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Models of sex-ratio evolution in structured populations are derived with
G. R. Price's covariance form for the hierarchical analysis of natural selection
(1970, Nature 227, 520-521). Previous work on competition among related
males for mates (local mate competition), competition among related females for a
limiting resource (local resource competition), inbreeding, group selection, and
asymmetry of genetic inheritance between males and females, are subsumed under
a general formulation for sex-ratio biases in structured populations. I found
that the evolutionarily stable strategy sex ratio (males : females) for diploids
is 1 —p„,: 1 — pf, where p m is the regression coefficient of relatedness of the
controlling genotypes on males competing for mates, pf is the regression of
controlling genotypes on females that compete for a fixed, limiting resource, and
there is no inbreeding. For inbreeding and no competition among females, the
evolutionarily stable strategy is 1— p m : 1 + p,,,,, where NT, is the regression of
controlling genotypes on females' mates. 	 CC 1986 Academic Press, Inc.

Many interesting behaviors reflect a tension between the selfish pursuits
of some individual or entity within a local group, and the extent to which
the ultimate success of that individual also depends on the vigor of its local
group. To name just a few of the most popular puzzles, there are the
(almost) sterile castes of social insects, in which workers rarely produce
offspring, but perhaps gain by the greater success of their colony, which
contains a high proportion of identical genes (Hamilton, 1964, 1972).
There is the kin group, where the principle of self-sacrifice for a relative
depending on the level of relatedness (Hamilton, 1964) has been accepted
as one of the guiding principles of behavioral ecology. Meiotic and gametic
drive are further examples	 the increased success of part of the genome
that possibly reduces the overall success of the genome (e.g., Haldane,
1932; Hamilton, 1967; Alexander and Borgia, 1978; Eberhard, 1980;
Cosmides and Tooby, 1981). The most recent slogan capturing this idea is
"selfish DNA with self-restraint": genetic elements that can replicate and
spread within the genome; but the ultimate success of the elements (relative
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rate of propagation) also depends on the success of the genome, and so
prudent production is favored (Doolittle et al., 1984). The list is endless
and itself fascinating, the natural outgrowth of the hierarchical
organization of life (e.g., Lewontin, 1970; Hamilton, 1975, 1978; Alexander
and Borgia, 1978; Wilson, 1980; Frank, 1983a).

A great deal of effort has been devoted to generating and arguing about
terms and styles of explanation for hierarchical phenomena (e.g.,
Charlesworth and Toro, 1982; Borgia, 1982; Wildish, 1982; Colwell, 1982;
Harvey et al., 1985; Nunney, 1985; and reviews of Doolittle, 1982; Wilson,
1983; Grafen, 1984). The arguments have often suffered for lack of a
suitable formal description that is both general and captures in an intuitive
manner the crux of the problem. Formal treatments of particular subjects
have usually been mathematically ingenious and complex, but are
impenetrable for most, and not well suited for generalization. There is,
however, a simple and powerful method for analyzing natural selection in
hierarchically organized settings (Price, 1970, 1972a), which has only
recently received much attention (see next section for references). Here I
illustrate this general method for hierarchical selection by unifying a
segment of sex-ratio theory which has been very controversial, and which
has proved difficult to analyze formally.

Sex ratios have received a great deal of empirical and theoretical atten-
tion [see reviews by Charnov (1982) and Frank (1983a)]. Empirically, sex
ratios can be measured with much greater precision than most other traits
that are so clearly associated with fitness. Thus, sex-ratio predictions are
testable. There are two related reasons for the theoretical excitement. First,
the fitness accruing to the producer of a particular sex ratio is frequency
dependent. When males are rare, making males yields a high fitness, and
when males are common, producing them is a strategy with low fitness
(Fisher, 1930). At some sex ratio the reproductive returns on energy
invested in sons equals the reproductive returns on energy invested in
daughters, and the producer of this allocation enjoys the greatest fitness
(reviewed by Charnov, 1982). Therefore, when an individual allocates its
resources into some proportion of male and female reproductive functions
(e.g., staminate versus pistillate flowers, sons versus daughters, etc.), the
best allocation in terms of fitness depends on what other members of the
population are doing. Charnov's (1982) synthesis of the theory and
empirical evidence regarding sex allocation demonstrates the richness of
this subject.

It is well known that under frequency dependent selection phenotypes
that maximize individual fitness are often suboptimal for the subpopulation
or population (reviewed by Wright, 1969). This leads to the second aspect
of excitement about sex-ratio theory. The sex ratio that yields the greatest
fitness within a local group or subpopulation is different from the sex ratio

that maximizes the growth of the group. When the groups differ in their
genetic composition, the fitness of an individual within the population will
depend on both its success within the group, and the group's success within
the population (Hamilton, 1975, 1979; Colwell, 1981; Wilson and Colwell,
1981). And in much the same way, different subsets of the genome may
increase their rate of propagation at a sex ratio different from other subsets
of the genome. For example, matrilineally inherited genes are passed only
to daughters, and so favor a female-biased sex ratio (Shaw, 1958;
Hamilton, 1967); while autosomal genes are passed equally to sons and
daughters, and favor equal allocation of resources into each sex (Fisher,
1930; Shaw and Mohler, 1953; Charnov, 1982). These sorts of hierarchical
conflicts over the sex ratio, among different parts of the genome within an
individual, individuals within a group, and groups within the population
were reviewed in a previous paper (Frank, 1983a). In the present study
hierarchical selection theory is formally applied to the simplest sorts of sex-
ratio problems in which hierarchical conflicts exist. New results are derived,
and both new and old work are unified within a general framework for sex
ratios in structured populations.

HIERARCHICAL SELECTION THEORY

Several workers discovered independently that an elegant formulation of
natural selection can be derived by treating fitness as a quantitative
phenotypic character, so that the intensity of section depends on the
covariance between fitness and additive genotypic value (Robertson, 1966,
1968; Li, 1967a, 1967b, 1976; Price, 1970, 1972a; Crow and Kimura 1970).
The simplest version of the model is Aq = Cov(w, Q)/11), where q is a pop-
ulation allele frequency, w is the fitness of a particular genotype, w is pop-
ulation fitness, and Q is the additive genotypic value representing the allele
frequencies within each individual (e.g., if q is the frequency of a, and p of
A, p + q= 1, then AA is assigned the genotypic value 0, Aa the value 0.5,
and as the value 1). This simple covariance selection formula allowed Li
(1967a, 1976) and Price (1972b) to clarify Fisher's (1930, 1941, 1958) Fun-
damental Theorem of Natural Selection. Seger (1981) used this model of
selection to synthesize previous work on the appropriate coefficients of
relatedness for kin selection theory, developing a new measure that sub-
sumes previously used coefficients. Uyenoyama (1984a) also used the
covariance approach to develop a genetic representation of the cost of
meiosis.

Price (1970, 1972a) developed a more general version of the covariance
formulation that allows the components of natural selection to be par-
titioned in a hierarchical fashion. [For further discussion of the method,
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see Hamilton (1975), Arnold and Fistrup (1982), and Wade (1985).]
Hamilton (1975), Wade (1980), Uyenoyama (1984b), and Ohta (1983)
have given some applications of this hierarchical model to simple group
selection and altruism problems. Three features of Price's formulation make
it simultaneously simple, exceedingly general, and intuitively meaningful in
its biological applications.

(i) The equation treats two successive levels of selection con-
tributing to a single overall process.

14 7 zlq—Cov(wd,qd)+ E(wd Aqd).	 (1)

The levels analyzed may be freely chosen. Thus q may refer to the fre-
quency of any sort of particle or unit. Typically, however, the allelic, trans-
poson, chromosomal, or individual level will be represented by q. d can
refer to any grouping of units represented by q, such as alleles grouped
within an individual, individuals grouped within a subpopulation, etc. A d-
type group contains a unit (e.g., allele) frequency qd . The population fitness
represented by q; may refer to any higher grouping of units above, d, e.g., a
traditional biological population, a symbiotic association, or the biosphere.
The covariance term quantifies the contribution of among-group selection,
while the expectation term describes within-group selection, thus formally
separating the two processes.

(ii) The equation can be used to expand itself, and thus fitness can
be partitioned into any number of hierarchical levels. Replacing the
covariance term by the product of the regression and the variance, and
using the equation to expand the last term, one obtains

w Aq= R( w d, qd ) V(q d)+1(xd[Rd( W di, 'Li) V d(q di)
d

E d( W di A q di)]
	

(2)

where a d is the frequency of d-type groups.

(iii) Each term of the equation has a natural biological inter-
pretation. As an example, let q represent the frequency of a particular
allele, di an individual within a d-type group, and d a group of individuals
within the population. Then Aqdi represents the change in allele frequency
among the set of successful gametes within the di th individual, Rd(w,,,qdi)
is the slope of the fitnesses with respect to additive genotypic values of di
individuals within d-type groups (i.e., strength of within-group selection),
and R(wd,qd) is the slope of group fitnesses within the population with
respect to genotype frequencies of the groups (i.e., strength of among-group
selection). V(qd) is the among-group variance, and V d(qdi ) are the within-
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group variances. These variance terms quantify the relative importance of
the among-group and within-group selection coefficients, and highlight the
role that among-unit variances play at all levels of selection.

SOLUTIONS FOR FIVE SCENARIOS

There are three goals of this section. First, the generality of hierarchical
selection theory is illustrated by deriving sex-ratio predictions for the com-
mon population structure scenarios that have been discussed in the
literature, thus unifying this segment of sex-ratio theory. Second, solutions
for this set of scenarios allow the various causal mechanisms underlying the
predicted sex-ratio biases to be evaluated. Third, the results suggest very
general, qualitative sex-ratio trends that are predicted under the conditions
of each scenario. These scenarios are quite artificial, and are not meant to
be an accurate description of any real organism. A priori predictions for
particular organisms must be derived from the organisms' specific natural
history details; an example of specific predictions and a relevant data set
for fig wasps are presented in a second paper (Frank, 1985).

Local Mate Competition

Fisher (1930) asserted that the sex ratio will evolve so that the energy
invested in males equals the energy invested in females. The essence of
Fisher's reasoning was that a member of the rarer sex would, on average,
leave more offspring than a member of the commoner sex. Hence, the
argument goes, more grandchildren accrue to a producer of the rarer sex,
and eventually there follows the population-wide equal investment in the
sexes.

Hamilton (1967) noted two latent assumptions in Fisher's theory. First,
the genes that control the sex ratio must be inherited in a manner
uncorrelated with sex (Shaw and Mohler, 1953; Shaw, 1958). There is
much evidence that suggests that a strong association exists between
cytoplasmic (maternal) or sex-linked inheritance patterns and highly
skewed investment ratios in the sexes (e.g., Bateson and Gairdner, 1921;
Rhoades, 1933; Howard, 1942; Zimmering et al., 1970; Werren et al., 1981;
Skinner, 1982; Frank, 1983a; Laughnan and Gabay-Laughnan, 1983).
When these inheritance patterns occur, a parent is asymmetrically related
(AR) to male and female offspring (see also Hamilton, 1972; Trivers and
Hare, 1976; Alexander and Sherman, 1977; Charnov, 1978; Uyenoyama
and Bengtsson, 1981, 1982). The second assumption Hamilton (1967)
noted is that there must be genetically random competition for mates
among males (i.e., there is no local mate competition, LMC). In his 1967
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paper Hamilton gave analytic results for two simple scenarios. Later,
Hamilton (1979) presented a general solution that simultaneously
addresses AR and LMC, and includes the 1967 results as special cases (see
also Uyenoyama and Bengtsson, 1982). Combining AR and LMC is par-
ticularly useful, since the organisms most commonly studied for LMC are
haplodiploid (Charnov, 1982), which is genetically equivalent to sex
linkage and male heterogamety (XX females and XO males), thus violating
the symmetric inheritance assumption when the mother is inbred (see
below).

In the remainder of this section, (i) Hamilton's (1979) general result for
combining AR and LMC is reviewed and the previously reported predic-
tion for haplodiploidy is derived as an example, (ii) the assumptions
underlying this general result are presented, (iii) a proof of this result is
given by using hierarchical selection theory, and (iv) the assumptions and
difficulties of the method are discussed. With the details of this scenario
explained, the next four scenarios will require only new or altered
assumptions and a sketch of the derivations.

General Result for AR and LMC

Hamilton's (1979) model for the evolutionarily stable strategy (ESS of
Maynard Smith and Price, 1973) sex ratio (males/total) when the sym-
metric inheritance and random mate competition assumptions are violated
can be written as

r* = (1/2) RP (it	 (3)

where (1/2) is Fisher's (1930) equal investment result, R is Hamilton's
(1979) coefficient of inheritance asymmetry between the sexes, and P dr is
Wright's (1969) index of panmixia. R=2B,I(Bps + Bpd), where Bps and Bpd
are Hamilton's (1972) "complete" regression coefficients of relatedness at
the sex-ratio locus for the parent that controls the sex ratio to son and
daughter, respectively, or for the sex of the sibling that controls the brood
sex ratio to brother and sister, respectively (Trivers and Hare, 1976;
Uyenoyama and Bengtsson, 1982). These coefficients are proportional to
the inclusive fitness benefit (or genetic valuation) to a parent of an act
directed toward a son or daughter, and are equivalent to the weighted coef-
ficient G' in the review on coefficients of relatedness by Pamilo and Crozier
(1982). A genetic element on a diploid autosome in a parent is equally
likely to be in a son or a daughter, so inclusive fitness benefits are equal for
acts directed at sons and daughters, and R=1. For elements on a Y
chromosome in heterogametic males (or for a patrilineally inherited
element), Br = 1 and Bid = 0, so R = 2. For elements on a Y (or W)
chromosome in heterogametic females (or a matrilineally inherited
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element), 13,,,,s = 0 and B = 1, so R= 0. The values of B for elements on
an X chromosome can be obtained from Table I. For example, if females
are XX, males XY or XO (as in haplodiploids), and the sex ratio is mater-
nally controlled, then &is = 1/2 and B = (1 + 3F)/(2 + 2F), and R=

(1 + F)/(1 + 2F), where F is Wright's fixation index, here measuring the
extent to which individuals are inbred (Wright, 1969). Formally, Pd, is the
expected within-deme variance in additive genotypic values divided by the
population variance, and here characterizes the population structure. By
construction of the model, Pdt measures both the genotypic correlation
among competing males (LMC) and the genotypic correlation between
mates (see the later section on the interpretation of biased sex ratios). With
knowledge of the type of genetic control, with F, the index of inbredness

known for calculating R, and with Pc, known to set the level of LMC and
inbreeding, a specific prediction for r* can be derived.

Throughout the paper, I will use the term inbredness to mean the
correlation F between alleles within an individual (or sometimes
individual's alleles plus mate's alleles) that controls the sex-ratio
phenotype. The term inbreeding will be used to describe the genotypic
correlation (1 — Pdt ) between mates among the set of individuals that are
the expression of the sex-ratio phenotype. In the usual case, the mother
controls the sex-ratio phenotype, and inbredness refers to the correlation
among her alleles plus here mate's alleles (mated composite); and
inbreeding refers to the genotypic correlation between the mothers of mated
pairs (see below). This may seem rather tortuous, but the distinction is
important for clarifying the causal mechanisms underlying biased sex
ratios, an issue which has been very muddled in the past. I thank R. K.
Colwell for suggesting these two terms to help clarify the distinction
between the two ways in which forms of inbreeding affect sex ratios.

Before giving the proof for (3), I derive as an example the result for
maternal control in haplodiploids. To obtain values for F and P

TABLE I

"Complete" or "Life-for-Life" Regression Coefficients of Relatedness of Parents
to Offspring for Sex-Linked Loci (from Hamilton, 1972; see also

Uyenoyama and Bengtsson, 1982, Table IV).

Offspring

XY or X0	 XX

Controlling parent
	

XY or XO
	

F1 + F

XX
	

1/2	 (1 + 3F)/(2 + 2F)
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assumptions are needed about the population structure. The usual scenario
for studying LMC consists of eight assumptions. (i) The population is
divided into an infinite number of demes, each colonized by a constant
number of females, N. (ii) Females mate randomly with members of the
deme in which they were born, and store the sperm. (iii) Within their deme,
males compete randomly with respect to genotype against other males. (iv)
The deme disintegrates after one generation and the mated females disperse
and colonize new demes. (v) Each female invests a constant amount of
energy in offspring, K. (vi) The cost of producing a female equals the cost
of producing a male, hence sex ratio equals sex investment ratio. This
assumption is probably not necessary for most conditions (MacNair, 1978;
Uyenoyama and Bengtsson, 1982), however, all my studies were based on
number of offspring, rather than amount of energy allocated to each sex.
(vii) Male's only investment in offspring is sperm, and each male can
potentially fertilize many females. In addition to these seven assumptions, it
was also usually assumed that the already mated females settle into new
demes each generation in a random fashion with respect to genotype.
Under these assumptions, the inbredness of an individual is F= y/(4 — 3y),
where y is the amount of sib mating in each generation (Li, 1976). In this
scenario the probability of sib mating is 1/N, hence F= 1/(4N— 3). Using
Table I for haplodiploids, R= (4N — 2)/(4N — 1). The additive genotypic
variance within a deme is a sampling variance, s2, for a random sample of
size N. The expected value of s 2 is [(N —1)1N]V, where V, is the pop-
ulation variance (see the final section for the interpretation of variance
terms). Hence Pd, is (N —1)1N, and

	

r* = (1/2)[(4N— 2)/(4N— 1)] [(N —1)IN]	 (4)

as reported by Hamilton (1979), Taylor and Bulmer (1980), and
Uyenoyama and Bengtsson (1982). Uyenoyama and Bengtsson (1982)
showed, with different techniques and under slightly different model
assumptions, that (4) is actually unstable to all other sex ratios. Biological
interpretations of this result remain unclear: for example, a complex
evolutionary dynamic may ensue, or the result may be stable on a small
neighborhood surrounding (4). Equation (4) has gained qualitative
empirical support (Wilson and Colwell, 1981; Werren, 1983; other studies
reviewed in Charnov, 1982), but quantitative discrepancies between this
prediction and observations have been noted (Hamilton, 1979; Frank,
1983a, 1983b). Many of the assumptions underlying (4) are unrealistic.
Assumptions and predictions that are more realistic are presented in a
second paper (Frank, 1985).
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Assumptions and Proof

The proof of (3) is modified from a set of unpublished notes kindly made
available to me by W. D. Hamilton. The first seven assumptions are the
same as listed above for the haplodiploid case. The eighth assumption
above, that females settle randomly, is not needed. Any pattern of settling
is allowed. In addition to these seven assumptions: (viii) The sex ratio, r, is
controlled by a single locus that may be autosomal, sex-linked, or
cytoplasmic. (ix) If the locus is not autosomal, R will differ for maternal
versus paternal control of the sex ratio. Only one parent will control the
sex ratio, and R will be for that parent (usually the mother). (x) Individual
females that are already mated and store sperm are treated as phenotypic
sex-ratio units, consisting of their own genotypes plus that of the stored
sperm. (xi) The only type of within-sex competition is local competition for
mates among males. Food and other resources are not limiting for either
males or females.

The argument in this section will be cast as a phenotypic argument; in
the next section the terms will be redefined to show how this argument
relates to a fully genetical one. Since the goal here is to find an ESS
phenotype (i.e., sex ratio), the phenotypic argument is easier to follow
intuitively. The fully genetical explanation serves to show that while some
formal mathematical difficulties exist, they do not seem to harm the
qualitative interpretations.

Equation (3) will be obtained by finding the sex ratio r* that cannot be
bettered by a type producing a different sex ratio, either higher or lower: r*
is therefore an equilibrium sex ratio in a sense of being evolutionarily stable
against invasion once established (i.e., an ESS, Maynard Smith and Price,
1973). This solution is achieved by searching for the sex ratio produced by
a type such that, for any other type producing a sex ratio different from r*,
with frequency represented by q, IT, A q of (2) is always less than zero.

To begin, we need expressions for the terms in (2). Let there be two sex-
ratio types ("type" is the phenotype produced by the genes of a female plus
the genes of her mate): a which produces sex ratio r „, with frequency
represented by p, and b which produces sex ratio rb , with frequency
represented by q. Let the subscript i represent individuals within demes
colonized by N females, and demes be indexed by the subscript d. Demes
within the population are described by the number of b types they contain,
d= 0, 1, N, with associated probabilities ad . pd and q d are the frequen-
cies of the a and b types, respectively, within a d-type deme (qd = d/N), and
rd =pdra +qdr,=ra —S2qd , where Q = r„—rb is the difference between the
sex ratios of the two types. In a d-type deme, the expected number of
inseminations per son is (1 — rd )/rd , the number of females divided by the
number of males in the deme. This is the Fisherian frequency dependent
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valuation of sons. Thus for an a type, the expected number of
inseminations by sons is proportional to r a [(1 — rd)/rd], the number of
daughters is proportional to 1— ra , and the genetic valuation of a son is
Bps , and of a daughter, Bpd . So

wdi(a ) =ra[( 1 rd)/rd] Bps + ( 1 — ra)Bpd,
	

(5)

likewise for wd„(b), replacing a with b. Measures similar to w d„, the genetic
representation in future generations, have been used by Shaw and Mohler
(1953) and MacArthur (1965); see also "effective fitness" of Uyenoyama
and Feldman (1981) and "representational fitness" of Uyenoyama and
Bengtsson (1982). Since there are two sex-ratio types, R d(w qd„)=
wd,(b)—w„,(a), or, setting Bps + Bpd = B,

Rd(wd„q„,)= —Q(Bps Ird — B).	 (6)

And,

wd— Pd w di( a )+ gd w di( b )— ( 1 — r d) Bps + ( 1 rd)Bpd

= (1— r d)B = (1— r„ + Qqd)B.	 (7)

The gradient of w d on qd can be taken directly from (7):

R(w d , q d ) = SIB.	 (8)

By assumption (x), individuals are considered indivisible types, therefore
Aqd„ = 0 (see below for justification). Substituting into (2),

w Aq= QBV(q„)— Q	 dVAdi)(BpsIrd— B)
	

(9)

where E is the summation over d unless otherwise noted. Using a standard
method for locating an ESS [described by Maynard Smith (1982) and
Uyenoyama and Bengtsson (1982)],

00 Aq

Orb ra = rb = r* 
= —B V(qd)+(Bps 1r * — B)Il d V ch) = 0.	 (10)

The derivative with respect to rb locates the best sex ratio for the b types
(greatest value of 0 Aq) assuming ra is fixed. At ra =rb there is no selection,
so IV Aq = 0; thus evaluating the derivative at this point defines ra = r* such
that w Aq 0 for all rb on [0, 1], since the second derivative is everywhere
negative on [0, 1], and when r„=r*,0 Aq can be shown to be negative for
rb close to ra . (Restricting rb to be close to ra is required since R depends
on the intensity of selection, see below.) Since E ad Vd(qd,) is the expected

322	 STEVEN A. FRANK

variance within a deme, V,, and V(qd) is the among-group variance, it
follows that V wd + V(qd)=V„ where V, is the total variance. Solving,

r* =(Bps 1B)(VwdIV,)= (1/2) RPth•

Discussion of Assumptions and Method

There are four types of assumptions that need to be mentioned: (i)
stochastic effects, (ii) conditional behavior, (iii) asymmetry between the
sexes, and (iv) the assumption of sex-ratio phenotypes without specifying
the underlying genetic basis.

(i) Stochastic effects. The model assumes, unrealistically, such things
as (a) no variance in male success within a deme, (b) no variance in num-
ber of offspring per female, (c) all demes formed by exactly N foundresses,
and (d) all females of a particular sex-ratio phenotype producing exactly
the same sex ratio. Assumptions (b) and (c) will be relaxed and treated as
stochastic in a model presented in the second paper (Frank, 1985). The
general method can probably also be extended to treat (a) and (d) as
stochastic. When (a) does not hold, the ESS appears to become more
female biased (Wilson and Colwell, 1981); when (b) is violated, the effec-
tive deme size is reduced, again causing the ESS to become more female
biased (Charnov, 1982; Frank, 1983b). If deme size varies, then the expec-
ted value of Pth is likely to be affected (Frank, 1983b), and the effect
of a nonzero variance in the sex ratio around the ESS has not been
explored.

(ii) Conditional behavior. The model assumes that an individual
produces a genetically fixed sex ratio. It is well known that certain
organisms, such as the haplodiploid Hymenoptera, can adjust their sex
ratio according to local conditions (see Charnov, 1982). Situations in
which individuals are allowed to vary their sex ratios in response to certain
local conditions have been discussed in the literature (Trivers and Willard,
1973; Werren and Charnov, 1978; Charnov et al., 1981; Clutton-Brock et
al., 1981; Werren, 1980, 1983), and a few such models are presented in
Frank (1985). For example, the proportion of males produced by fig wasps
is positively correlated with deme size (Frank, 1983a, 1983b).

(iii) Asymmetry between the sexes. The models in this paper assume
that males do not invest anything in offspring except sperm, and that a
single male can potentially fertilize many females. When males do divide up
some resource among their progeny, the success of each progeny decreases
with increasing number of inseminations. A model reflecting male
investment could easily be contracted by adjusting wd, in Eq. (5).
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(iv) Genetical basis of phenotypes. Finding an ESS phenotype is
equivalent to asking if there is a particular phenotype from some specified
set that, when near fixation in the population, is such that no other rare
phenotype enjoys a greater fitness. The argument is constructed by study-
ing the direction of evolution between all possible pairs of phenotypes. This
was the method used in the previous section, but much still needs to be
explained. Selection is most easily thought of as occurring among
phenotypes, and so it was simplest to set up the expressions for fitness, wdi,
as depending on the frequency of phenotypes, as in all derivations of this
paper. But in sexual populations phenotypes are, of course, not inherited
whole, so phenotypic fitness is an approximate sort of reasoning.

A rigorous population genetics model for partial sib mating (and thus
also some competition among brothers, or LMC) and for all types of
genetic control is given by Uyenoyama and Bengtsson (1982). They
obtained the general result r = (1/2) R(1— k), when there is no dominance
and k is the proportion of sib mating. They discuss conditions for an ESS
to exist, and distinguish rates of approach to the ESS for various scenarios.
Their results are equivalent to Eq. (3) under the above LMC scenario. The
relationship between k and P dr is discussed in the final section of this paper.

Phenotypic success, as used in the above derivation, must be translated
into genetic success. In the derivation, it was assumed that only two sex-
ratio phenotypes exist. One phenotype was designated (algebraically) to
always be the more successful type, denoted the "a type." Now let us first
consider the simplest case: autosomal control of the sex ratio. A gene in a
parent is equally likely to be in a son or a daughter, so the number of
copies of a gene passed on to the grandprogeny generation is directly
proportional to the number of grandprogeny, and no special weighting
needs to be given to a grandchild through a son versus a daughter. w di in
(5) with Bp, = Bps = 1 is proportional to the number of grandprogeny for a
particular phenotype, and so is a measure of the rate of propagation of any
autosomal gene carried by that phenotype, ignoring meiotic drive, gametic
selection, and sampling effects (drift). The notation needs to be redefined.
Assume that the a type is homozygous, AA (with a genotypic value of 0),
at the single locus affecting the sex ratio, with any number of alternate
alleles. Any individual that is not AA at this locus is designated a "b type"
(AB with a genotypic value of 0.5, and BB a value of 1), and the fitness of
the b types, w di(b) in the models, is the average fitness over all non-AA
genotypes, where "types" here refers to the genotypes of the parent that
control the sex ratio. p now refers to the frequency of allele A, and q to the
frequency of all other alleles at the sex-ratio locus. Aq,, the change in gene
frequency within the set of successful gametes of individual di, can be taken
as zero, since meiotic drive, gametic selection, and drift are assumed
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negligible. With these assumptions the allele A must be increasing in fre-
quency in each generation, for any sort of dominance relationship and any
number of alternate alleles, and for any original frequency of A, assuming p
is not so small that AA homozygotes are rare. The only problem is that Pdt
is actually set out to measure both the genotypic correlation between mates
and the correlation among males competing for mates (see final section of
this paper), and so P di depends on both the genotype frequencies and the
difference between r„ and the sex ratios of the b types, r b . Thus deriving a
constant-valued ESS depends on further assumptions to fix P ch : that q be
rare and that rb (for all b types) be close to r a . These assumptions are
implicit for the ESSs reported in this paper. [It is often easy to show that
the equilibrium is stable against any value of rb by setting ra = r*, and
checking the sign of IV Aq for all r b . Hamilton (unpublished) has shown this
for (11) when R= 1; see also Colwell (1981), Wilson and Colwell (1981),
and Uyenoyama and Bengtsson (1979, 1981, 1982).]

For nonautosomal control, the number of grandprogeny through a son
needs to be weighted by the the probability that a son will transmit a
replica of a parental gene relative to the probability that a daughter will
transmit a replica of a parental gene. Such a weighting is the regression
coefficient of relatedness developed by Hamilton (1964, 1970, 1972) and
later analyzed in greater detail by several authors (reviewed by Seger, 1981;
Uyenoyama and Feldman, 1982). Uyenoyama and Bengtsson (1979, 1981,
1982) prove that this method of weighting sons and daughters is correct for
sex-ratio problems, subject to the difficulty of properly specifying the coef-
ficients of relatedness, which depend on the frequency of genotypes, the
intensity of selection, and the form of dominance.

In deriving (4), the ESS sex ratio for haplodiploidy under maternal con-
trol, the coefficient of relatedness was obtained by using the values of F and
P dt expected for a neutral locus (rb very close to ra ). Since (4) was also
obtained by studying the recurrence relations for all possible genotypes and
random mating within demes (Taylor and Bulmer, 1980), using F and Pdt
for a neutral locus appear valid under certain circumstances. Uyenoyama
and Bengtsson (1982) reported that for every model they studied, the coef-
ficient of relatedness expected under no selection is the only possible can-
didate for an ESS, when the common allele is either completely dominant,
completely recessive, or there is no dominance. Perhaps because an ESS
type must do better than all possible types, and the second derivative of
IT; Aq with respect to rh is a negative constant (i.e., IV Aq as a function of rh
is a smooth curve with a single peak at r = rh = r*), the only situation in
which the b type poses a serious threat to the a type is when rb is very close
to ra , and hence the rate of selection is vanishingly slow. (For general dis-
cussions of the relationship between phenotypic and genetic models, see
Maynard Smith, 1982; Grafen, 1984.)
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Local Resource Competition

Clark (1978) noted that in some primates males disperse from their natal
groups, while females remain at home and compete among themselves for a
limited resource. Under these conditions, which she called "local resource
competition" (LRC), she suggested that a male-biased sex ratio is favored.
Bulmer and Taylor (1980a) and Taylor (1981) have also concluded that
different dispersal distances of the two sexes will potentially cause more sib
competition within one sex, and that the sex ratio will be biased in favor of
the sex with the smaller degree of sib competition.

The LRC scenario is the same as the LMC scenario with the following
modifications: (a) male offspring disperse to compete and mate randomly
within the population, and (b) female offspring within a deme divide
among themselves a fixed, limited resource. With these modifications, the
value per female in a d-type deme is proportional to 1/(1 — r d), since
females split up a fixed resource; and the average value per female in the
population is E[cx,/(1 — rd)]. The expected number of inseminations per
male is the number of females divided by the number of males, or (1 — r;

where r is the population sex ratio, E ad rd . For an a type, the investment
in males is ra , and in females, 1— r a . So

w di(a)= r a [(1 — r)Ir] [E 0, d1(1 — r d)]Bps + [(1 — ra )1(1 — r d)] B ed .	 (12)

Expressions necessary to substitute into (2) are derived as in the LMC
scenario, and the same method is used to solve for the ESS:

r* = Bps/( Bps + BrdPdt )	 (13)

where P dt now measures the genetic differentiation among groups of
females, and there is competition for a fixed, limited resource within the
group. With random settling and autosomal control of the sex ratio, r* =

N/(2N — 1), which agrees with Hamilton's unpublished result cited by Char-
nov (1982, p. 75) that was derived by methods similar to those in Hamilton
(1967) (Hamilton, personal communication).

The Haystack Model

Bulmer and Taylor (1980b) and Wilson and Colwell (1981) have studied
two scenarios similar to the LMC scenario. In the first, g generations occur
in each deme, with only local mating, until the gth generation, when mated
females disperse to colonize new demes. In the second, g —1 generations
occur in each deme, then in the gth generation both sexes disperse before
mating, and mate randomly within the population before settling into new
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demes to begin the cycle again. The algebra presented below for analyzing
the first scenario is tedious, but the derivation points to previously hidden
processes underlying the predicted sex ratios, and is also a good illustration
of the heuristics involved in applying the Price equation to ESS analyses.

A generalization of (2) is necessary in order to analyze this scenario. Let
superscripts refer to generation: q(i) is the frequency of b types among
parents of the jth progeny generation, and is the fitness in a d-type
deme for an individual parent of the jth generation, and wV) is the
cumulative fitness of a d-type deme over g generations. Generalizing (2) so
that IT; Aq refers to one set of g generations within demes, and up to and
including the founding of new demes to begin the next set of g generations,

Aq = R(w(dg ), q (Y)) V(q()))

	+ E d[ R 1( 141 ), qdli ) ) v d(qdii))],
	 (14)

assuming Aq dj = 0, as in the LMC scenario. For simplicity I assume
autosomal control of the sex ratio, so one can take Bps = Bo= 1, and
B = 2, since Br, and Bpd are the relative weights of sons and daughters.
Reasoning as in the LMC scenario, Eq. (7), w (di) = (1 — rV))B = 2(1 — r(di)),
so

W =	 w(,1 ) = 2g 11 — r(n)
	

(15)

where II is the product over j = 1,	 g, unless otherwise noted. Similarly,

w (j)( a ) = 11 w(d'i ) ( a ) = II a( 1 r(i ) )1rW ) — ( 1 — ra)]

_fl (ra lr(f) + 1 — 2r a )	 (16)

and,

	

Rd(wV,), q(1)) = w(!)(b) — w(R) (a) = C,. 	 (17)

Noting from Eq. (1) and (2) that

R(w(dg ), q(do ) V(q(d1 ))= Cov(w(dg ), q!)))

=I 2 d w(dg) ( q(d" q(1))

=2g IA() ) q(1))	 (1 — r(j))= C 1 ,	 (18)
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we now have

Aq = C 1 + E oc,c2d vd(q2)) C3
	 (19)

WI

Orb 
= 2 1 a d(q(d1 ) — q w ) E [Q(q(di ) I r b ) — (Pan ) ii 0 — r(dk ))	 (20)

d	 i

°C 2d =_
_E

r) + r b [Q(qW)Ir b ) — q(d,)]
 

2 ri (rb lr(dk)+ 1 — 2rb)
Orb

	

	 (rV))2i

+ E 
ra [q(di) — Q(q(dnIrb)]

(r ;))2
	

(r Ir(do + 1— 2r a )	 (21)

where 11 is the product over k = 1,	 g, with k j. At ra = rb = r*,
Q = 0, and qV) = q(d1 ) for all j, and it follows that

Ow Aq

ra = rb = r*
= g(2)g(1— r*)g -1V ad(q(1)	 (1)L	 (q 	 —q	 )q(d)Orb

+ g(2) g 1 (1 — r*) g - 1 ad(1Ir* 2) Vd(q2))= 0
d

= — 2 V(qP) + (1Ir* — 2) 11:j = O.

Solving,

r* = ( 1 /2)Pd,	 (22)

This result agrees with the central LMC result in the first scenario, with
R = 1, and is independent of the number of generations g in the haystack.
This disagrees slightly with the numerical analysis results of Bulmer and
Taylor (1980b), who found that the ESS sex ratio decreases slightly as g
increases. At the present time the meaning of this discrepancy is not clear.
Perhaps my method has ignored sampling effects within the groups in each
generation, which would increase the among-group variance and decrease
P dt in each generation (see also Grafen, 1984).

A heuristic argument may help clarify the general approach, and par-
ticularly this last result for the haystack model. First, let us return to the
one-generation LMC scenario with diploid autosomal control of the sex
ratio, and N= 2 females settling randomly (with respect to genotype) into
each deme. Let the number of offspring per female be 4. This is simply a
device to insure that we locate the ESS, which we know to be r* =
(1/2)[(N— 1)1 N] = 1/4. Table II is a matrix showing the expected number
of grandchildren for female I when she produces the sex ratio given by the
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TABLE II

Expected Number of Grandchildren for Female I in a Deme
Founded by Two Already-Mated Females

Female II

0/4	 1/4	 2/4	 3/4	 4/4

0/4
	

16
	

16	 16
	

16
1/4
	

40
	

24*
	

18.6	 16
	

14.4
Female I
	

2/4
	

32
	

21.3
	

16	 14.8
	

10.6
3/4
	

24
	

16
	

9.2	 8
	

5.7
4/4
	

16
	

9.6
	

5.3	 2.3

Note. The number of grandchildren by female I, calculated by the method described in the
text, depends on the sex ratio of each female, where rows are female I's sex ratio (male/total)
and columns are female II's sex ratio. The total number of grandchildren for both females I
and II depends on the total number of daughters, accounting for the asymmetry in the matrix.
Expected numbers of grandchildren for female II are obtained by transposing the matrix. [A
similar table can be found in Frank (1983a) and Maynard Smith (1983); see also Hamilton
(1967).] Presenting the number of grandchildren is a measure of relative fitness within the
total population. If each entry is divided by average fitness within the group [ = (i, j+ j, i)/2],
then the new entries are the relative fitnesses within groups. Such a transformation shows that
2/4 is the only stable sex ratio, which is consistent with Fisher's (1930) theory, as stressed by
Colwell (1981) and Wilson and Colwell (1981). In the final analysis, however, all that matters
is relative fitness with respect to the entire population, and the within-group fitnesses only
serve to sharpen one's intuition about the process.

rows and female II produces the sex ratio given by the columns. The sex
ratio of 1/4 is the only stable equilibrium—it is the greatest number of
grandchildren that female I can obtain when female II produces 1/4, and it
is the greatest number that female II can obtain when female I produces
1/4. The expected number of grandchildren is 4 • (number of daughters)+
4 (number of sons) [(1 — rd)/rd], where (1 — rd)/rd is the expected number
of inseminations per male.

In the first generation of a haystack model with random settling of
females, assume female I produces r* and female II produces r r*. Then
female I will have a greater genetic representation within the population
(although not within the group, Table II) among the mated females of the
second generation (daughters plus stored sperm), and there will be effec-
tively less than two females colonizing the next generation. If female I,
producing r*, continues to hold an advantage in each generation (in terms
of number of descendants) over female II, producing r r*, then r* is an
ESS. If female II's descendants do better in some future generation, then
the number of descendants for I and II will converge (assuming smooth,



	
HIERARCHICAL SELECTION AND SEX RATIOS 	 329

continuous behavior of frequencies), and the effective number of foun-
dresses again approaches N= 2, where r* will again prevail.

This discussion actually describes a haploid model, and ignores some
realistic complexities. These include the Mendelian mode of inheritance, the
tendency of groups to diverge because of drift 	 thereby increasing Pd„ the
tendency of selection to cause divergence among groups, and so on.

A common criticism of the haystack model is that it allows unrestricted,
exponential growth of demes for g generations between each dispersal
episode (e.g., Wilson and Colwell, 1981). Clearly such exponential growth
is unrealistic for anything but small clutch sizes and few generations. When
a limit is placed on the size a deme can attain, the effect of group selection
is reduced, and the equilibrium sex ratio tends back toward the Fisherian
1/2.

To develop a model with a limit on the number of individuals a deme
can support, I first present some notation. N is the number of foundresses
colonizing a deme; k is the number of offspring per female in each
generation; K is the carrying capacity per deme, here defined as number of
individuals the deme can hold without any density dependent reduction of
fitness; the jth generation is the jth parental generation, where the 1st
parental generation is the original founding females, and r(d) is the sex ratio
produced by the jth parental generation in a d-type deme; T di is the
number of individuals in deme d in the jth parental generation (which
is the (j— 1)st progeny generation) under unrestricted growth,
Td1 = NV -1 11 (1— r(d")), where 11 is the product over n= 1, j — 2; NJ,
is the number of individuals in a d-type deme in the jth parental
generation, h d, is the discount to the fitness of the jth parental generation
due to density dependent factors

h .=(KINdj )(4	 dj 0	 if Nd, <K

	=1	 if N	 K

N dj = T = Wdj—')Td,i
	

j = 1, 2,..., m d +1
	

(23)

N di = w 1d, - 1 )(N	 1)(hd,.1— 1) = w(di-1) ( Nd,i _ )(KINd,;-1)

= w(d, - K j = md + 2, m d +	 g + 1

where m d + 1 is the first parental generation that is greater than K in size.
With this notation, generation refers to parental generation, so the
(g + 1)st generation is the gth generation produced within the stack, and is
the dispersing generation that becomes the first generation of the next
episode of breeding. In this model mating occurs before dispersal. Since the
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(m d + 1)st generation is the first parental generation that is greater than or
equal to K, it is also the m d th progeny generation. Keeping in mind the
notation for generations, we can write expressions for the fitness discount
h111:

hdj = 1	 N =T <Kdj	 dj

= K/Nd1 N =Tdi K

= KINd„ = Klw 1di 1 )K = 1114)(dj-1)

Before proceeding to the derivation, the usage of "deme" (or "group" or
"patch" in the literature) needs to be clarified (this issue is discussed further
in the final section of the paper). It has been shown (Colwell, 1981; Wilson
and Colwell, 1981) that differential productivity of groups is a necessary
condition for female-biased sex ratios in LMC and haystack scenarios.
There are, however, many different ways in which group structure affects
sex ratio. Consider the standard LMC scenario with g= 1. By the notation
developed here, the first progeny generation is the second, or (g + 1)st
parental generation. The (g + 1)st generation is always the generation that
disperses and includes foundresses of the next cycle. The fitness discount
h d,g , can be treated in one of three general ways, which correspond to
three different ways in which group structure affects sex ratios. (i) Set
h d, g ± 1 = 1; that is, the fitness of the dispersing (g + 1) st parental females
does not depend on competition for resources before dispersal within the
natal deme. In this case, when g= 1, a limit on the number of progeny by
the first (founding) parental generation has no effect on the predicted sex
ratio. (ii) h dg+ , is calculated as in (24). If g= 1, there would not be any
effect on the sex ratio due to the discount (here the usual LMC result, (3),
applies), since growth of the deme and discount to females is not dependent
on the sex ratio produced, because both sons and daughters use local
resources. If g> 1, the discount may affect the sex ratio by reducing the
effect of group selection. There is no advantage to either individuals within
the group, or to the group within the population, of surpassing a group
size of K. Thus, depending on the parameters, within-group components
will be weighted more heavily. (iii) Females of the dispersing (g + 1) st
generation split up a fixed resource. Thus, the sum of the fitnesses over all
dispersing females of a deme is a constant, Ki , independent of the number
of females Ndg±1 (1 — r 1dg +1 )), and h d„, +1 = KfINd„ +1 (1 — r 1dg+1 )). This is
an LRC scenario, and is a way in which differential productivity of groups
can be suppressed for g= 1 (Colwell, 1981; Wilson and Colwell, 1981). As
Colwell (1981) and Wilson and Colwell (1981) point out for suppression of
differential productivity for g= 1, r* = 1/2 (see next scenario).

j =1,2,...,md

l=md+1
	

(24)

j=md+2,md+3,..., g+1.



OFT) Aq

Orb
- 14 h i ° .0(C3)

ra= rb=
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The general form of (2) for the three cases is

Aq = R(w (doh dp. , q (P) V(qd1))

1+	 d R d( WV hdp, qT) V ())
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where products over k are from 1 to g, with k j. Continuing,

ln h = di ln(K1Ndi)= 0
	

T di = N dj < K

(25)
	 = ln(KINd,)

	
T dj > K

where w(do	 is the cummulative realized fitness of a d-type deme after p
generations; and for case (i) it= g, for case (ii) p = g+ 1 and Ild,g+i as in
(24), and for case (iii) p= g+ 1 with	 = KfiN	 (1 - r (dg± 1 )). Here
I analyze one case (i) for autosomal control of the sex ratio. The
expressions for the regressions are as in the first haystack model, with
appropriate weightings for hdi:

From (24), KINdf =K1Tdi for j = md + 1, and KINdi =l1w(di - 1 ) for
j> md + 1. Now confine rb to the neighborhood of ra and search only for a
local equilibrium. Then, wV- 1) will change very little over j?-md + 1,
especially if a few generations have gone by before the (md + 1) st, so set
wV- =wV) for all j?, md + 1, and

ln	 = 0	 j= 1, 2,-, md

= -ln Wd+ )	 j =md + 1, m d +	 g.

IT) Aq =	 Id 2g ( q(d1) q( ")	hdi H ( 1 -

+	 ad d( q(dli ) ) {11 hdi [ 	 (rb IrV) + 1- 2r b)

For j?-m d +1

a ln h d; =_ (ilw (d+))[2(Qq (cpir 	q(di)
Orb i= md +	 g. (29)

-	 ( ra/rd' ) + 1 2ra)1}

= E n hdi(C3)
d	 j

a fl hdj (C3)ra, = 0	 (27)
arb b	 ra— rb

where hi = hdi at ra = rb for all d, and (C3 ) is the right-hand side of (19). So

Ovi) Aq

Orb

Orb

h •

ra = rb = r*	 j

= E (Ohdilerb) fl h.lc

= E h i(Oln hdi lerb ) fl h.k

= fl hE (a ln hdilerb)
j	 d

Setting k= 2 and reparameterizing K accordingly, at Q = 0 (29) reduces to
e)1(1- r*); and, with Q = 0, m d =m for all d. So

= (g m)(q (dov(1 r*)	 (30)
ra= rb= r*

Orb

Aq

ra= rb= r* 

= -2gV(q(d1))+ g(11r* - 2) 172,)

+ 2(1 - r*) ocd(e)- q (1) )(g - m)(e))1(1- r*)
d

= -2gV(q(d1 ) + g(11r* - 2) V;4 ,) + 2(g - m) V(qP)= 0

*	 (1/2) P dtr - 	 	 (31)
mIg + (1- ml g ) P dt

Recall that in+ 1 is the parental generation that first exceeds the density
independent carrying capacity, K, so m = 0 implies the carrying capacity
has been achieved by the foundresses in the first parental generation, and
r* = 1/2, as one would expect. When m= g, the density dependent interac-
tions are not a factor, and r* = (1/2) P dt , agreeing with (22), and when
0 <m < g, then 1/2(Pdt ) < r* < 1/2. It may seem than when m d < g for all
d, that the ESS should be 1/2. But by forcing the same sex ratio in each
generation for a particular sex-ratio type, the ESS is some weighting of the
advantage accruing to producers of many colonizing females in the final,

= hi[-2gV(e))+ g(11r* - 2) V2,)]
ra = rb

+ 2(1 - r*) E ot d(qP - q")) (0 n h dilar = 0 (28)

(26)
0 ln hdi

Or b



(m + 1)— (m — 1) P dt = Pd, 1 ±	 P dt).r* = 	 Pdt (36)
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dispersing generation, and the within-group selection that increases in
relative strength as g/m increases. Thus, under the condition m„ < g for all
d, if a type can produce one sex ratio for g —1 generations, and a different
one in the gth generation, then it seems likely that the ESS for the first
g —1 generations is to produce r* = 1/2, and in the gth parental generation
is to produce r* = (1/2) P d„ where Pd, is the variance among the gth
parental generation (which at equilibrium should be the same as in the first
generation, since both will produce the ESS of 1/2 during the first g —1
generations).
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w di(a ) = ( 1 — 0 1*(1( 1 — 01/1[ 1 1( 1 — 0] +	 — 01rdl[ 1 1( 1 — 0]

+ (1 —f)(1 —r a )[1/(1 —F )]+ f(1—ra)[11(1—rd)]

= ( 1— m )(ra/r ) + m ( ra/rd) + ( 1 —f)

X [(1 — ra )/(1 — 0] +f[(1—ra)1(1—rd)].	 (32)

Regression coefficients and the derivation are obtained as in the first LMC
scenario

r* = 1 — m ( 1 — Pth) = 1— m(1 —Pd,):1—f(1 —Pdt ) (33)
2 — (m + f )(1 - P th)

LMC, LRC, and Dispersal

This scenario and the next are designed to expose the mechanisms
underlying biased sex ratios. Here the basic scenario is again the one
generation per deme LMC model. Among the progeny generation of N
females (defining a deme), a proportion m of the males compete for mates
with males from their natal deme, and 1— m disperse and compete ran-
domly within the population. A proportion f of the females compete for a
limiting resource with females from their natal deme, and 1— f disperse
and compete with females for a limiting resource randomly within the pop-
ulation. By construction of the model, mating is assumed random for all
individuals (i.e., no inbreeding), for both dispersers and those that remain
and compete with individuals of the same sex from their natal demes. Dif-
ferential dispersal of the two sexes has also been explored by Bulmer and
Taylor (1980a) and Taylor (1981).

A situation in nature that may parallel this scenario is the social insects,
where colonies of certain species specialize either in the production of male
or female reproductives (Herbers, 1979; Pamilo, 1982; Ward, 1983). In this
case there can be no sib mating, and a proportion of the reproductives
(either male or female) will compete with their sibs for either mates or
quality nest sites, while a proportion will disperse. Further, selection will
favor a proportion of the reproductives to disperse in order to avoid com-
petition with their sibs (Hamilton and May, 1977). These ideas about
social insects arise from comments by R. D. Alexander following a seminar
by R. L. Trivers in 1985.

For a dispersing male, the expected number of inseminations is (1 — r)lr,
and the value per insemination (i.e., the value per female) is proportional
to 1/(1 — r). For a male in the natal deme, the expected number of
inseminations is (1 — r)Ird, and the value per insemination is 1/(1 — r). The
value of a dispersing female is 1/(1 — r), and for a female that competes in
her natal deme, 1/(1— rd), so the adaptive function is:

where X : Y= XI(X + Y). For random settling of foundresses,
Pd, = (N —1)/N, so

r* = (1 — mIN) : (1 — fIN)=N—m:N— f	 (34)

When m= 1 and f = 0, = N — 1 : N= (N— 1)/(2N— 1), as reported by
Werren (1983). The ratio form is (genetic valuation of sons) : (genetic
valuation of daughters) and is extremely useful for exploring the
mechanisms underlying sex-ratio biases. This technique will be exploited in
the discussion, but first one last scenario is needed.

LMC with Dispersal

This scenario is the one-generation LMC model with a few
modifications. There is no LRC (competition among females), a proportion
m of the males stay within their natal deme and compete locally for mates;
1— m of the males disperse as a group to mate randomly within the pop-
ulation, but compete only among themselves for mates. Females mate
within their natal demes, and mate with a deme member with probability
and a nonmember with probability 1— tn. With these assumptions,

w	 = mra[( 1—rd)Ird] + (1 — m) r a [(1 — r)Ir d] + 1—ra .	 (35)

By the usual methods

When m = 1, r* = (1/2) Pd„ which is the previous result for autosomal
(R= 1) LMC models [see Eq. (3)].
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INTERPRETATION OF BIASED SEX RATIOS

The major causal theories of biased sex ratio in the scenarios discussed
are within-sex competition among genetic relatives (Hamilton, 1967;
Alexander and Sherman, 1977; Clark, 1978; Bulmer and Taylor, 1980a;
Werren, 1980; Taylor, 1981; Charlesworth and Toro, 1982; Uyenoyama
and Bengtsson, 1982), group selection (Hamilton, 1975, 1979; Colwell,
1981; Wilson and Colwell, 1981; reviewed in Charnov, 1982), and
inbreeding (Maynard Smith, 1978; Stenseth, 1978; Borgia, 1982; Colwell,
1982; Uyenoyama and Bengtsson, 1982). Claims for the various theories
have often been strongly worded and hotly debated. The analysis presented
in this paper sheds some light on the controversy [see Nunney (1985) for a
slightly different interpretation]. First, the role of inbredness in asymmetric
relatedness, measured by R, has been clarified [see the discussion in the
first scenario, LMC, and also in Uyenoyama and Bengtsson (1981, 1982)].
But the previous literature has focused almost entirely on autosomal
diploid models, where R=1, and so I confine my discussion to the
autosomal case.

Consider the result from the LMC, LRC, and dispersal scenario; the ESS
ratio males : females is 1 — m(1 - Pd,) : 1 — 1(1 P d t ). P di is the genetic dif-
ferentiation among groups (demes), where each group has been construc-
ted (by assumption) to be the progeny of N females. It is well known that
one minus the genetic differentiation among groups is the genetic
correlation within groups (Wright, 1969). So, let p = 1 — P di (0 p 1),
where p is the correlation of genotypic values within groups. Then the sex
ratio is 1 — mp : 1 — fp, where mp is the genotypic correlation among com-
peting males, and fp the genotypic correlation among competing
females	 in other words, the levels of within-sex competition among
relatives. Also note that for this scenario there is, by assumption, no
inbreeding. Exactly how to measure p is not yet known. However, we do
know from other studies that when mothers control the sex ratio of their
broods, settling of foundresses is random, and each foundress produces the
same brood size, then p =11N, which is the frequency of sib competition
and sib mating in these scenarios (e.g., Uyenoyama and Bengtsson, 1982).

One possibility for the meaning of p is the regression coefficient of
relatedness of controlling genotypes on competing individuals. For mater-
nal control in a diploid organism, this regression may be taken as mothers
on male progeny in the group, or on female progeny in the group,
depending on the context; or, equivalently, the regression of mothers on
mated composites (foundresses plus the genes of their mates). This
regression for diploids is 4F/(1 + 3F), so the sex ratio can be written as
1 + 3F- m(4F) : 1 + 3F - f(4F); or, the genetic value of a son is the num-
ber of genes identical by descent (ibdi from the mother minus the number
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of genes ibd (from the mother) that a son interferes with when competing
for mates, and the genetic value of a daughter is the number of ibd genes in
the daughter minus the number of ibd genes that a daughter interferes with
while competing for a fixed limited resource.

The last scenario, LMC and dispersal, is a generalization of Hamilton's
(1967) standard LMC scenario. The ESS is 1 — (1 — P d,) : 1 + m(1 - Pd,),

or 1 — p: 1 + mp, where m is the proportion of males that stay with their
natal deme to compete for mates. With m = 1 the scenario is the standard
LMC scenario, and the ESS is 1 — p : 1 + p = (1 — p)12 = (1/2) P d,.

[Uyenoyama and Bengtsson (1982) report an ESS of 1 — k: 1 + k, where k
is the proportion of sib mating, and thus also the proportion of competitive
interactions among brothers. For their scenario, k = p, since they confined
themselves to the case in which cofoundresses are unrelated.] In this
scenario the level of inbreeding is mp, and there is no limiting resources for
females, and hence no LRC. The value of a female is the Fisherian one plus
the amount of inbreeding, mp. To understand how this inbreeding effect
comes about, examine the expression for individual fitness, w d,, for this
scenario [Eq. (35)]. The expected number of inseminations for a male stay-
ing at home is (1 — rd)/rd, while for a dispersing male, (1 —r)/rd . So making
fewer males—lowering rd 	 increases the value per male that stays at home.
Generalizing beyond the artificial structure of the models, the genetic
correlation between mates measures the relative advantage of producing a
daughter rather than a son, since producing one daughter will pass on one
set of parental genes, plus a second set with a probability equal to the
correlation between mates, while producing one son will only pass on one
set of parental genes (Fisher, 1941; Charlesworth and Charlesworth, 1978,
1981; Taylor 1981). Equation (35) is a formal statement of this
phenomenon, since the index d in (1 — rd)/rd refers only to the genetic com-
position of the set of mates available to a male, with d= 0, 1, N

representing the number of b types, and qd = d/N. This inbreeding bonus
for the value of a daughter still assumes the asymmetry between the sexes
stated earlier: that females make babies and males just fertilize 	 and that
each male can potentially fertilize many females. Models in which these
assumptions are violated are easily constructed by modifying the
expressions for w di . [See Uyenoyama (1984b) for a general discussion of
coefficients of relatedness and group selection under inbreeding.]

Interpreting these results for the Hamilton scenario under maternal con-
trol, the value of a son is one minus the regression of mothers on male
progeny in the group, while the value of a daughter is one plus the
regression of mothers on daugthers' mates. Again, these regressions are
equivalent to the regression of mothers on mated composites, 4F/(1 + 3F),
so the sex ratio (with m = 1) is 1 + 3F- 4F :1 + 3F + 4F, or r* =
(1/2)[(1 — F)I(1 + 3F)]. Verbally, a son is worth the number of ibd genes he
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carries minus the number he interferes with, and a daughter is worth the
number of ibd genes she carries plus the number of ibd genes from her
mates that she transmits.

Consider an illustration of the simplicity and generality of this p for-
mulation. Let there be two foundresses per deme, each producing the same
number of offspring, and let the expected genotypic regression between
each foundress and the other mated composite be 1/2. One-half of the com-
petitive interactions, and one-half of the matings, will be among sibs
(p = 1), and one-half will be among offspring of the two foundresses
(p 1/2), so p (1/2)(1) + (1/2)(1/2) = 3/4. For the standard LMC
scenario, in which there is both inbreeding and competition among males
for mates, r* = 1 — p :1 + p = (1/4) : (7/4) = 1/8. For the scenario in which,
by assumption, there is no inbreeding and no competition among female
relatives (m =1 and f =0 from the LMC, LRC, and dispersal scenario),
r* = 1 — p : 1 = (1/4) : 1 = 1/5. By taking care to insure that the proper
meaning is given to p, it appears that this formulation allows the ESS sex
ratio to be written down directly for many complex situations.

One confusion which may arise with the use of p is the way in which the
regressions are calculated. For example, consider the case in which each
deme has two foundresses, one an a type and the other a b type. Then there
is no differentiation among groups, P dt = 1, p = 0, and biased sex ratios are
not favored over the Fisherian 1/2. When calculating p for the group in this
,case, the proper view is that the regression of each foundress on herself is
one, and of each foundress on her cofoundress, negative one, since the
cofoundress is of the opposite type and equally frequent in each deme and
in the population. Therefore p is zero. When considering within-sex com-
petition among male progeny in the deme, sib competition is associated
with p = 1, since sibs have the same mother, and interactions between non-
sibs are associated with p = —1, for the reasons just described, so overall
p = O. Hamilton (1972) has discussed the importance of negative
correlations in small groups for the proper application of coefficients of
relatedness.

Some have argued that since the Fisherian 1/2 can be favored in a
situation in which there is both sib mating and sib competition, that LMC
and inbreeding alone cannot explain the evolution of biased sex ratios, and
one must invoke group selection (Colwell, 1981, 1982; Wilson and Colwell,
1981). An alternative description would be that one may obtain a value of
zero for p even when there is sib mating and sib competition. Proper inter-
pretations of within-sex competition and inbreeding depend on proper
calculations of the coefficients of relatedness, and therefore the group selec-
tion approach is not different from correctly analyzed within-sex com-
petition and inbreeding models. Colwell (1981) and Wilson and Colwell
(1981) were the first to stress explicitly the correct interpretation of pop-
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ulation structure, following the cryptographic message of Hamilton (1979),
and the controversy that followed focused mainly on the relationship
between p and P,„ which should now be clear.

In summary, all three theories—inbreeding, within-sex competition
among relatives, and group selection 	 truly describe causal mechanisms of
biased sex ratios in structured populations. Through the study of a variety
of scenarios with hierarchical selection theory, I draw the following con-
clusions. First, inbreeding biases the sex ratio since producing a daughter
that inbreeds (e.g., an automictic parthenogen) passes on twice as many
parental genes as producing a son would. Second, as the amount of within-
sex competition among related individuals increases, the relative genetic
valuation of that sex decreases. Third, genetic differentiation among
groups, Pd„ and genetic correlation within groups, p, are related descrip-
tions for the same phenomenon. Some recent papers (Colwell, 1981;
Wilson and Colwell, 1981) have stressed the group selection aspect of this
phenomenon without clarifying its similarity to genetic relatedness. Using
group selection for describing causal mechanisms is particularly slippery,
since, as in the various scenarios presented in this paper, the differentiation
among groups may refer to groups of competing males, groups of com-
peting females, or groups that contain inbreeding pairs. While hierarchical
selection theory, which is a group selection sort of analysis, has proved a
powerful analytical tool, it seems that, for describing causal mechanisms, it
is often useful to apply the genetic regressions considered in the discussion.
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