upper respiratory tract. Toward the end of
the 10- to 12-day incubation period, the first symptoms of headache, fever, and
sore throat appear. At this time the viral population within the host is large and
rising rapidly. Viral particles enter the blood and spread, forming secondary
infections in the skin that lead to the characteristic measles rash (Davis et al.,
1990).

The body maintains a vast array of nonself detectors—the antibodies. Each
antibody recognizes a particular molecular pattern. When a measles virus invades
the body, only a few antibodies can recognize the surface molecules of the viral
coat. Recognition stimulates division of the B cells that produce matching
antibody. This process, called clonal expansion, generates a large population of
antibody-producing cells that are specific for the measles virus. (I present a
simplified description of the immune system. Good introductions are given by
Mims, 1987; Golub and Green, 1991; Mims et al., 1993.)

Antibody can bind and neutralize free virus particles. However, the host has
few antibodies that can react with the measles virus on first encounter, thus the
virus enters cells and begins rapid multiplication. Meanwhile, the antibodies that
react with the virus stimulate clonal expansion of B cells. After several days the
antibody titer is high. At this stage antibodies alone cannot clear the infection,
perhaps because many infected cells harbor the virus internally.

A second defense, the killer T cells, destroys host cells that harbor viruses. T
cells have dynamics similar to the B cells. The large population of T cells can
recognize many different kinds of foreign molecules, but only very few T cells
recognize a measles virus on first infection. Those T cells that recognize the virus
stimulate clonal expansion. Members of this expanded clone, specific for measles,
can clear the infection.

Upon reinfection with measles, the host can mount a rapid antibody and T
cell response that clears the virus. This immunological memory lasts throughout
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life. There are several controversial theories about how immunological memory is
maintained but, at present, there is not enough evidence to end the debate.

Evolution by natural selection occurs when there is variation, selection, and
transmission. The clonal expansion of B and T cells, leading to infection clearance
and immunological memory, satisfies the requirements for adaptive evolution
caused by natural selection. Cell lines (clones) vary in their recognition properties;
reproductive rate varies according to these recognition properties; and offspring
cells resemble their parents. This adaptive system causes evolutionary change
among the populations of cells within the body. The idea that adaptive immunity
is based on natural selection was first proposed by Jerne (1955; see also Burnet,
1959).

B. Diversity: Somatic Recombination and Mutation

Clonal expansion of specific B and T cells in response to challenge by foreign
molecules is easy enough to imagine. But how does the body generate sufficient
variation so that each new invader can be recognized?

The remarkable mechanisms that generate clonal diversity of B and T cells
have been worked out over the past two decades (Golub and Green, 1991;
Janeway, 1993; Nossal, 1993). The process differs slightly for B and T cells. I
describe the generation of B cell (antibody) diversity (see Fig. 1).

Each antibody molecule has two kinds of amino acid chains, the heavy chains
and the light chains. A heavy chain has three regions that affect recognition:
variable (V), diversity (D), and joining (1). A light chain has only the V and J
regions. There are 100 different V genes, 12 D genes, and 4 J genes.

Each progenitor of a B cell clone undergoes a special type of DNA
recombination that brings together a V–D–J combination to form a heavy chain
coding region. There are 100 x 12 x 4 = 4800 V–D–J combinations. A separate
recombination event creates a V–J combination for the light chain, of which there
are 100 x 4=400 combinations. The independent formation of heavy and light
chains creates the potential for 4800 x 400=1,920,000 different antibodies. In
addition, randomly chosen DNA bases are added between the segments that are
brought together by recombination, greatly increasing the total number of
antibody types.

The mechanism for generating the diversity on which selection acts switches
from recombination to mutation during the course of an infection (Fig. 2).
Recombination creates a large number of very different antibodies. Initially, each
of these antibodies is rare. Upon infection one of these rare types may match,
stimulating selective amplification of the B cell clone. The matching B cells
increase their mutation rate, creating many slightly different antibodies that vary
in their affinity to the invader. Those mutant cells that bind more tightly are
stimulated to divide more rapidly. This evolutionary fine-tuning of the B cell
population is called affinity maturation (Golub and Green, 1991).

C. Negative Selection and Self versus Nonself Discrimination

If recognition sequences are generated randomly, then how does the host
discriminate self from nonself? Another selective mechanism solves this problem.
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Figure I The coding and assembly of antibody molecules. Randomly chosen alternatives are used
from different DNA modules to construct a "recombined" RNA transcript, which is then translated into
a protein chain. Two heavy and two light chains are assembled into an antibody molecule. Redrawn
from Janeway (1993).

The T cells mature in the (T)hymus. The randomly generated recognition type of
each maturing T cell is tested against the molecules of the body before the cell is
released. The cell dies if it recognizes self molecules. Thus random generation of
variation followed by selective death creates circulating T cells that react only with
nonself molecules. The processes by which B cells are prevented from reacting
with self molecules are not fully understood. It may be that the absence of self-
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Antigen
Antigen binds to a
specific antibody
on a B cell. That
cell proliferates.

Recombinational
diversity

(0)=0
Mutational
diversity

Mutations cause
small variations in
antibody shape.
Tighter binding
causes faster
replication of the
cellular clone.

Figure 2 Clonal selection of B cells to produce antibody that matches an invading antigen.
Recombinational mechanisms produce a wide variety of different antibody molecules (Fig. 1). All B
cells of a particular clone are derived from a single ancestral cell that underwent antibody
recombination. Members of a clone express only a single antibody type. Cells are stimulated to divide
rapidly when an antigen matches the antibody receptor. This creates a large population of B cells that
can bind the antigen. These cells undergo increased mutation in their antibody gene during cell
division, producing a set of antibodies that vary slightly in their binding properties. Tighter binding
causes more rapid cellular reproduction. Thus this second stage of selection (affinity maturation)
enhances the antibody-antigen fit. Modified from Golub and Green (1991).

reactive T cells is sufficient to prevent clonal expansion of self-reactive B cells.
The use of a selection mechanism to create the self versus nonself distinction

is costly because many of the newly formed T cells react with self and never
mature. However, it is difficult to imagine how the vast array of recognition
sequences could be generated without random combinatorial mechanisms.
Janeway (1993) notes that the total antibody diversity is particularly impressive
because a human has approximately 100,000 genes, but, at any one time, the 10
trillion B cells in an individual can make more than 100 million distinct antibody
proteins. Thus random variation and selection appear to be a very good solution
to the problems of information storage and response to unpredictable challenges.

Thus far I have described adaptive immunity caused by selection of cell
clones within an individual. The adaptive immune system is itself a product of
genetical evolution by natural selection. The evolutionary analysis of adaptive
immunity therefore requires attention to two levels of selective processes, genetical
and cellular.



460	 Steven A. Frank

D. Genetical Evolution of Adaptive Immunity

The adaptive immune system has a complex set of control mechanisms that
generate variation, destroy T cells that react with self (negative selection), amplify
cellular clones that react with invaders (positive selection), and maintain the
ability to react quickly to reinfection by past invaders (memory). These controls of
adaptive immunity are inherited (innate) traits produced by genetical evolution.

The immune system has, in addition to the controls of adaptive immunity,
many other traits that are innate. Perhaps the best understood is the major
histocompatibility complex (MHC), which I now describe.

T cells destroy an infected host cell if they can recognize the infection. In
order to signal the T cells, host cells continually cut up intracellular proteins and
present these fragments on the cell surface. The circulating T cells distinguish
between presented fragments that are self or nonself and respond accordingly.

The molecules that bind intracellular protein fragments and bring them to
the surface are coded by genes that reside within the MHC region. Each antigen-
presenting molecule from the MHC has a groove that accommodates a peptide of
9 amino acids. Each particular MHC molecule can recognize and present on the
cell surface only a subset of protein fragments (peptides). An individual has
several different MHC types that, taken together, determine the set of peptides
that can be recognized and carried to the cell surface for presentation. (Nine
amino acids may seem, at first glance, to be too few for a discriminating
recognition system. But there are 20 amino acids and 209=512,000,000,000
different peptides with 9 amino acids.)

There are both costs and benefits to having a large number of MHC types
(Fig. 3; Nowak et al., 1992; Mitchison, 1993). The MHC molecules, which are
found on cell surfaces typically bound to self peptides, define tissues as self. As T
cells mature they are tested against the innate repertoire of MHC-self peptide
complexes. A developing T cell dies if it would destroy a cell with self MHC. Thus
the greater the MHC repertoire, the larger the number of T cells that are
destroyed during development. If the MHC repertoire is too broad, then too few T
cells would be able to develop.

On the other hand, if too few MHC types were present, then the host would
not be able to recognize and present the protein fragments from many pathogens.
The optimal number of MHC types must strike a balance between the costs of too
broad a definition of self, causing a narrow T cell repertoire, and the benefits of
recognizing a wide array of invaders. This type of optimality argument can help to
define the forces that have influenced the genetical evolution of innate
components in the immune system. There are, of course, many other factors that
may have influenced the evolution of the MHC loci, such as the processes of gene
duplication by which these loci have multiplied from a single ancestral locus.

The MHC loci are highly polymorphic, with between 10 and 80 different
alleles known for each locus. Two lines of evidence suggest that resistance to
particular diseases can strongly affect the frequency of MHC alleles. First, most of
the variation among alleles occurs in the groove that binds protein fragments—the
specific recognition area. Second, a few cases are known in which there is a strong
spatial correlation between endemic diseases and MHC alleles that are associated
with resistance to those diseases. For example, the allele HLA–B53 is associated
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with resistance to a severe strain of malaria that occurs in children in The Gambia.
HLA—B53 occurs at a frequency of 25% in this west African nation; by contrast, the
frequency of this allele in Europe is 1% (McMichael, 1993). Other MHC alleles
are implicated in resistance to HIV, the cause of AIDS, and to Epstein—Barr virus,
the cause of various cancers. Disease correlations with MHC alleles suggest that
selective pressures continue to influence the genetical evolution of the immune
system (Thomson, 1991; Mitchison, 1993).

I close this section by summarizing four cases in which genetical evolution
influences adaptive immunity.

(1) Genetical evolution of MHC loci affects the control of adaptive immunity.
The number of MHC loci and the level of polymorphism at each locus determine
the balance between negative selection of T cell clones and the ability to present
foreign protein fragments on the cell surface.

(2) The immune system uses adaptive mechanisms for some types of
recognition (B and T cells) and direct (genetically encoded MHC) recognition for
the presentation of protein fragments. This raises some interesting questions.
From the point of view of an optimally designed immune system, is this particular
mix of adaptive and innate recognition ideal? Or, would genetical evolution favor
a shift toward adaptive recognition of protein fragments if suitable genetic
variation existed?

(3) Regulation of the immune response is another form of innate control
over adaptive immunity. Deployment of defenses is often costly in terms of energy
spent on the production of new cells and toxic substances. In addition, the battle
against invaders may lead to inflammation or local swelling because the methods
used to clear infection can also damage the host tissues. Thus regulation of the
components of the immune system and the setpoint for triggering a response are
under strong selective pressures. These regulatory aspects of the vertebrate
immune system are not well understood at present.

Induction of defense is a complex subject. It may be useful to look at much
simpler forms of inducible defense to understand the problems involved. Harvell
(1990a, b) has written excellent reviews of the inducible defenses that occur in a
wide variety of organisms. The selective pressures on the setpoint for induction
have been studied in two recent papers (Clark and Harvell, 1992; Frank, 1993). A
phylogenetic perspective of the evolution of immune responses is presented by
Klein (1986).

(4) The process of affinity maturation, discussed above, is another example
of innate control. Affinity maturation occurs when the mutation rate of a B cell
clone increases in response to a match between the clone's antibody and a foreign
molecule. Those mutant cells that bind more tightly are stimulated to divide more
rapidly. A quantitative trait such as enhanced mutation rate is very likely to be
influenced by the processes of genetic variation and natural selection—put
another way, the quantitative controls of affinity maturation are the product of
adaptive processes at the genetic (innate) level.

Affinity maturation dynamically balances exploration versus exploitation in
adaptive immunity. Initially the system explores widely by recombination to meet
unpredictable challenges. After a close match is found the system exploits the
match by reducing the information decay that further recombination would cause
while simultaneously exploring for small improvements by mutation.
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Figure 3 Optimal number of MHC types to recognize foreign antigen. The left panel shows two
opposing forces. On the one hand, increasing numbers of MHC types enhance the probability that a
foreign antigen will be recognized by the array of MHC specificities. On the other hand, more MHC
types reduce the number of T cells that mature because self-reactive T cells are destroyed. The right
panel shows that, by combining these two effects, there is an intermediate optimum that maximizes the
recognition efficiency per T cell produced. There are not enough data to estimate accurately the
magnitude of the two processes and the actual number of MHC types expressed (Nowak et al., 1992).
The best estimate from current data is that 1-7% of T cells are removed by negative selection per MHC
type. Each MHC type can bind a set of nine amino acid peptides with varying affinities. Thus each
MHC type probably binds a fraction between 10' and 10' of the 5.12 x 10 11 possible antigens. The
number of MHC types expressed is estimated between 8-40 for humans. The actual number expressed
in many different cell types is probably closer to the low end of the range.

The questions I have discussed about the immune system can be phrased
more generally to apply to any two-level adaptive system. What is the optimal mix
of innate (closed) and adaptive (open) mechanisms for particular problems in
pattern recognition? What is an efficient mode of selection in order to achieve
rapid learning and accurate memory? How is this selective mode achieved by the
genetical evolution of innate controls of the adaptive process? What forces
influence the setpoint that triggers a response to a recognized pattern? How are
the problems of information storage and transmission solved?

I will show in the following sections that these questions, introduced with the
immune system, apply to a variety of other adaptive systems.

IV. Learning

A newborn organism, faced with the world for the first time, begins to receive
signals about the environment. Simple organisms often detect light, temperature,
and chemical gradients. A baby mammal, endowed with a rich array of feature
detectors, receives a tremendous amount of information. At first, sensory input has
only the limited meaning encoded in the genome that guides the preliminary
wiring of the nervous system—the primary repertoire. As the organism interacts
with its environment during early development the neural connections undergo
rapid changes, leading to an altered neural wiring pattern—the secondary
repertoire.

All aspects of perception, meaning, and even consciousness must derive from
the organism's physiological and neural interactions with the environment. Thus
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the problem is to understand how genes shape the primary repertoire, how
interactions between the primary repertoire and the environment lead to the
secondary repertoire, and how learning is embodied in neural-environment
interactions.

Consider an analogy with the immune system. The problem in immunity is to
recognize all molecules within the body and categorize those molecules as self or
nonself. The nonself molecules must further be categorized according to the
appropriate type of defensive response that should be induced. Finally, the
immune system remembers its categorizations over long time periods.

The number of molecules to be recognized and placed into different
categories greatly exceeds the informational capacity of the genome. Thus there
are only two ways for the body to obtain the information to recognize the diversity
of molecules encountered: instruction or selection.

The instructional idea, popular in immunology in the 1930s and 1940s,
suggests that new antibody (recognition) is achieved by shaping the antibody to
the foreign template (see Golub and Green, 1991, pp. 8-12). Instruction directly
from the environment is possible in principle, but is not known to occur. Under
direct instruction, the body must be able to build its informational molecules to
match a template—this requires a sufficiently malleable informational structure
that can handle whatever external template is posed. In addition, the external
information, now encoded in a similar internal molecule, must be transmitted
successfully within the body. This seems to require that internal communication
encodes information in a way that matches unpredictable forms of external
information. As discussed in the previous section, the immune system uses
selection rather than instruction to recognize and categorize the world.

Recognition and categorization, central to immunity, are also the
fundamental problems of perception. The external world contains too much
information and poses too many problems for all information and solutions to be
coded directly into the genome. Once again, the alternatives for acquiring
information are instruction or selection.

A. Instruction versus Selection

Consider an instructional model of learning (Fig. 4). The genotype codes for
generative rules that specify how to build a neural network. The network has four
inputs that react differently to features of the environment. Environment A
stimulates (1, 2, 4). Environment C stimulates (1, 3, 4). Learning rules change
synaptic connections between nodes (neurons) according to correlations in
activation. Eventually the network learns to categorize features (1, 2, 4) as A and
(1, 3, 4) as C by stimulating an internal node representing the environmental
state. These internal nodes stimulate, in turn, other nodes that trigger appropriate
action for each environment.

The network has learned by acquiring information about correlated features
of the environment. However, the network architecture, the learning rules, and
the interpretation of A and C must be strictly specified by the genotype for this
learned information to be useful. Simple types of associative learning may be
achieved in this way, with a specific module built to obtain information
(instruction) directly from the environment.
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The internal nodes A and C may be part of a larger network. Environmental
categorization could then occur at a deeper level, without the need to specify
directly the interpretation and action at such a fine scale. But this simply pushes
the problem back without solving it. At some internal level, meaning and
interpretation with respect to fitness consequences must be encoded by the
genotype. There is no way for a network to self-organize toward an unspecified
goal such as reproduction.

The instructional model in Fig. 4 seems to require too much of the genotype
in terms of specifying the architecture, learning rules and meanings for each
instructional module of a complex brain. Selection may be the only way to build a
complex and meaningful information system from simple rules. The vertebrate
immune system is an excellent example.

How could there be a selective, adaptive subsystem in the brain built by
simple rules encoded in the genotype? The answer differs in only a few details
from the instructional model of Fig. 4. Figure 5 shows a typical neural network
fantasy that has the key elements of a selective system: random variation,
continuity, and differential success.

The top row of nodes (I, 2, 3) are stimulated by three detectors of
environmental state. For example, if the environment has states (1, 3), then the
(1, 3) nodes will be stimulated in each of the three neuronal groups. In this case
the group on the left will pass on the strongest stimulus to the next layer, which in
turn stimulates the coordinating center A. Note that A is simply a richly connected
region where neuronal groups tend to converge; there is no intrinsic meaning to
the A region.

A
c/D

5)

5)
(24

0

Genotype

Figure 4 An instructional model of learning. This is a simple neural network example. See Hertz et
al. (1991) for an introduction to the literature on neural processing of information and simple
learning models.
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When A is stimulated then connections are activated to two complex centers,
which are treated here as "black boxes." The Move Forward center triggers simple
motions that, in this case, result in detection of water. The Thirst center is a
genetically coded region that returns positive stimulus when water is detected or
acquired.

We can now trace the events that follow detection of environmental state (1,
3) along the bold connections. Starting at the top, the neuronal group at the left
responds most strongly to the stimulus and passes a relatively stronger signal to the
connection center at A. This switching point has connections to both the motion
and thirst centers. In this case behaviors are triggered that cause water detection,
sending a positive signal to the thirst center. The thirst center initiates a return
pathway of stimulus, following the lines of the most strongly active connections.
Internal rules of synaptic change cause the bold pathway to be strengthened—a
form of credit allocation or fitness assignment for relative success with respect to
the internal goal of satisfying thirst.

This is a simple neural network with basic learning rules. But it differs from
the instructional model in three important ways. First, the system begins with a
population of neuronal groups that respond differently to the same input. Second,
the initial structure of each neuronal group is uncorrelated (random) with respect
to environmental challenge and "meaning." Third, categorization of environments
arises spontaneously as a result of the differential success of neuronal groups. The
categorizations and success are subordinate to innate (genetically encoded) goals.

Water
Detector

Figure 5 A selection model of learning. Note at the top that the system begins with a population of
neuronal groups, where each group responds in a different way to the environmental features labeled
(1, 2, 3).
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B. Neural Darwinism

I now turn to a summary of the selective theory of brain development and learning
recently proposed by Edelman (1987, 1988, 1989, 1992; see Edelman, 1987, pp. 14-
22 for a review of earlier, related ideas by J. Z. Young, J.–P. Changeux and others).
This theory of "neural darwinism" shares many features with neural network
models (Rumelhart et al., 1986; McClelland et al., 1986; Hertz et al., 1991) and
ideas from other areas of neurosciences. But Edelman's work differs in its explicit
emphasis on selective ideas and a strong effort to tie every detail of the theory
directly to biological observations of neural development and structure.

The basic components of neural darwinism are:
1. Genes plus stochastic variation plus developmental selection create the primary

repertoire. The morphology (wiring) of the vertebrate nervous system at birth is an
immensely complex structure. The information in the wiring pattern far exceeds
the amount of information contained in the genome. Yet even the most helpless
organism at birth has considerable sensory and motor abilities. Edelman (1992, p.
64) suggests that the wiring at birth—the primary repertoire—forms by a process
of developmental selection:

Imagine now this epigenetic drama in which sheets of nerve
cells in the developing brain form a neighborhood. Neighbors in
that neighborhood exchange signals as they are linked... They
send processes out in a profuse fashion, sometimes bunched
together in bundles called fascicles. When they reach other
neighborhoods and sheets they stimulate target cells. These in
turn release diffusible substances or signals which, if the
ingrowing processes have correlated signals, allow them to branch
and make attachments. Those that do not either pass on or
retract. Indeed, if they do not meet their targets, their parent cells
may die. Finally, as growth and selection operate, a mapped
neural structure with a function may form. The number of cells
being made, dying, and becoming incorporated is huge. The
entire situation is a dynamic one, depending on signals, genes,
proteins, cell movement, division, and death, all interacting at
many levels.

Chance plays a large role in the actual neural connections formed. Even
identical twins are predicted to have different neural maps at a fine scale. Indeed,
this variability is inevitable given the fact that the information in the primary
repertoire greatly exceeds the information in the genome.

The variability in the primary repertoire provides the basis for neuronal
group selection to form the secondary repertoire.

2. Selection of neuronal groups leads to perceptual categorization, memory, and
learning. A neuronal group is, roughly speaking, a set of neurons activated
together in response to a particular stimulus. The selective processes act on
populations of neuronal groups in the manner illustrated previously in Fig. 5.

For this selective process of learning to work effectively, the primary
repertoire must contain many partly coupled groups whose connection strengths
can subsequently be altered by rules of synaptic change. The initial synaptic
diversity and subsequent change correspond to variation and selection in
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Edelman's theory.
Two points about neuronal group selection must be stressed. First, the theory

focuses on neuronal groups as the appropriate unit of analysis. This makes sense
because individual neurons or synapses have too little information to provide a
basis for selective differentiation of their performance. Second, selection of
neuronal groups leads to altered synaptic strengths of connection rather than
differential reproduction. "Group selection proceeds through synaptic
modifications induced by the correlated activation of cells within a group"
(Edelman, 1987, p. 169; see also Merzenich et al., 1988).

Group competition plays a central role in the theory. Roughly speaking,
groups compete for members and for feedback connections from other groups:
those groups poised to receive frequent correlated stimulus among all members
will be constantly strengthened relative to other groups that less frequently receive
correlated stimulus. Groups do not have clear boundaries because they are
defined simply by correlated firing of local neurons; thus individual neurons may
be in several groups and their associations necessarily change as a result of
neuronal group selection.

3. All learning and memory are embodied in the interaction between the environment
and neural physiology as modulated by the innate value systems. Categorization occurs by
correlations of firing among neuronal groups in response to external stimuli. The
types of category formed by this process depend on the sensitivity of the feature
detectors and any biases in the primary repertoire. Thus even the simplest process
of category formation has a strong innate (genetic) component that is subject to
evolutionary modification by natural selection. However, this simple form of
categorization is not sufficient to explain the types of goal-directed learning and
behavior observed.

Edelman suggests that there are internal value systems or hedonic centers
that are themselves embodied in neuronal groups, for example, thirst in Fig. 5.
Other hedonic centers include hunger, sex drive, and curiosity. These centers are
linked extensively throughout the brain to other neuronal groups by feedback
connections. These control centers establish the basis for assigning "fitness" in
competition among neuronal groups. These controls are directly influenced by
the genotype and are subject to evolutionary modification.

Selective ideas about the brain are exciting, not because they are clearly
true—it is too early to say yet—but because they could form a relatively complete
theory of the nervous system and of behavior. Edelman has made a serious attempt
to account for observed details of development and plasticity in neural maps, the
causation of behavior, and the evolutionary modification of internal value systems
(Plotkin, 1987). The idea that classification and behavior are controlled by
synaptic modification of neural maps is not new. The novelty is an emphasis on
selective systems and a consistent vision that explains many aspects of
neurobiology and behavior—a global brain theory.

The special aspects of selective systems for neurobiology are sometimes
difficult to keep clear. Therefore I close this section by emphasizing the
distinction between selective and instructive theories. These theories are not strict
alternatives about brain development and function. Any complex nervous system
is likely to use both systems. The empirical issue is the relative importance of the
two systems for the traits we wish to understand.

A selective (adaptive) system acquires information by selecting from variation
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in a population of individual architectures generated independently of the
environmental challenge. An instructional systems acquires information by varying
a single architecture in a manner correlated with environmental challenge. The
distinction leads to different predictions about neural development and learning.
For example, selective systems require stochastic variation during development to
provide the necessary variation for selection. Instructional systems will generally
perform more poorly as stochastic variation increases in the development of the
initial architecture.

C. Genetical Evolution of Learning

There are many ways in which genetic information interacts with the environment
to affect behavior and learning (e.g., Drickamer, 1992; Alcock, 1993). For
example, the external sensors (vision, olfaction, etc.) are mainly innate, imposing
particular channels of communication between the organism and its environment.
There are closed behavioral programs that follow a fixed pattern once invoked by
environmental cues—these closed programs are also mainly innate. There are
open behavioral programs subject to modification and learning through
interaction with the environment. Learning is inevitably guided by internal value
systems (McFarland and BOsser, 1993).

Interesting questions about the role of genetical evolution in learning
include: What sorts of environments favor a closed program in which all
information is stored in the genome? How does the genetic system discover closed
programs? What environments favor an open program that causes behaviors, with
initial biases fixed by the genome, to change with experience? What forces shape
the innate biases and genetic controls of learning?

These evolutionary questions about the control of learning parallel those
questions that I raised about the controls of immunity. Some controls of the
immune response are innate, such as the specific set of MHC types (closed
program). By contrast, other parts of the immune system are built by the genetic
specification of controls on the adaptive subsystem, such as the negative selection
against self recognition and the positive selection of clones with antibody that
matches foreign molecules (open program).

I summarize two key issues for an evolutionary analysis of learning.

1. Learning Accelerates Genetical Evolution-the Baldwin Effect

How can a complex behavioral sequence be favored by natural selection if
each isolated part of the sequence is of little value? A genetic mutation that caused
the whole sequence is unlikely to occur all at once, and each genetic variant for
part of the sequence will not be favored in isolation.

Baldwin (1896) suggested that learning can help to overcome natural
selection's limited ability to discover complex behavioral traits, thereby
accelerating the rate of evolutionary change. The idea that phenotypic
modifications such as learning can feed back to inherited changes suggests a
lamarckian mechanism of evolution that has essentially been disproved. The
association between Baldwin's ideas and the discredited lamarckian mechanism
confined acceptance of these ideas to a minority of evolutionary biologists.
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However, recent work has shown that learning can indeed greatly accelerate
evolutionary change without appeal to lamarckian inheritance (Hinton and
Nowlan, 1987; Maynard Smith, 1987; Ackley and Littman, 1992; Fontanari and
Meir, 1990; French and Messinger, 1994; Anderson, 1995).

Learning provides information about how close the genotype is to a good
solution (Fig. 6). Imagine that a complex behavioral sequence (phenotype) has a
high fitness but that slightly altered sequences are no better than random
behaviors. If there is no learning then a genotype has to encode exactly the right
sequence to gain any fitness advantage; nearly correct genotypes are no better
than random. The chance of the favored genotype arising from a background of
random behaviors is vanishingly small.

Now suppose that some learning occurs. Learning can be thought of as an
exploration of behavioral sequences similar to the genetically encoded sequence,
where sequences with improved performance are adopted by the animal. An
animal's chance of finding the correct behavioral sequence depends on how near
it is to the correct sequence initially. Fitness therefore drops off gradually from a
peak at which the genotype encodes the optimal behavioral sequence, the height
dropping with the number of behavioral changes that must be discovered to find
the optimum. Natural selection is very good at pushing genotypic composition

Initial, genotypically encoded behavior

Figure 6 The Baldwin effect. Without learning, each organism expresses its genetically encoded
behavior. Only a particular, complex behavioral sequence has high fitness, all other behavioral
sequences have equally low fitness. This is shown by the solid line for a narrow fitness peak among
possible genotypes. An exceptionally rare mutation is required to improve fitness. All other variations
are equally bad with respect to the optimum. Thus natural selection will not move the population
closer to the optimal behavioral sequence. Now suppose that learning occurs, with initial behavior
determined by genotype. Those genotypes near the peak have a high probability of finding and
learning the optimal sequence in a reasonable period of time. Genotypes more distant from the peak
have a lower probability of learning the optimal sequence. Thus fitness increases smoothly with
decreasing genetic distance from the optimum, allowing natural selection to cause steady improvement
over time (dashed curve).
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steadily up a slope of improving fitness. Thus learning, by providing clues about
the distance to the favored behavioral sequence, greatly accelerates the rate of
evolutionary change.

2. What environmental challenges favor learning?

Learning provides a genotype with a method of phenotypic exploration. The
Baldwin effect shows that exploration can ultimately cause the transfer of learned
behaviors into an innate genetic program. Innate (closed) genetic solutions have
an advantage over learned (open) solutions in a fixed environment because no
energy is wasted on failed explorations. If the Baldwin effect were the only force
operating, all unchanging problems would be solved by closed programs that
exploit known solutions rather than open programs that explore opportunities for
improvement. Learning would disappear.

What types of environmental challenge favor learning? There is no coherent
body of theory on this important question (see preliminary efforts in Holland,
1975; Boyd and Richerson, 1985, chapter 4; Todd and Wilson, 1993).

Questions about learning can be stated in a more general way when learning
is viewed as an emergent adaptive system that has evolved by natural selection of
genetic variants: What types of challenge favor an adaptive system (genetics) to
spawn a subsystem of variation and selection (learning)? In what ways will adaptive
subsystems such as learning differ when they have been shaped by different kinds
of challenge?

These questions can be addressed only when cognitive mechanisms are
viewed both as controls of adaptive learning systems and as evolved adaptations of
the underlying genetic system. This dual view of learning has a long history
(Richards, 1987), but has only recently gained attention in evolutionary biology
(Real, 1992, 1993), psychology (Barkow et al., 1992) and computer science (Meyer
et al., 1993).

Computer models of learning are perhaps the greatest spur to conceptual
work. Computers can be used to test which learning programs and types of
cognition perform best under different kinds of environmental challenge.

Figure 7 The logarithmic spiral. The Nautilus shell on right is copied from Thompson (1961, p. 173).
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Advances in robotics and engineering control also depend on a clear
understanding of how different types of learning and cognition influence
performance. Although many recent papers have focused on these topics (Meyer
et al., 1993; Brooks and Maes, 1994; Cliff et al., 1994), there are no general
conclusions yet.

The problem once again focuses attention on the specific kinds of challenge
that shape adaptive systems. Referring to Table 1, each of the three main
challenges can favor learning. Information decay in the genome can be corrected
phenotypically by an adaptive subsystem that learns. Predictable complexity may
be an important challenge when the motor controls and input-output connections
for a behavioral sequence contain too much information to store within the
limited genome. Young animals sometimes use trial-and-error learning periods to
develop behaviors that eventually converge to a fairly routine, species-typical
sequence. This type of "developmental" learning may be a response to the
challenge of information storage for complex behaviors. Finally, unpredictable
challenges can be met with an adaptive subsystem that learns by using processes of
variation and selection.

V. Development

Parasitic attack or unpredictable abiotic environments require flexibility. Many
animals produce phenotypic solutions with adaptive subsystems, such as immunity
and learning. Immunity and learning are two aspects of development—the
creation of a phenotype from the information encoded in the genotype.
Morphology is another, more traditional, domain of developmental study. The
problem is how the one-dimensional information in the genotype is transformed
into the three-dimensional structure.

A. Morphology

Mollusc shells develop according to simple generative rules (Thompson, 1961;
Meinhardt, 1995). The left panel of Fig. 7 shows a logarithmic spiral, which is a
nearly perfect match for the coiling pattern of the Nautilus shell shown on the
right. A logarithmic spiral is produced by drawing a line from the center to the
current tip of the spiral, and then adding to the spiral such that the angle between
the radial line and direction of growth is constant. Shells can grow only by adding
new material to the leading edge. New growth typically follows a constant angle
relative to the radius, causing a logarithmic coiling pattern.

Variation in the angle of growth explains variation in coiling patterns in the
radial direction, as shown in the top row of Fig. 8. Shells also vary in the tightness
of coiling with respect to height, which can be explained by the relative rate of
growth down from the radial direction (bottom row of Fig. 8).

B. Developmental Selection

The full range of physicochemical processes involved in shell growth are complex.
Yet there is a certain determinism in the rules of growth when compared with
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Figure 8 Logarithmic coiling patterns of shells. The angle a controls coiling in the radial direction,
and the angle 13 controls coiling in the vertical direction. From Thompson (1961, p. 192).

immunity and learning. Figure 9 shows the contrast between these direct rules of
morphology and the indirect route by which immunity and learning affect the
phenotype.

The shell example suggests that morphological pattern formation follows
direct generative rules specified by the genotype. However, there is considerable
controversy about the details of those rules (Hall, 1992; Goodwin et al., 1993).
Several authors have proposed, as an alternative to direct rules of growth, that
pattern formation is best viewed as the outcome of developmental selection. This
theory emphasizes stochastic variation among a population of growth trajectories
coupled with selection of particular trajectories that meet critical design criteria.
(Recent suggestions of this theory include Edelman, 1988; Sachs, 1988; Wagner
and Misof, 1993.)

Developmental selection determines the innate wiring pattern of brains in
Edelman's theory of neural darwinism. The process depends on stochastic
fluctuations in the movement and proliferation of cells to generate variability in
structure. Two selective systems act on the variability generated by stochastic
fluctuations. Positive selective controls stimulate cell division and the formation of
particular neural connections. Negative selective controls cause rapid cell death
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Figure 9 Generative rules for the development of the phenotype. The genotype is passed from
generation to generation according to the hereditary rules for transmission, as in traditional models of
biological populations. The success of each genotype depends on its phenotype. The genotype
specifies properties of the phenotype through generative rules for development. The genotype directly
encodes the generative rules G0. These rules may lead directly to the phenotype, such as specific genes
for metabolic enzymes or laws of growth for morphological development. Alternatively, G 0 may
produce a generative subsystem, which in turn specifies a second set of generative rules, G 1 . The
vertebrate immune system is an adaptive subsystem that specifies generative rules for variation and
selection. Simple learning rules are generative rules that change the phenotype in response to the
environment; adaptive learning rules produce phenotypic change by variation and selection. A
language module may be a generative subsystem that influences the basic grammatical rules used to
generate sentences. The grammatical rules, and all aspects of phenotype, are also influenced by the
environment (not shown).

among those neurons that fail to make selectively favored movements and
connections. The primary repertoire created by developmental selection is highly
variable at the level of particular cell-cell connections. This variability forms the
substrate on which neuronal group selection shapes the secondary repertoire of
the learning organism.

Developmental selection is a reasonable hypothesis for neuronal
development. But the nervous system is so complex that it is difficult to compare
selective theories with other ideas. Two simpler developmental problems provide a
clearer view of the conceptual issues.

Distribution of stomata on leaf surfaces.—Plants exchange gases with the air
through small openings (stomata) on the leaf surface (Fig. 10). The distribution
of stomata on the leaf surface is a classic example of spatial patterning in
development (Sachs, 1991). Pairs of stomata rarely develop adjacent to each other,
and the distances between neighboring stomata are larger than if locations were
determined randomly. But the developmental program is not a deterministic
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Figure I 0 Stomata on the surface of a Begonia leaf. The stomata are opened and closed by the
changing shape of the small guard cells that surround the pore. The spatial distribution is regulated
developmentally to prevent neighboring cells from differentiating into stomata. But the particular cell
lineages that differentiate into stomata and the distances between neighboring stomata appear to be
strongly influenced by chance events. From Sachs (1991, p 7), copyright © 1991. Reprinted with the
permission of Cambridge University Press.

unfolding of pattern—the fate of particular cellular lineages and the ultimate
location of stomata depend on many chance events.

Kagan et al. (1992) have proposed a model of developmental selection to
explain stomatal patterns. In the model each cellular lineage is an individual
growth trajectory. Pattern is determined by variation and selection among the
population of cellular lineages that contribute to the leaf surface.

Each stoma typically develops from differentiation of a single cellular lineage.
Differentiation begins with an unequal cellular division. The smaller product may
divide a second time, more or less unequally. The process continues until an equal
division forms the two guard cells of the stoma (Fig. 10).
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Figure I I A model of variation and selection that develops a spatial pattern similar to the stomata on
a Begonia leaf. Each square represents a cellular lineage. All lineages begin as normal epidermal cells
(white). In each time step a normal lineage switches to a growth trajectory leading to stomatal
development with probability 0.05. The early stage is coded by the lightest gray and assigned a value of
one. A second stage of differentiation is dark gray, with a value of two. A late stage is black, with a value
of three. In each time step, a sum of values is calculated for the eight neighbors of each cell,
discounting the four corners by one-half. (The edges are connected in a tomes so that all cells have
eight neighbors.) A sum of less than one allows an intermediate stage to progress to the next stage. A
sum between one and three causes reversion to the previous stage. A sum greater than three resets the
lineage to the normal state. (Reversion may often be caused by death of a lineage and filling in by
neighbors.) The panels a, b, and c show the state of a sample run after 5, 15, and 30 time steps. At the
final step in panel c all intermediate stages revert to normal cells, leaving only normal and final,
stomatal stages. This type of model is known as a cellular automata, popularized in the Game of Life and
found on many computer screen savers.

The development of a single stoma depends on programs internal to the cell
lineage. But observations suggest that variation and selection among lineages play
an important role in final pattern (Kagan et al., 1992). The initial unequal
divisions appear to arise spontaneously among lineages without any particular
pattern. When neighboring lineages begin differentiation, one or both revert to a
typical developmental program that leads to normal epidermal cells. Figure 11
shows how a simple model of variation and selection can produce a spatial pattern
typical of stomata.

A model with random variation and local selection seems so simple that it
hardly needs justification. Indeed, the classic reaction-diffusion model for spatial
pattern depends on similar principles (Murray, 1989). In each location chemical
reactions cause the increase or decrease of a particular substance. Diffusion of the
reactants causes spatial interactions between neighboring sites. Simple models
produce patterns that match zebra stripes, leopard spots, and coloring on sea
shells (Murray, 1989; Meinhardt, 1995).

Reaction-diffusion models differ from population models of variation and
selection in several ways. Reaction-diffusion is a continuous chemical process that
leads to a highly ordered final state. Population models have discrete births and
deaths of cellular lineages. The final pattern is ordered but the growth trajectories
and details of final state are unpredictable. In population models, form depends
on the range of variant growth trajectories that are generated, and the control
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processes that select among alternative trajectories.
Competition among shoots for root resources.—A particular shoot on a plant

typically obtains resources from a corresponding subset of roots. The association
between roots and shoots can change over time by modification of vascular
contacts among neighboring shoots.

Sachs et al. (1993) suggested that a plant contains a population of competing
shoots. Those shoots in the best condition outcompete their neighbors and obtain
additional root support by modification of vascular connections.

The individual shoot "modules" compete for resources based on variable
growth rates. The developmental program, which evolved by genetical selection,
controls the flow of resources among members of the shoot population. Thus
simple, local generative rules can develop an efficient, large-scale phenotype by
imposing selection on uncontrollable aspects of cellular and modular variation.
Indeed, developmental selection works only if there is significant variation among
alternative, competing developmental trajectories.

C. Summary

This section concludes my summary of adaptive subsystems and generative rules.
These processes transform hereditary information (genotype) into mechanisms
that can interact with the environment (phenotype).

I have assumed that the genotype varies in its coding for particular generative
rules, such as the generation of antibody variants or the number of MHC types.
But I have not considered the processes that influence the kinds of hereditary
information that are bound together to form a genotype. How is such a complex
unit of information formed by evolutionary processes? Why is information
regularly mixed between units by sex in order to produce subsequent generations?
Why do different evolving populations—adaptive systems—often mix to form
higher-order groups that cooperate and compete? In the next two section I turn to
these questions on the evolution of hereditary information.

VI. Symbiosis

Adaptive systems are highly social. That may seem a strange statement. But the fact
is that adaptive systems often compete with one another and often join forces in
cooperative communities. This social structure is perhaps the most important and
difficult problem in understanding the natural history of adaptive systems.

In later sections I will discuss some of the consequences of interactions
among adaptive systems. In this section I briefly describe the natural history of
symbiosis. My goal here is to discuss the main concepts and to provide an
introduction to the literature. I begin with an analogy between culture and
bacterial gut symbionts. This surprising analogy emphasizes that the boundaries
between separate evolving systems blur in real life. This is a fact that must be faced
squarely by historical descriptions of adaptive systems and by any theory that
attempts to explain the main properties of such systems.
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A. Culture

Culture is the ideas, facts, attitudes, and beliefs that are transmitted from one
member of the society to another. Dawkins (1976a) coined the term "memes" to
refer to individual units of culturally transmitted information. A word of a
language is an example of a meme. Darwin and many others have noted that
languages evolve by differential success of words and rules of composition.

Memes are analogous to genes because both have (1) temporal continuity
transcending their containers (bodies or brains), (2) particular patterns of
transmission, (3) imperfect transmission that generates variability (mutation), and
(4) differential rates of transmission (reproduction). Thus cultural units-
memes—form an evolutionary population that has its component frequencies
determined mainly by a system of variation and selection (Dennett, 1995).

Cultural selection is different from the somatic selective systems of immunity
and learning discussed earlier. The somatic selective systems are simply
phenotypic mechanisms by which an organism meets environmental challenge,
just as regulation of body temperature is a phenotypic mechanism that can
enhance survival and reproduction. Because the somatic systems are governed by
innate (genetic) controls, the apparent goal-directed nature of these somatic
systems is wholly subordinate to the goal-directed nature of the underlying genetic
system (Plotkin and Odling-Smee, 1981).

Memes, by contrast, have a continuity that transcends a single body and a
transmission system that differs from genes. In short, culture has a life of its own.

Genetic systems are familiar, but memes may seem a bit strange at first.
Memes live in bodies but can be passed from parent to offspring, from teacher to
student, among friends, among enemies, or from child to grandparent. Memes are
transmitted like the symbiotic flora and fauna that live in digestive tracts. Gut
bacteria, and memes, face two opposing selective pressures. Bacteria or memes
that enhance host survival also enhance their own survival—the cooperative side of
the relationship. By contrast, a trait that enhances transmission of a bacteria or
meme from host to host, but also harms the host, could increase in frequency.

The potentially harmful effects of gut symbionts are illustrated by gut bacteria
that cause diarrhea. Natural selection favors an increase in the virulence of the
bacterial flora when diarrhea can increase host-to-host bacterial transmission at a
rate sufficient to offset the reduced survival of the bacteria caused by harm to the
host. Natural selection favors a decline in virulence when diarrhea does not
increase transmission sufficiently to offset reduced survival (Anderson and May,
1982; Ewald, 1994; Frank, 1996).

A simple meme example is less easy to find. Dawkins (1976a, p. 198) discusses
the meme for human celibacy as a case in which a meme maintains itself in spite
of reducing the genetic success of the host. A truly celibate priest does not
reproduce, yet his celibacy meme has managed to transmit itself to enough young
men to maintain its numbers over many hundreds of years. Although celibacy may
have alternative explanations, a meme that did increase its host-to-host
transmission at the expense of host survival is a virulent meme in the same way
that diarrhea is caused by virulent symbionts increasing their host-to-host
transmission. Both memes and bacteria can be helpful symbionts or harmful
parasites.
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Memes, like bacteria, create their own apparent goal-directedness because
they form a selective system with replicators whose permanence transcends
individual bodies. But a meme's ability to be transmitted-literally, to infect a
mind-depends on the structure of minds. Minds, in turn, have some innate
(genetic) controls, so the genes of the host and the symbiotic memes cannot be
wholly independent. People disagree about the extent that genes, by shaping the
structure of minds, can constrain the types of memes (cultures) that can succeed
(Boyd and Richerson, 1985; Barkow et al., 1992). I briefly mention some of the
issues.

The tension between the direction of evolution favored by genes versus
memes has two components (Cavalli-Sforza and Feldman, 1981; Boyd and
Richerson, 1985). The first concerns the extent to which these directions will
differ. The second concerns how tensions are resolved when selection of genes
versus memes favors different traits. I examine each of these components in turn.

If a meme is transmitted only from parent to offspring, then the inheritance
patterns of genes and memes are symmetric (Boyd and Richerson, 1985). In this
case any trait that enhances meme transmission also enhances gene transmission
and vice versa. All members of the symbiotic community favor the same direction
of evolutionary change. One can therefore analyze which traits are favored by
selection from either a purely genetic or a purely memetic point of view. The
conclusion from either analysis is that selection favors traits that increase relative
reproductive success. (See Feldman and Zhivotovsky, 1992, for a more
sophisticated theory of symmetric transmission.)

Memes frequently have a pattern of transmission that differs from genetic
transmission. Genes and memes may favor different directions of evolutionary
change with asymmetric inheritance. The diarrhea and celibacy examples show
that a tension arises when symbionts (memes or bacteria) enhance their host-to-
host transmission at the expense of host survival and reproduction.

Who wins when there is a conflict between host and symbiont? One line of
thought suggests that the host has the upper hand. The idea can once again be
described by a parallel with gut symbionts.

Ruminants have an additional niche for symbionts in their second stomach
chamber. The additional chamber was probably favored by natural selection of
genetic variants because the symbionts enhance genetic transmission of the host,
or at least they did at some time in the past. Put another way, the structure and
physiology of the additional stomach probably evolved to use symbionts in a way
that enhances host fitness.

Minds, to the extent that they contain and transmit memes, are a niche for
memetic symbionts. The structure of minds evolved, and continues to evolve, by
selection of genetic variants that favor enhanced genetic transmission. Thus genes,
by controlling the structure of the mind, may be able to constrain the types of
memes that can succeed. If so, then joint selection of gene-culture interactions
should favor traits that enhance the relative reproductive success of genes.

On the other hand, some people argue that once a niche for cultural
transmission evolves in minds, cultural evolution can proceed unconstrained.
Thus culture can be understood without reference to the historical reasons for the
evolution of the cultural niche. In terms of the ruminant, once the second
stomach exists, bacterial evolution is unconstrained by reproductive consequences
for the host.
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The truth is undoubtedly between the extremes of wholly unconstrained
cultural evolution and cultural change purely subordinate to genetical evolution.
The point I wish to emphasize here is that the symbiosis between bodies and
culture is influenced by the same evolutionary processes as the symbiosis between
bodies and gut flora. A body contains a large community of many different
evolving systems. These systems share common interests only to the extent that
their transmission patterns overlap. Memes are simply one type of inhabitant in
this complex community.

B. Symbiosis in the Genome

The genome itself is also a community that contains both common and conflicting
interests. The factors that influence conflict and cooperation among parts of the
genome have been discussed extensively (Hurst, this volume). I present one brief
example to illustrate the problem.

Most organisms inherit mitochondrial DNA from their mother, with no input
from their father. By contrast, most other genetic material is obtained equally
from the mother and father. For most traits these different modes of transmission,
matrilineal versus biparental, have no consequences for the direction of
evolutionary change favored by selection. For example, efficient respiration
increases both matrilineal and biparental transmission.

The allocation of resources to sons and daughters affects matrilineal and
biparental transmission differently. Traits that enhance the production of
daughters at the expense of sons always increase the transmission of matrilineally
inherited genes. For example, in some hermaphroditic plants the mitochondrial
genes may inhibit pollen development and simultaneously enhance the
production of seeds (Edwardson, 1970; Hanson, 1991). Selection of genetic
variants in the mitochondria would favor complete loss of pollen production in
exchange for a small increase in seed production because the mitochondrial genes
are transmitted only through seeds (Lewis, 1941). Such reallocation of
reproduction would greatly reduce the transmission of biparental genes because
biparental transmission depends on the sum of the success through seeds and
pollen. Thus there is a conflict of interest between the mitochondrial and nuclear
genes over the allocation of resources to male (pollen) and female (ovules)
reproduction (Gouyon and Couvet, 1985; Frank, 1989).

This conflict within the genome is similar in structure to the tension between
genes and memes. Conflict occurs whenever a trait can cause differences in the
rate of transmission of subgroups within the organism (Dawkins, 1982). Different
traits partition the organism in different ways. In the example given here,
respiration unifies the whole community, whereas resource allocation to sons and
daughters splits the community among subgroups that are inherited matrilineally,
patrilineally and biparentally (Fig. 12).

There are many similar types of conflict that occur within genomes (Hurst,
this volume). Leigh (1977) has referred to this aggregate of common and
competing interests as the "parliament of the genes." I discussed the
mitochondrial example because it also illustrates my theme of symbiosis. At one
time in evolutionary history cells existed but none had mitochondria. Several
hundred million years ago a cell formed a successful symbiosis with an
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Figure 12 The mosaic nature of hereditary transmission, symbiosis, and the generation of phenotype.
The top male and female individuals, which are really communities of symbionts, produce the
offspring on the lower right by sexual reproduction. One-half of the nuclear (N) genes come from
each parent. The cytoplasmic (C) elements, including the mitochondria, come only from the mother.
Vertically (V) transmitted symbionts, which are typically viruses and bacteria, also follow the matriline.
The individual on the lower left carries a horizontally (H) transmitted parasite, which infects the new
offspring. This offspring expresses several traits, three of which are shown. Each trait is influenced by
different hereditary subsets of the community. For example, the horizontal parasite produces skin
lesions that enhance its rate of transmission, and the nuclear genes produce traits that attempt to clear
the infection and heal the lesions. All components of the community, (N, C, V), are in conflict with the
horizontal parasite (H) over the lesions because only the parasite is transmitted through lesions. The C
and N components directly affect respiration. All components favor efficient respiration because all
gain longer life and greater transmission from this trait. The matrilineally transmitted C and V
components favor production of daughters. The biparentally transmitted N components favor equal
production of sons and daughters. The transmission of H is unaffected by sex allocation.

intracellular bacteria. The bacteria probably had a metabolic pathway absent in its
host (Margulis, 1981; see Khakhina, 1992, and Cavalier-Smith, 1993, for history of
this research).



I 4. Adaptive Systems	 481

C. The Organism as a Community

An organism is a complex community. Conflicts occur within the genome; tissues
house a vast array of bacteria, viruses, and other symbionts; and in some organisms
the brain provides a home to memes. If the genome is a parliament, then the
"organism" is a loose federation of states. Each particular challenge defines how
interests overlap or conflict.

Although an organism is a complex symbiosis, the simpler, traditional view of
organisms as unitary is adequate for many questions. For example, a trait such as
efficient respiration unites the community with a common goal. In addition, most
genes are transmitted in the usual biparental way. These genes often dominate the
community because they can influence the substrate (tissues and brain) for all
other symbionts.

It is a simple fact that adaptive systems tend to form symbioses. In the next
section I examine the role symbiosis plays in genetic systems.

VII. The Origin and Evolution of Genetic Systems

Oparin (1924) and Haldane (1929) asked: How did life begin? Of course they
were not the first to ask that question, but their ideas formed the first plausible
theories for how replicating molecules arose from the prebiotic environment. The
tradition established by Oparin and Haldane has led to many interesting studies
on the chemistry of early life (Deamer and Fleischaker, 1994). Three questions
dominate this work. Which organic molecules arose spontaneously in the prebiotic
environment? What are the properties of these molecules in terms of stability,
capacity for information storage, and a tendency to replicate? Which are the
precursors of life?

The chemical research assumed that natural selection sorted among early
competitors and refined the replication process. However, chemical problems
dominated the research and few thought explicitly about the origin of life as the
evolution of an adaptive system. Eigen (1971) initiated a new era by examining the
balance between information decay in replication (mutation) and improvement
by natural selection. Although this tension between mutation and selection had
been widely studied in population genetics, application to the origin of life
identified special problems about early evolution that stimulated a new wave of
research.

Meanwhile, books by Williams (1975) and Maynard Smith (1978) on the
evolution of sex focused attention on the other end of the problem. This work
starts at the present, with the great diversity of genetic systems that exists in nature,
and asks about the evolutionary forces in the past that have shaped this diversity.
The well-developed theories from this work have recently been applied to
problems near the origin of life, leading to many new insights about the evolution
of genetic systems.
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A. The Error Threshold and the Origin of Life

The first replicating molecules were copied without the aid of error-reducing
replication enzymes. This undoubtedly led to high mutation rates. Evolutionary
improvements are difficult with high mutation rates because replication errors
erode any gains in reproductive efficiency caused by natural selection. Roughly, if
more than one mutation occurred in a molecular sequence in each round of
replication, then the population would eventually consist of random sequences. If
the mutation rate were less than one per molecule, sequences with a reproductive
advantage would spread in the population (Eigen, 1971; Eigen and Schuster, 1977;
see reviews in Maynard Smith, 1979; Eigen, 1992).

The mutation rate sets a limit on the size of evolving molecules. If the error
rate per site in a molecular sequence is 1.1., then molecules of length greater than
1/[t will have more than one error per round of replication. Only molecules
smaller than this "error threshold" can be improved by natural selection.

Eigen and Schuster (1977, 1978a,b) estimate that an RNA molecule of
between 10 and 100 base pairs is above the error threshold if there are no
replication enzymes to enhance accuracy. Information to produce a replicase
probably requires between 1000 and 10,000 base pairs. This size range is above the
error threshold, thus a replicase cannot evolve by natural selection. The error
threshold presents a barrier to the evolution of large genomes with efficient
replication. As Maynard Smith (1983) said, "No large genomes without enzymes,
and no enzymes without a large genome."

Eigen and Schuster (1977, 1978a,b; Eigen, 1992) suggested the hypercycle
model to explain how replication enzymes evolved in spite of the constraint
imposed by the error threshold. Maynard Smith (1979), in his elegant example of
the hypercycle, describes replication of the message GOD SAVE THE QUEEN.
Suppose that each letter is coded by five bits in a sequence of 0's and l's. (A string
of five 0's and 1's is needed to code for the 26 letters of the alphabet because
24=16 and 2 5=32.) The 15 letters require 75 bits. If the mutation rate is 1/50, then
the processes of mutation, replication, and selection of the strings closest to the
target message would lead to random strings because the error rate overpowers
the rate of selective improvement. The message is too long.

Now suppose that each word is encoded on a separate molecule. The largest
word needs only 25 bits, which is less than the error threshold of 50. Mutational
decay is no longer a problem. But separation of words causes a different problem:
the replication rates of the words are likely to differ. Because the molecules for
each word compete for substrates, the population would ultimately consist of only
the fastest replicating word and the mutants derived from that word. The whole
message cannot succeed by independent evolution of the individual words.

The hypercycle solves the problem of coordinating a symbiotic group that is
composed of competing subunits. Suppose an increase in the number of GODs
increases the rate of replication of the SAVEs, an increase in the SAVEs aids the
replication of the THEs, the THEs enhance the QUEENs, and the QUEENs
complete the cycle by enhancing the replication rate of the GODs, yielding: GOD

SAVE —> THE —> QUEEN --> GOD —>...
The hypercycle is stabilized by the coupling of replication rates among words.

A member of a cycle can outcompete any isolated word, and an efficiently coupled
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cycle can outcompete less efficient cycles. The cycles act as individuals that
compete against other cycles. Each word in a cycle is like a gene in an individual.

The components of a cycle could cooperate in producing a replication
enzyme that decreased the error rate in copying molecules. The replicase would
then reduce the mutation rate, making large genomes possible.
Compartmentalization into protocells is the next evolutionary step.
Compartmental cycles with increasing genome size lead to the cellular (or viral)
forms of life that exist today and that appear in the earliest fossils.

This view emphasizes the role of symbiosis in the evolution of adaptive
systems. The very strength of the hypercycle theory, the power of symbiosis among
small replicators to produce complex function, also turns out to be its greatest
weakness.

B. Symbiosis and Early Evolution

Conflict frequently destroys symbiotic relationships even when there is great
potential for mutual benefit and an overall increase in the efficiency of the system.
The major evolutionary increases in complexity have occurred on those few
occasions when the conflicting interests of symbionts were partly subjugated to the
overall benefit of the association (Maynard Smith, 1988; Maynard Smith and
Szathmary, 1995). Examples include populations of replicating molecules that
cooperate in protocells, symbiosis among prokaryotic cells to form the modern
eukaryotic cell, cooperation of cells to form multicellular organisms, cooperation
of individuals to form social groups, and gene-culture symbiosis.

Hypercycles provide an excellent introduction to the conceptual problems of
symbiosis. Maynard Smith (1979) showed that the basic hypercycle can be invaded
by parasitic components that destroy the overall efficiency of the system (see also
Bresch et al., 1980).

In the GOD SAVE THE QUEEN example, each word has two important
functions. The enzymatic replicase enhances the reproductive rate of the next
word. The target function affects a molecule's ability to use the replicase of the
previous word.

Mutations that enhance target efficiency spread because they increase self-
replication. Mutations that increase replicase efficiency are neutral in a randomly
mixing population. For example, suppose a mutant GOB produces a better
replicase for SAVE than does GOD. The better replicase enhances the
reproduction of SAVE, which enhances THE, which enhances QUEEN. More
QUEEN means more replicase for the GOD/GOB species. But the GOD and GOB
subspecies benefit equally from the additional replicase, so the more efficient
producer, GOB, does not increase relative to GOD. A similar argument shows that
GOB will also be neutral if it produces a poorer replicase than GOD. Thus
hypercycles cannot develop in a mixed population because the replicase is a
neutral trait.

An established hypercycle also has a problem. Suppose that GOB produces
no replicase for SAVE and has an enhanced target affinity for the replicase from
QUEEN. The lack of replicase is a neutral trait, but the greater target affinity will
cause GOB to outcompete GOD. The cycle will collapse because of parasitism. The
basic hypercycle fails.
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What can explain the origin and maintenance of symbiotic replicators in the
first protocells? Perhaps the order of events must be switched. Eigen's hypercycle
theory suggests that successful symbioses (hypercycles) are followed by
compartmentaliza)ion into protocells. But compartments of replicating molecules
may have come first, followed by cooperation among replicators (Maynard Smith,
1979; Bresch et al., 1980).

If the replicators of a developing cycle share a compartment, then the success
of each replicator depends on two levels of selection. A parasite can spread within
its compartment, but that parasite's success may be low because its compartment
will be outcompeted in the population. For example, if a parasite takes over its
own compartment it will have increased in frequency locally. But the
compartment's rate of division may drop to zero because the parasite disrupts the
orderly functioning of the protocell. The parasite, by damaging its container,
dooms itself to extinction.

The higher, compartment level of selection can potentially screen off the
lower level of competition within the compartment (Brandon, 1984). This is a
form of group selection. The effective formation of an evolutionary unit at the
compartment level requires that compartments differ significantly in their rate of
division. Roughly speaking, the rate at which selection increases the frequency of
parasite-free compartments must be greater than the rate at which parasites can
take over their own compartmental lineage (Szathmary and Demeter, 1987;
Szathmary, 1989a,b).

Maynard Smith and Szathmary (1993) extend these ideas to show that the
evolutionary origin of chromosomes depends on a similar sort of group selection
and formation of a new evolutionary level. A chromosome is a set of physically
linked replicators (genes). The problem is how genes that were initially separate
became linked.

In Maynard Smith and Szathmary's model, linked pairs of genes suffer a
disadvantage within cells because large chromosomes replicate more slowly than
single genes. Thus the frequency of chromosomes declines within a single lineage.
This disadvantage for linkage may be offset by the positive synergistic effect of
pairs of genes. If a cell lacking one of the two genes functioned poorly, then the
chromosomes would have the advantage that they never end up in cells lacking
one of the genes. Whether chromosomes succeed depends on the rate at which
unlinked genes can take over their own compartmental lineage compared with the
frequency and reproductive disadvantage of cells that lack one of the synergistic
pair of genes.

These models for the evolution of cooperation within genomes assume that
the transmission of the symbionts is purely vertical, confined entirely within a
lineage of dividing compartments. However, compartments are bound by simple
membranes and the symbionts may be transmitted horizontally between lineages.
For example, different compartments may occasionally fuse, mixing the symbionts
from two groups, or individual replicators may occasionally be freed from
compartments and picked up by another compartment.

Horizontal transmission of symbionts between compartments changes the
evolutionary dynamics. A parasite can succeed if its rate of horizontal transmission
is large enough to offset the reduced efficiency that it imposes on its host
compartment. This is the problem of the evolution of virulence that I discussed
previously in the context of culture and gut flora.
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It seems inevitable that horizontal transmission and parasitism were key
features in the origin and evolution of genetic systems (Bremermann, 1983; Frank,
1996). For example, a replicator might contribute nothing to the functioning and
reproduction of the cell, but instead use all of its coding information for two
parasitic functions. The first is rapid replication within cells and the ability to
outcompete the other replicators for limited substrates. The second is enhanced
horizontal transmission by either release into the environment and absorption
into other cells or by increasing the rate at which the host cell fuses with other
cells. Cellular fusion causes mixing of genomes and a primitive form of sex
(Hickey and Rose, 1988).

Ideas about hypercycles, chromosomes, and parasites raise many interesting
questions. What role did the mutation rate and the error threshold play at various
stages in the origin and evolution of genetic systems? How did the tensions
between levels of selection shape genetics? Were genomic parasites and horizontal
transmission common? Was defense against parasitic invasion an important
challenge? Unfortunately there is no way to study directly the early evolution of
genetic systems.

C. Artificial Life

Ray (1992) suggested that artificial life in computer models may provide clues
about the evolution of genetic systems. Ray's creatures live in the memory of a
computer. The location in memory can be thought of as a compartmentalized cell.
Each creature is a set of instructions that influences survival, reproduction, and
interaction with other creatures. Replication produces a daughter copy next to the
parent. Mutations may occur during replication.

These artificial creatures evolve as replicating algorithms that compete for
CPU time and memory space. The algorithms are coded in the Tierran language,
which has only 32 different instructions. This is approximately the size of the
alphabet used to build proteins: there are 64 DNA triplets that are translated into
20 amino acids. The language is composed mostly of typical machine instructions
for a computer: flipping bits, copying bit strings, tracking locations in a sequence,
and so on.

The mode of addressing is a special feature of the language. A computer
system associates a numeric address with a physical location. Tierran addressing is
based on a biological analogy. Molecules diffuse and interactions occur when two
molecules have complementary physical structures. Thus Tierran finds addresses
by template matching; an instruction to jump to an address causes a search for a
template match among physically close creatures. This allows for simple types of
recognition.

Ray's model is not designed to study the origin of life but rather early
evolution once replicating molecules exist. Thus he had to seed his system with a
self-replicating program. In most runs he used a seed (ancestor) that is 80
instructions long and has only the minimal capacity of self-replication. No specific
evolutionary potential was designed into this ancestor, it simply replicates itself
indefinitely when there is no mutation.

The system proceeds by the following cycle. Each individual (algorithm) is
allowed in turn to execute some of its instructions. Lifespan is determined by a
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queue. Newborns enter the bottom, and death is imposed at the top to keep
empty a specified fraction of the environment (memory). Individuals move up the
queue as additional births are added at the bottom. Errors in executing code can
accelerate movement toward the reaper at the top. Mutation occurs by a low rate
of bit-flipping in all organisms, and an additional error rate during replication.
Size mutations also occur during the replication process. Thus genome length can
evolve.

A run starts with the ancestor sequence and follows the life cycle. The system
quickly diversifies and forms complex communities. These communities can be
difficult to analyze in detail because the algorithms, composed of bit flips and
memory jumps, are not easy to read. Ray, in his preliminary work, has identified
several ecological types.

Parasites with short genomes cannot self-replicate but use the code of other
creatures to specify how to reproduce. Hyper-parasites attack parasites. A hyper-
parasite gets its own address into the copy pointer of the parasite, so a parasite
replicates the hyper-parasite's genome rather than its own.

Social hyper-parasites can only replicate in aggregations. Each individual
needs the code of a genetically similar neighbor to reproduce. The fact that an
offspring is placed close to its parent may cause spatial aggregation of closely
related creatures that aids the evolution of cooperation. Spatial aggregation has
the same effect as compartmentalization and can lead to higher-level evolutionary
units as discussed for the hypercycle and related models. Those earlier models
suggested that higher evolutionary units are prone to internal parasites. As
expected, Ray found cheaters that he calls hyper-hyper-parasites. These cheaters
position themselves between social hyper-parasites and gain the benefits of
neighbor-aided replication without reciprocating.

Ray briefly mentioned host immunity and parasite countermeasures to avoid
detection. Recognition among cooperating and competing symbionts probably
plays an important role in the coevolutionary dynamics of the system.

Ray made only a brief comment on the role of mutation (information decay).
In a few runs the community became dominated by creatures with 700 to 1400
instructions per genome. These communities died because creatures in this size
range exceed the error threshold that sets an upper limit on genome size (see
Maynard Smith, 1992). It would be interesting to test whether larger and more
complex symbiotic genomes could evolve in Ray's system if some form of
expanded compartmentalization were introduced. This type of analysis would
allow one to study jointly information decay (mutation) and symbiosis, the two
main forces that influenced the early evolution of genetic systems.

D. The Evolution of Sex

I have described how symbiosis and information decay influenced the early
evolution of genetic systems. In this section I add a new theme to the discussion,
the role of exploration versus exploitation.

The biological problem is sex. In eukaryotes (nonbacteria), sex typically
causes the orderly mixing of genes from two parents to form an offspring. How
did complex systems of genetic mixing arise? What kinds of challenge to adaptive
systems maintain sex relative to nonmixing, asexual systems? There are many
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theories about the origin and maintenance of sex (Maynard Smith, 1978; Michod
and Levin, 1988; Kondrashov, 1993). I will briefly summarize the most prominent
theories as they relate to my themes about the evolution of adaptive systems.

Theories for the origin of sex focus on prokaryotes (bacteria). The
prokaryotes have simple forms of genetic mixing that, presumably, are similar to
the types of mixing that occurred during early evolution.

One theory focuses on the challenge of information decay (Bernstein et al.,
1988; Michod, 1993). In this theory genetic mixing brings together two copies of
homologous DNA by fusion of haploid cells. The paired DNA allows one strand to
correct damage to the other strand, greatly reducing the rate of deleterious
mutation.

A competing theory for the origin of sex focuses on symbiosis. As discussed
above, genomic parasites can spread if their rate of horizontal transfer overcomes
their reduced vertical transmission within the host's lineage. Hickey and Rose
(1988) have suggested that horizontal transfer by parasites led to the mixing of
whole genomes, the first step in the sexual cycle. This idea cannot be tested
directly because the origin of mixis occurred in the past. In support of the theory,
mixis in modern prokaryotes is caused by horizontally transmitted subgenomic
plasmids (Hurst, 1991).

Bell (1993) has extended the parasite theory for the origin of sex. Eukaryotes
have two distinct phases in their life cycle: a vegetative phase of growth and
reproduction and a sexual phase of genetic mixing followed by genetic
segregation. Bell argued that the characteristic features of the eukaryote genome
arose from the entrainment of parasitic genetic elements into the life cycle. In
Bell's theory, mixis originated by the Hickey-Rose model of parasitic transmission.
Bell also argues that mating type genes and centromeres, part of the machinery of
orderly segregation and meiosis, had a parasitic origin. See Hurst (this volume)
for more on genomic parasites and the evolution of genetic systems.

The maintenance of sex poses a different kind of problem. Asexual
reproduction is a more efficient mode of reproduction than sex, so why are most
systems sexual? Sex requires the time-consuming processes of mating, mixing of
genetic material in diploid offspring, and the orderly reduction of chromosomes
to form haploid gametes. Sex also breaks up coadapted gene complexes.

The most spectacular puzzle concerns the "twofold cost" of sex (Williams,
1975; Maynard Smith, 1978). Multicellular species typically have large gametes
(females) and small gametes (males). The small gametes contribute only genes to
the offspring but no resources—in effect, small gametes are parasitic on the
reproductive effort of the large gametes. Because sexual females invest all of the
resources but only one-half of the genes in offspring, their rate of genetic
propagation is one-half that of an asexually reproducing individual that transmits
all of its genes to offspring.

TABLE 3
Classification of Theories to Explain the Maintenance of Sex

Decay	 Explore vs exploit 

Species	 Muller's ratchet	 Adaptive radiation
Gene	 Mutation clearance	 Variable environment
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Many theories attempt to explain why sex is maintained in spite of a twofold
disadvantage (Maynard Smith, 1978; Kondrashov, 1993). I summarize the four
leading theories. These theories can be classified in two ways. One division splits
the models by the challenge to the adaptive system, either exploration versus
exploitation or information decay (mutation). The second division splits
according to the level of selection, either long-term effects and species selection or
short-term effects and genic selection. Table 3 shows this classification.

Muller's ratchet causes deleterious mutations to accumulate in small, asexual
populations (Muller, 1964; Maynard Smith, 1978). The effects on population
fitness can be understood by following the rise in the number of deleterious
mutations carried by the best chromosomes in the population. Label each
chromosome in the population by the number of deleterious mutations that it
carries. Suppose initially that some chromosomes have zero mutations.
Occasionally, by chance, all of the surviving replicates of a zero chromosome will
have one or more mutations, transferring this chromosome lineage to the class
with one mutation. In a small population the rate at which chromosome lineages
increase the number of mutations carried outpaces the rate at which selection
favors chromosomes with fewer mutations. Eventually all chromosomes with zero
mutations will be lost and the best class will have one mutation—the ratchet has
turned. The process continues over time, with population fitness steadily
declining.

Sex and genetic recombination can prevent the ratchet. Two chromosomes,
each with a different mutation, can recombine to form progeny with zero
mutations. The rate of chromosomal improvement by recombination is usually
sufficient to prevent the decline of population fitness. Thus sexual populations
can outcompete asexual populations over long periods of time. The problem with
this theory is that an asexual individual within a sexual population has a twofold
reproductive advantage because it avoids the cost of sex.

Muller's ratchet is a sufficient explanation for sex only if the rate at which
asexual populations suffer "mutational meltdown" (Lynch et al., 1993) is sufficient
to overcome asexuality's short-term advantage within populations. This is, once
again, the problem of two competing levels of selection, similar to the origin of
compartmentalized protocells struggling against the lower level of genomic
parasites.

The adaptive radiation theory is another species-level model. In this case
sexual species have an advantage because they generate a wider diversity of
genotypes and can adapt more quickly to new habitats than asexual species
(Fisher, 1958). Thus asexual genotypes, which have a short-term advantage, lose
when new environmental challenges arise. In this model sexual species gain
because they are better at exploring and discovering new solutions to new
problems. Asexual species gain because they are better at exploiting a fixed
environment.

The two gene-level theories assume that species-level advantages for sex are
not sufficient. They explain how sex can have a short-term advantage over
asexuality in spite of the twofold cost of sex. The mutation clearance model
focuses on information decay; the variable environment model examines
exploration versus exploitation in rapidly changing environments. Both models
can be explained by an elegant theory that is hidden in the appendix of Haldane's
(1932) classic book The Causes of Evolution. Haldane's model examines intense
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sexual

Value of offspring

Figure 13 The effect of variation in offspring value on the evolution of sex. Each curve is the
distribution of offspring value in a family from a parent's point of view. Asexual families have a
relatively higher mean because a parent transmits twice as many genes per offspring compared with
sexual progeny. Sexual distributions have greater phenotypic variability because genetic information is
mixed randomly between parents. Here, only the offspring above a cutoff survive—the hatched area
among asexuals and the hatched plus shaded areas among sexuals. In this case the sexual strategy
transmits more genes to future generations than the asexual strategy in spite of the twofold advantage
of asexuality. In general, "intense competition favors variable response to the environment rather than
high average response. Were this not so, I expect that the world would be much duller than is actually
the case" (Haldane, 1932, pp. 177-178).

selection in which only the best individuals survive. In that case selection favors
genotypes that produce highly variable traits rather than a high average value. If
only the best individuals are picked, then a wide distribution with a relatively low
mean has an advantage over a narrow distribution with a high mean (Fig. 13).

In the mutation clearance model each individual carries many deleterious
alleles (Kondrashov, 1988). Asexual individuals have a narrow range of offspring
quality because each offspring has approximately the same number of mutations
as its parent. The stochastic processes of segregation and recombination in sexual
genotypes produce a wide range in the number of mutants per offspring. The
average value of offspring for a sexual genotype is reduced by the cost of sex, but
sex can beat asexual genotypes because of the higher variance in quality. This
requires sufficiently frequent mutations to produce a wide distribution of offspring
quality, and strong selection that picks only the best offspring.

In a variable environment model the favored genotypes change from
generation to generation. Sex increases the probability that a parent will have
some offspring close to the favored genotype because sex increases the diversity of
genotypes produced. Sex's ability to produce diversity and increase its chance to
match a changing environment can outweigh the reproductive efficiency of
asexuality. Sex is better at exploration of a changing environment, asexuality is
better at exploitation of a fixed environment. (The way in which environments
change can have an important effect. See Charlesworth, 1993.)

What could cause the environment to change sufficiently to favor sexual
exploration at a twofold cost in efficiency? Several authors favor coevolving
parasites (Levin, 1975; Jaenike, 1978; Hamilton, 1980). Parasite traits that avoid
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host immunity require counteradaptations by the host. Host-parasite interactions
are a form of biotic challenge with coevolutionary feedback. In this view sex is a
method to mix cooperative symbionts (genes) in search of good combinations
against antagonistic symbionts (parasites): "Sex also creates true species in an
otherwise straggling mess of clones: if the idea about parasites is right, species may
be seen in essence as guilds of genotypes committed to free fair exchange of
biochemical technology for parasite exclusion" (Hamilton, 1982, p. 271).

Opinions differ about the processes that favor sex. My purpose here was not
to solve this puzzle, on which there is little agreement, but to show that certain
types of argument recur in the evolution of adaptive systems. For the origin of sex,
information decay and symbiosis dominate the arguments. The conflict between
genomic parasites at the genic level of selection and survival of lineages at the
cellular level also plays an important role. For the maintenance of sex,
information decay and exploration versus exploitation divide the main theories in
one dimension. Genic versus species level selection divide the theories in a second
dimension. The genic level theory for exploration versus exploitation implicates
antagonistic coevolution as a major challenge to the evolution of genetic systems.

VIII. Adaptive Systems as an Engineering Tool

Engineering faces many of the same challenges found in biological systems:
information storage, complexity, and unpredictability. In recent years scientists
have exploited adaptive systems to solve engineering problems. I present a few
examples to show that engineering shares many challenges and solutions with
genetics, learning, and development.

A. The Design of Biochemical Catalysts by Chemical Engineers

Three methods have been used to design catalysts (Benner, 1993). The first
designs molecules based on the catalytic properties of functional groups and the
predicted folding pattern of the components. The second method uses the
adaptive properties of the vertebrate immune system to create catalytic antibodies
(Lerner et al., 1991). The immune system can create an antibody that binds the
rate-determining transition state of a reaction. Stabilizing the transition state
lowers the activation energy and speeds the reaction.

A new adaptive method of variation and selection has recently been used to
design RNA catalysts (ribozymes). Bartel and Szostak's (1993) goal was to create a
ribozyme that catalyzed RNA replication. The discovery of self-catalyzing RNA
would support the view that the origin and early evolution of life was based on a
purely RNA system. In this theory RNA would be both the genotype encoding
information and the phenotype controlling replication (Cech, 1993).

Although Bartel and Szostak's goal was basic understanding of the origin of
life, their problem was one of engineering. They wished to find an efficient
ribozyme that could enhance replication. They focused on ligation, the joining of
separate RNA sequences into a single long sequence. They began their search with
10 15 randomly generated RNA sequences. They then screened this large pool for
those RNAs that extended themselves. The specific reaction was the attachment of
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a test sequence onto the end of the putative catalyst RNA. Those RNAs that
attached to the test sequence under experimental conditions were selected for
replication. The replication was conducted by a standard biochemical method, the
polymerase chain reaction (PCR). The PCR process was intentionally modified to
introduce mutations during replication, providing additional variability for the
next round of selection. The methods of variation and selection were applied for
10 generations.

The final sequences enhanced the reaction rate by seven orders of magnitude
relative to the random sequences at the start of the evolutionary process. This
performance is not impressive if one uses natural systems as a benchmark. Natural
ribozymes typically enhance reaction rates by three or four orders of magnitude
more than Bartel and Szostak's selected ribozymes. Protein catalysts do even
better, outperforming ribozymes by three to six orders of magnitude. On the
other hand, the laboratory-evolved ribozymes beat the typical performance of both
human-designed and antibody-selected enzymes, which typically cause reaction-
rate enhancements of two to six orders of magnitude. The success of the ribozyme
selection scheme is remarkable because both the designed and antibody-selected
enzymes are composed of the 20 different amino acids, which provide a much
wider range of biochemical properties for enzymes than the four nucleosides that
compose RNA sequences (Benner, 1993).

Molecular design by natural selection is in its infancy. Although these
methods will not displace all other approaches, adaptive design may play an
important role in the future of biochemistry.

Adaptive systems are a tool used for discovery in molecular design. Once the
exploration has finished and an efficient catalyst has been found, other more
efficient techniques can be used to exploit that discovery. In this regard molecular
design shares two general properties with other adaptive systems.

First, adaptive design is a process of discovery that follows cycles of broad
exploration and efficient exploitation. The previous sections showed that
exploration versus exploitation is a common theme in adaptive systems.

Second, I argued earlier that learning and vertebrate immunity are adaptive
subsystems spawned by the genetic system to handle environmental challenge.
Both learning and immunity have their processes of variation and their selective
systems (goals) set by genetical evolution. From this point of view adaptive
molecular design is a subsystem of variation and selection spawned by learning
humans to handle an environmental challenge. This may seem an unnecessarily
complicated way to describe a simple method. But in the sweep of evolutionary
history, adaptive systems have occasionally discovered the use of subsystems of
variation and selection to solve their problems. These subsystems greatly altered
subsequent evolution.

It remains to be seen whether adaptive subsystems created by humans will be
important. Adaptive design of catalysts and the following examples illustrate
recent applications.

B. Genetic Algorithms and Protein Folding

A protein sequence is a string of amino acids. Biochemical tools can be used to
read a protein sequence or to change particular amino acids within the string.
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However, the ability to read and manipulate sequences has practical limitations
because the structural and catalytic properties are determined by three-
dimensional conformation. It has not been possible to predict conformation from
the sequence.

A protein folds according to the energies of covalent bonds among the
individual amino acids. The problem is to predict how particular bonds cause a
linear sequence to fold into a three-dimensional shape. At each step in the folding
process there are a large number of possible conformations. In principle, a
computer program could search each of the possible conformations at each step
and predict the folding pathway. However, this search process suffers from a
common problem in computer optimization known as combinatorial explosion.
The number of possible pathways is too large to search by any computer available
now or in the future.

There are many computer techniques to search for solutions to large
problems. The genetic algorithm is a popular method based on an analogy with
natural selection (Holland, 1975; Forrest, 1993). Each potential solution is coded
in a linear sequence of information (a chromosome). In the protein example, the
goal is to find a minimum-energy conformation. For this case each "chromosome"
represents a particular conformation.

The genetic algorithm is natural selection applied to a population of
chromosomes. The initial population can be created randomly. Then in each
generation selection, variation, and transmission occur. Selection chooses
chromosomes for reproduction according to their fitness—in this case lower
energy states have higher fitness. Selected chromosomes mutate with a probability
set by the program. Chromosomes may also pair to mate and recombine.
Recombination follows the biological process of swapping pieces of the
chromosome. Enough progeny are produced for the next generation to form a
new population. The cycle is repeated. The quality of the best solutions in the
population usually improves for many generations and then levels off. The best
solution (chromosome) during a run is the optimum discovered by the search
process.

An interesting series of papers on genetic algorithms and protein folding
illustrates the power and potential problems with adaptive search techniques
(Judson et al., 1992, 1993; McGarrah and Judson, 1993; Tuffery et al., 1993).
Unger and Moult (1993) compared the ability of a genetic algorithm and a
"Monte Carlo" search method to find a minimum-energy conformation for a
protein that folds in two dimensions. The Monte Carlo method has four
components. (1) Start with a random conformation. (2) Make a single random
change in the conformation. (3) Accept the change if the new conformation has
lower energy. Otherwise accept the change with a probability that decreases as the
energy of the new conformation rises. (4) Continue to test changes until some
stopping criteria is met. The Monte Carlo method was the best search technique
available in 1991 (Unger and Moult, 1993).

Unger and Moult's (1993) genetic algorithm encoded different protein
conformations in the chromosomes of the evolving population. Conformations
with lower energy states have higher fitness. Each mutation follows steps (2) and
(3) of the Monte Carlo method. Recombination breaks two protein sequences at
the same amino acid positions and swaps the fragments. The conformation of the
fragments is maintained while swapping.
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The genetic algorithm found lower energy conformations in shorter periods
of time than the Monte Carlo method. Unger and Moult (1993) argue that the
genetic algorithm succeeds because it naturally follows folding pathways (Judson,
1992). Real proteins are believed to fold in steps. Local regions of the chain fold
first; a higher order structure forms by combination of these local conformations.

The genetic algorithm succeeds for problems in which subsets of the
instructions can work well together in creating high fitness (Holland, 1975). In the
case of protein conformation, the calculation of fitness (energy state) implicitly
evaluates the quality in the population of every locally folded fragment with two
amino acids, with three amino acids, with four amino acids, and so on. Fragments
with low energy conformations increase the relative fitnesses of the conformations
in which they reside; thus low energy fragments will increase in frequency in each
generation.

The selection process causes the parents chosen for reproduction to have a
higher than average fitness, and thus a set of relatively low energy fragments.
Recombination of conformations is done by building offspring from fragments of
the two parents. Thus recombination creates new conformations from good
fragments.

The great power of the method is that the fitness calculation simultaneously
evaluates the quality of fragments of all sizes. Initially, small fragments will
contribute the most to fitness differences among conformations. As the better of
the small fragments spread by selection and recombination, and most
conformations contain them, fitness differences depend primarily on good
combinations of small fragments and differences among the slightly larger size
classes of fragments. Thus selection emphasizes conformations of increasingly
larger fragments.

A simple genetic algorithm often performs reasonably well for a wide range
of problems. However, for any specific case, specially tailored algorithms can often
outperform a basic genetic algorithm. The tradeoffs are the familiar ones of
general exploration versus exploitation of specific information (Newell, 1969;
Davis, 1991).

For protein folding, McGarrah and Judson (1993) showed the superiority of a
hybrid method that combines the genetic algorithm with a local search. The
genetic algorithm is often good at broadly searching the space of possible
conformations. However, because genetics includes the stochastic processes of
mutation and recombination, the algorithm is inefficient at fine-tuning a
conformation that is close to a local minimum. McGarrah and Judson used an
alternating cycle of the genetic algorithm and an efficient local search (gradient
descent).

The genetic algorithm provides a good spread of candidate conformations.
The gradient descent uses these candidates as starting points and efficiently
obtains the best local conformation. The fitness is assigned to each chromosome
based on its conformation after gradient descent. Thus local optimization can be
thought of as a period of learning during the phenotypic phase of the cycle. One
can optionally use the phenotype after the learning period as the genotype for
reproduction, providing a component of Lamarckian inheritance to the search
process (Judson et al., 1992).

The work on protein folding follows a common pattern of growth in
optimization studies. When a new problem is encountered, the first efforts use a
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general purpose method such as a basic genetic algorithm. Experience with the
problem often shows that better performance can be obtained by enhancing the
simple algorithm, that is, encoding problem-specific knowledge into the genetic
program. The incorporation of problem-specific knowledge is similar to the
Baldwin effect discussed earlier (see section on Learning).

At present, such problem-specific knowledge is usually inserted into the
genetic algorithm by human intervention. One goal for optimization research is to
mimic the Baldwin effect more closely, causing techniques learned by the evolving
population to be incorporated into the search algorithm without intervention.
This would allow general-purpose methods to evolve into problem-specific
techniques by dynamically balancing further exploration versus exploitation of
discovered knowledge.

C. Genetic Algorithms and Neural Nets

A brain is a network of neurons. Each individual processor (neuron) in a brain is
relatively slow by engineering standards, with a response time measured in
milliseconds. Yet an animal's neural network is capable of many tasks far beyond
the success of the most powerful computers available today. Examples include
vision and complex pattern recognition.

Neural nets achieve their power by massively parallel information channels. A
net can have millions of simultaneously active, parallel connections, whereas most
computers use only one or a few serial channels at any instant. Networks also have
redundancy and fault tolerance. Cutting a few individual connections usually has
very little effect. In serial architectures, loss of a few bits of information often
causes total failure.

The admirable properties of computational networks were first studied in the
1940s (McCulloch and Pitts, 1943). This research has grown into a large enterprise
focused on neural networks, sometimes called parallel distributed processing
(McClelland et al., 1986; Rumelhart et al., 1986). Part of the research emphasizes
models of real nervous systems. This is an extension of neurobiology. Another
group has exploited the power of networks for engineering applications (Hertz et
al., 1991). Examples include recognition of handwritten words, digital signal
processing, and control systems in robots.

Constructing a neural net for an engineering application has three phases.
First, the basic architecture of the net is chosen. This includes the number of
neurons, the initial strength of interconnections, the detectors that pass
information from the environment into the net, and the output system that signals
the net's action in response to the environment. In the second phase the net is put
through a training process. Inputs are provided, and the difference between the
net's output and the desired goal are used to adjust the connection strengths
among the neurons. Finally, the net is put to use when it can match inputs to
desired outputs with sufficient accuracy, for example, if handwritten letters can be
recognized within tolerable error limits.

The training method is usually deterministic. Thus a given architecture
converges to a particular input-output response pattern. The quality of
performance is therefore determined by the initial architecture. Although there
are some guidelines about how architecture will affect performance (Hertz et al.,
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1991; Kung, 1993), there is often a huge number of plausible structures. Testing
the performance of each architecture is not possible. The difficulty is
combinatorial explosion, just as in the protein-folding problem.

Genetic algorithms have had some success in the problem of network design
(Harp and Samad, 1991; Harvey, 1991; Harvey et al., 1993). A chromosome
represents a single architecture. In each generation a chromosome is translated
into a net, the net is trained, and then performance is measured. The
performance is fitness. The genetic algorithm then follows its usual cycle.

One problem is the developmental translation of linear information in the
chromosome into a three-dimensional network (Harp and Samad, 1991; Harvey,
1991; Kitano, 1994). At present, each investigator specifies an ad hoc method for
developmental translation. These range from direct coding of three-dimensional
structure to a variety of clever generative rules that allow compression of structural
information. Hemmi et al. (1994) have recently taken the next step, in which the
generative rules are themselves encoded in the linear genome, allowing the
developmental "language" to evolve along with the particular structural
information. This active area of research may provide some interesting insights
into generative rules, development and language in natural systems (Batali, 1994;
Dellaert and Beer, 1994).

Natural networks may be wired by a program of developmental selection,
although this remains an open question (see section on Development). If true, then
chromosomes contain two types of information. First, there is the program of
developmental selection. This information codes the processes of variation and
selection that control the development of wiring patterns. Second, there is a set of
initial conditions that provide the material for developmental selection. These
initial conditions shape the final outcome via developmental selection.

Analogies with natural systems suggest some experiments with genetic
algorithms. A chromosome that encoded a developmental selection program and
initial conditions has two interesting features. First, each chromosome spawns an
adaptive subsystem of developmental selection to create its phenotype. The nature
of this subsystem will evolve in the usual cycle of the genetic algorithm. Second, a
relatively small chromosome is needed to encode the developmental program and
initial conditions when compared with chromosomes that encode the entire
architecture.

Whether an experiment of this type is practical for engineering applications
remains to be seen. These experiments would, however, provide insight into the
power of developmental adaptive subsystems to store complex patterns in small
chromosomes.

D. The Evolution of Robots

Robots require environmental detectors, motor controls, and computational
machinery to link sensory input with motor output. Robots that perform simple,
repetitive tasks are used in many applications. But current robots are not good at
handling unpredictable conditions. Thus, several research groups have reasoned
as follows: Animals handle unpredictability well. Animals evolved. Perhaps robots
should be designed by evolutionary processes.

The Sussex research group has made an interesting start in this direction
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(Harvey et al., 1993; Cliff et al., 1993). They believe that evolution can be a very
effective design method, but that evolutionary complexity must be built with small
steps. Robots cannot sweep the garage before they can avoid crashing into walls.
The Sussex group has chosen effective maneuvering in space as a simple but
crucial first step in robot evolution.

How to build a robot that avoids bumping into walls? Harvey et al. (1993)
argue that the first design phases can be done entirely by computer simulation
without the need to build costly prototypes. The problem for the robot is to avoid
the walls while moving in a circular room with black walls and white floor and
ceiling. The robot has visual sensors, an internal neural network, and two
motorized wheels that can be controlled independently. The physics—location in
the room, visual input, and motion in response to settings for the wheel motors—
are tracked by computer simulation. A linear chromosome is used to encode the
structure of the sensory system and the architecture of the neural network. At
present both the network's structure and the connection weights are set by the
genotype. Each robot could learn by adjusting connection weights as discussed in
the previous example.

Evolutionary change follows the cycle of the genetic algorithm. An initial
population of chromosomes is formed, each specifying the design of a robot. Each
design is tested in the simulated room, the performance is scored and used as
fitness. Chromosomes are chosen according to their fitness. Pairing,
recombination, and mutation occur to form offspring for the next generation of
the cycle.

Performance improves over the generations. Following the plan of
incremental evolution, the next step is maneuvering in a cluttered room (Cliff et
al., 1993). The technique of simulating the physical environment does not work
very well for this problem because it is computationally very intensive. So Cliff et
al. (1993) created a cluttered environment and a robot. The robot has visual
detectors that it can move to scan its surroundings. The robot can also move itself.
Fitness is determined by success at navigating through this environment. A
genetically encoded neural network controls sensory scanning and does the
computations that connect the sensory input with motor output. The network and
the processing occur in software on a remote system, allowing the rapid evaluation
of many different genetic programs (chromosomes). No results have been
published with this system.

The coupling of sensory scanning and movement is particularly interesting in
this system. Edelman (1987, 1992) has stressed the importance of this coupling in
his theory of neural darwinism and has presented some simulations of his own
with simple robots (see earlier section on Learning). Edelman's goal is to
understand the functioning of real nervous systems; the Sussex group is trying to
design efficient robots. It will be interesting to follow the parallel development of
these two research programs.

E. Hierarchical Control and Learning in Robots

The examples of robot maneuvering illustrate one method of design by
incremental evolution. Other research groups have taken a different evolutionary
approach (Meyer et al., 1993; Cliff et al., 1994; Brooks and Maes, 1994). For
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example, Colombetti and Dorigo (1993) have emphasized the ability of an
individual robot to learn. Their approach may be thought of as phenotypic
evolution given a particular design (genotype), whereas the Sussex group focused
on genotypic evolution without any phenotypic evolution.

Colombetti and Dorigo studied a hierarchy of independent behavioral
components coordinated by a global integrator. For example, approaching,
chasing, escaping, and eating are possible responses to a particular stimulus. The
actual behavior depends on a resolution among the tendencies of each
component, leading to suppression of one component by another or to an orderly
sequence of behaviors. Issues of hierarchy and coordination are central problems
of animal behavior (ethology) and were widely discussed in the 1950s and 1960s
(e.g., Tinbergen, 1951; Dawkins, 1976b).

Each component behavior in Colombetti and Dorigo's robot learns by an
extended genetic algorithm known as a classifier system (Holland et al., 1986).
Classifiers are evolving populations of chromosomes in the genetic algorithm
cycle, but each chromosome may use a portion of its coding for a series of
condition-action rules that can control behavior. The condition part of the rule
can be triggered by external sensors or the actions of other chromosomes; the
actions can stimulate other chromosomes or activate output controls such as
motors. Thus a population of classifiers forms an activation network.

Here is a simple behavioral hierarchy (Colombetti and Dorigo, 1993):
if there is a predator

then Escape
else if hungry

then Feed
else Chase the moving object

Each behavior, escape, feed, and chase, has its own classifier system that
evolves (learns) over time. The robot has sensory detectors that pass a message to
each behavioral component. Each component generates a message in response.
The response from each component is passed directly to the action controls or to
the behavioral integrator, which is itself a classifier system. The integrator may
then send a message to the action controls.

The robot learns by reinforcement or punishment, as in psychological
conditioning experiments. Reinforcement notifies the classifier systems of success.
Each classifier system assigns credit (high fitness) to the chromosomes that
participated in the correct decision. The wrong behavioral choice leads to
punishment and low fitness to participating chromosomes. These fitnesses are
then used in a cycle of the genetic algorithm, with mating, recombination, and
mutation to form a new population of chromosomes in each classifier system.

The hierarchical decomposition of this robot is set by the experimenters. It
would be interesting to study how hierarchical decomposition evolves. This would
require a mixture of the approaches by the Sussex group and Colombetti and
Dorigo. The Sussex approach focuses on an evolving population of robots, where
the genotype for each robot specifies a particular design. To study behavioral
decomposition, the genotype must be able to encode a variety of components that
divide environmental challenges in different ways. The phenotypic interactions for
each genotype would follow Colombetti and Dorigo's approach: each behavioral
component specified by the genotype spawns its own adaptive (classifier)
subsystem in order to learn during the phenotypic stage of the life cycle.
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F. Robot Symbiosis

Colombetti and Dorigo's (1993) classifier robot uses a distributed model of
behavioral control. Each component is simple, mostly autonomous, and computes
in parallel with other components. This is an internal symbiosis of cooperating
components. Behavioral decomposition is a central tenet of many current research
programs in robotics (Meyer et al., 1993; decomposition of complex problems
arises in many fields, see Alexander, 1964; Simon, 1981; Minsky, 1985; Dennett,
1991).

Another design method emphasizes teamwork among a group of individual
robots. Teams are useful for simple tasks that can be done in parallel, such as
clearing a field of rocks. Teamwork can also boost efficiency for tasks that require
division of labor and specialization, such as automated manufacturing, search and
rescue, or surveillance (Parker, 1993).

Both internal symbiosis and teamwork must resolve the tension between the
autonomy of components and control of the symbiotic group (Numaoka and
Takeuchi, 1993). This is a difficult problem. A global control mechanism could
assign tasks to components based on progress to the ultimate goal. But this global
mechanism must be complex, difficult to design because it requires great
foresight, and prone to failure. When a global controller fails, then the whole
system fails.

On the other hand, each component may blindly pursue its own simple
subgoal without regard for the success of the group. Efficient group behavior may
emerge from pursuit of the individual subgoals. This is the strategy used by several
research programs.

Parker (1993) proposed a model for division of labor and specialization
among groups of "selfish" robots. For example, in janitorial service the team must
empty the garbage, dust the furniture, and clean the floor. Each robot is
controlled by a distributed hierarchy of behavioral controls as in the Colombetti
and Dorigo study (see also Brooks, 1986). Several low-level controls deal with tasks
such as collision avoidance. These are active at all times. Higher-level controls are
grouped according to the garbage, furniture, and floor tasks. Only one of these
task-specific groups is active at any one time. Each group is controlled by a
motivational unit that receives sensory input, inhibitory feedback from other
behaviors, and a variety of other connections.

There are also control units devoted to internal "behaviors" such as the
competing factors of impatience and laziness. These set the goals that control the
behavior of each robot. For example, two robots may be motivated to empty the
same garbage can. One gets there first and begins; laziness in the other robot
causes it to give way. However, if the task of emptying the garbage is not
completed, the second robot grows increasingly impatient. After a while, it will
step in and try to finish the task.

Parker uses the market economy approach to achieve group coordination
and efficiency. Each robot desires that all tasks be accomplished; each is motivated
to do a task with high supply and low demand.

It will be interesting to follow this "selfish" approach to teamwork. In
biological examples of symbiosis, creating higher levels of organization from
autonomous components has worked very well in a few cases, but there are also
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many inefficiencies caused by internal conflict (e.g., H011dobler and Wilson, 1990;
Hurst, this volume).

IX. Conclusions

The study of adaptive systems is composed of the individual puzzles in biology and
engineering that made up my survey. This field is at a special time, when many of
the puzzles have been defined, work has started, and the problems are just coming
into focus. Much of the excitement is in the details of these puzzles and the ideas
that are growing up simultaneously in traditionally separated academic disciplines.

What can be said beyond the listing of individual cases? I have argued
throughout the chapter that a small set of challenges and responses have shaped
adaptive systems (Tables 1 and 2). Classifications of this type can be problematic.
On the positive side, they highlight simple, common features that can be obscured
by details. On the negative side, classifications can be a semantic convenience that
hides real differences. The balance often turns on matters of personal taste. My
classification did bring some order to a diverse range of problems. I look forward
to better classifications that will develop with a general theory of adaptive systems.

I turn now to a few speculations. First, I suggest that unpredictable challenge
from coevolving systems has played a particularly important role in the history of
adaptive systems. This is an old idea. What I find particularly interesting is that
robotics provides new opportunities to test this idea.

The early evolution of robots will require much exploration. Adaptive systems
influence two levels of design. At the hard-wired or genotypic level, evolutionary
computation, such as a genetic algorithm, is used to search for effective
architecture. This algorithm, which tests designs from a population of alternatives,
shares many properties with genetical evolution. The good designs will proliferate
and be modified, the bad designs will disappear.

Most of the early designs will be inefficient. But, for simple tasks such as
cleaning office buildings and scraping barnacles from the bottoms of ships, the
rate of architectural (genetic) evolution will slow as successful designs are
discovered. Which brings up the interesting question: What types of challenge will
favor continual evolution of architectures? Antagonistic coevolution seems the
most likely answer; to use more common terms—war, combat, law enforcement,
games of pursuit. Opponents will evolve to exploit design weaknesses, which
require countermeasures to close the gaps. While shoring up defense, the search
goes on for weakness in the opponents. And so on. Perhaps it is no surprise that
the Office of Naval Research (USA) funded much of the early research on genetic
algorithms.

My second comment is about cooperative symbioses that form in response to
another kind of war. The battle is between humans and their parasites. In earlier
sections I mentioned that host-parasite coevolution influences genetic
polymorphism and that parasites are the challenge that shaped adaptive
immunity. I also discussed the hypothesis that sex and the exploratory function of
genetic mixing is shaped by parasitic challenge. There are two additional adaptive
systems that humans use against parasites: learning and culture. As Mims (1987, p.
322) noted:
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Vaccines have been of immense importance in the past and
hold great promise for the future. The evolution of a microorganism
can be decisively terminated by the proper application of knowledge.
Smallpox, the most widespread and fatal disease in England in
the eighteenth century and a major cause of blindness, has been
totally eradicated from the earth. [italics added]

Genetics, adaptive immunity, learning, and culture have all been used in the
battle against parasites. In addition, science (learning plus culture) has itself
spawned new adaptive subsystems in the form of evolutionary computation.

This battle against parasites, waged by medical research, is an enormous
cooperative symbiosis. Like all symbioses composed of autonomous agents,
medical research is rife with internal conflict, for example, competition among
research groups. The symbiosis is held together by a common external threat—
parasites.

My final comment is about a different kind of symbiosis, in which the
individual agents are themselves subsystems of a single evolutionary unit. For
example, teams of robots may be the most effective way to solve complex
problems. Although each robot makes its own behavioral decisions, the whole
system is typically designed with a single purpose controlled externally by humans.
I discussed some of the difficulties in my survey. First, how should complex tasks
be divided into simpler subgoals, each subgoal achievable by single agents
(robots)? Second, how can pursuit of subgoals be combined to solve a larger
problem?

This work in robotics matches an approach that has recently been developed
to study the human mind and the evolution of consciousness (e.g., Minsky, 1985;
Dennett, 1991). According to this view, the mind has many nearly autonomous
subsystems that handle particular tasks. A major feature of consciousness and
focused attention is simply the temporary dominance of a particular subsystem. In
some theories , the subsystems compete for control according to the importance of
the challenges that they face. This is similar to Sachs et al.'s (1993) developmental
selection in which the individual shoots of a single plant compete for root
resources, or Parker's (1993) robot example, in which autonomy and controlled
competition appear to be the only way to achieve workable complexity.

It will be interesting to follow the development of robotics and cognition.
These fields have very different histories, but the recent "cognitive revolution" may
break down barriers (Gardner, 1985). On the other hand, many people believe
that natural selection, robotics, and "artificial" systems will teach us nothing very
profound about the mind (references in Gardner, 1985; Dennett, 1991, 1995).
Time will tell.
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