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SEX ALLOCATION IN SOLITARY BEES AND WASPS

Fisher's (1958) famous sex-ratio theory suggests that natural selection favors
equal investment in each sex. Because of Fisher's theory, authors typically as-
sume that biased population allocation requires spatial subdivision, such as local
mate competition, or unusual genetics, such as cytoplasmic inheritance. How-
ever, I have shown previously that a biased population-level sex allocation occurs
if individuals adjust the sex ratio of their offspring in response to resource avail-
ability or environmental cues (Frank 1987, 1990).

Recently, Boomsma (1989) and Helms (1994) have found a positive relation
between female: male (F/M) size ratios and F/M population allocation ratios in
some hymenopteran groups. In this note I apply the theory I developed previously
to explain the association between size and allocation ratios. Before presenting
my theory I will discuss two alternative explanations. First, the association be-
tween size ratios and allocation ratios may be an artifact of measurement (Trivers
and Hare 1976; Boomsma 1989). Second, the association may be real and caused
by a positive association between the intensity of local mate competition and
F/M size ratios. I discuss these explanations in turn.

Both size and allocation have been measured by dry weight. Adult weight
appears to be an accelerating function of the resources that parents invest in
offspring. Thus, weight ratios overestimate investment in the larger sex, which,
in Hymenoptera, is usually the female. This measurement problem, if not cor-
rected, can lead to a spurious positive relation between F/M size ratio and F/M
allocation ratio.

Helms (1994) used data from solitary wasps to analyze the measurement prob-
lem. These data provide information on the actual amount of parental investment
and the size of resulting offspring. Helms concluded that using adult weight as a
measure of investment does lead to an overestimate of the F/M population alloca-
tion ratio. Helms corrected for this bias and still found a positive association
between F/M size ratio and F/M allocation ratio, although the sample sizes were
not sufficient to draw a strong conclusion.

Both Boomsma (1989) and Helms (1994) considered local mate competition as
an explanation for female-biased allocation ratios (Hamilton 1967). Local mate
competition is the most commonly discussed hypothesis to explain female-biased
allocation, perhaps because few other alternatives are believed to be widely appli-
cable. There is no evidence to support local mate competition as a general expla-
nation for the association between size ratios and allocation ratios in Hymenop-
tera (Boomsma 1989; Helms 1994).

I develop a simple theory that predicts an increasing F/M allocation ratio with
increasing F/M size ratio. This theory applies to all species that meet the follow-
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ing conditions. First, the sex of offspring is controlled according to available
resources. Second, the resources that can be used for one offspring are (mostly)
unavailable for other offspring. Third, the relation between investment and fitness
is not strongly accelerating. These assumptions match many parasitoids very
closely and probably apply to many solitary bees and wasps. I will consider these
assumptions more carefully later.

THE MODEL

My derivation follows closely the approach in a previous article (Frank 1987,
sec. 3). Let x be the amount of resource available to invest in a particular off-
spring. The probability distribution for x is h(x). The relation between investment
in males and male fitness follows the curve f(x). The relation between investment
in females and female fitness follows the curve g(x).

I assume that female offspring are favored when resources are relatively abun-
dant (high x) and male offspring are favored when resources are relatively scarce.
This pattern is commonly observed in solitary Hymenoptera (Charnov 1982) and
is explained by the Trivers-Willard theory (Trivers and Willard 1973) for condi-
tional adjustment of sex ratio in response to parental resources. At equilibrium
there is a value X = x where the switch from males to females occurs. This
switch point is obtained by solving (Frank 1987)

f(X)	 g(X)

1	
f(y)h(y)dy f g(y)h(y)dy

fox

This equation is based on the requirement that, at equilibrium, the value of a
male at the switch, f(X), divided by the average value of all males in the popula-
tion, must equal the value of a female at the switch, g(X.), divided by the average
value of all females in the population. The equation holds for any functional forms
of h(x), f(x), and g(x) whenever, at equilibrium, males are made below X and
females are made above X.

To solve this equation specific assumptions are needed for h(x), f(x), and g(x).
I assume that the probability distribution for x is proportional to h(x) = xa -1
(1 – x)' , where x varies between zero and one. The parameter a controls the
shape of the distribution (see fig. 1). I chose this distribution because it has a
variety of shapes to describe resource distribution and, because x is bounded
between zero and one, the distribution is analytically compatible with allocation
expressed as a fraction of the total resources devoted to a particular sex.

I assume that the relation between investment in males and male fitness follows
the curve f(x) = xr and the relation for females follows the curve g(x) = xs . The
values of r and s determine the rate of returns for additional allocation to males
and females, respectively. Some examples of how r controls the shape of the
male return curve are shown in figure 2.

The equilibrium equation can be solved numerically for X when given values
for the three parameters, r, s, and a. For simplicity, I set s = 1, implying linear
returns on female investment. My analyses suggest that it is the difference be-



0.40.2 0.6	 0.80.2	 0.4	 0.6	 0.8	 1

Investment per offspring Investment per offspring

318	 THE AMERICAN NATURALIST

FIG. 1.—A, The distribution of resources available for investment in offspring. The curves
show the beta distribution, {[F(a + [f(a)r(b)llx' (1 – x)b-1 , where F( ) is the gamma
function and I have assumed that a = b. B, The shape of the relation between investment
and fitness, where f(x) = xr.
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2.—Predicted size ratio versus allocation ratio. A, Changes with different distributions
of resources as the parameter a varies (see fig. 1A). The numbers above each point show
different values of a. Returns are linear for females, s = 1, and diminishing for males with
r = 0.7. B, Changes with different rates of diminishing returns for male investment. The
numbers next to each point show different values of r (see fig. 1B). Returns are linear for
females, s = 1, and the distribution of resources is constant with a = 2.

tween r and s that controls the patterns I describe below, subject to the constraint
that r < 1 and that r < s < C, where C varies between one and approximately
two depending on the value of r. For each value of r, the value of C can be
determined by numerical analysis. The particular values of C are not important
because s is unlikely to be greater than one, that is, returns on female investment
are unlikely to be rapidly accelerating. The assumption that r < s causes males
to be favored when offspring will be small and females to be favored when off-
spring will be large.

I assume that the relation between investment and body size is x k for both
males and females. If k = 1, then investment and size are equivalent. Size dimor-
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phisms become increasingly exaggerated as k increases from one, but k has no
effect on the allocation ratio. Thus any trend between the F/M size ratio and the
F/M allocation ratio can be seen clearly with k = 1. I present the following
definitions with k present but assume that k = 1 in all numerical analyses.

With the definition

H(a, k, z) = Z ykh(y)dy =  yky'(1 – y)' l dy ,

we can write the definitions for average size:

Female size = [H(a, k, 1) – H(a,k,X)]1[H(a, 0, 1) – H(a, 0, X)]
Male size = H(a, k, X)/H(a, 0, X),

where the numerators are proportional to the total size of individuals and the
denominators are proportional to the total number of individuals. Similarly, for
allocation,

Female allocation = [H(a, 1, 1) – H(a, 1, X.)] /H(a, 1, 1)
Male allocation = H(a, 1, X)IH(a, 1, 1).

Numerical analyses demonstrate the positive relation between size and alloca-
tion ratios. There are two parameters: a controls the shape of the distribution of
resources (fig. 1A), and r controls the shape of returns on male investment (fig.
1B). I have assumed the returns on female investment are linear, s = 1, as is the
relation between investment and size, k = 1.

Figure 2A shows that the distribution of resources, controlled by a, determines
size ratios. As the variation in resources rises (decreasing a), the size ratio in-
creases rapidly. The variation in the resource distribution has relatively little
effect on the allocation ratio. Figure 2B shows that the relation between returns
and investment, controlled by r, determines allocation ratios. As returns on male
investment diminish more rapidly (smaller r), the allocation ratio becomes in-
creasingly female biased. The rate of returns on investment has relatively little
effect on size ratios. Changes in either the resource distribution or the rate of
returns on investment cause a positive association between size ratios and alloca-
tion ratios.

I provide a brief intuitive explanation for the positive association between size
and allocation ratios when there are changes in the rates of returns, f(x) and g(x),
and a fixed resource distribution, h(x). I then turn to the biological significance
of the models.

Figure 2B shows that small increases in the F/M size ratio are associated with
large increases in the F/M allocation ratio when the resource distribution is held
constant. This pattern is explained in figure 3 for arbitrary functional forms of
h(x), f(x), and g(x). Initially, mothers produce a son whenever the resources
available are less than X and a daughter when resources are greater than X. The
total allocation to males is the proportion of the area under the resource curve
below the point X, weighted by resource level—that is, ft; yh(y)dy I f o yh(y)dy.

Total allocation to females is the proportion of the area under the resource curve
above the point X, weighted by resource level, f yh(y)dy I f o yh(y)dy. If sizes of
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Resource Level (x)

FIG. 3.—Change in switch point, X, causes change in F/M allocation ratio and F/M size
ratio.

offspring are proportional to resources available, then average male size is the
average of the resources allocated to males, f o yh(y)dy I f o h(y)dy. Similarly, aver-
age female size is the average of the resources allocated to females, fl yh(y)dy I
fi h(y)dy•

When the resource distribution h(x) is fixed, an increase in female allocation
occurs when smaller individuals are made into females, that is, the switch point
X is lowered to a new value X'. The switch point changes for fixed resource
distribution whenever there is a change in the male or female return curves,
f(x) or g(x). The particular changes in these return curves are not important
for understanding the qualitative pattern of association between size ratios and
allocations ratios.

After a change in X to X', shown in figure 3, female allocation is the weighted
area under the upper region of the curve, from X to 1, plus the shaded region
between X' and X. Male allocation is now the weighted area between 0 and X.',
males having lost the resources between X' and X. The F/M allocation ratio in-
creases rapidly as the size of the shaded region between X' and X increases.

The change from X to X' also affects the F/M size ratio. Females have added
a relatively smaller class of individuals (shaded region) to their distribution, and
males have lost a relatively larger class of individuals from their distribution. This
difference in relative size occurs because females are larger than males, so the
middle-sized individuals in the shaded region are either small females or large
males.

The addition of relatively small females reduces the average size of females; the
loss of relatively large males reduces the average size of males. The proportional
reduction in male size is usually greater than the reduction in female size, since
adding a relatively small size class typically has less effect on average size than
losing a relatively large size class. A numerical example is shown in figure 4. In
that figure there are five discrete patch types, each with resource level of 1, 2, 3,
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2t:
Resource Level: 1	 2	 3	 4	 5

M	 F	 F/M

Allocation	 0.4	 0.6	 1.50
Switch at 2L
	

Size	 2	 4.5	 2.25

Allocation	 0.2	 0.8	 4.00
Switch at 21:

Size	 1.5	 4	 2.67

4.—Numerical example illustrating the positive association between F/M size ratio
and F/M allocation ratio when the resource distribution is held constant and the switch point
X changes.

4, or 5. The five patch types are equally frequent; that is, h(x) is a discrete,
uniform distribution.

Initially, the switch point X is between 3 and 4, so that males are produced on
patches with resource level 1, 2, or 3 and females are produced on patches with
resource level 4 or 5. The proportions of resources allocated to males and females
are 0.4 and 0.6, respectively, and sizes of males and females are 2 and 4.5,
respectively. Now suppose that, because of changes in the return curves f(x) or
g(x), the switch point changes to X' between resource levels 2 and 3. The new
allocations and sizes are shown in the bottom two rows. The F/M allocation ratio
has jumped from 1.5 to 4, whereas the F/M size ratio has increased a relatively
small amount from 2.25 to 2.67. This shows that a reduction in X tends to cause
a relatively rapid increase in F/M allocation ratios and a relatively slow increase
in F/M size ratios.

A similar style of argument can be used to show why F/M size ratios change
rapidly and F/M allocation ratios change slowly for changes in the resource distri-
bution, h(x), and fixed return curves, f(x) and g(x). The essential point is that the
relative marginal returns on male and female investment are controlled mainly
by the shapes of f(x) and g(x); thus, these curves strongly influence allocation
ratios. By contrast, the resource distribution strongly influences the F/M size
ratio by determining whether a fixed allocation is made to many relatively small
individuals of a sex or to a few relatively large individuals of that sex.

DISCUSSION

There are three important assumptions that determine the species to which
this model applies. First, the sex of offspring is adjusted according to available
resources. This occurs when there is environmental sex determination (Bull 1983)
or when parents control the sex of offspring according to available resources
(Trivers and Willard 1973; Charnov et al. 1981). There is considerable evidence
that parasitoids and solitary bees and wasps choose offspring sex according to
the size of the host or the abundance of food for the offspring (Charnov 1982).
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Second, the resources that can be used for one offspring are (mostly) unavail-
able for other offspring. The particular models here assumed that resources avail-
able must be used for the next offspring produced and cannot be saved for future
offspring. That assumption is true for parasitoids that lay one offspring on each
host. Solitary bees and wasps that mass provision often find or build a cell that
will contain one offspring, add food, and then lay one egg. That cell cannot be
used for another offspring. In many cases the size of the cell determines the size
of the offspring, presumably because more food is provisioned into larger cells
(Krombein 1967). In other cases it appears that the time and food used for one
offspring could be used for other offspring. However, various constraints may
prevent the parent from freely allocating resources among a set of offspring
(Frank and Crespi 1989). The theory presented here could be extended to cases
in which resources may be allocated among different offspring (Frank 1987).

Third, the relation between fitness and investment is not strongly accelerating.
The sex allocation patterns depend on the shapes of the curves that relate invest-
ment to fitness for males and females (Frank 1987). The fact that, in most bees
and wasps, small individuals are males and large individuals are females suggests
that fitness increases more rapidly with size for females than for males (Charnov
et al. 1981). In most species direct male-male competition is rare; thus, it is likely
that male mating success increases at a diminishing rate with size (fig. 1A). Female
fecundity probably does increase with size for many species, but the relation
between parental investment and the fitness of female offspring is not known. It
seems unlikely that female fitness increases at a strongly accelerating rate with
size (see Frank 1987 for an analysis with an accelerating female fitness function).

Fisherian equal allocation is almost universally assumed as the default predic-
tion for natural populations. Thus, when a population-level bias is observed,
most authors are compelled to invoke competition among relatives or genetic
asymmetries. However, a proper economic analysis of investment and return, in
the spirit of Fisher's (1958) original theory, shows that selection acting on individ-
ual sex ratios often causes biases at the population level (Frank 1987, 1990).
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