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Summary

A model of host—parasite coevolution is analysed. A host resistance trait and a parasite virulence trait
interact to determine the outcome of a parasitic attack, where each trait is determined by quantitative
genetic variation. The resistance and virulence traits are assumed to have a fitness cost. Each host and
parasite genotype is treated as a separate 'species' in a multidimensional Lotka—Volterra system in which the
numerical abundance of each genotype is free to change. Thus, the epidemiological effects of fluctuating
population sizes are analysed jointly with changes in genotype frequencies. Population sizes fluctuate
increasingly as the parasites' reproductive capacity increases and as resistance and virulence benefits per unit
cost decline. The patterns of genetic variability depend mainly on the stability of population sizes and on the
shape of the relationship between the costs and benefits of a trait.
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Introduction

I analyse a model of host–parasite coevolution. My main goal is to understand the forces that
influence quantitative genetic variability in host resistance and parasite virulence. No quantitative
genetic model has been published that analyses the genetics of both the host and parasite species.

Quantitative genetic variability for resistance or virulence is often observed in host–parasite
systems (Gould, 1983; Mitter and Futuyma, 1983; Burdon, 1987; Christ et al., 1987). Too few
studies have been completed, however, to infer any generalities about the genetics of resistance
and virulence for quantitative traits. I summarize the relevant empirical literature in the
Discussion.

In the model I present here the benefits of resistance in hosts or virulence in parasites may be
partly offset by genetically correlated fitness costs. Each host and parasite genotype is treated as
an independent 'species' in a multidimensional Lotka–Volterra host–parasite community, which
allows free play of both the frequency-dependent forces of host–parasite genetics and the density-
dependent forces of epidemiology.

Frequency dependence occurs because the host and parasite traits interact to determine the
success of a parasitic attack. For example, a low-cost and low-virulence trait in a parasite may
have relatively high fitness when confronted with little resistance among the host population. By
contrast, a high-cost and high-virulence trait may be favoured in the parasites when the frequency
of resistance increases among hosts.

Density dependence occurs because the net benefit of extra resistance in a host depends on the
probability of parasitic attack, that is, on the density of parasites. When parasite density is low,
costly resistance traits are of little value, whereas when attack is frequent, it may be that only
individuals with costly resistance traits can survive.

These examples of frequency and density dependence suggest that genetic variability cannot
be understood outside of an ecological context. Likewise, ecological parameters cannot be
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understood outside of a genetical context because population birth and death rates for hosts and
parasites depend on the frequency distributions of resistance and virulence traits. The model
presented here shows clearly the tightly coupled nature of ecology and genetics in the temporal and
spatial patterns of herbivory and disease. (See the Note Added in Proof for additional references.)

Model

The hosts and parasites each have a phenotypic trait that influences the success of a parasitic
attack on the host. These traits vary quantitatively and have pleiotropic effects on fitness with the
following restrictions: a more resistant host pays a higher fitness cost than a less resistant host; a
more effective parasite pays a higher fitness cost than a less effective parasite.

Hosts and parasites each have N different genotypes, with phenotypes that range evenly in
value over the interval [0,1] when measured on a particular scale to be defined later. The model is
haploid and can be viewed as having either a single locus in a sexual population or many loci in an
asexual population.

The dynamics of the system are governed by a discrete-time Lotka-Volterra model (e.g. May,
1974):

Ahi = hi (ri- rihi-m

(1)
Opp = pi (-s+bi Xiihi)

The genotypes i and j correspond to phenotypic values such that i, j = 01(N - 1), 1/(N - 1), . .
(N - 1)/(N - 1). Genotypic indices and phenotypic values are equal. The values of hi and pi are
the numerical abundances of hosts with genotype i and parasites with genotype j. The model
tracks fluctuations in total population sizes (ecological dynamics) and the evolutionary dynamics
of genotypic frequencies and phenotypic distributions.

The interpretation of Equation 1 follows the standard Lotka-Volterra convention. The
parameter ri is the ith host genotype's intrinsic rate of increase; 1irihi is the effect of competition
among hosts for scarce resources, where the carrying capacity is assumed to be 1; m is the
morbidity and mortality for a completely successful attack by a parasite; 1 - Xi./ is the amount of
resistance to an attack by the jth parasite against the ith host; and b and s are the birth and death
rates of the parasite..

Host phenotypes are measured on a scale for the cost of resistance such that ri = r(1 - i).
Parasite phenotypes are measured on a scale for the cost of virulence such that bi = b(1 - j).
These assumptions make the analysis simpler, but the model applies to most situations in which
costs of resistance and virulence impose directional selection on phenotypes. For example, let z
be the natural metric scale for a host trait and let C specify the mapping between the trait z and
fitness cost i, C(z) = i, subject to the assumption that C is monotonic in z - that is, selection on
cost is directional. Then, after the properties of i are worked out in the model, one can apply
C- 1 (i) = z to establish the properties of the phenotypic distribution on its natural scale.

The most important assumption of the model concerns how host-resistance traits and parasite-
virulence traits interact to determine the success of an attack. The assumption is

j-i>4
(2)
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where - co < (I) < 1 and, hence, 0 X is 1. For the jth parasite genotype on the ith host
genotype, Xi./ is the fraction of the maximal attack rate. The parameter (I) is the difference between
j and i at which the parasite can no longer attack. The value of (I) affects the slope of the cost-
benefit ratio for resistance and virulence traits. The parameter p is essentially the rate at which X11
changes as the difference between host and parasite phenotypes increases, with p > 0. Figure 1
shows a diagram of Xis.

The costs and benefits of the disease traits have simple interpretations. For hosts, an increase in
i by a small amount E reduces the reproductive rate by the proportion E, but has the benefit of
increasing resistance to parasites by the proportion E multiplied by 0(1 — xyai evaluated at the
point (i,j). Likewise for parasites, an increase in j by a small amount E reduces the birth rate by
the proportion E, but has the benefit of increasing the success of attacks by the proportion E

multiplied by avai evaluated at the point (i,j).
Later it will be important to consider whether host resistance increases in an accelerating (p <

1), linear (p = 1) or decelerating (p > 1) manner per unit cost, where these properties are
obtained by the sign of 02(1 — X)/ail . Similarly, parasite virulence increases in an accelerating (p
> 1), linear (p = 1) or decelerating (p < 1) manner per unit cost, obtained from the sign of a2x/

0.12.

The model also includes mutation, immigration and extinction. Mutation provides genetic
variation in the form of small phenotypic perturbations, immigration provides potentially large
genetic and phenotypic perturbations, and extinction deletes from the system unrealistically small
abundances of a genotype.

The mutation process follows the step-wise model that has been used successfully in a variety of
quantitative genetic analyses (Slatkin, 1987; Frank and Slatkin, 1990). The process can be
illustrated by following the changes in the ith host genotype. In each time step, mutation affects
abundance, h' = (1 - Ohi + (1/2)µ(h1_1, + hi+j, wherev = 1/(N - 1) and p is the mutation rate.
Then disease and selection cause h" i = + h' i according to the system in Equation 1. The same
process is applied to parasites.

Extinction of a genotype occurs when its abundance falls below an arbitrary limit. In the
computer analysis reported below, this limit, for both host and parasite, is 10- 9 multiplied by the
carrying capacity of the host.

For immigration, in each time step a uniformly distributed random number between 0 and 1 is
chosen. If this number is less than the immigration rate a, then one of the N possible genotypes is
chosen randomly and, if its abundance is less than the truncation point for extinctions, then the

j - i

Figure 1. The success of parasite attack as a function of host and parasite genotype. The height, X is, is the
relative success of an attack, given the difference in genotypic values of parasite and host, j - i.
The parameter p determines the shape of the relationship, (I) is the value of j - i where X i./ = 0
and, thus, affects the slope. For p = 1 - (1) is the cost-benefit ratio for alleles affecting
resistance or virulence. See Equation 2 for details.
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abundance of that genotype is set to a new value: in the computer analysis reported below, the
new value is 0.1% of the host's carrying capacity. This process, which is applied independently to
the hosts and parasites in each time step, simulates the arrival of occasional immigrants in the
local population. Newly introduced genotypes enter into the local population at the same stage in
the life cycle as newly recruited progeny born in the local population.

In summary, the model has eight parameters: r, the host's maximum intrinsic rate of increase;

m, the maximum morbidity and mortality per infection; b, the parasite's maximum birth rate; s,

the parasite's death rate; (I), which affects the rate of change in the cost: benefit ratio of resistance
or virulence as a function of a metric character, p, which determines the shape of the relationship
between costs and benefits of disease traits (Fig. 1); the mutation rate; and a, the immigration
rate. In addition, the number of genotypes N determines the smoothness of the phenotypic

distribution.

Mathematical analysis

The dynamical system in Equation 1 has 2N dimensions. The equilibrium for the full system
typically has many negative abundances for genotypes, which makes a traditional analysis too
complicated to provide any useful clues to the actual behaviour of the system. In this section I
outline an approximate mathematical description of the dynamical system. This description
provides hypotheses about the dynamics that can be tested by computer simulation.

The main goal is to divide the parameter space into regions, each with particular qualitative
properties, and to specify the detailed behaviour of the system whenever possible. The computer
simulations serve to test questionable assumptions, to verify the detailed predictions and to fill in
the general aspects of the dynamics in regions where a full mathematical analysis is not possible.

The analysis follows these steps.

(1) The hosts are assumed to have a temporally stable distribution of genotypes that is at a
fixed point of Equation 1. Given this host distribution, the equilibrium distribution of parasite
genotypes is found. It turns out that the parasites will typically be monomorphic for the genotype
j* for any equilibrium distribution of host genotypes.

(2) The assumption is made that, when the system is stable, the hosts are genetically
monomorphic for the genotype i* = 0. Given this assumption and the result in step (1), the
equilibrium abundance is calculated for the only host genotype present, hi* and for the only

parasite genotype present, pp .
(3) The assumption in step (2) is analysed by finding the conditions under which a host

genotype i # 0 can invade when the system is at the point (hi*,

(4) Local stability of the system is analysed from the characteristic equation of the system
evaluated at the point (hi* , pi.), noting the conditions found in step (3).

(5) The conditions are established under which the hosts are at their carrying capacity, and
parasites are absent and unable to invade.

Step 1

The equation for the change in the abundance of the jth parasite genotype is given by Opp in
Equation 1. The strategy here is to find the value j* that maximizes Ap t If j* is unique then Apk<

0 for k # j because 41 = 0 at equilibrium. Analysing d(Api)14i = 0 yields

( 1	 'Y(OPU— i— OP-1 —	 = 0	 (3)
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where i ►(i) is the frequency of the ith genotype in the host population and it is assumed that a
negligible fraction of the probability mass of i is such that j* — i < (I). Next, define land c r ik as the
mean and kth central moment of the distribution of i values. Then, by Taylor series expansion,

Py(i)(j—i-0 = (j—F-0(1+y(y-1)C)

0 0
	 k-1

C
	

(o-iklk!)(j—F—(1))-k 	 (y—z)
k = 2
	 z=2

which, upon substitution into Equation 3, yields

(1—j)p  (1_  2(p-1)C  )
1 = 0

U-F---0 1+p(p-1)C

Under the assumption 12(p — 1)CI <<1, the approximate equilibrium value of j is

---> 1	 •13•+t-i-p�:1-Fp

j* =	 (4)+F-Fp)/(1 + p)	 0<(1)+1+p<l+p

0	 0� (1)+1+p

The approximation is closest when p—>1 and, hence, 2(p-1)C--->0 or when the variation in i is
small. Under this condition, j* is a unique maximum and the phenotypic distribution of the
parasites under equilibrium conditions should be very nearly monomorphic at j* . Stabilizing

selection on j occurs because a parasite's growth on a host is the product of its intrinsic birth rate,
b(1—j) and its ability to attack that host, X is. By contrast, a host's rate of increase, r(1—i) and its
resistance, 1 — Xis, act additively to determine host fitness.

Step 2

It is now assumed that the hosts are genetically monomorphic for i* = 0, which, by the results of
the previous section, implies that j* = (.4)+p)/(1+p). This reduces the system in Equation 1 to two
dimensions, so the equilibrium abundances for hosts and parasites are easily obtained. Defining
K = [((1)-1)/(1)1P and Z = [(1 + p)/p] P , the equilibrium value of hi* is

(4)

1 (s1b)Z(1+ p)/(1-0
hi*

(s1b)K

and the equilibrium value of pi* is

(r1m)(1—fii*)Z

Pi* =
(r1m)(1—fii*)K

p<•43.<1

p<.43•<1

(1)—P

(5)

(6)

Step 3

The approximate conditions are developed here under which a monomorphic host population, i*
= 0, resists invasion by genotypes k> 0 given that the system is temporally stable and at the fixed
point (hi* , pi* ). The approach is to find conditions under which Ahk < 0 for all k > 0.
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The main conclusions are as follows.

These conditions are sufficient but not necessary for p > 1; it appears that the system resists

(1) For p j 1, k cannot invade if (1 — hi* ) < (1 — (13.) p/ (1 + p) or — (13. > p.

(2) For p = 1, the conditions in (1) reduce to k cannot invade if b(1 — (13.2) < 8s or — (13. > p.

invasion by k more strongly as p increases.
(3) For p < 1, a sufficiently small k can invade; details were not obtained on how small k has to

be.
(4) For p < 1, k = —(I) invades if 1 > 1 —	 >	 > p > 0. This requires (1 + .43.)b( —OP

s(1 — OP . A stable region where k cannot invade is referred to as a 'cost-free zone' because the
least costly host phenotype is favoured; a stable region where some k can invade is referred to as

a 'costly zone'.

Some intuition about these conditions can be gained by analysing the marginal changes in costs
and benefits of resistance for small changes in i (Simms and Rausher, 1987). When p > 1, the
benefit of resistance increases at a decelerating rate with increasing cost (see above). There are
two cases to consider. First, the marginal changes in cost and benefit may be equal at some
intermediate optimum, which establishes stabilizing selection on the host resistance traits.
Second, the initial increase in benefit for small cost, i near zero, is less than the initial increase in
cost. This causes directional selection toward a cost-free phenotype.

When p < 1, the benefit of resistance increases at an accelerating rate with increasing cost. This
may establish disruptive selection on host phenotype, favouring a bimodal distribution of
relatively high-cost and low-cost phenotypes in the host population. Alternatively, selection may
favour a monomorphic host population with either high-cost or low-cost phenotypes.

Finally, benefits may increase linearly with costs, p = 1. If initial resistance costs increase more
rapidly than benefits when costs are low, then directional selection will favour cost-free host
phenotypes. If initial benefits increase more rapidly than costs when costs are low, then the
phenotypic distribution may spread across the cost spectrum in an unpredictable way because
marginal changes in cost and benefit are equal throughout the phenotypic range. This type of
neutral stability in a frequency-dependent model is similar to that found in sex ratio models
where there are linear reproductive gains per unit cost (Frank, 1990).

Step 4

The conditions for local stability of (hi* , A.), given that hosts are monomorphic at i* = 0 and

parasites are monomorphic at j* given in Equation 4, are obtained from the largest modulus of
the solutions in 8 to the characteristic equation

82 +	 = 0

The parameter space can be divided into stable and unstable zones based on this equation (Fig.
2). The results shown in Fig. 2 were obtained by numerical analysis of Equation 7. For each
parameter combination studied, Equation 7 was solved numerically using Mathematica (Wol-
fram, 1991). The parameter combination was classified as stable if the largest modulus was less
than one and unstable otherwise.

Step 5

When parasites are absent, hosts become monomorphic for the genotype i = 0, and their
abundance approaches the carrying capacity, ho = 1. A parasite genotype k can invade this

monomorphic host population if Apk > 0. The conditions for k to invade are straightforward and

require no special assumptions

(7)



54.6

7 . 4
-0-

'	 1 . 0

0.14

7 0

80

s(1+p) (l+p P	
4.1—<1+pb	 p

Frank

(8)
—(I))P>s

1 —(1)) b

where k = (4) + p)/(1 + p) if 1 — .4) < 1 + p and k = 0 if 1 — (I) 1 + p. These conditions are
equivalent to hi. < 1 (see Equation 5). The condition for invasion of parasites determines the
lower surface in Fig. 2.

Computer analysis

Methods and summary statistics

Design and analysis of simulations Each run of the computer model has particular values assigned
to all of the parameters described above. The model begins with a single empty patch containing
no hosts or parasites. The patch is colonized during the following 2000 generations by the
immigration process described above.

Each generation is one turn through the life cycle, which includes one application of Equation 1
to the abundances of hosts and parasites. Because Equation 1 can be interpreted in a variety of
ways, the mean life span of an individual can be longer than one turn through the life cycle but, in
this paper, I ignore issues that concern overlapping generations and age structure.

No statistics are collected during the initial 2000 generations of each run. In each of the
following 5000 generations, statistics are collected on the abundance of hosts and parasites, the
variability in phenotypic values and other measures described later. The run is completed at the
end of these 5000 generations and, for each statistic, there are 5000 values that form a temporal
distribution for that run. Each distribution is summarized by its 5th, 25th, 50th, 75th and 95th
percentiles — I sometimes refer to the 50th percentile as the median.

Each design is a set of runs with parameters defined by a factorial combination of values. For
example, if the parameters s, (1), b and r were each varied over three levels, then the design would
have 34 runs. The output for this design would consist of 34 values for each of the five percentile

1--.4)�1+p

1 0

Figure 2. Predicted spaces of stability and instability for the dynamical system in Equation 1 based on the
characteristic equation in Equation 7. Parameter combinations between the surfaces yield stable host and
parasite abundances, combinations above the upper surface yield fluctuating abundances and combinations
below the lower surface yield absence of parasites. The conditions for stability are independent of m and
depend weakly on r. Values shown are for r = 1; for r = 16 the upper surface rises slightly, but the difference
is barely perceptible between r = 1, shown here, and r = 16. The conditions for stability also depend weakly
on p over the range [0.5, 2.0]: higher values of p raise both surfaces by an amount that is barely perceptible
over this range. Values for p = 1 are shown. The grid shows values of s that vary over the range [0.1, 1.0] by
steps .of 0.1 and values of b that vary over the range [1.0, 7.0] by steps of 0.5.
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levels for each of the statistics collected. Parameter values for particular designs are given in the
legends of figures where the results are presented. For all designs the number of genotypes, N, is
set to 255, which provides a reasonable approximation to a continuous distribution of
phenotypes.

Some useful measures for genetic variability The cost of resistance for a particular host individual
is the value of its genotype, i. Thus variability in fitness caused by the cost of resistance is
approximately the amount of variability in (1 — i)/(1 - 1). Similarly, the cost of virulence for a
pathogen is j, and variability in fitness due to cost is approximately the variability in (1 — j)/(1 - 7).
These measures will be referred to as variability in standardized costs.

The next step is to measure genetic variability in the benefits of resistance and virulence. The
amount of susceptibility of host genotype i relative to the mean in the population is Ei(Xii)/Eii(Xii),
where Ej is the expectation over j and Eij is the expectation over i and j. A similar measure is
constructed for parasites. The amount of virulence to a mean host for the jth parasite genotype is
Ei(kii ), and the measure of the virulence of j relative to the mean given the present host and
parasite distributions is Ei(Xii )/Eii(X.4). Variability in this measure will be referred to as variability
in standardized benefits.

Characteristics of the system under ecological stability

Population abundances According to the analytic theory, the stability of population abundances
depends mainly on three parameters: parasite recruitment and death rates, b and s and the slope
of the cost—benefit ratio for resistance and virulence traits over the range of phenotypes, which
depends on 1 — (1). Three regions of the parameter space are shown in Fig. 2. Below the lower
surface parasites are typically absent and hosts are at their carrying capacity. Between the
surfaces population abundances are typically stable with both hosts and parasites present. Above
the upper surface population abundances of hosts and parasites typically fluctuate over time.

The simulation model confirms the analytical theory's division of the parameter space into
three regions with differing stability properties (Fig. 3). The theory given in step 3 of the
Mathematical analysis subdivides the stable region between the surfaces into two zones. In the
cost-free zone the hosts are predicted to be monomorphic for the minimum cost phenotype, i* =
0, and the predicted abundances for hosts and parasites are given in Equations 5 and 6. In the
costly zone the distribution of host genotypes cannot be predicted exactly and no clear
predictions for population abundances were derived. The transition between the cost-free and
costly zones is expected to occur such that, when p = 1, cost-free monomorphism holds when
b (1 — (1)2)	 8s.

For each run with parameters between the surfaces in Fig. 3, I calculated the observed median
abundances minus the predicted values and divided this difference by the predicted value
(standardized difference). For 425 parameter combinations in the cost-free zone, where the
predictions are expected to hold, the means and standard deviations of the standardized
differences were 0.01 ± 0.02 for hosts and —0.03 ± 0.04 for parasites. (These combinations
exclude points at which b = 1 and s = 0.8 (see caption of Fig. 3). For 93 parameter combinations
in the costly zone, where the predictions are not expected to hold, the means and standard
deviations of the standardized differences were 0.85 ± 0.79 for hosts and —0.32 ± 0.17 for
parasites.

Genotypic distributions The previous section described two regions of the parameter space
between the surfaces shown in Fig. 3. The analytic theory predicts that, in the cost free zone, very
little genetic variability will be maintained for the fitness costs and benefits of resistance and
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Figure 3. Observed spaces of stability and instability from the computer-simulation model. The interpre-
tation of the figure is the same as Fig. 2, with the following changes. The parameters of the simulation were:
m = 0.2, p = 1, r = 2, p = 10-4 and a = 0.01. A slightly smaller range of values for s and b is shown here
compared with Fig. 2: here the grid shows values of s that vary over the range [0.2, 0.8] by steps of 0.2 and
values of b that vary over the range [1.0, 6.0] by steps of 1.0. Zones of stability, instability and parasite
extinction were determined by varying 1 — 4 over the range [0.1, 10.9] by steps of 0.1 for each (b, s) pair. A
point was considered stable if, in a simulation run, for both hosts and parasites (1) the median abundances were
greater than 0.01, (2) the differences between the 75th and 25th percentiles in abundance were less than d,
where d is the greater of 0.1 and 0.1 multiplied by the median abundance and (3) the differences between the
95th and 5th percentiles in abundance were less than e, where e is the greater of 0.2 and 0.2 multiplied by the
median abundance. The surfaces are the highest and lowest values of 1 — 4 that are stable. Non-stable points by
these criteria occur between the surfaces. For the 521 internal points tested, 114 were not stable, but 40 of these
occurred when b = 1 and s = 0.8. Smaller values of e and d (for example, d = 0.02 and e = 0.05) cause only a
barely noticeable difference in the location of the surfaces, but have more internal exceptions.

virulence traits. The mean cost for hosts is predicted to be near zero and for parasites to follow
Equation 4. In the costly zone, the parasites are still predicted to have low variability and to
follow Equation 4, approximately, but the mean and variability in host resistance traits could not
be predicted for p = 1.

I compiled information for each run of the parameter combinations between the surfaces of
Fig. 3. I summarized three statistics: the mean cost, measured by the mean value of i for hosts and
the mean value of j for parasites, the standard deviations in the standardized costs and the
standard deviations in the standardized benefits (see above). Recall that each statistic is
calculated in each generation of a run and then the 5th, 25th, 50th, 75th and 95th percentiles of
these statistics are calculated over generations for each run. To summarize the information, the
percentiles over runs for these statistics can be examined, for example, the median or 95th
percentile over runs for the 5th, 50th and 95th percentiles within each run.

In the cost-free zone, the hosts' mean cost of resistance is near zero and there is little variation
in the population. The medians over runs of the 50th and 95th percentiles for the mean cost of
resistance in hosts are 0 and 0.02, respectively; the 95th percentiles over runs of the 50th and 95th
percentiles are 0.03 and 0.12, respectively. Thus the cost is typically close to 0 as predicted. The
standard deviations of standardized costs and benefits for hosts are also very close to 0 as shown
by an upper bound: the 95th percentile over runs for the 95th percentile within runs is 0.01 for
both measures.

The mean and variance in fitness costs for hosts in the costly zone can be summarized by 5th,
25th, 50th, 75th and 95th percentiles over runs for the 50th percentile in the mean costs and the
standard deviation of standardized costs and benefits within each run. For the mean costs these
percentiles are 0.02, 0.09, 0.19, 0.29 and 0.44, for the standard deviations of the standardized
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costs these percentiles are 0.01, 0.04, 0.11, 0.20 and 0.28; and for the standard deviations of the
standardized benefits these percentiles are 0.02, 0.17, 0.26, 0.33 and 0.52. There is a trend of
increasing mean and standard deviation in costs and benefits with increasing distance from the
transition between the cost-free and costly zones (Fig. 4).

The mean cost for parasites follows the predictions in Equation 4 fairly closely. To measure the
fit I subtracted the predicted value from the observed median for each run, then calculated the
mean plus or minus the standard deviation of this difference over all combinations in the cost-free
and costly zones, which is 0.02 ± 0.03.

The variance in fitness costs and benefits for parasites is low in the cost-free zone. The 50th and
95th percentiles over runs of the 95th percentile in each run for the standard deviation of the
standardized costs are 0.01 and 0.05, respectively, with values 10-20% smaller for standard
deviations in standardized benefits.

The genetic variability of the parasites is typically low even in the costly zone, although in a few
cases there is moderate variability. For standard deviations in standardized costs, the 50th and
95th percentiles over runs for the 50th percentile in each run are 0.02 and 0.13, respectively, and
for the 95th percentile in each run are 0.06 and 0.27, respectively. Values are 10-20% smaller for
standard deviations in standardized benefits.

The distribution of host genotypes in the costly zone remains almost constant over generations
within a run. However, the host genotypes stabilize at different distributions among runs that
have the same parameters but different seeds for the random number generator (see step 3 of
Mathematical analysis). To illustrate this I chose four parameter combinations in the costly zone,
ran three replicates of each combination and plotted the results in Fig. 4. This figure also shows
that the distribution of host genotypes often has a strongly bimodal shape and that the mean cost

p=1

	

s=0A	 s=02

b = 3	 b=5
	

b = 3	 b = 5

Percentile

Figure 4. The distribution of host genotypes in the costly, stable zone of the parameter space with a linear
cost—benefit relationship. The rows of plots are replicates for particular parameter combinations in each
column. The parameters are the same as listed in Fig. 3, with 1 — (13. = 0. The distance from the transition
between cost-free and costly zones increases from left to right. The y axis of each plot shows the cost of

resistance associated with a genotype, ranging from 0 to 0.8. The x axis has the following interpretation: In
each generation of a run, the 5th, 25th, 50th, 75th and 95th percentiles are calculated for the distribution of
the cost of resistance within the host population. Each percentile class is recorded for each of 5000
consecutive generations in a run. The median over time for each class is plotted; the left point in each panel
is the median of the 5th percentile and the right point is the median of the 95th percentile. The distributions
are stable over time within a run.
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of resistance increases with increasing distance from the transition between the cost-free and
costly zones. The variability in outcome among different replicates with the same parameters is
probably caused by neutral stability under a linear cost—benefit relationship, p = 1 (see step 3 of
Mathematical analysis).

Shape of the cost-benefit relationship The Mathematical analysis suggested that the shape of the
cost—benefit relationship, determined by p, would influence the mean and the variation in
resistance costs and benefits for the hosts. In particular, decelerating resistance benefits per unit
cost, p > 1, are expected to cause either directional selection toward a cost-free phenotype if the
parameters are in the cost-free zone or stabilizing selection toward an intermediate optimum in
the costly zone. Accelerating resistance benefits per unit cost, p < 1, are expected to cause
disruptive selection on the hosts. Finally, linear benefits per unit cost, p = 1, are expected to
cause directional selection for cost-free phenotypes for parameters in the cost-free zone or a
variety of host distributions reflecting neutral stability for parameters in the costly zone.

The results in the previous section support the predictions of the Mathematical analysis for p = 1.
In this section the predictions for non-linear returns are compared with simulation results. The
simulation design is the same as in Fig. 3 except that p is either 0.5 or 2.0.

The surfaces defining the stable zone have the same shape as in Fig. 3 for p = 0.5, 2. Both
surfaces raise slightly on the scale in Fig. 3 as p increases over the values 0.5, 1 and 2, as predicted
by the analytic theory in steps 4 and 5 of the Mathematical analysis.

Within the stable zone the equilibrium abundances and genotypic distributions depend on
whether a parameter combination falls into the cost-free or costly region as discussed above. In
this design the transition between cost-free and costly zones that gives a good fit to the
simulations is slightly different from that predicted by Step 3 of the Mathematical analysis. For p
= 0.5, the transition is described well by the condition for cost-free monomorphism of 1 — hi. <
(1 — (I))p/(1 + p), where hi* is given in Equation 5. For p = 2, the transition is described well by
the condition for cost-free monomorphism of b (1 — (1)2) < 8s. The main conclusions for p = 1
hold for the larger and smaller values of p in this design. The only significant changes in results
with changing values of p occur for the distribution of host genotypes in the costly zone and the
distribution of parasite genotypes when the hosts respond to disruptive selection.

The simulations show the expected trend toward reduction in the host population's genetic
variance for the transition from disruptive to neutral to stabilizing selection on host phenotype
when the parameter combination is in the costly zone. This can be illustrated by examining the
50th percentile within runs for the standard deviations in standardized costs. For p values of 0.5, 1
and 2, the medians over parameter combinations were 0.19, 0.10 and 0.01, respectively. The
small variance for p = 2 is consistent with the prediction of stabilizing selection for p > 1. The
neutral stability of the genotypic distribution and the intermediate variance for p = 1 also follow
the predicted trend (Fig. 4). Finally, the results for p = 0.5 show the expected pattern for the host
distribution of larger variance, bimodal shape and strong stability compared with p = 1 (compare
Figs 4 and 5).

The mean cost for hosts can be high and the genetic variance low when there is stabilizing
selection toward an intermediate optimum. For example, the 50th and 95th percentiles over runs
of the median cost within runs are 0.15 and 0.41, respectively, for parameter combinations in the
costly zone and p = 2.

The genetic variability in parasites is low except when there is disruptive selection on hosts, p < 1
(Fig. 5). This can be illustrated by examining the 50th percentile within runs for the standard
deviations in standardized costs for the parasite population. For p values of 0.5, 1 and 2, the
medians over parameter combinations were 0.15, 0.02 and 0.01, respectively.
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Role of other parameters in the stable zone. The effects of varying r and m were studied next. The
simulation design was the same as in Fig. 3 except that m was either 0.1 or 0.4 and r was varied
between 1 and 4 in a pattern orthogonal to m.

The surfaces defining the stable zone have the same shape as in Fig. 3. The parameter m has no
detectable effect on the location of the surfaces, low r (r = 1) has approximately the same
surfaces of stability as shown in Fig. 3, and high r (r = 4) has a similar upper surface but has a
significantly raised lower surface, reducing the zone of stability in the volume between the
surfaces.

Within the stable zone the equilibrium abundances and genotypic distributions depend on
whether a parameter combination falls into the cost-free or costly region as discussed above. The
computer simulations with varying r and m support the transition between the cost-free and costly
zones and the qualitative patterns of abundance and polymorphism predicted by the Mathemati-
cal analysis. For parameter combinations in the costly zone, the mean resistance cost and the
amount of genetic variability for the hosts increase with higher r values (medians over runs
approximately 25-400 % greater), and are not affected by m. Parasite variability is not
significantly affected by either r or m.

Dynamics under ecological instability

The abundances of hosts and parasites fluctuate over time when the parameters are above the
upper surface of Fig. 2. A qualitative analysis can be made by examining the system's behaviour
as parameter combinations move steadily upward from the upper surface. Two parameter sets
were chosen based on Fig. 3, on a search through the parameter space in the unstable zone and
on the analysis outlined above. In each set the dynamics are summarized for parameters that start
just above the surface of Fig. 3 and then move steadily upwards by increasing 1 — 4) and holding
the other parameters constant.

Linear cost-benefit relationship. In the first case there is a linear relationship between fitness costs
and benefits, p = 1. Figure 6 shows the dynamics when the system is just above the surface in Fig.
3 and is in the transition between ecological stability and instability. The time series and phase
plane for host and parasite abundances show that the system has nearly steady population sizes
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Figure 5. The distribution of host and parasite genotypes in the costly, stable zone of the parameter space
with disruptive selection (p < 1) on the hosts. This plot is similar to Fig. 4 except that p = 0.5, the top row is
for the cost of resistance in the host and the bottom row is for the cost of virulence or aggressiveness in the
parasite. The patterns are consistent across replicates for the same parameters, so only one replicate for
each combination is shown.
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for over 2000 generations and then spirals out to three successive patterns of almost steady
cyclical behaviour. This is the typical bifurcation that characterizes the transition from a locally
stable equilibrium point to locally unstable equilibrium in non-linear systems (Guckenheimer and
Holmes, 1983). For these parameters the mean genotypic values are almost steady over time in
spite of constant mutations of small effect and the occasional introduction of widely varying
genotypes. There is almost no genetic variability (standard deviation near 0).

As the parameters move steadily upwards from the surface of Fig. 3, the dynamics of the
population abundances are characterized by stable limit cycles that increase in radius as 1 -
increases. The mean genotypic values are steady over time and the standard deviations are near
0.

As the orbits increase in radius the trajectories approach the boundary where the abundance of
hosts is near 0 on each turn through the phase plane (the direction of the orbits is counter-
clockwise). In the simulations the hosts are assumed to be extinct when their abundance falls
below an arbitrary truncation point. For these runs the truncation point was 10- 9 multiplied by
the host's carrying capacity in the absence of parasites. Figure 7 shows the dynamics where the

9,    

h-ab
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Figure 6. Temporal dynamics near the transition between ecological stability and instability. The upper left
panel is the phase plane for host (h-ab) and parasite (p-ab) population abundances. The upper right panel is
the phase plane for host (h-av) and parasite (p-av) mean genotypic values. The six plots below are time
series over the 5000 generations of the simulation run for the four measures given above plus the
standardized standard deviations in fitness costs for hosts (h-sd) and parasites (p-sd). The standard
deviations provide a measure of genetic variability. The scale in each plot is between zero and one, except
for p-ab which ranges between zero and the maximum value observed over the 5000 generations, p-max,
which was 17.9 for this run. The parameters common to this and figs 7-10 are m = 0.2, r = 2, b = 5, s = 0.6,

a = 0.01 and p = 10-4 . For this run p = 1 and 1 - (13. = 1.4.
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trajectories are almost stable limit cycles for hundreds of generations but then the hosts become
extinct and the system may oscillate through short periods of extinction followed by recoloniza-
tions and then extinction once again.

The mean genotypic values vary widely over time in this region of the parameter space. Each
new colonization of hosts begins with a genotypic value taken from a uniform distribution over
[0,1]. The mean genotypic value then evolves by small mutations and by the arrival of immigrants
with widely varying genotypes. A similar process applies to the colonization and evolution of
parasite genotypes.

The widely varying genotypic values over time within a patch may allow a metapopulation to
maintain a great deal of genetic variability even though each patch typically has low genetic
diversity. Under more realistic migration and macromutation schemes, however, the amount of
genetic variability over time and space may be lower than shown here.

Finally, as the parameter combination moves farther above the surface of Fig. 3, the dynamics
are characterized by repeated colonization—extinction cycles (Fig. 8). The dynamics are
controlled mainly by the timing and the genotypic distribution of the colonists.

Non-linear cost-benefit relationship. When p = 2 (see Fig. 1) the dynamics follow the qualitative
patterns described above for a linear cost—benefit relationship. When p = 0.5, considerably more
genetic variability is maintained when the parameters are near the transition between ecological
stability and instability. Figure 9 shows the dynamics with 1 — el) just above the stability—
instability transition. The time series for abundances show the system moving between periods of

iFn
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Figure 7. Temporal dynamics for p = 1, 1 — 43. = 2.5 and p-max = 28.8. Other aspects of the figure are
explained in the legend of Fig. 6.
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cycling and almost steady behaviour in population sizes. The hosts' mean genotypic value
fluctuates rapidly over a small range when the populations sizes are cycling. Perhaps the most
interesting result is that the hosts maintain a significant amount of genetic variability, which is
consistent with the results for p = 0.5 in certain parts of the stable zone (see above).

With a small increase in 1 - .4) into the unstable zone the hosts no longer maintain much genetic
polymorphism within a patch (Fig. 10). As 1 - (I) continues to increase the stable cycles break up
into more frequent colonization-extinction oscillations similar to Fig. 8, where the mean
genotypic values vary over time.

General comments about dynamics in the unstable zone. I list a few general observations in this
section.

(1) When a patch is empty any host genotype (any i) can invade and increase to the carrying
capacity fairly quickly.

(2) When the host is at its carrying capacity a parasite can invade if —s + b (1 - j)Xii > 0, which
implies that b (1 - j) > s is a necessary but not sufficient condition. This condition is easier to
satisfy as Xij increases and, hence, as 1 - (I) increases and p decreases.

(3) Stable cycles are more likely as the equilibrium point for host abundance, 	 increases,
since low values of hi., are more likely to move the orbits of a cycle closer to the h = 0 boundary.

(4) Almost stable cycles formed after each new colonization event will often have a different
orbit. This occurs because each new colonization changes the dominant host or parasite

-1_
	 -
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Figure 8. Temporal dynamics for p = 1, 1 — .4) = 6 and p-max = 35.1. Other aspects of the figure are
explained in the legend of Fig. 6.
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(7,

Figure 9. Temporal dynamics for p = 0.5, 1 — (I) = 1.1 and p-max = 18.1. Other aspects of the figure are
explained in the legend of Fig. 6.

genotype, which in turn changes a key parameter of what is essentially a two-dimensional host—
parasite system. Changes in key parameters can also occur by a slow response to selection acting
on the quantitative genetic variability caused by mutations of small effect, as appears to happen
in Figs 6 and 10.

Discussion

Summary of main results

Ecological stability. The stability of population sizes in this model depends on the parasites' birth
and death rates (b and s). Parasites with explosive growth are more likely to cause population
cycles or extinction of the hosts. Stability also depends on the slope of the benefit—cost ratio for
the host resistance trait or the parasite virulence trait. The benefit—cost ratio is inversely related
to the parameter 1 — (I) (Equation 2, Fig. 1).

The effects of the parasite vital rates and the benefit—cost ratio are shown in Figs 2 and 3.
Below the lower surface parasites are absent from the system. Between the surfaces the sizes of
the host and parasite populations are stable over time. As the parameters move just above the
upper surface, with 1 — .1) increasing, the population sizes cycle over time (Figs 6 and 9). These
cycles expand in amplitude as 1 — 4 continues to increase until limit cycles are replaced by
repeated host extinctions, caused by explosive growth of the parasites and subsequent recoloniz-
ation of the empty patch by immigrant hosts (Fig. 8).

9,
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Figure 10. Temporal dynamics for p = 0.5, 1 — = 1.3 and p-max = 24.2. Other aspects of the figure are
explained in the legend of Fig. 6.

Genetic variability under ecological stability Genetic variability of the hosts under ecological
stability depends primarily on the interaction between two factors. First, whether any variability
occurs is typically determined by whether a costly resistance trait can invade a host population
that is fixed for the cost-free phenotype. Detailed conditions were provided for when such
invasion occurs (see Mathematical analysis); the intuitive meaning of these details is simply that
the initia : benefit of increased resistance depends on the abundance of parasites, the distribution
of parasite genotypes and the rate at which resistance benefits increase per unit cost. Parameter
combinations can be classified according to whether they cause stability of cost-free host
phenotypes or allow invasion of costly resistance.

The second, related factor that determines genetic variability of the host is the shape of the
cost–benefit relationship for resistance traits. If benefits increase at a decelerating rate and an
initial costly resistance trait can invade, then stabilizing selection on the host population favours
an intermediate-cost phenotype with little genetic variability. If benefits increase at an
accelerating rate and an initial costly resistance trait can invade, then disruptive selection on the
host population causes a bimodal distribution of host phenotypes and the maintenance of
considerable genetic variability (Fig. 5). With accelerating benefits the quantitative trait acts
approximately as a threshold character with essentially qualitative effects on resistance. The
polymorphism observed in this case is analogous to the polymorphism in qualitative models of
resistance (Leonard and Czochor, 1980; Frank, 1992, 1993).

Genetic variability in the parasites depends on the interaction between two factors. First, there



Coevolutionary genetics	 91

is an inherent tendency toward stabilizing selection on parasite virulence or aggressiveness
characters. This occurs because a parasite's reproductive rate is the product of its intrinsic
reproductive capacity, which is reduced by the cost of virulence, and its ability to attack hosts,
which increases with the costliness of its virulence trait. Roughly speaking, if x is the cost of
virulence which ranges between 0 and 1, then intrinsic reproductive capacity changes according to
(1 — x) and attack success changes according to x, so overall reproduction depends on x(1 — x),
which is a stabilizing selection function. An accelerating gain in virulence per unit cost would
establish an opposing disruptive tendency but, in general, the net effect tends toward an overall
stabilizing selection function that favours an intermediate optimum with little genetic variation.

The second factor that affects parasite variability is the distribution of host genotypes. When
the hosts experience disruptive selection and have a bimodal phenotypic distribution, the
parasites in turn show a tendency toward bimodality (Fig. 5).

Genetic variability under ecological instability. The main conclusions from the analysis are as follows.

(1) Parasite phenotypes typically evolve to an intermediate optimum when local extinctions are
rare (Equation 4, Figs 6 and 9). When the system is ecologically unstable and the mean resistance
value of the hosts fluctuates (see below), the parasite optimum may fluctuate rapidly with small
amplitude (Fig. 9) or slowly over a wide range (Fig. 10).

(2) Host resistance typically evolves to a level of minimum cost and minimum benefit whenever
local extinctions are rare and resistance benefits increase in a linear or decelerating (stabilizing)
way per unit cost (Fig. 6, step 3 of Mathematical analysis). Either intermediate cost and low
variability or a bimodal distribution of host phenotypes can evolve for some parameter
combinations, depending on the slope of the cost—benefit relationship.

(3) Intermediate levels of host cost and benefit and considerable genetic variability for
resistance evolve when selection on host phenotypes is disruptive and local extinctions of
populations are rare (Fig. 9). Some genetic variability among parasites is often maintained under
these conditions (Fig. 9).

(4) Frequent extinction—recolonization cycles can lead to large differences in genetic compo-
sition over time but limited variability at any particular time (Figs 7 and 8). This occurs because
each new colonization cycle may start with any genotype over a wide range of phenotypic values.
Following each colonization, mean phenotypic values continue to change over time until the next
extinction. In a region where many local populations have colonization—extinction dynamics, the
genetic variability over space can be quite high (Frank, 1991a). In this case the outcome depends
on the details of the mutation and migration processes.

Relation to past theory
No previous work has analysed the coevolutionary responses of both hosts and parasites with
continuously varying traits (see reviews by Gould, 1983; Mitter and Futuyma, 1983; Simms and
Fritz, 1990). The main line of thinking in past theory has been to assume a fixed parasite
population and then to consider possible evolutionary responses by the hosts. For example,
several authors have considered a verbal model that assumes the benefits of resistance increase at
a decelerating rate with increasing costs. They concluded that stabilizing selection on the host
resistance trait would lead to an intermediate optimum with the potential for genetic variability.
This theory was summarized by Simms and Rausher (1987). Simms and Fritz (1990) noted,
however, that stabilizing selection of this type would probably not maintain much genetic
variability, a conclusion supported by the results derived here.

The model presented here is an extension of the typical Lotka—Volterra equations for an
interaction between one host species and one parasite species (e.g. May, 1974). Specifically,
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instead of a pair of interacting species, there are N host genotypes and N parasite genotypes. The
dynamics of Lotka—Volterra models with high dimensionality have been examined in only a few
cases (Hamilton, 1986; Frank, 1991a,b, 1993) and in those cases the different host and parasite
genotypes had qualitatively different traits rather than the almost continuous variation analysed
here. The models with qualitatively different phenotypes often support more genetic variation
than in the quantitative model because of the inherently disruptive (discontinuous) nature of
qualitative resistance and virulence.

The present model can also be related to known theory by noting that, as the increase in
benefits per unit cost approaches 0, the 2N dimensional system reduces to the standard two-
dimensional host—parasite system. This can be seen by examining Equations 1 and 2: host and
parasite success are independent of genotype when 1 — (I) approaches infinity. The value of 1 — (I)
is approximately inversely proportional to benefits of resistance or virulence traits per unit cost.
The stabilizing effects of quantitative genetic variability on ecological dynamics can be seen in
Fig. 2 by the increase in the area of stability as 1 — (I) decreases from infinity to intermediate
values at which resistance and virulence traits can be effective.

Observations and future directions

The model presented here is the first step toward a realistic theory. The fact that the model
sometimes supported little genetic variability whereas natural systems appear to maintain
variability (Gould, 1983; Berenbaum and Zangerl, 1992; Kennedy and Barbour, 1992) suggests
that theoretical extensions and empirical detail are needed. Comparisons with the few available
data suggest how the theory may be extended.

Costs of resistance and virulence are assumed to be a central component of host—parasite
coevolution in theories with quantitative genetics (Simms and Fritz, 1990) and qualitative
genetics (Leonard and Czochor, 1980; Frank, 1992). The reason for this assumption is clear:
without an opposing selection pressure, all genetic variation for resistance and virulence would be
depleted apart from the transient fixations of new, advantageous alleles (Leonard and Czochor,
1980; Rausher and Simms, 1989). Costs are observed in some empirical studies but not in others
(Leonard and Czochor, 1980; Simms and Rausher, 1989; Simms and Fritz, 1990; Frank 1992;
Marquis and Alexander, 1992).

It is useful to distinguish three types of cost. Structural and metabolic costs are the energy
required to make and maintain defensive structures or chemicals. Berenbaum et al. (1986)
showed that resistance of wild parsnips to the parsnip webworm depends on an array of defensive
chemicals. In the absence of herbivory, those plants with relatively high resistance had relatively
low fecundity. Variation in the levels of defensive compounds was highly heritable and polygenic.

Strong reciprocal evolution of plant and herbivore is likely in Berenbaum et al.'s (1986) system
because wild parsnip is the primary host for the parsnip webworm and the parsnip webworm is the
primary herbivore of wild parsnip. The costs of resistance, the quantitative inheritance and the two-
species interaction match the assumptions of the model presented here. However, one class of
defensive chemical (furanocoumarins) was advantageous when in seeds but disadvantageous when in
leaves. Berenbaum et al. (1986) suggest that furanocoumarins have a defensive effect in seeds but act
as an attractant for herbivores when in the leaves. This work suggests that the trade-off between
defence and attractiveness is an interesting direction for future empirical and theoretical work.

Life history costs arise when fecundity, timing of reproduction or other fitness components are
correlated with success in the host—parasite battle. For example, the dioecious, perennial herb
Silene alba is attacked by the anther-smut fungus Ustilago violacea, which causes both male and
female plants to produce anthers that carry fungal spores instead of pollen (Alexander, 1990).
The spores are transmitted mainly by insect pollinators; the system thus has the epidemiological
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characteristics typical of venereal diseases. Male plants with relatively many flowers have a
greater incidence of disease than those plants with fewer flowers, perhaps because larger floral
displays attract more pollinators and, thus, increase the likelihood of infection (Alexander and
Antonovics, 1988; Alexander, 1989). If flower number has a genetic component, then there is a
positive genetic correlation between potential fecundity and loss of fitness by disease: in effect,
genes for low fecundity enhance resistance.

Berenbaum et al. (1986) found that, in addition to defensive chemicals, the flowering date of
wild parsnips is correlated with damage by parsnip webworms. Those plants flowering early had
less damage and many more seeds apparently because the number of herbivores increases as the
season progresses. Flowering date is a heritable trait and there are phenotypic correlations
among flowering date and the chemical components of resistance. There is not enough
information to determine all the costs and benefits associated with flowering date. One possibility
is that flowering early allows escape from herbivores in time but suffers greater risk of an early
killing frost.

Biotic costs occur when a trait increases success against one race or species but reduces success
against another. The idea that there are fitness trade-offs in multispecies interactions has been
stressed repeatedly (Gould, 1983; Mitter and Futuyma, 1983; Marquis and Alexander, 1992), for
example, when a parasite's fitness on two different hosts has a negative genetic correlation (Via,
1991; Fry, 1992). No theoretical studies have analysed the joint dynamics of population
demography and genetics for these types of fitness trade-offs in quantitative traits.

The number of traits involved in an interaction may, in addition to costs, play an important role
in maintaining genetic diversity. Each host trait may, for example, vary continuously but have a
qualitative effect such that a certain threshold of resistance at any point of defence is sufficient to
repel an attack. Multilocus qualitative resistance is known to maintain extensive polymorphism
both in theory (Leonard and Czochor, 1980; Frank, 1993) and in the wild (Burdon, 1987).

The three types of fitness cost — metabolic, life history, and biotic — and the extension to
multitrait interactions define a simple classification for the next phase of theoretical and empirical
work. The model presented here provides a starting point for identifying the common and unique
features among the dynamical properties of more realistic systems.
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