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A dominant theme in the history of life has been the evolutionary innovations of cooperative symbioses:
the first genomes near the origin of life, integrated prokaryotic cells, the complex symbiotic communities
that evolved into modern eukaryotic cells, lichens, mycorrhizae, and so on. In this paper, a model of
cooperative symbiosis that shows a threshold condition for the evolution of cooperation is analyzed. The
threshold is not easily passed, but cooperative evolution proceeds rapidly once a symbiosis overcomes
the threshold. In the model presented here, each species has genetic variability for a symbiotic trait. The
trait imposes a reproductive cost on its bearer but enhances the reproduction of its partner species. For
example, in the origin of genetic systems, the trait may cause biochemical synergism for the rate of
replication of primitive RNA strands as in Eigen and Schuster’s hypercycle model. Models of growth
synergism, which are most appropriate for the evolution of genetic systems and for
mutualisms such as lichens, with the strategic and psychological applications of the Prisoner’s Dilemma
model.
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Introduction

Game theory models, such as the Prisoner’s Dilemma,
are frequently used to study the evolution of
cooperation (Axelrod, 1984; Mesterton-Gibbons &
Dugatkin, 1992). These behavioral models focus on
how individuals adjust their actions in response to the
history of cooperation and cheating in past encounters.
Game theory analysis shows that the origin and
subsequent spread of cooperative behavior requires
that individuals start with a certain innate (genetic)
tendency to cooperate (Axelrod & Hamilton, 1981). If,
for example, most individuals fail to reciprocate, then
a rare, cooperative individual will always be aiding its
neighbors but never receiving any return benefits. Thus
there is a threshold for the innate, cooperative
tendency that must be passed before further
cooperative evolution can occur.

Many complicated aspects of spatial interaction and
behavior have been analyzed to determine how the
threshold for cooperative evolution may be overcome
(Mesterton-Gibbons & Dugatkin, 1992; Nowak &

May, 1992). Two factors appear most important
(Alexrod & Hamilton, 1981). The first is the average
distance of the population from the threshold. The
second is the tendency of the initial, mutant individuals
above the threshold to interact with each other. Spatial
association of cooperators most likely occurs when
relatives interact.

A different kind of cooperative evolution occurs
between simple symbionts that lack behavioral
flexibility. Each partner contributes a fixed, genetically
determined proportion of its energy to aid partners.
For example, biochemical symbionts may enhance the
replication rate of partner species (hypercycles, Eigen
& Schuster, 1979) or provide partners with important
nutrients. An individual may gain by aiding a partner
when the aid increases the partner’s vigor and the total
level of reciprocation.

Current models of cooperative symbiosis start with
the assumption that each species donates a fraction of
its energy to aid partners. For example, hypercycle
models assume mutual enhancement of replication
by separate species of replicators and then study
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the conditions under which complex genomes can
evolve (Eigen & Schuster, 1979; Maynard Smith &
Szathmáry, 1995). Models for the origin of chromo-
somes start with the assumption of positive synergism
between separate replicators and then ask when
selection favors those separate replicators to become
biochemically linked on chromosomes (Maynard
Smith & Szathmáry, 1993).

In this paper I study the prior step in the evolution
of cooperative symbiosis: How do different species first
evolve to aid partner species? This step must be passed
before one can invoke synergism to study hypercycles,
genomic integration, and the evolution of chromo-
somes. I emphasize the early evolution of genetic
systems, but the models apply to any kind of
cooperative mutualism with behaviorally inflexible
traits (e.g. biochemical mutualism).

The processes that influence the origin of synergistic
traits can be guessed fairly easily by analogy with the
Prisoner’s Dilemma and from a prior study on the
genetics of mutualism. First, both species must have a
minimal level of expression for their mutualistic trait.
Second, pairs that develop positive synergism must be
associated in space so that benefits conferred to one
species are returned to the initial donor. These spatial
associations have two components. Between species,
selection creates spatial association in trait values
among symbiotic partners (Frank, 1994a). Within
species, the benefits of cooperation, returned from
partner species, must be provided to relatives of the
original donor (Hamilton, 1972; Wilson, 1980).

This past work suggests the following conjecture:
The initial level of trait expression and the spatial
associations determine threshold trait values that are
required for the origin and evolution of synergistic
symbiosis. The conjecture is described by the heuristic
model in Fig. 1(a). Species 1 has a trait, T1, that
enhances the reproductive rate of species 2 but reduces
its own fitness. Likewise, species 2 has a trait, T2, that
enhances the reproduction of species 1 at a cost to

itself. Larger values of T provide more benefit to the
partner at a higher cost to the donor. When both
species have low trait values, as would be expected
when two species first meet, selection pressure
continually pushes the traits to lower values. If,
however, the pair of traits is above a threshold when
the species first meet, then cooperation can increase
because of synergistic feedback between species. The
analysis below shows the assumptions needed to make
this model work, and the particular conditions that
define the cooperative threshold.

An example of how particular conditions affect
cooperative evolution is shown in Fig. 1(b). The
benefit:cost ratio defines a scaling for the positive effect
a species has on its partner relative to its own cost. In
this example, both species start with the same trait
value, T. If the benefit:cost ratio is low, then selection
reduces trait values fromany starting point.As benefits
increase relative to costs the potential for positive
feedback increases: lower trait values are needed to get
over the initial threshold, and the traits evolve to higher
equilibrium values.

This threshold is a key step in the origin of
synergistic traits and cooperative symbiosis. Therefore
it is useful to formalize the qualitative arguments given
here and to quantify the factors that influence the
threshold. I present a model in which two species
interact according tomodifiedLotka–Volterra dynam-
ics, where the interaction depends on a genetically
variable trait in each species.

The Model

To study symbiotic evolution one has to make
specific assumptions. How often do individuals
interact? When an individual provides benefits to a
partner species, who receives returns from that
partner? How do the cooperative traits affect
reproductive rate and ecological dynamics?

F. 1. The threshold model for the evolution of cooperative symbiosis.
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A model that made detailed assumptions about
each aspect of a potential symbiosis would be too
complex to analyze. On the other hand, a model
that failed to specify rules for the movements
of individuals, competition for resources between
potential partners, and other basic processes would
provide little insight into the evolution of cooperative
symbiosis.

To balance this tradeoff between realism and
generality, I chose a specific biological problem and
then simplified the life history. The problem is how
replicative strands (RNA or DNA) in early protocells
evolved cooperative genomes with a high degree of
metabolic synergism. I provide an outline of the model
in the remainder of this section. I then turn to the
details in the following sections.

Each protocell contains copies of genetic material. I
call each strand of genetic material a chromosome. The
population of protocells has a life cycle with discrete
generations. At the end of each generation protocells
are chosen for reproduction with a probability (fitness)
proportional to the total growth of their chromosomes
within the cell.

The reproducing cell produces one progeny, which
contains a fixed number of copies of the parental
chromosomes. Each chromosome transmitted to the
progeny is chosen stochastically in proportion to its
abundance within the parental cell. I refer to the
sampling of parental chromosomes as segregation. The
chromosome may mutate during transmission.

At the reproductive stage parental cells may fuse
with each other before producing a progeny. The
chromosomes of fused cells are mixed and then
segregate to form one offspring.

The cells of one-half of the initial population contain
chromosomes of species 1, the remaining cells contain
chromosomes of species 2. The species mix within cells
when parents fuse before reproduction. Each
chromosome has an associated trait that reduces its
own reproductive rate—the larger the trait value the
greater the fitness cost. The trait of species 1 enhances
the growth rate of species 2, and species 2’s trait
enhances the growth of species l. Larger trait values
have greater beneficial effects on partners. I present
equations for the dynamics of growthwithin cells in the
next section.

This protocell model highlights biochemical syner-
gism and the importance of spatial interaction.
Without physical linkage of species or other processes
that force codispersal, stochastic sampling in segre-
gation may cause the loss of one partner species from
a cell (Maynard Smith & Szathmáry, 1993). I will
discuss later the important interactions between
synergism and linkage. The model here focuses on the

synergism stage in the evolution of cooperative
symbiosis.

  

I use the standard Lotka–Volterra equations to
describe the growth dynamics of chromosomes within
cells. A more detailed description of the equations is
given in the Appendix. Here I summarize the
simplified, non-dimensional equations.

Each chromosome is either of species 1 or species 2.
Within each species there is genetic variability for the
symbiotic trait. Thus, in a cell, the abundance of
chromosomes of species 1 with genotype j is X1j . These
chromosomes have trait value y1j . There can be several
different genotypes of each species within a cell, that is,
j can vary. Thus the dynamical system requires one
equation for each genotype of each species

DX1j=X1j$h1j−s
k

h1kX1k−s
k

h2kX2k%Dt

DX2j=X2j$h2j−s
k

h1kX1k−s
k

h2kX2k%Dt (1)

where

h1j=1−y1j+a s
k

yd
2kX2k

h2j=1−y2j+a s
k

yd
1kX1k (2)

The carrying capacity of the cell is standardized to one
(see Appendix for scaling relations). The character
values y are given as the fractional reduction in the
maximal growth rate, that is, the cost of the symbiotic
trait. The parameter a is the benefit a partner species
obtains from the trait value y relative to the cost to the
donor’s reproductive rate (see Appendix). The trait
values, y, can increase in spite of cost to the donor
because a high trait value increases the abundance of
the partner species, which in turn enhances the return
benefit from the partner. The parameter 0QdE1
determines the shape of the relationship between the
trait value and the benefit to the partner species.

     

I now describe the model formally and summarize
the key parameters. To start each computer run I
initialized a population of 1000 cells, each with Kz
chromosomes, where 0QzQ1 is a fraction of the
cellular carrying capacity. The initial abundance of
each chromosome is 1/K. In this first generation
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one-half of the cells have chromosomes of species 1, the
other one-half of the cells have chromosomes of species
2. The initial trait value, y, for all chromosomes is
chosen from a uniform distribution centered at n and
ranging over 20.005n.

The growth equations describe the change in
abundance of each chromosome in the cell. In each
generation all cells go through S=10 iterations of the
growth described in eqn (1). The size of the time steps,
Dt, is adjusted in each generation so that hSDt 4 1,
where h is the average growth rate from equation (2).

After growth, 1000 new cells are formed to create the
offspring generation. The parental cells are then
destroyed. To form a new cell, a parental cell is chosen
(with replacement) from the population; the relative
fitnesses of cells are proportional to the total
abundance of chromosomes in each cell. A second
parental cell is chosen with probability m, the fusion
rate. If fusion occurs, the two parental cells come
together and their chromosomesmix randomly to form
a single parental cell. From the parent, Kz
chromosomes are chosen stochastically, with the
relative fitnesses of chromosomes determined by their
abundances in the cell. Each chromosome transmitted
to the offspring has initial abundance 1/K. No
distinction between chromosomes of different species
is made during segregation.

The symbiotic trait y mutates during transmission
with probability m. The trait value is changed up or
down with equal probability by an amount yl, subject
to the constraints that y=0 ifmutation reduces ybelow
zero, and the amount of change in trait values is l if
yQ1. Thus 0QlQ1 is a fractional change in the trait
value if yq1 and an absolute change if yQ1.

I present results in the next section to show how key
processes determine the course of symbiotic evolution.
The processes are controlled by the following
parameters: the benefit:cost scaling for cooperative
traits, a, the initial trait values, n, the shape of the
benefit returns as a function of trait values, d, the rate
of mixing caused by cellular fusions, m, the mutation
rate m and mutation scaling l, the total initial
abundance of chromosomes in offspring cells, z, and
the number of chromosomes that segregate into a
progeny cell, Kz.

 

The results shown in Fig. 2 confirm the threshold
model for the evolution of cooperative symbiosis [see
Fig. 1(a)]. The lower curve inFig. 2 shows the threshold
for initial trait values, n, required to favor cooperation.
Below the threshold, cooperative traits are lost quickly.
Above the threshold, traits evolve toward an
equilibrium shown in the upper curve. The trait values

F. 2. Quantitative analysis of the threshold model for symbiotic
evolution. The parameter a is a benefit:cost scaling. The other
parameters for these computer runs are: the rate of cellular fusions,
m=0.1; the mutation rate, m=0.1, and the effect of each mutation,
l=0.01; initial abundance in each cell, z=0.25; the number of
chromosomes that segregate into each progeny cell, Kz=12; and the
exponent for the benefit returns, d=0.9. The lower threshold was
determined by running three replicates for each parameter value of
a and initial trait value. Holding it constant, the initial trait values
were increased until cooperation was favored in at least two of three
of the replicates. The trait values were increased in steps of 0.01 or
0.005. The upper curve was obtained by using initial trait values just
above the threshold and running for 20000 generations.

are shown as the fractional cost to maximal growth
rate. Thus a threshold value of 0.1 implies that each
species must, before meeting its partner, carry a
symbiotic trait with a 10% fitness cost, a very unlikely
situation. Thus Fig. 2 shows that high benefit:cost
ratios (the parameter a) are required for symbiosis to
get started.

The upper equilibria in Fig. 2 are all above a cost of
one. The high cost implies that, once symbiotic
evolution has occurred, the species become obligate
partners that can no longer grow alone (contingent
irreversibility, Maynard Smith & Szathmáry, 1995).
The evolution of mutual dependence can be seen in the
time-series plot of Fig. 3. Initially, each species can
grow alone at a standardized rate near one. The initial
trait values were chosen to be just above the symbiotic
threshold, so at first the cooperative traits increase
slowly. After a few thousand generations the growth
rate of each species when alone is less than zero, and
the interaction has become obligate. A period of rapid
cooperative evolution then follows until the upper
equilibrium shown in Fig. 2 is obtained (y125 and
1−y1−24). Trait values fluctuate around the
equilibrium, showing a tension between, on the one
hand, greater cooperative tendencies (higher y) and
greater cellular success in competition with other cells
and, on the other hand, greater competitive tendencies
(lower y) and greater success against partners within
cells.
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The average trait values for both species are
plotted in Fig. 3. The values can hardly be
distinguished in spite of fluctuations, implying a
strong stabilizing pressure that maintains nearly
equal reproductive rates for the two species. Disparity
in reproductive rates would cause one species to
outcompete the other within a cellular lineage, leaving
the fast species without a partner. However, when
cooperative symbiosis is favored, cellular lineages
that maintain both species have a large efficiency
advantage over unispecies lineages. Thus any force
that caused a disparity in reproductive rates between
species would be detrimental to cooperative symbiosis
and would further increase the benefit of physical
linkage between the species. Linkage prevents
competition within cells and the loss of a partner
species during segregation (Maynard Smith &
Szathmáry, 1993).

The remainder of the simulation results provide
details about how various parameters affect the height
of the threshold and upper equilibria. I describe the
effects of changing each parameter relative to the
results shown in Fig. 2. The parameter values used in
Fig. 2 are listed in the caption.

The rate of cellular fusion (or migration among
lineages) has three effects. First, reduced fusion
increases the relatedness within cells among members
of the same species. Increased relatedness improves the
chances of success for cooperation between species
because return benefits of cooperation are conferred

F. 4. The effect of cellular fusions (migration) on the threshold
for cooperative symbiosis. The middle curve is the same as the lower
curve in Fig. 2.

on genotypes that are more closely correlated to the
donor’s. Second, reduced fusion can increase the
genetic correlation between species that is created by
selection (Frank, 1994a). This correlation between
species describes the spatial association of relatively
high trait values. The third effect is the relative
magnitude of fusion (migration) and drift. When
cellular fusions are rare, cells containing both species
may be lost from the population by sampling
processes. Thus low fusion rates enhance the
probability of successful symbiosis by increasing
relatedness, but if fusion is too rare then the species
mixtures may be lost by drift.

Threshold trait values are shown in Fig. 4 for
different rates of cellular fusion. Lower fusion rates
reduce the threshold. The relatedness within species
increased as fusion rates declined. This change in
relatedness is probably the main reason for the
variation in threshold values. For low fusion rates of
approximately one per generation (m=0.001 in a
population of 1000) the results were erratic because the
stochastic effects of drift play an important role
[compare Figs 5(a) and 5(b)].

Changes in the number of chromosomes per cell, Kz,
cause two opposing forces. First, an increase in Kz
reduces relatedness among chromosomes and there-
fore reduces cooperative evolution. Second, a rise in Kz
increases the probability that both species will be
transmitted to progeny cells. In obligate mutualisms,
loss of one species during segregation leads to the death
of the progeny. In a symmetric interaction, equal
abundances of each species are most favorable for
cellular success (Maynard Smith & Szathmáry, 1993).
The strong stabilizing selection at the cellular level for
equal doses of each species causes strong selection
favoring linkage and mendelian genetics.

F. 3. Time-course of mutualistic evolution between two species.
The y-axis shows the average growth rate of each species when its
partner species is absent. The average trait values of both species are
plotted; these values are always close. This growth rate is 1−y, where
y is the symbiotic trait that costs a fraction yof the donor’smaximum
growth rate and enhances the recipient’s growth rate by ayd per unit
abundance (concentration) of the donor. When growth rate, 1−y,
is less than zero, then a species cannot grow without its partner and
the symbiosis has become obligate. Parameters as in Fig. 2, with
initial trait values of 0.1 and a=12.
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F. 5. Stochastic component of cooperative evolution. Each panel shows the percentage of ten replicates in which symbiotic traits increase
for a given set of parameters. The middle panel (b) has the same parameters as Fig. 2. The left panel (a) shows the reduced initial trait values
needed for symbiosis when the rate of cellular fusions is lowered to m=0.001. The irregularities in (a) show the larger effects of stochastic
forces when cellular fusions are rare events. The right panel (c) shows the reduced initial trait values needed for symbiosis when the number
of chromosomes per cell, Kz, is doubled relative to (b). In (c), the complete curve for a=11 and low initial trait values includes the points
for initial trait values 0.02, 0.03, 0.04 and the respective percent symbioses 0, 10, 10.

The net effect of the two opposing forces, relatedness
and segregation, is shown in Fig. 5(c). For the
parameters in that figure, an increase in Kz reduces the
threshold for cooperative evolution. Note that high
cost:benefit ratios, a, and high initial traits (costs) are
still required for cooperative evolution.

Lower mutation rate increases the threshold for
cooperative evolution. The lower curve of Fig. 6 shows
the threshold for the core parameter set from Fig. 2,
with the mutation rate per chromosome of m=0.1. The
upper curve shows the same parameter set except that
the mutation rate is reduced to m=0.01. Lower
mutation may increase the threshold by reducing the
genetic variability available that selection uses to create
genetic correlations between species. Positive genetic
correlations favor increased cooperation between
species (Frank, 1994a). If each species is considered as
a different gene, then these correlations are similar to

a measure of linkage disequilibrium. Opposing this
advantage of mutation for cooperative symbiosis, high
mutation rates reduce relatedness and increase conflict
within cells (Bonhoeffer & Nowak, 1994; Frank,
1994b).

The parameter z is the initial abundance of
chromosomes in cells relative to the cellular carrying
capacity. Lower values of z reduce benefits for partners
because the benefits depend on the frequency of
interaction, which in turn depends on abundance
(concentration). Reducing z therefore raises the
threshold trait values for the spread of cooperation.
For example, the threshold in Fig. 2 for a=15 and
z=0.25 is 0.05. When z is decreased to 0.125, the
threshold increases to 0.16.

The final parameter, d, is the exponent that
determines the shape of the benefit returns per unit cost
to the donor. Linearity, with d=1, can cause the traits
to increase without bound if the initial threshold
conditions for cooperation are met. I therefore used a
slightly diminishing rate of returns in Fig. 2, d=0.9.
When d is reduced, benefits increase more rapidly for
low cost and increase more slowly for high costs. Thus
lower d reduces both the threshold and the upper
equilibrium. The threshold in Fig. 2 for a=15 and
d=0.9 is 0.05. When d is lowered to 0.8, the threshold
decreases to 0.035. Note that a change in d also changes
the benefit:cost ratio for a given trait value and the
scaling relations for the nondimensional parameter a
(see Appendix).

Conclusion

The Prisoner’s Dilemma is an excellent model of
strategy and psychology. This strategic model also
includes generic features of cooperative symbiosis,

F. 6. The effect of mutation rate on the threshold for cooperative
symbiosis. The lower curve is the same as the lower curve in Fig. 2.
The upper curve is based on runs with the same parameters except
that mutation was decreased to m=0.01.
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such as the threshold effect and the role of spatial
structure. However, I chose to study a simpler
population dynamic model that focuses on continuous
variation in a constantly expressed trait. My model of
growth dynamics seems closer to the biochemical
symbioses that have defined the major innovations of
life: the first genomes near the origin of life, integrated
prokaryotic cells, the complex symbiotic communities
that evolved into modern eukaryotic cells, lichens,
mycorrhizae, and so on (Maynard Smith, 1988;
Maynard Smith & Szathmáry, 1995).

The origin of genetic systems has become the
dominant model for biochemical symbiosis. This work
began with Eigen & Schuster’s (1979) hypercycle
model in which mutually complementary genes evolve
by coupling in a cyclic replicative system. For example,
A increases B ’s rate of growth and B increases A ’s rate
of growth, as in my models.

Models of hypercycles and other processes that
could explain cooperative genomes assume a fixed level
of altruism for each species, in other words, they
assume that there is no genetic variability in the
cooperative traits of each species (Szathmáry,
1989a, b; Szathmáry & Demeter, 1987; Maynard
Smith & Szathmáry, 1993). These models fail to
explain how cooperative traits first appeared and how
obligate symbioses evolved. My model adds to this
literature by analyzing the origin and genetical
evolution of the cooperative traits. The model shows
that the threshold for cooperative evolution is a generic
feature shared by biochemical and strategic models. In
biochemical models, symbionts may evolve through an
irreversible stage, leading to an obligate relationship in
which neither partner can live alone (Maynard Smith
& Szathmáry, 1995).

My research is supported by NSF grant DEB-
9057331 and NIH grants GM42403 and BRSG-S07-
RR07008. I thank D. S. Wilson for helpful comments
on the manuscript.
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APPENDIX

Here I derive the scaling relations and nondimen-
sional parameters that I used for the model presented
in the text. The dynamical equations for the change in
the abundance of the first species, X1j , and the second
species, X2j , with varying genotype j are given by the
Lotka–Volterra equations for interactions between
species that compete for a common resource and have
a combined carrying capacity of K

DX1j=X1j$h1j−0sk h1kX1k+s
k

h2kX2k1/K%Dt

DX2j=X2j$h2j−0sk h1kX1k+s
k

h2kX2k1/K%Dt

where

h1j=d−cy1j+a s
k

yd
2kX2k

h2j=d−cy2j+a s
k

yd
1kX1k

The genotypes j=0, 1, 2, . . . vary such that the
symbiotic trait values y1j=y2 j=j/a, where a is an
arbitrary scaling factor greater than one. A large value
of a provides approximate continuity of the character
values. I used a=104 in my computer runs. The
parameter d is the growth rate when all trait values y
are zero, c is the reproductive cost to the donor per unit
of contribution to the partner species, and a is the
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growth benefit received by a species from its symbiotic
partner. The exponent 0QdE1 determines the shape
of the relationship between the trait value and the
benefit to the partner species.

This dynamical system is easier to analyze when
rewritten in nondimensional form (Segel, 1972;
Murray, 1989). Non-dimensional analysis focuses
attentionon aminimal set of parameters andhighlights
relative magnitudes (scaling relations) among the
processes that drive the dynamics. This is accom-
plished without altering the dynamics or interpretation
because one can translate freely between the
biologically motivated formulation and the non-
dimensional quantities.

The system can be rewritten with the following
substitutions

X
 =X/K, ŷ=(c/d)y, â=aK/(cdd1−d), t=dt.

Using these substitutions in the original system and
dropping the hats yields the non-dimensional system
given in eqn (1) of the main text, with the
non-dimensional values of h also obtained from these
substitutions. Note that as Dt 4 0, the dynamics are
given by a system of continuous differential equations,
whereas for larger Dt the system is discrete with
arbitrarily chosen time steps.




