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A variety of sex allocation models is considered in which (i) the reproductive
returns on investment in males differ from the returns on investment in females, (ii)
the amounts of resources available for reproduction vary in the population, (iii) the
costs of making male and female reproductive structures differ, and (iv) the concep-
tion sex ratio may be fixed and there may be an initial minimum investment per
offspring. Results of these models include quantatitive predictions for both
individual- and population-level sex allocation, an opportunity to study the
magnitude of changes in predicted patterns as key variables change, and therefore
an analysis of the robustness of Fisher's equal investment theory. One example is
that Fisher's argument is extremely robust for high fecundity organisms, but, in low
fecundity organisms, is sensitive to differences between the sexes in reproductive
returns on investment per offspring, a situation that occurs in many vertebrates to
which Fisher's theory is often applied. A second example is that individual- and
population-level patterns often depend strongly on the distribution of resources
available for reproduction among individuals in the population. 	 1987 Academic

Press, Inc.

1. INTRODUCTION

Fisher (1930) asserted that equal amounts of resources will be allocated
to sons and daughters within a population in each generation, since any
asymmetry favors more investment in the under-endowed sex. Fisher's idea
continues to be the cornerstone of sex allocation theory, although very sim-
ple results prove the equal investment theory to be sensitive to changes in a
crucial and often unrealistic assumption. This critical assumption is that
reproductive returns on investment must be the same for resources
allocated to male or female reproductive function (MacArthur, 1965;
Hamilton, 1967; Clark, 1978; Charnov, 1979a; Charlesworth and
Charlesworth, 1981). Charnov (1982) has reviewed many cases in which
unequal investment results from different returns on investment for the two
sexes.
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The current theory for different returns between the sexes deals only with
special cases. Also, no general approach exists for predicting individual and
population sex allocations when there is variation among individuals in
resources available for reproduction. Here I subsume and extend previous
work with a simple and general formulation, which yields more realistic
quantitative predictions. Three new outcomes of this general approach are
that individual and population sex allocations often depend strongly and in
a non-intuitive way on the shape of the distribution of resources among
individuals, that the robustness of Fisher's equal investment theory can be
analyzed in a wide variety of situations, and that several remaining
weaknesses of the current theory can be made explicit.

I begin by deriving a general result for the population allocation ratio
from the shapes of the male and female return functions (see Charnov,
1979a; Charlesworth and Charlesworth, 1981 for special cases), and then
present a general solution for the case in which individuals have different
amounts of resources to invest, and can adjust their allocation ratios
according to the resources available to them. These problems will first be
considered with total reproductive returns as a function of total investment
in males and females per investment interval, where individuals may have
different amounts of resources available to invest. I then consider the
problems that arise when individuals can vary the amount of investment
per offspring (i.e., how to package investment into discrete units), and also
when the sex ratio at conception is fixed (Maynard Smith, 1980), or when
there is a fixed minimum investment per sex (Heath, 1977). In the dis-
cussion I use the insight generated by this group of models to consider how
the problem of defining an "investment period" affects predicted allocation
patterns, and when it is necessary to analyze investment per offspring ver-
sus total investment per sex.

For any particular case the models here allow one either to examine the
magnitude of changes in predicted patterns as functions of changes in key
variables, or else they suggest ways in which to construct appropriate
models. The work presented here is based on a number of separate studies
of narrow special cases which will be referred to later. As far as I know, this
is the first attempt to generalize these separate problems within a formal
quantitative structure.

I will assume autosomal control of the sex ratio and additive gene
action, and will often present the argument in the form of the mother's
reproductive success as a function of her allocation ratio in sons and
daughters. The syntheses of Charnov (1982) and Bull (1983) show that
there are only a few minor differences in the argument, if any at all, when
the organism is hermaphroditic, when sex (gender) is environmentally
determined, or when the father partly or completely controls the allocation
ratio.

1.1. Review of Sex Allocation Algebra

The models will be constructed by searching for the sex allocation
phenotype that maximizes the relative reproductive success of the
individual that controls the allocation ratio. This approach is common in
the sex ratio literature, originating with Shaw and Mohler (1953). Charnov
(1982) reviews the history of this approach for sex ratios, and Maynard
Smith (1982) and Grafen (1984) discuss the relationship between
phenotypic (ESS) and genetic models. Taylor (1985) compares the
Shaw—Mohler approach with other mathematical methods for the study of
sex allocation. By making four assumptions, results derived by the
phenotypic method are usually the same as results obtained from genetic
models. These assumptions are (reviewed by Charnov, 1982) (i) large pop-
ulation size, (ii) random mating, (iii) no within-sex competition for a
limited resource, and (iv) control of the sex allocation ratio by additive
gene action at a single autosomal locus in a diploid organism. See
Uyenoyama and Bengtsson (1979, 1981, 1982), Eshel and Feldman
(1982a, b), and Taylor (1985), for further discussion of genetic and
phenotypic sex ratio models.

Assume that mothers control the allocation of resources to sons and
daughters. The expected relative reproductive success for the ith mother of
a large population can be written as a function of the fraction of resources
allocated to sons, x,, and the fraction allocated to daughters, 1— x i (Shaw
and Mohler, 1953; MacArthur, 1965). Let the reproductive returns on male
investment be fix,), and returns on female investment be g(1— x i ). Then
the relative reproductive value of male investment for the ith mother is
f(x,)IE[f(x,)], where the denominator is the expectation over all mothers
in the population. Likewise, relative returns on female investment are
g(1 — x i )IE[g(1 — x i )]. So, relative reproductive success of the ith mother is

f(x,)	 g(1— xi)
w 

E[f(x,)] E[g(1— xi)]

or

E[ g( 1 - xi)] + go - x,).w = f(x,)	
E[f(x,)] I

Equation (1) is the standard form of the Shaw—Mohler (1953) equation,
where population fitness E(w,) is always 2, independent of the individual
allocation ratios (x i : 1 — x i ). Relative fitness of the ith mother in the pop-
ulation is the same for Eqs. (1) and (2), but E(w,) for (2) is 2E[g(1 — xi)],
which is sometimes useful, since population fitness will usually depend on
the total reproductive value of the females in the population, when there is
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no paternal investment except gametes. Equation (2) is also useful, since it
defines reproductive returns for male investment as value of sons, f(xi),

times average mating success, E(g)IE(f), and this allows reproductive
returns for males and females to be compared on the same scale (f and g

have arbitrary scales and are not generally comparable). This standar-
dization to a common metric will be used to generate comparisons of male
and female return curves on the same set of axes.

If an equilibrium exists, it will occur at the values of x, and 1— x„ that
maximize w i (MacArthur, 1965). There are several equivalent ways of
going about this, and I have chosen a method that is useful for models
developed below. The maximum of w i occurs where f(xi)IE[f(x,)] is a
maximum with respect to x i and simultaneously g(1 — x i )IE[g(1— x i )] is a
maximum with respect to 1— x„ subject to the obvious constraint that
x, + (1 — xi ) = 1. Following through one obtains MacArthur's (1965)
general result

f'(x*)	 x*)

f(x*) g(1—x*)

which is a standard sort of marginal value result from classical economic
theory. When returns are linear for both sons and daughters, f(x*)= x*
and g(1— x*)= 1 — x*, hence x*= 1. Here all individuals (i) have the same
amount of energy to invest and (ii) all invest x* in males at equilibrium, so
individual- and population-level investment is the same. These two
assumptions will be relaxed later.

1.2. Generating Shapes for the Return Functions

There is no particular reason why the returns on male and female
investment must be either linear or equal. The three basic shapes shown in
Fig. 1 describe other likely sorts of return functions. For example, the

diminishing returns in Fig. 1B describe the value of investment in sons
when there is local competition for mates (Hamilton, 1967). The S-shaped
curve in Fig. 1C describes the return function on male investment for most
low fecundity polygynous species, since weak males rarely reproduce while
strong males often sire several broods. Additional biological interpretations
of return function shapes for each sex can be found in Charlesworth and
Charlesworth (1981) and Charnov (1982).

Ideally, the form of the return function would allow x* to be calculated
directly for any of these shapes. The cumulative distribution function
(CDF) of the beta probability density function (PDF) has this generality.
The CDF for a beta distribution is

T(s+ t)
f(x)= T(s) F(t)., 

Y's (1— Y)r

T(r) =-- (r — 1 ) nr— 1 ) = f yr-1	 vdy,
0

where TO is the gamma function, sometimes referred to as the
"generalized factorial function," since if r is a positive integer,

= (r — 1)!. s and t are parameters that determine the shape of the
function (Fig. 2).

2. POPULATION ALLOCATION UNDER NONLINEAR RETURNS

2.1. Nonlinear Returns on Male Investment

A model is studied in this section in which the shapes of the male and
female return functions differ, each individual in the population has the

(3)

,	 si>0, 0 x•-<_,1

(4)

FIG. 1. Shapes for reproductive returns for one sex as a function of investment in that sex.
A, low investment on one sex yields relatively low reproductive returns for that sex, while in B
low investment yields relatively high returns. An example of S-shaped returns, as in C, would
be investment in males in a sexually dimorphic polygynous ungulate.
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FIG. 2. Shapes for reproductive returns described by the parameters s and t, from Eq. (4).



+ 1 = 0

s>0,	 t=1,2,3,...,	 1

1X i+ t(i+s-1))}
i(i+s-1)

(8)
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same amount of resources to invest, and each is constrained to invest the
same proportion of resources into males and females. Preventing variation
among individuals makes this model unrealistic, but there are two reasons
for beginning with this example. First, this is the only case for which a
reasonably complete study has been made of population allocation under
differing return functions (Charnov, 1979a, b), so beginning with this
situation allows us to put the present paper into the context of previous
work. Second, the development of more realistic models is made easier by
beginning with a simple and familiar case, and then relaxing offending
assumptions sequentially.

The effect of nonlinear returns on the allocation ratio can be illustrated
most easily by assuming linear returns for one sex, and nonlinear returns
for the other, so let g(1 — x 1 ) = 1 x1 ; i.e., reproductive returns increase
linearly with female investment. (Cases in which returns are nonlinear for
both sexes can be handled in a straightforward, although more tedious,
manner. See the Appendix.)
f	 ) can be written directly from Eq. (4), since it is the PDF of the

beta function

(5)

	

s, t > O.	 (6)
ICY- 1 ( 1 - YY dY

= 
1 —

When both s and t are not integers, the algebra is messy but tractable. For
simplicity, t will be constrained to integer values, since a rich array of
shapes can be generated for these values of t, sufficient to describe nearly
all realistic situations. If t is a positive integer, the binomial expansion can

	

be used to simplify (1 — x*) ! -1 and (1 —	 1. For example,

(1-	 E (-1)iy',	 - 1, 2, 3,....	 (7)

Using the binomial expansion, Eq. (6) can be written as a polynomial in x*

Local stability of the equilibrium against invasion by a rare mutant can be
checked with the second derivative, yielding the conditions:

s — 1
x* > 

s + t — 2

s+t<2;s01;101,
	 s 1	

(9)

(iii) s	 1,

(iv) 1=1	 S <I.

In all four cases, x* is a global maximum over the interval [0, 1] if and
only if x* <1, and is a local, but not global, maximum when x* > These
results will be illustrated for the cases t = 1, 2. Charnov (1979a) has also
developed a complete study of the case t= 1. When 1= 1 and s< 1,
x*=s/(s + 1) (Charnov, 1979a). Shapes of the return function on male
investment are shown in Fig. 2A.

In general the equilibrium occurs where the slope of the tangent to the
returns on male investment, _f ' (x* )[ g(1 x*)/f (x*)] (male returns include
expected breeding success, E(g)/E(f)), is the same as the slope of the
tangent to returns on female investment, g'(1 x*) [see Eq. (3)]. In the
cases examined here both of these slopes are 1, since g(1 — x) 1 — x and
therefore g' = 1.

When t = 2, we obtain the equilibrium

(2s +1)(s +1)— ,/(5s +1)(s +1)
2s(s + 2)

which is a global maximum for s < 2 .e., whenever x* < 1), and is a
local, but not global, maximum for 	 2 <s < 3. Shapes for the return
functions on male investment are presented in Fig. 2. When s 2, and x*
is a global maximum, the equilibrium again occurs where the tangent to
the male return function has the same slope as the linear returns on female
investment.

When s> no monomorphic equilibrium exists. A full analysis of this
region under a variety of assumptions about genetic control might prove
interesting.

2.2. Nonlinear Returns on Female Investment

All the above results can also be applied when the return function for
males and females are switched by replacing 1 — x* with z*, and x* with

+ t)
dx*	 F(s) F(t

Substituting into Eq. (3),

(x*) s - '(1	 x*)(-1

(i) s+t>2;s01;t01,

(10)
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1— z*. Assuming returns on female investment are nonlinear and returns
on male investment are linear, and substituting into Eq. (3), one obtains,

1	 _g'(z*)

1 — z* g(z*)

which is analogous to Eq. (6). For example, if g(z*) is the CDF of a
beta distribution [see Eq. (4)] with parameters t = 1, s < 1, then
z* = 1 x* = sl(s + 1).

3. ALLOCATION WHEN RESOURCES VARY AMONG INDIVIDUALS

The above models assume (i) that each individual has the same amount
of resources to invest and (ii) that at equilibrium every individual will
invest the same proportion of resources in males and females. These two
assumptions are clearly unrealistic. Trivers and Willard (1973) were the
first to note that in polygynous mammalian species, returns on male
investment differ from returns on female investment, and that this may
affect sex ratio patterns.

To fix ideas, consider the example of parasitic wasps discussed in detail
by Charnov et al. (1981). A female Lariophagus lays a single egg on each
weevil larva that it encounters. The size of the larva is probably a good
measure of the amount of resources available to the mother in each
independent investment period, since offspring size is associated with larval
host size. This allows us to equate in a realistic way total investment per
independent investment period with investment per offspring. In general,
the model developed in this section applies only to total investment per
investment period. A model that considers both investment per individual
and total investment per period is developed later, and the difficulties that
may arise when considering how to define properly independent investment
periods will also be discussed.

Returning to this wasp example, there is reason to believe that female
fecundity increases with size faster than does the expected number of
matings increase with size for males (Charnov et al., 1981). Hence we know
that there is a measurable resource distribution 	 size of hosts 	 and that
the shapes of the return functions differ between the sexes. Charnov et al.
(1981) found that the wasps adjust their sex ratio according to the relative
sizes of the hosts available: on relatively large hosts the wasps tended to
produce more daughters, and on relatively small hosts they tended to
produce more sons. It was also shown that a host of particular size may be
treated as large if most other hosts are smaller, or small if most other hosts
are larger. Charnov et al. (1981) analyze their data in light of the
qualitative predictions of the Trivers-Willard theory.

No general quantitative models exist that predict both the individual and
population allocation ratios, given the distribution of resources among
individuals and the shapes of the return functions for male and female
investment, although Charnov (1979b) and Bull (1981) have described
some unrealistically simple cases, and Charnov et al. (1981) indicated
qualitatively how the problem might be approached. A general quantitative
model is readily obtained by extending the techniques used in Section 2.
The main value of such a model is that it allows one to explore the
magnitude of predicted individual and population sex allocation changes as
functions of changes in resource distribution and return curve shapes.

Let the ith individual in the population have k ; units of resources to
invest, and let the units be standardized so that 0 < k 1 for all i. As
before, let x, be the proportion of resources that the ith individual allocates
to males, and 1 x, be the proportion allocated to females. Then the ith
individual invests kJ, units of resources in males, and k,(1—x,) units in
females, and the relative fitness w, can be written as

—
f(k,x i )	 g[k,(1 — xi)]

E[f(k,x,)]
+

 E(g[k,(1 x,)])*

Maximizing w i with respect to k i x i and k i(1— x i ) yields

f' (k i x,*)	 glki(1 — x,*)]

It will again be assumed that returns are linear for female investment; and
as before, the roles of males and females can be switched. With linear
returns for females, g = k,(1 — x*) and g' 1, so Eq. (12) becomes

E[k ,(1 — xi*)]
.f'(kixi*)	 =	 for all i.	 (13)

E[f(kix,*)]

Once again, the equilibrium occurs where the slope of the tangent to the
returns on male investment, flE(g)1E(f)], equals the slope of the tangent
to the returns on female investment, here g' = 1. To obtain a solution for
particular assumptions, we need to specify a probability (frequency) dis-
tribution for the amount of resources, 1( 1 , available to each individual. It is
again convenient to use a beta distribution to describe shapes, in this case
for the shapes of the frequency distribution (PDF) of resources rather than
for the reproductive return curves described by the CDF. Let k, be the
PDF of a beta distribution with parameters a, b> 0.

F(a+b)
h(k i )=Prob(k i .--- ,)= 	  y a-1(1 _ )b-1	 1. (14)

F(a) fib)

The mode of this distribution is at (a 1)1( +1) — 2). See Fig. 3 for shapes.

for all i.
E[f(k,xi*)] E(g[k,(1 xi*)])

(12)
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FIG. 3. Frequency distributions for amount of resources per individual, k„ described by
parameters a and b; solid curve, a = b = 1; dashed curve, a = b = 2; dot-dash curve, a = 2,
b = 4. The mode is at (a — 1 )1 (a + b — 2). See Eq. (14).
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k < (19a)

k;> A (19b)

k= 2. (19c)

Equation (19c) can be used to solve for A for any distribution f that is
concave up (Fig. 1A). Here I continue to illustrate the general results with
beta distributions, in order to gain some feeling for the quantitative effects
of particular assumptions.

To solve, we need to specify the shape of the resource distribution
function, h(k ,). I illustrate the method first for a = b = 1 (the uniform dis-
tribution), and then for a = b =2 (see Fig. 3). Since t = 1, we have from
Eq. (4), f(k,x,)=(k,x,)'Is, and since a = b = 1, h(k,) = 1, so

SEX ALLOCATION PATTERNS

k

f(k ,) E[k ,(1 — x ,)]
E[f(k i x ,)]

_f(k,) E[k ,(1 — x

E[f(k,x,)]

E[(k ,) s ] =	 (k ,x)' h(k) dk = (k )' dk

I will consider separately the three shapes for the male return function
(Figs. 1A—C). Let f(k,x,) be the CDF of a beta distribution, as in Eq. (4),
and with t =1 and s> 1 (Fig. 2A). This gives the shape with an increasing
slope shown in Fig. 1A. From the shape of the male return function, a
reasonable conjecture is that at equilibrium, the set {x 1 *} is such that

,=

	

0	 k,<2
k

	

fk	 k ,> 2,

or that an individual produces all females when its resource level is less
than A, and all males if available resources are greater than A, as suggested
by Charnov (1979b) and Bull (1981). The population allocation ratio, x*,
for a large population is

x* = E(k i x ,)I E(k ,)

= ( .1 k ,h(k ,) dk,)1 E(k).
	 (16)

= 1 _ + I

s + 1 •

Substituting into Eq. (19c) yields

(2s1s)(2212)

(1 —).,±1)1[s(s + 1)]•

Solving,

(  2  ) 1( ' "
=	 s> 1.	 (21)

s + 3 )

So, when k i < x,* =0, and when k i > 2, x i * = 1. The population
allocation ratio is, from Eq. (16), x* = 1 — A'. These results are presented in
Fig. 4.

When k, has the distribution defined by a = b = 2 (Fig. 3), the result is
shown in Fig. 4, and takes the form

(20)

=
(15)

Individual fitness, w,, from Eq. (2) is now

At equilibrium, for each i,

w i(k i x,*) ?...w,(kixi)	 for all xi 0 x,*

3(s + 2)(s +7) A s +3 — 4(s + 5)(s + 3)2' 2 + 12 =O.	 (22)

Note that both x* and 2 change as the shape of the resource distribution
curve changes, even when the resource curves have the same mean and
median, as for a = b = 1 versus a = b = 2 (Fig. 4).

For the case t = 1, s < 1, there are diminishing returns on male
(18)	 investment (Figs. 1B and 2B). From Eq. (13) it can be seen that if f'(kixi*)

wi(kix,)= f(k,x,)
E[k,(1—x,)]

f(k,x,)]E[	 +k;(1—x;)•	 (17)
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FIG. 4. Population and individual sex allocations when resources vary among individuals,
with t 1. A, the stable population ratio, x*, as a function of the shape of the resource dis-
tribution curve described by a and b, and the shape of the reproductive returns curve on male
investment, described by s and t. B, the point of sex change,	 where individuals with k, <
invest entirely in daughters, and with k,> ,t invest entirely in sons. Note that both x* and
depend on the shape of the resource distribution curve, even when different distributions are
symmetric and have the same mean and median, as with a = b= 1 versus a = b= 2.

to the result of Charnov et al. (1976) that this combination of shapes will
favor hermaphroditism, i.e., a mixture of male and female investment.

The third and final case is where returns on male investment are
described by an S-shaped curve (Fig. 1C). To illustrate, a family of
S-shaped curves can be generated by setting t = 2, for all s r 3 (Fig. 2B).
An approximate solution can be obtained by following through the steps in
Equations (15)—(19). The result is

s(s + 2)(s+ 3)(3s+ 24) ) s+ 4

—(s + 2)(s+ 4)[12(2s+ 1) + (7s +3)(s + 3)] ):±3

+ (s + 1)(s + 3)(s + 4)[4(s+ 2) + 12] )2 +2 — 12(3s+ 4) = 0,

3, 0	 1.	 (23)

As an example, let s = 3, which yields ). = 0.6356 and a population
allocation ratio, x* = 0.4625. It is easy to show that this is a very good
approximation, and that the approximations improve rapidly as s
increases.

X 1.0

0.8

0.6 
1 2 4	 10 20 40 100

is uniquely invertible, then k i x i * =k,x,* for all i, j. The slope of f(k i x,*) is
monotone decreasing for t = 1, s < 1, so f is uniquely invertible. If K is
defined as the expected value of k,, and we impose the restriction

1 for all i, then kix,= Kx* for all i, and substituting into
Eq. (13), x* = s/(s + 1), which is the same population allocation ratio as
when k i = 1 for all i (see above). It can be shown that when k, has a sym-
metric beta distribution, i.e., a = b, then s/(2 + 1 is the necessary
restriction on k,, and K= (s + 1)I(s + 2). These results are easily inter-
preted: at Kx* the tangent to the male return curve has the same slope as
the linear returns on female investment, and the rate (slope) of increasing
returns on male investment up to Kx* are greater than for the constant
rate for females, while the rate of increasing returns beyond Kx* are less
than for females. So the ith individual invests Kx* in males, and k, — Kx*
in females. If an individual is constrained to produce either all males or all
females (x, is 0 or 1), then the population average result is the same as for
the first case above, and Eqs. (21) and (22) apply. Such a constraint would
result, for example, when gender is environmentally determined (Bull,
1983), so that an individual is predicted to become either a male or female
depending on the relative amount of resources it has to invest in reproduc-
tion.

The fact that individuals are favored to produce a mixture of males and
females when the slope of the return curve for one sex is monotonically
decreasing (Fig. 1B) relative to linear returns for the other sex is analogous

4. SUMMARY OF SECTIONS 2 AND 3

In Section 2 it was assumed that each individual has the same amount of
resources to invest, and the individual and population allocation ratios
(which are identical) were presented as a function of the shapes of the male
and female return functions. In Section 3 it was assumed that individuals
have different amounts of resources to invest, and each individual adjusts
its allocation ratio conditional on its available resources. The individual
and population allocation ratios (which differ) were presented as functions
of the shapes of the male and female return functions, and of the frequency
distribution for the amount of resources available to each individual. These
models make several assumptions that are unrealistic for many organisms.
Models that are more flexible and realistic are presented in the next section.

5. FIXED COSTS AND PACKAGING COSTS

In many organisms individuals may have only partial control over their
allocation ratios. Organisms with heterogametic sex chromosomes are
obvious examples (reviewed by Bull, 1983), since the conception ratio is
partly or completely a random process that can be approximately described
by a binomial distribution (e.g., in vertebrates, see Williams, 1979).
Monoecious and hermaphroditic plants are two further examples, since a
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plant may not be able to adjust the number of male flowers or flower parts,
but may be able to vary allocation to each sex function. In each case a cer-
tain fixed amount of energy is allocated to both males and females, but
these initial fixed investments are often too small for any returns to be
realized without further investment. Heath (1977) has named initial
investments in reproductive structures fixed costs for hermaphrodites. Here
I adopt the additional phrase packaging costs for the minimum investment
per offspring that cannot be reduced. Two examples of packaging costs are
the cost of producing an egg in altricial birds, and the cost of producing a
newborn in mammals, since in each case there are no reproductive returns
without further investment. The important distinction between fixed and
packaging costs is that the first is independent of the number of progeny
produced (i.e., investment in reproductive structures), while the second
increases linearly with number of eggs (or fetuses, new-borns, etc.). Under
this general distinction, fixed costs for reproductive structures apply equally
well to dioecious and hermaphroditic organisms.

The models considered so far have examined total reproductive returns
on total male or female investment per investment period. (The important
problem of defining "investment period" is examined more carefully in the
Discussion.) In many circumstances there is no loss of generalit y when
ignoring both fixed and packaging costs (Charlesworth and Charlesworth,
1981). In some situations, however, considering these initial investments
leads to some interesting insights, and a general treatment also leads to
firmer conclusions about the robustness of the simpler models.

In this section I first present a general model that incorporates packag-
ing costs, then examine a more realistic case designed with low fecundity,
heterogametic organisms in mind; a description that fits many warm-
blooded vertebrates. Finally, a situation incorporating fixed costs is
modeled after an organism with environmental sex determination (Bull,
1983), in which the costs of reproductive structures differ between males
and females.

5.1. General Model for Packaging Costs

The approach taken here is an extension of Maynard Smith's (1980)
work on sex allocation with a fixed conception ratio. Maynard Smith
studied the situation in which (i) the shapes of the return curves on total
investment differ between the sexes, (ii) the conception ratio is fixed at
unity, (iii) a certain amount of investment in each offspring is mandatory,
after which the parent can adjust its total allocation to each sex, and (iv)
each individual in the population has the same amount of resources to
invest. I simplify his results by using the methods devised above for describ-
ing shapes of return functions, and generalize the model by (a) allowing the

amounts of resources available for reproduction to vary among individuals,
(b) using the shapes of the return curves on investment per offspring, rather
than on total investment, and (c) allowing the parent to adjust its
allocation to each offspring, after the initial mandatory investment. Models
considering variation in resources among individuals, and returns on
adjustable investment per offspring rather than on total investment, are
important extensions since these are common attributes of mammals, a
group to which this sort of theory is often applied. My model also allows
for the conception ratio to be different from unity. Interesting extensions
not considered here include allowing the conception ratio to be stochastic,
and allowing individuals to have different expected conception ratios
according to the amount of resources available to them.

To begin, we need a more general form of Eq. (1), where E, is the expec-
tation over i,

E7'ni f(xu+	 g(zi.+ d)
W • =	 •

E i [E,"z, , f (x, + d)] E i [E,Y1 g(z ii + d)]'

subject to the constraint that

E (x ii + d)+ E (zii+d)= ki
J=1

or, x i +z i =k i , where

W 1 = expected reproductive success of ith mother,

k i = total resources available to ith mother,

d= minimum investment per offspring,

n„„= number of male progeny by ith mother,

x„+ d= investment in jth son of ith mother,

nti = number of female progeny by ith mother,

d = investment in jth daughter of ith mother,

(x,,+d), the total investment in sons by the ith mother,

d), the total investment in daughters by the ith mother.

Now assume that for given values of x i and z i , a mother will always
allocate additional resources to each offspring within a sex so as to
maximize her total reproductive returns from that sex. For example, given

(24)



(25)

(26)
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a fixed value for x,, she will choose values for the set {x ii } so as to
maximize (or take the supremum over) E7Fni i f(x „ + d). In symbols,

	

F(x,)= {max	 f(x„; + d)lx,}
nrni

= 1

G(z,) {max E g(z„-+ d)jz,}
I= 1

and

	

F(x1)	 G(z1)

w i= E[F(x ,)]+ E[G(z ,)]•

With these definitions we can now find the values of x 1 and z, that
maximize w, by the methods used to obtain (3), yielding

x,* + z,* =k,

which is analogous to (3), and the techniques for finding x,* and z,* from
Sections 2 and 3 apply. The optimum allocations to individual offspring are
the values lx,*1 and lz„,*1 that satisfy (25), given xi = x,* and To
find the values for males {x,7* }, the method of LeGrangian mutipliers can
be used

1	 i = 1

rim;

h =	 d)— [
	

d) —

	 =-- f' (x + d) — Q = 0,	 = 1, 2, 3,...,n,„,

solving,

In order to simplify the development of the argument, let us assume as
before that the female return function is linear (see the Appendix) after
payment of the packaging cost, d, i.e., g(z,i + d) = z 1 , and hence
G(z1) = z,— n ri d. There are two cases to examine. In the first, f(d)= 0 and
the shape of .f(x ,7 + d) is such that f' is monotone decreasing (Figs. 5A—D).
From (28), the values of {x 11 *} are all equal since f is uniquely invertible,
and f" < 0, i.e., .x,1 * = x„.* (x,*In„)— d for all j and r (Figs. 5B—D). For
the case in which n, = 1 (Fig. 5A), and the fixed cost d is the same for both
males and females, the situation is identical to the model studied in Sec-
tion 3, where k, varies and the shape of the male return function is
described by t = 1, s < 1. In this case large departures from a 1:1 population
allocation ratio and strong individual-level biases are expected (see Sect. 3).
When d is small relative to x 1/" (Fig. 5B), the return curve F(x1) quickly
approaches linearity as n,, increases, thus resurrecting Fisher's (1930)
equal investment theory for the population, and diminishing expected

X7, +d
	

X +d

F'(x,*)	 G'(z,*)
E[F(x,*)] E[G(z,*)]

n„„d,	 k,—

for all i	 (27)

=0

r,	 j, r	 1, 2, 3,...,n„„	 (28)
INVESTMENT IN MALES X

FIG. 5. Returns on male investment when there is a packaging cost, d, per offspring, and

the shape of the returns for investment in each son is given by s=;, 1=1 (Fig. 4); in B,
(e//_v g . )= 0, while in C and D, (d/x,*)= 1. Note the rapid approach to linearity as the number
of sons per investment period increases, and also that the cutoff point in C and D for further
investment in each son is at the tangent where slope on further male investment equals slope
on female investment.

f(* d) = f (x „* + d),	 j

subject to the conditions

f"(x* + d) <0

(xj,* + d) =



Ei(z;) 

2Eif[f(xii)]
+ z;

(i)	 A

A<k;<6

6 <k;<y

y<k;<2,6

< k; < 1.0

x11 = 0

x11 =k;

X il =

x i = k/2

X il = 6;

x 12= 0; 	z; =

X i2 = 0;

Xi2 = 0;

Xi2 = ic;/2;	 =0

X12 = 6;	 - k; - 26.

(30)
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individual-level biases. When d is a large portion of the investment in each
offspring, the approach to linearity is slower (Fig. 5C), but by the time
n„= 10 (Fig. 5D) the return curve is once again very close to linear. This
entire argument is essentially the same when f(x 11 + d) is S-shaped
(Fig. 1C).

In summary, when the packaging costs are the same for males and
females, and n„„.= nfi = 1, then the results of Section 3 apply, and when n,
and nfi are large, Fisher's equal investment result is extremely robust (see
Discussion for exceptions). When n„ and nfi are greater than one, but still
small, the problem is more difficult, but quite interesting since this is the
situation for many mammals. This case is examined in the next section.

5.2. An Example for Small Litters

Consider the simple case in which an organism produces a litter size of
four, with n,= n = 2, and with a fairly long period of parental care. The
initial cost of the litter is 4d. Assume that when k < 4d, a female fails to
reproduce. Define k;=k 1 - 4d, and standardize k; so that 0 <k 1 and
k = 4d corresponds to k; = 0, ,,c= x i - 2d and z; z i - 2d, so that x; and z;
are male and female investments after packaging costs are paid, and
x;+ z;= k;. The returns on investment for the two female littermates are
assumed linear, G(z;)= z;, so there is no need to distinguish how energy is
allocated between the two females. Let the returns on male investment for
each male littermate be given by f(x where 0 0.5, so that a mother
with k;= 1.0 can have enough energy to invest the maximum of 1.0 in her
two sons. Define f(x 11 ) by the beta CDF [see Eq. (4)] on the interval
[0,0.5], with t = 2, s = 4 (Fig. 6).

With these conditions, we can write the reproductive success w of the ith
mother

wi(C)--- [fix ii) + f(X12)

x; + z; =

There are five regions that need to be considered (Fig. 6),
strategies of allocation depending on the resources k; available

FIG. 6. An example when broods are composed of two sons and two daughters, with

parameters a = 2, b = 6; s = 4, t = 2. Families that have resources, k;, less than will invest

entirely in daughters (returns shown in dashed line). When < k: < 6, investment only in the

first son yields the greatest reproductive success (solid curve). When ö < < y, investing 6 in

the first son and k;- 6 in daughters is the best reproductive strategy (returns shown in dot-

dash line). When ), < k; < 245, investing k,12 in each son, and nothing in daughters is the best

strategy (see text). Finally, when k;>26, greatest returns are achieved by investing 6 in each

son, and k-25 in daughters.

At equilibrium we have the following conditions,

(vi) f())(r1q)=

af(x if)
(vii) 	 	 WO=

vii

(viii) 2f(7/2 )(rlq) = f(6)(rlq) - + y

Ei(z) 

rig 2E11[f(xi1)].

The values of E(z) and 2E,1[[(x;f)] can be obtained as functions of A, 6,
and from conditions (i)-(v), given the PDF of k;, h(C). Assume h(1(;) is a
beta PDF, as in Eq. (14). Conditions (vi)-(viii) provide three independent
equations in the three unknowns A, (5, and y.

An example is shown in Fig. 6. The distribution of resources h(k) is
described by a beta PDF with parameters a = 2 and b = 6; a distribution
with a strong right skew and a mode at A- (cf. Fig. 3). The shape for returns
on investment in each son is f(x i,), which is described in this example by a
beta CDF with parameters s = 4 and t = 2 (see Fig. 6). Conditions (i)-(v)
describe the allocation strategies as a function of lef , and the returns are
given by the ordinate with the greatest height for each value of k; in Fig. 6.

(29)

and five

(31)
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To obtain the equilibrium values of 2, 6, and y, condition (vi) states that at
the smallest value of k;, called 2, where the curves cross, the returns on
pure female investment, 2, equal the returns on pure male investment,
f(k)(r1q) [see Eq. (29)]. As lf; increases past 2, the slope decreases for the
returns on pure male investment, [Of(x ii )/ox 0061), until further
investment in the first son gives returns at a slope of less than one, as
described by condition (vii). This point is called (S. As k; increases above 6,
allocating (5 to the first son and 6 to daughters gives the greatest
returns (dot-dash line). The dot-dash line crosses the second half of the
pure male investment returns curve just before 2+ 6. The intersection
occurs before 2+ (5 since the returns on pure male investment are greatest
when investing k iiI2 in each son [see Eq. (28)], rather than b in the first
and k;— 6 in the second as shown in Fig. 6. Condition (viii) describes this
intersection at k; = y.

The results for this example are 2 = 0.34, (5= 0.48, y = 0.77. Using these
values and the distribution for h(k), the population allocation ratio x'pop is
0.43. All of these values, including x`„, are independent of the magnitude
of the packaging costs, d. But the magnitude of d plays two roles. First,
x'poi, is not a true measure of the population allocation ratio, since it
ignores initial costs. The true value, x,, is given by x pop (x'pop nr„,,d)1
[1 + (n,„+rtii)(1], and taking care to standardize d in the same way as
has been standardized. When d is five percent of the maximum value of k,
in the population, then xpop is 0.44, or only slightly closer to 0.5. The
second role of d is more important for applications, since the value of d sets
the minimum amount of energy required to reproduce, and determines
what proportion of the resources available can be allocated to either sons
or daughters, and what proportion is set by initial costs. Values of 2, y,

and x'00., are presented as functions of the shapes of h(k;) and fix in
Figs. 7A, B.

5.3. A Fixed Costs Model

The assumptions for this section are that sex (gender) is environmentally
determined (ESD; Bull, 1983), and that costs of reproductive structures dif-
fer between males and females. Imagine a species with ESD in which
females brood eggs in brooding chambers, and the costs of these chambers
is independent of number of eggs produced. Plausible examples might
include plants with a small, fixed number of fruits, or many fish that brood
their eggs.

For an individual to reproduce successfully as a female, it must first
invest in female reproductive structures (fruits, brood chambers, etc.) which
cost di, and the remaining energy k, — di is invested in offspring. Reproduc-
tive returns are zero when k di, and returns are k,— di when this value is
greater than zero (i.e., returns are assumed to be linear after the fixed cost
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FIG. 7. Exploration of the parameter space for the example in which broods consist of two
sons and two daughters. A, the distribution of resources, k;, is varied, with parameters a = 2;

s = 4, 1 = 2. B, the shape of the male return curve is varied, with a = 2, b = 6; t = 2.

is paid). Likewise for males, the fixed cost is d„„ and returns are k, — dm.
Assume that the female reproductive structures are more costly than the
male reproductive structures, d„,. (Since the results are symmetric,
this assumption can easily be reversed.) A general picture of this situation
is presented in Fig. 8A. When the ith individual has small amounts of
resources available for reproduction, it will be favored to reproduce as a
male (x i = 1); when it has large amounts of resources, it will be favored to
reproduce as a female (x, = 0); and at some point, 2, returns on male and
female investment will be equal.

In general, the fitness of the ith individual in the population, w,, as a
function of its resources available for reproduction, k,, and its sex, xi , is

<k

E[k	 di )(1 - x i )] )
d,„<k,< A.	 (32)

.E[(ki—d,„)x,]

<lc 1 ..C, 1.

If we specify the distribution of resources in the population as h(k , then

E[(k d —xi)] =
J
 (k —	 h(k ,) dk

(33)

E[(k i — d„,) x 1 ] = jd (k,— d„,)h(k i )dk i .m 

To illustrate, let h(k i ) be a beta PDF with parameters a and b, as in (14).
An example with specific parameter values is shown in Fig. 8A, and part of
the parameter space is explored in Fig. 8B. In this case x, always includes

0,

w,(kix,)=

k,— di,
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FIG. 8. Fixed costs of reproductive structures differ between the sexes. A, a specific exam-
ple, with dm = 0.02, (4= 0.20, a = 2, 1)=4, yielding 2 = 0.45 and xpop =0.55; and B, an
exploration of the parameter space, with 4=0.02 and a = 2.

the fixed costs, dm and df, since they are unequal and often represent a
large fraction of the investment. The most interesting result for the cases
studied here is that when df> dr,„ x, is male biased. The magnitude of the
population bias depends on the difference di-- dm , i.e, the extent to which
the return functions differ for the two sexes.

It would be interesting to know if a male bias in xpo, always results
when df> dm . From (32) we can see that when k i = A, - dr=

(A- dm ) E(g)IE(f), and since df > dm , it follows that E(g) < E(f). This

means that the resources excluding fixed costs allocated to males by the
population, E(f), is greater than the total resources excluding fixed costs
allocated to females, E(g). Note that this argument requires that both f and
g be linear, in order for E(g) and E(f) to reflect accurately the population
allocations. Whether this male bias always holds when fixed costs are
included, or when either f or g are nonlinear, is not presently known. (I
thank P. D. Taylor for this particular result about the generality of male
bias when df > dm.)

It has been assumed here that the size of the brood chamber does not
limit the reproductive potential of a female. Heath (1977) has proposed
that a limit in the capacity of brood chambers may explain the distribution
of hermaphroditism, since such a fixed limit may make it profitable for
an individual to pay the extra fixed costs of male structures and
simultaneously reproduce as a male. He suggests that this may explain the
observed association between brooding and hermaphroditism (see also
Ghiselin, 1969). Since the model presented here does not consider limits on
female reproductive potential, it is not directly applicable to Heath's ideas,
but could easily be extended to incorporate them. See Charnov (1982) for
models of this sort.

SEX ALLOCATION PATTERNS

6. DISCUSSION

6.1. Defining an Investment Period

For all models developed in this paper, the reproductive returns on
investment are for a single investment period. An investment period is the
smallest time interval during which patterns of allocation have no effect on
relative returns in other intervals; in other words, the interval during which
an individual's amount and ratio of allocation has no effect on the dif-
ference between the sexes in potential reproductive returns during other
time intervals. Consider some examples.

(i) A parasitic hymenopteran lays one egg on each suitable host
that it encounters. Whether the egg develops into a male or a female on
one host has no effect on the reproductive returns of an offspring laid on
another host. The investment period is a single egg-laying bout (cf. Green,
1982), and the energy content of the host is the resource available for that
investment period. Thus an egg-laying sequence is a series of independent
investment periods.

(ii) High fecundity organisms invest little in each offspring relative
to total investment. Examples are fish, insects, and marine invertebrates
that lay large clutches of eggs, and do not give parental care. The number
of eggs (total investment) and ratio of males to females in the clutch has no
effect on the potential difference in returns between male and female
investment in future clutches. Thus each clutch of eggs can be treated
independently.

(iii) Human females produce one or two offspring at a time over
about a 20-yr period. The period of parental investment is long, and it is
common for parents to pass resources to adult offspring (e.g., inheritance,
dowry, brideprice, etc.). Parents may be viewed as having a nearly fixed
amount of resources to divide among their lifetime brood. What is given to
one offspring directly reduces the amount of resources available for the
others.

(iv) Most large mammals produce a small number of offspring at
one time, and the overlap between parental care for one brood and the
beginning of the next brood is usually short. However, there are a number
of cases in which it is clear that one sex is more costly to rear than the
other (Clutton-Brock et al., 1981; Clutton-Brock and Albon, 1982). One

example is the greater frequency of skipping the following breeding season
after rearing a male offspring in red deer (Clutton-Brock et al., 1981). A

complementary example is the longer period until the next birth after rear-
ing a female child in some primates. In these species daughters inherit
maternal status in the local band, and often receive high levels of maternal
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investment, while males disperse after weaning, and often receive lower
levels of maternal investment (data reviewed in Hinde, 1983). In red deer
and these primates there is a negative correlation between the resources
expended in one period and the resources available in the next. However,
the correlation is weaker than in the human case, where resources given to
one offspring are directly taken away from the total resources available for
others. So, this situation is best characterized by the transition probabilities
describing the amount of resources available and amount expended in
one period, and the resources available for future breeding periods. The
different methods for analyzing these four types of investment periods are
discussed in the following section.

6.2. Robustness of Equal Allocation

When returns on investment differ between the sexes, Fisher's (1930)
equal allocation theory does not hold. To analyze a particular situation, we
need to consider (a) the length of an investment period, (b) the male and
female return curves per offspring, (c) the number of offspring in an
investment period, and (d) the shape of the resource distribution curve.
The strong effect that the shape of the resource distribution curve has on
individual and population patterns was clearly illustrated in Figs. 4, 7, and
8, and will not be discussed further. The potential magnitude of this effect
has not been appreciated before, since it is only apparent within a general
quantitative approach.

Competition among male relatives, among female relatives, and
inbreeding also affect the allocation ratio by setting the shapes of the return
curves, but these effects will not be discussed here since this theory was
recently synthesized and the literature reviewed (Taylor, 1981; Charnov,
1982; Nunney, 1985; Frank, 1985, 1986a, b). Also, it is assumed here that
control of the sex ratio is by autosomal genes with additive effects only; or
equivalently, that the "realized" level of selection is the individual
(Hamilton, 1967; Charnov, 1982; Maynard Smith, 1982; Frank, 1983).

(i) Sequential independent periods of investment and one offspring per
period. Here all that must be considered are the return curves on
investment for a single offspring of each sex, and the models of Section 3
(Fig. 4) apply. This situation will often be associated with extreme
individual- and population-level biases away from 1:1, since increasing
numbers of offspring per period make the return curves more nearly linear
(Sect. 5).

(ii) Sequential independent periods of investment and many offspring

per period. The returns for both males and females will be very close to
linear because of the "smoothing" effect of large clutch sizes (Figs. 5A–D).
If the fixed and packaging costs are the same for both sexes, and there is no

inbreeding or within-sex competition among relatives, then equal allocation
is a very robust prediction, and little individual-level variation is expected.
If the fixed or packaging costs differ between the sexes, or clutch size is
small, then the models of Section 5 (Figs. 8A, B) apply.

(iii) Sequential broods and fixed amount of resources for lifetime

investment. The results for this case depend on lifetime brood size. If the
lifetime brood is one, then the models for (i) above apply. If the lifetime
brood is large, then the models for (ii) above apply. When the lifetime
brood size is small, the situation is complex, and both individual- and pop-
ulation-level biases are expected (Sect. 5, Figs. 6. 7). The extent of these
biases will be less than for single-offspring broods, since multiple offspring
tend to reduce nonlinearities (cf. Figs. 4B and 6).

(iv) Sequential broods and a negative correlation among amounts of

resources available in each period, described by transition probabilities
between amounts available and invested in one period and amount
available for the next. Many organisms fall into this category, for which
there is no quantitative theory. The Trivers and Willard (1973) hypothesis
is a qualitative prediction suggesting that the sex ratio at birth produced by
an individual should be skewed in favor of the sex with greater reproduc-
tive returns. For example, in a polygynous species a mother in poor con-
dition is predicted to have more daughters, and a mother in good con-
dition more sons. There are data from some species consistent with this
hypothesis (Trivers and Willard, 1973), although the existence and ubi-
quity of a labile birth sex ratio in vertebrates has been questioned (Myers,
1978; Williams, 1979). Nearly all of the species that have been examined to
test the Trivers–Willard hypothesis are of the sort that have sequential
broods and a negative correlation in resources expended in one period and
those available in the next, these species being mostly ungulates and
primates. Attempts have been made to compare the population allocation
ratios in these species to some quantitative predictions, such as Fisher's
(1930) equal allocation theory, but no firm conclusions have been reached
(e.g., Clutton-Brock et al., 1981; Clutton-Brock and Albon, 1982). The
results from the present paper suggest that these sorts of comparisons are
unsatisfactory, since no adequate quantitative theory exists for population
allocation in these groups.

APPENDIX: NONLINEAR RETURNS FOR BOTH SEXES

The models in this paper all assume linearity for returns on investment
in one sex, and nonlinearity for the other sex. Here I provide an example of
how to approach a problem in which returns are nonlinear for both sexes.
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In the simplest case, all individuals have the same amount of energy to
invest, and at equilibrium all invest x* in males and 1 — x* in females. The
equilibrium for this case was shown to be [Eq. (3)]

f'(x*)	 x*)

f(x*)	 g(1 x*).

If f(x*) is a beta CDF with parameters s, and t n„ and g(1 — x*) is a beta
CDF with parameters st and t1 , then at equilibrium

(x) s- - 1 (1 —	 (1 — x)-v - 1(x)"
sj (g) sm - I(	 )1m	 dq So (r)-v- 1 (1 —	 dr

or, rearranging

(q), 10 ___ g y„, - 1 dq

(r)V (1 —	 dr.

This equation can easily be solved by standard numerical techniques. The
same general approach can be applied to the models of Sections 3 and 5.
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