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SUMMARY

Detectable polymorphism of host resistance and parasite host range is a poor guide to the specificity of
a host—parasite interaction. I analyse a simple haploid model to support this claim. The model assumes
that the true specificity is matching-allele', in which each of n host alleles causes resistance to only one
of n different parasite alleles. The detectable polymorphism in samples from a matching-allele system
would lead one to infer the gene-for-gene specificity commonly observed in plant—pathogen interactions.
Gene-for-gene and matching-allele specificity require very different fitness assumptions to explain
observed patterns of polymorphism. Yet models for each type of specificity can easily be constructed that
fit the available data. In addition, the currently favoured elicitor—receptor' model for the biochemistry
of plant—pathogen recognition agrees equally well with gene-for-gene or matching-allele specificity. I do
not claim that the simple matching-allele specificity is the correct model for plant—pathogen genetics. My
point is that one cannot reconstruct both specificity and population history from patterns of resistance
among host—parasite pairs in a sample. I draw two conclusions : first, inferred specificity and
polymorphism are only useful when compared with a family of theoretical models ; and secondly,
biochemical models of specificity must be tested by their population genetic consequences.

1. INTRODUCTION

The goal of population genetic analysis is to explain the
forces that influence polymorphism. There is, however,
a serious problem in the genetic analysis of host—
parasite systems because the definitions of genotypes
are confounded with the polymorphism that one seeks
to explain. For example, a group of hosts may be
clustered as a single genotype because each host
responds in the same way to all available parasites. A
new sample of parasites may separate this cluster of
hosts into different response groups. Thus any inference
about host—parasite specificity depends on detectable
polymorphism.

My claim is that, by using polymorphism to define
the problem, one loses the ability to explain poly-
morphism. To break the loop one needs an extrinsic
method to define specificity, such as the biochemistry
of host—parasite recognition.

To illustrate the difficulty with coevolutionary
systems, here are the steps that have been used to study
polymorphism in cases such as plant—pathogen genetics
(Burdon 1987). First, a model for the specificity of
host—parasite genetics is developed. This model is
based on the phenotypic interactions between samples
of hosts and parasites and the mendelian segregation
ratios in crosses. Secondly, the model of specificity is
used to infer the frequency of host resistance and
parasite host-range genotypes. Thirdly, population
genetic models, based on the inferred genetic speci-
ficity, are developed to explain the observed genotypic
frequencies.

I analyse the gene-for-gene interaction between
plants and pathogens (Flor 1956, 1971) to show that
this procedure may be misleading. I show that both the
inferred gene-for-gene specificity and the associated
explanation for the population frequencies of resistance
and susceptibility are consistent with a different model
of specificity. My alternative model for plant-pathogen
specificity, which I call the matching-allele' model, is
based on the currently favoured elicitor—receptor
model for the biochemistry of plant—pathogen rec-
ognition (Gabriel & Rolfe 1990; Keen & Dawson
1992). My analysis shows that different assumptions
about the true specificity of a host—parasite system may
yield similar inferences about specificity and detectable
polymorphism.

2. SPECIFICITY

I analyse a model with a single haploid locus. Each
of the n host alleles causes recognition and resistance to
only one of the n parasite alleles. Thus each host is
resistant to 1 In of the parasite genotypes, and each
parasite can attack (n-1)In of the host genotypes
(Frank 1991). I call this the `matching-allele' model.

The patterns of resistance and virulence in the
simple 2 x 2 case of the matching-allele model are
distinct from the classical gene-for-gene interaction of
plants and pathogens. Figure la shows the standard
gene-for-gene model (Flor 1956, 1971; Burdon 1987).
The host has two phenotypes, resistant (R) and
susceptible (S). The pathogen (parasite) has two
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Figure 1. Resistance ( — ) and susceptibility ( + ) between two
host alleles and two parasite alleles. (a) Gene-for-gene
specificity. (b) Matching-allele specificity.

I show that the matching-allele model leads to
inferred patterns of resistance and virulence that
appear much more like the classical gene-for-gene
specificity (figure 1 a) than the matching-allele speci-
ficity (figures 1 b and 2). I use the word ' inferred ' to
mean the specificity of the host—parasite interaction
that appears to fit the data given the detectable
polymorphism in the system.

3. DYNAMICS OF THE MATCHING-ALLELE
MODEL
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Figure 2. Resistance ( — ) and susceptibility ( + ) in a
matching-allele model with four alleles.

phenotypes, avirulent (A) and virulent (V) . Plant
pathologists use the term ' virulence' for host range. I
follow their convention.

In the gene-for-gene model, a host resists attack only
when the host—parasite pair has an R: A match. Person
& Mayo (1974) refer to this match as a ' stop-signal '.
Recent biochemical models suggest that the avirulence
allele (A) produces a gene product (elicitor) that can
be recognized only by specific host receptors (R). This
specific elicitor—receptor recognition induces a non-
specific set of host defence mechanisms (Gabriele &
Rolfe 1990).

Figure lb shows the susceptibility and resistance
patterns for the matching-allele model with n = 2. In
this model each parasite genotype functions as either
an avirulence allele or a virulence allele depending
on the host genotype. By contrast, the gene-for-gene
system always has a universal virulence allele that can
attack all host genotypes. Similarly, each host genotype
in the matching-allele model functions as either a
resistance or a susceptibility allele depending on the
parasite genotype. The classical gene-for-gene system
always has a universal susceptible genotype that can be
attacked by all parasite genotypes.

I chose to study matching-allele specificity because it
is consistent with the currently favoured elicitor—
receptor model for the biochemical basis of recognition
(Gabriel & Rolfe 1990; Keen & Dawson 1992). In the
simple version of the matching-allele model, there is a
one-to-one correspondence between elicitors and
receptors. In the gene-for-gene model the universal
virulence allele does not produce an elicitor that can be
recognized by any of the available host receptors.
Similarly, the universal resistance allele does not
produce a receptor that can recognize any of the
available pathogen elicitors (see Discussion).

I use a system of Lotka—Volterra equations for the
dynamics of the matching-allele model (see, for
example, May 1974). These equations describe the
dynamics of genotype abundances rather than just the
relative genotype frequencies. Thus the model tracks
epidemic fluctuations in population sizes and disease
intensity in addition to changes in genotype frequency.
The model is :

Ahi = hi[r—HIK—m(P—pi)]At,

Api = pi[—s+b(H—hi)]At.

The values of hi and pi are the abundances of hosts of
genotype i and parasites of genotype j. The total
abundance of hosts is H = Ekn =i hk , and the total
abundance of parasites is P= Ekn= 1Pk•

The term r is the host's intrinsic rate of increase ;
H/K is the strength of density-dependent competition
among hosts with carrying capacity of K; m is the
morbidity and mortality per parasite attack ; s is the
parasite death rate ; and b is the parasite's intrinsic
birth rate per host—parasite contact. The At term is the
size of the time step over which the interactions occur.
For example, At may be the length of one host
generation or one season in a discrete-time model.
When birth, death and disease cause continuous
change of the abundances of hosts and parasites,
At --* 0.

The system in equation (1) is easier to analyse when
rewritten in non-dimensional form (Segel 1972;
Murray 1989). Non-dimensional analysis focuses at-
tention on a minimal set of parameters and highlights
relative magnitudes (scaling relations) among the
processes that drive the dynamics. This is accomplished
without altering the dynamics or interpretation be-
cause one can translate freely between the biologically
motivated formulation and the non-dimensional quan-
tities.

The system can be rewritten with the following
substitutions :

ii i = hilK, j =-	 T = rAt,	
(2)

= slr,	 b=Kb/r.

Omitting the hats yields the non-dimensional system

Ahi = hi [1 —H— (P — pi)]T,

Api = pi[—s+b(H—hMT.
	 (3)

I present the equilibria and stability analysis in
Appendix 1. The dynamics of the system are controlled
by the equilibrium with all hosts and parasites

R hi

h2

S h3

h4 (1)
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Figure 3. Dynamics for the matching-allele model with two
hosts and two parasites. (a) and (b) Limit cycles in which
abundances fluctuate in a periodic and stable way. (c) Spiral
from an initial condition out to a limit cycle, where parasite
abundances repeatedly drop very close to zero. In this case
the parasite is likely to become locally extinct, leading to
colonization—extinction dynamics. The panels show the
changes in abundance for one of the two host—parasite pairs
in equation (3), with b = 1.2, s = 0.4, and (a) T = 0.125,
(b) T = 0.375, and (c) T = 0.625.

time

Figure 4. Time series for the matching-allele model with two
hosts and two parasites, from equation (3) with n = 2,
b = 2.4, s = 0.4 and T = 0.25. The dynamics are shown over
a time period of 500 steps of length T. Extinction is simulated
by setting to zero any abundance less than 0.01. Colonization
is simulated by adding 0.01 to the abundance of each host
and parasite in each time step T if a random number
between zero and one is less than 0.01. Thus the average time
between colonization events for each type is 100T. (a) h1,
(b) p 1 , (c) h2 and (d) p2.

present, which occurs at h* = s/ [b (n — 1)] and
p* = (1— H*) I (n — 1), where H* = nh* and, by the
symmetry of the system, h i* = h* and p = p* for all i
and j. This equilibrium point is unstable when there
are discrete time lags in the competitive effects among
hosts and in the interactions between host and parasite.
This equilibrium is neutrally stable when interactions
occur in continuous time (T 0).

Figure 3 shows the dynamics of this system with two
hosts and two parasites (n = 2). Each panel shows how
one of the two host—parasite pairs changes from an
initial condition. In each case the abundances follow a
stable limit cycle that repeats at regular intervals.
These cycles are stable because trajectories away from
the cycle spiral towards and then remain on the cycle.

All three panels of figure 3 share the same
parameters, equilibrium point and initial conditions
except for the size of the time step, T. Larger time steps
destabilize the system. As T increases from (a) to (c) , the
oscillations increase in magnitude. The very low

(a) (b)

(c) (d)

(e) (i)

(g) (h) .

time
Figure 5. Time series for the matching-allele model with four
host and four parasites. The parameters and methods are the
same as in figure 4 except that n = 4. (a) h1 , (b)p 1 ,(c) h2,
(d) p 2 , (e) h 3 , (f) p3 , (g) h4 and (h) p4.

parasite abundances that occur in the right panel
suggest that the parasites in that system would be
prone to extinction, which would change the sub-
sequent course of the dynamics.

The difference between a repeating cycle and cyclic
dynamics prone to extinctions can be seen in the next
two figures. Figure 4 shows time-series plots for a model
with two hosts and two parasites (n = 2). Extinction is
simulated by setting to zero any abundance less than
0.01. In this figure, abundances never drop that low
and extinction never occurs. Colonization is simulated
by adding 0.01 to the abundance of each host and
parasite if a random number is less than the colon-
ization rate (see figure legend). These colonizations
have little effect on the dynamics because the system
follows a stable limit cycle.

Figure 5 shows the same system with n = 4. An
increase in the number of hosts and parasites has two
effects on the dynamics. First, larger n lowers the
equilibrium abundance of each host and parasite type.
A lower equilibrium shifts the entire cycle down and to
the left (see figure 3). Thus an increase in n shifts the
cycle closer to the p = 0 and h = 0 boundaries.

The shift in the location of the cycle leads to the
second effect, a tendency for genotypes to become
locally extinct. When a host genotype is lost from the
local population, the matching parasite genotype has a
fitness advantage because it is virulent on all local host
genotypes. Eventually the locally extinct host is
reintroduced and spreads rapidly because it can resist
attack by the locally dominant parasite. The spread of
the resistant hosts causes a decline among the host's
competitors and an increase among all non-matching
parasite genotypes. These extinctions followed by

(a) (b) (c)
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random immigration into the system cause unpredict-
able fluctuations in the composition of the four host
and parasite genotypes (figure 5).

4. SPECIFICITY AGAINST DETECTABLE
POLYMORPHISM

Suppose that a host—parasite system interacts ac-
cording to the matching-allele model with n alleles.
What type of genetic system and pattern of poly-
morphism would one infer from samples of the host and
parasite populations? The standard procedure is to
isolate some host and parasite lines and then test each
host against each parasite for resistance or suscep-
tibility.

Here is a reasonable method of classification : (i) find
the host genotype that resists the highest proportion of
parasites in the sample ; label that host genotype R for
resistant; only those hosts that resist exactly the same
set of parasites are classified as R; (ii) label all other
hosts as S for susceptible; (iii) label all parasites that
cannot attack host genotype R as A for avirulent ; and
(iv) label all other parasites as V for virulent.

After following this procedure, one has a classi-
fication that matches the gene-for-gene system in figure
1 a. What is the frequency of host—parasite pairs that
would be misclassified if the true system were a
matching-allele model with n alleles? The R and A
alleles were defined strictly by their response in the
sample, so there can be no errors in any host—parasite
pair in which the host is classified as R or the parasite
as A. All errors must occur when a host—parasite pair,
classified as S: V, yields a resistant reaction rather than
the predicted susceptible response.

The gene-for-gene pattern in figure la would
typically provide a good fit to the observed patterns of
resistance and susceptibility. To support this claim, I
analyse the matching-allele system in two steps. First,
I derive some simple analytical conclusions for the
system when at its equilibrium with all allelic types
equally frequent. Secondly, I use computer simulations
across a range of parameter values to summarize the fit
between the gene-for-gene predictions and the inferred
genetic system.

5. ANALYTIC CONCLUSIONS AT
EQUILIBRIUM

Consider, for example, what would be observed if
the true genetic system followed the matching-allele
pattern in figure 2 with n= 4. If the system were at
equilibrium, then each of the n host and parasite
genotypes would be equally frequent. The n 2 host—
parasite pairs would also be equally frequent. This
case, with uniform frequency for each cell in an
interaction table, would yield samples that provided
the maximum amount of information about the
underlying specificity.

Figure 6 shows the proportion of each classification
that would be inferred when the inference scheme
listed above is applied to an equilibrium matching-
allele system with n alleles. The values are the number
of cells from an n x n matching-allele interaction that

A
	

V

1 n —1

(n-1)2—(n-1)

n — 1
errors: n –1

Figure 6. The proportions of each gene-for-gene classification
that would be inferred from an equilibrium matching-alleles
system with n alleles. Frequencies are obtained by dividing by
n 2 . Details are presented in the text.

would be classified according to the four gene-for-gene
pairs. Frequencies are obtained by dividing the number
of cells by n2.

The values in each of the four cells of figure 6 can be
derived by examining figure 2. The choice for R and A
alleles is arbitrary because all cells in figure 2 are
equally frequent. Let h 1 -= R and p1 A. Thus the R: A
interaction occurs in one cell, a frequency of 1 /72 2 . The
frequency of the R and A alleles is 1/n. The frequency
of the S and V alleles is inferred to be (n — )1n because
S is defined as not R, and V is defined as not A.

The rest of the values in figure 6 can now be filled in.
The S:A interaction corresponds to the first column of
figure 2 excluding the first cell (h 1 : p 1 ), so there are n-1
cells for this interaction. Similarly, R: V corresponds to
the first row of figure 2, so there are also n-1 cells for
this interaction. That leaves the submatrix of (n-1)2
cells, excluding the first row and column, for the
inferred S: V interaction. In the gene-for-gene model of
figure 1 a, these are all susceptible ( ) interactions.
From figure 2 one can see that the n-1 diagonal
elements will be resistant ( — ) reactions, and the
remaining (n-1) 2 — (n — 1) will be of the predicted
susceptible type. Thus the frequency of pairwise
interactions incorrectly classified by the gene-for-gene
prediction within the S:V cells is	 (n-1)/
(n-1) 2 = 1/ (n — 1), and the frequency of misclassi-
fications within the entire table is (n-1)10. Para-
doxically, the data fit the gene-for-gene predictions
more closely as the number of alleles, n, increases.

6. DETECTABLE POLYMORPHISM IN
SIMULATED DATA

In the previous section I drew conclusions about
detectable polymorphism in the matching-allele model.
Those conclusions depended on the assumption that
the system is near its equilibrium. The analysis
presented earlier showed, however, that the system is
not stable for any parameter values. What is the error
rate in the S:V cell when allele frequencies fluctuate
according to the dynamics of equation (3) ?

I iterated equation (3) and repeatedly applied the
inference method outlined above. This inference
method classifies each host—parasite pair into one of the
four cells shown in figure 6. In addition, I divided the
interactions in the S:V cell into those that matched the

R
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Figure 7. The percentage of errors in the S:V cell of the gene-
for-gene classification when applied to a matching-allele
system. The lower-left panel shows the arrangement for the
four parameter combinations of s and b. Extinction is
simulated by setting to zero any abundance less than 10'.
Colonization is simulated by adding 10' to the abundance of
each host and parasite, with 100 time units as the average
period between colonization events for each type. Top,
n = 4; bottom, n = 16.

prediction of susceptibility and those that had a
resistant reaction. I refer to the frequency of resistant
reactions within the S:V cell as the frequency of errors.

In each run I calculated the frequency of errors at
each of 200 equally spaced time points over a period of
2000 time units. An observation was discarded because
of insufficient polymorphism if any of the frequencies of
the four cells in figure 6 was less than 0.001. I then
calculated the 5th, 25th, 50th, 75th and 95th per-
centiles of the frequency of errors for the remaining
observations. I repeated this procedure for different
values of the four parameters, s, b, n and T.

Figure 7 shows the results. Within each panel, the
vertical lines and circles show the distributions of errors
for particular parameter combinations. The circle is
the median (50th percentile). The top of a line above
a circle is the 95th percentile, the bottom of that line is
the 75th percentile. The top of the line below the circle
is the 25th percentile, the bottom of that line is the 5th
percentile. A cross shows a parameter combination for
which 90 % or more of the observations were discarded
because of insufficient polymorphism.

The broken line shows the predicted frequency of
errors at equilibrium according to the 11 (n — 1) rule.
For n = 16, more than 75 % of the observations have a
percentage of error in the S:V cell of less than 6.7
[1/ (n — 1)]. For n = 4 and relatively high values of b,
epidemics are severe and cause frequent local extinc-
tions and little polymorphism. For relatively low values
of b, the system is nearly stable when host—parasite
interactions occur continuously in time (7- 0), but
fluctuates widely when interactions occur in discrete
time steps (T = 0.1).

7. DISCUSSION

Detectable polymorphism is a poor guide to the
specificity of a host—parasite interaction. I analysed one
example to support this claim. If the true specificity
were matching-allele with several allelic variants, then
the detectable polymorphism would lead one to infer a
gene-for-gene specificity (figure 7).

Several theoretical models have been developed to
explain observed polymorphism in systems with ap-
parent gene-for-gene specificity (reviewed by Leonard
& Czochor 1980 ; Levin 1983 ; Burdon 1987; Frank
1992, 1993). These models assume that virulence
alleles have a negative effect on fitness that offsets the
benefit of wider host range. This assumption is
necessary because, without a fitness cost, the virulence
allele would spread to fixation (in figure 1 a, V has an
advantage over A). A model that predicted fixation of
virulence could not explain the observed poly-
morphism of virulence and avirulence alleles (Vander-
plank 1968). A similar argument leads to the con-
clusion that resistance must have a cost.

The argument for costs can be summarized as
follows. Detectable polymorphism suggests gene-for-
gene specificity. Given gene-for-gene specificity, there
must be costs of resistance and virulence to explain the
observed polymorphism. Models that assume costs
predict that resistance alleles will be rare relative to
susceptibility alleles, and virulence alleles will be
common relative to avirulence alleles. Observations
appear to support the predicted frequencies of these
allelic classes (Frank 1992, 1993).

The matching-allele model also fits the available
data : apparent gene-for-gene specificity; rare resist-
ance and common virulence when one uses detectable
polymorphism to infer specificity (figure 2) ; and a
pattern of specificity that matches the currently
favoured elicitor—receptor model for the biochemistry
of plant—pathogen recognition (see the Specificity
section). Note that the matching-allele model does not
require costs of resistance and virulence to explain the
data.

I do not claim that the simple matching-allele
specificity is the correct model for plant—pathogen
genetics. My point is that one cannot start with
samples of hosts and parasites, test for resistance and
virulence within the sample, and then use population
frequencies and mendelian segregation ratios to re-
construct both specificity and population history.
Barrett (1985) made a similar point about data from
agricultural epidemics and plant breeding.

What can be done? A family of models can be
developed that matches both detectable polymorphism
and observations on the biochemistry of specificity.
Population genetic models must predict detectable
polymorphism and make reasonable assumptions
about specificity. Biochemical models of specificity
must be consistent with the inferred patterns of
specificity and have population genetic consequences
that match detectable polymorphism.

For example, a 2 x 2 case of the matching-allele
model cannot be the true model of specificity for
plant—pathogen systems because it does not yield     

X X  X X
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observations that look like the gene-for-gene system
(figure 1). By contrast, a 16 x 16 case of the matching-
allele model may be true because its detectable
polymorphism would appear to have gene-for-gene
specificity (figure 7).

I do not have space here to develop a family of
models for plant—pathogen genetics : I limit myself to
one extension of the matching-allele model. In that
model, each pathogen allele makes a gene product
(elicitor) that can be recognized by the product
(receptor) of one host allele, the matching leading to a
resistant reaction. A pathogen allele that made no
product (a null allele) would therefore be universally
virulent. Some mutations to virulence appear to be
deletions (Flor 1971). Thus an expanded matching-
allele model could include null pathogen alleles that
are universally virulent. As noted above, universally
virulent alleles would spread to fixation without an
opposing cost. Null alleles must therefore have a fitness
cost when they occur polymorphically with avirulence
alleles that make recognizable gene products.

Alleles classified as virulence may be universally
virulent because they are null, or they may produce
gene products for which the sample of hosts does not
have the associated recognition receptor. Pathogen
alleles are sometimes classified as virulence on one host
species although they function as avirulence alleles on
a second host species (Gabriel & Rolfe 1990). Such
alleles probably produce specific gene products. Thus
virulence may encompass both null alleles and alleles
that produce potentially recognizable products.

When selection on the pathogen population is
extreme, such as in epidemic situations or when
screening for mutants in a laboratory, null virulence
alleles are probably common because the selection
intensity can overcome any non-lethal fitness cost of
deletion or loss-of-function mutations. Allelic variants
that produce slightly different gene products may be
more common under less extreme situations, in which
pathogens escape hosts through diversity over time or
space (figure 5). In any case, the analysis of plant—
pathogen systems must continue back and forth
between biochemical specificity and population genetic
consequences.

The need for joint studies of specificity and poly-
morphism apply to other coevolutionary systems. For
example, I studied the coevolutionary conflict between
cytoplasmic and nuclear genes that determine male
sterility in plants. I showed that the cytonuclear
specificity and number of allelic variants cannot be
inferred by analysing mendelian segregation ratios
from samples of natural populations (Frank 1989).

My study of male sterility was more detailed than
the matching-allele model here. In my male sterility
analysis I inferred specificity from the mendelian
segregation ratios of multilocus diploid genotypes. The
conclusions were, however, the same. Specificity does
not reveal itself through interaction matrices and
segregation ratios.

My conclusions about plant disease and cytoplasmic
male sterility contrast sharply with the common claim
that detectable polymorphism must form the basis for
the genetic assumptions of theoretical models. The

truth is that detectable polymorphism cannot be
understood without theories that are derived from
other considerations.

I thank R. M. Bush for helpful comments on the manuscript,
and S. A. Levin for teaching me the direct-product stability
analysis used in the Appendix. My research is supported by
NSF grant BSR-9057331 and NIH grants GM42403 and
BRSG-S07-RR07008.

APPENDIX 1

In this Appendix I provide some analytical details about
the equilibria and stability of equation (3). The system has
2 2n subsystems classified by the presence or absence from the
system of each of the h, and pj , with i, j = 1, n. Only two
classes of subsystem need to be considered because of the
symmetry in host—parasite interactions and the fact that a
host can resist only a matching parasite type. I assume
(n-1) b—ns > 0, otherwise parasites cannot be sustained.

The first class of subsystem has 0 < k n host types
present, and 0 r n—k non-matching parasites. All
matching parasites would be lost from this type of system
because of host resistance. There are `"'k=, ( kn) En-ok(nrk)

2 n such systems. A rare host can invade the equilibrium
of these systems if it matches one of the parasites that are
present. In the case where there are n hosts and 0 parasites,
a rare parasite can invade (increase when rare) if
(n-1) b—ns > 0. Thus these subsystems are always unstable
when there is the potential for parasitism.

The second class of subsystem has a matching host type
present for each parasite type with positive abundance.
There are 2 n such systems. The system in which there are no
hosts or parasites is unstable because hosts can invade. When
there are less than n matching pairs, all unmatched hosts
would be lost from the system because they have no benefits
of resistance. The parasites can be sustained in a system with
k matching pairs only if (k — 1) b — ks > 0. A rare parasite can
invade the equilibrium of these systems because it avoids
matching host resistance. Thus, when there are less than n
matching pairs, these systems are always unstable when there
is the potential for parasitism.

From these two classes of subsystem it can be seen that,
in systems that can sustain parasitism, the equilibrium of
interest is the case with n matching host and parasite pairs.
With all hosts and parasites present, the symmetry of the
system implies that the equilibrium abundances of all host
types are equal, = h*, and the equilibrium abundances
of all parasite types are equal, p7 = p*. This equilibrium
occurs at h* = s/[b(n— 1)] and p* = (1 —H*)/ (n— 1), where
H* = nh*.

The stability of this equilibrium with 2n dimensions can be
analysed by an elegant (and apparently little-known)
theorem of Friedman (1956) (see Othmer & Scriven 1971;
Levin 1974).

The Jacobian matrix of equation (3) can be written
compactly as :

(A+ B) OL — A O In,

where (i) is the direct product, also known as the Kronecker
or tensor product (see, for example, Bellman 1960), Jn is a
square matrix of size n with ones in all positions, In is the
identity matrix of dimension n, and

( 0 —h*
	 B=T 

(— h* 0)
A= T

bp*	 0	 0 0)

The matrices In and jn are self adjoint and have common
spectral representation. The eigenvalues of In are 1 (repeated
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n times), and the eigenvalues of J. are 0 (repeated n — 1
times) and n. Thus, by Friedman's (1956) theorem, the
eigenvalues of (A+B)0Jn —AOIn are simply the eigen-
values of —A (repeated n-1 times), given by the
characteristic equation A2 +bp*h*T 2 = 0, and the eigen-
values of (n-1) A + nB, given by the characteristic equation
A 2 + H*AT +bp*h* (n-1) 2 7- 2 = 0. Stability is determined by
the first characteristic equation. For continuous time, T-> 0,
the Ts are dropped from the characteristic equations, the
dominant eigenvalue has a real part of zero, and the system
is neutrally stable. In discrete time the system is unstable
when the dominant eigenvalue has a modulus greater than
one, which occurs when bp*h*T2 > 0. This condition is
always satisfied at the internal equilibrium with all host and
parasite types present, hence the system is always unstable
when there are discrete time lags in the competitive effects
among hosts and in the interactions between host and
parasite.
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