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The genetic value of sons and daughters
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Comments are presented on the recent paper by Bulmer (1986) concerning the sex ratio.

Bulmer (1986) has recently studied sex ratio evolu-
= tion under the island migration model. His study
was motivated by my statement that as genetic
differentiation among isolated patches increases,

_the predicted proportion of males declines linearly
with Pdt, Wright's (1969) measure for differenti-
ation among demes (Frank, 1985, 1986). Bulmer's
results show, under the assumptions of his par-
ticular model, that the sex ratio is independent of
the migration rate for a diploid organism. Since
Pdt declines towards zero as the migration rate
declines—no migration leads to complete fixation
within demes—Bulmer's result suggests that the
sex ratio is independent of Pdt. Here I show that
different model assumptions are the cause underly-
ing the discrepancy between our results. I also
derive an analytic solution for the scenario studied
numerically by Bulmer, by applying the genetic
value methodology developed in Frank (1986).

The scenario Bulmer studied is characterised
by the following assumptions. (i) There are a large
number of discrete patches in the population. (ii)
In each discrete, non-overlapping generation, mat-
ing occurs randomly within patches, and there is
no mating between individuals born in different
patches. (iii) A fraction m of the mated females
disperse and settle randomly in each generation,
while 1– m of the mated females remain in their
natal patch. (iv) Within each patch, N mated
females are chosen randomly from among disper-
sers and non-dispersers, and these females repro-

- duce to form the next generation.
I will first consider a model of a diploid organ-

ism with maternal control of the sex ratio. Other
types of genetic control studied by Bulmer will be
discussed later. To obtain the ESS sex ratio (pro-
portion of males) as functions of m and N by
using hierarchical selection theory, all that we need
is a statement about the expected number of grand-
progeny of an individual, sometimes called the
"adaptive function" (Frank, 1986), and the
assumption that the sex ratio is controlled at a
single locus with additive gene action. Let there
be two sex ratio phenotypes: an a-type with sex
ratio ra, and a b-type with sex ratio 7.6; let the

average sex ratio in the deme be rd ; and let the
average sex ratio in the population be r. To obtain
the expected number of grandprogeny, begin by
calling z = (1– m) (1– rd )+ m (1– r) proportional
to the expected number of mated females in the
natal patch, after migration, that compete for a
fixed number of breeding spots, N. The expected
number of competing females in a random patch
is proportional to 1– r. Therefore the expected
number of grandprogeny through daughters for an
a-type is proportional to

(1 – ra )
(  m 1 – m\

	

1 – r	 z
The expected number of inseminations by males
of an a-type is proportional to (ra l rd )(1– rd ), so
the expected number of grandprogeny through
sons is

(ral rd)(1 – rd )
(  m 1 – m\

1 – r	 z
The expected number of grandprogeny (the adap-
tive function) for an a-type in a deme with sex
ratio rd is,

(ra (1– rd )\(  m 1 – m
wda= rd	 )\1– r

	

+(l–ra )( m	+1-11.
1 – r	 z

By applying hierarchical selection theory, as
explained in detail in Frank (1986), the ESS
proportion of males is,

r* =
	 Pdt

D + (2 – D)Pdt

where D = 2m (2 – m), and Pdt is a form of Wright's
(1969) index of panmixia, which is a measure of
the additive genotypic variance within demes
divided by the additive genotypic variance in the
population. As described by Wright, p = 1– Pdt is
a measure of the genotypic correlation among
individuals within the deme. Using this identity,
we obtain,

1– p	 1– p
r* – –

2 –p(2 – D) 2[1 –(1 –m)2p
(1)
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Since r* is proportional to the allocation in males
divided by the allocation in males plus the alloca-
tion in females, it is possible to represent r* in a
ratio form (allocation to males: allocation to
females)

1– P :1 – ( 1 – m ) 2P ± [ 1– ( 1 – m ) 2]P.	(2)

If a meaning can be assigned to p, then we will
be in a position both to understand the causal
forces affecting the sex ratio, and to write down
an analytic solution for this scenario. One choice
for p is the regression coefficient of relatedness of
the genotype that controls the sex ratio onto males
or females, depending on the context (to be dis-
cussed shortly). There are three rationalisations
for this choice. (i) For scenarios studied in Frank
(1986), and for the haploid and diploid models
of Bulmer (1986), the regression coefficient gives
results that agree with the special cases studied by
traditional methods. (ii) Regression implies causal
mechanisms for sex ratios that make a good deal
of intuitive sense (see below). (iii) The use of an
adaptive function, wda above, is essentially a state-
ment about competition among clones: a-types
and b-types. The elegance of regression is that it
translates different ploidy levels and forms of
sexuality into a common currency—numbers of
genes identical by descent (ibd) (Hamilton, 1972).
Covariance among additive genotypic values is a
related and often preferable currency to genes ibd
(Seger, 1981), but I will stick with ibd here since
it is easier to use in verbal descriptions.

I will consider just one case in detail here—a
diploid organism with maternal control of the sex
ratio. It is simplest first to assign regression inter-
pretations for each of the p's in equation (2), and
then to rearrange the expression to clarify the
meaning of the result. Equation (2) in regression
notation is,

1 – bm ,d : 1 – (1 – m) 2 bm _y + [1– (1 – m)2]bm,d

(3)

where bm _ cs is the regression of mother on male
progeny in the group, and b m, 9 is the regression
of mother on female progeny in the group before
migration. Regression is the number of genes ibd
in another individual divided by the number of
genes ibd in one's own progeny (Hamilton, 1972).
If F is the probability that uniting gametes are ibd,
then a mother can expect (1/2)(1 + 3F) genes ibd
in her own offspring (either male or female), and
can expect 2F genes ibd in a randomly chosen
progeny (male or female), hence bm _ d = bm_2=

2F/[(1/2)(1 +3F)]. Substituting into equation (3)
and multiplying through by (1/2)(1 + 3F) gives,

(1/2)(1 +3F) –2F: (1/2)(1 +3F) – (1– m)2(2F)

+ [ 1– ( 1– m)1(2F)•	 (4)

The left side can now be read as: the genetic value
of a son is the (expected) number of genes ibd
from the mother in a son, (1/2)(1 +3F), minus the
number of genes ibd from the mother, 2F, that a
son interferes with when competing for access to
mates. On the right side, the genetic value of a
daughter is: (i) the number of genes ibd, (ii) minus
the number of genes ibd that a daughter interferes
with when competing for access to a fixed number
of breeding spaces—the probability that two
females interacting are both from the same patch,
(1– m)2, multiplied by the expected number of
genes ibd from the mother that are in a daughter's
competitor from the same patch, 2F, plus (iii) the
number of genes ibd that a daughter obtains from
her mates and transmits to the following generation
without interfering with ibd genes—the probability
that the female is not involved in a competitive
interaction with an individual from her natal patch,
[1 – (1– m) 2], multiplied by the number of ibd
genes from mates, 2F.

F can be obtained by the usual recurrence
techniques (Wright, 1969). Defining Fg as the cor-
relation of genes in the gth generation,

Fg = 1/4N+ (314N)Fg_i

+ (1– m) 2[(N –1)1 N]Fg_i

and setting Fg = Fg _ i to obtain the steady-state
correlation yields,

1
F – 

4N-3 – 4(N-1)(1 – m)2.

Therefore, the value for bm _ d = bm _y is,

b= 
N –(N –1)(1– m)2.

Substituting into equation (1) yields the ESS r* =
(N –1)/2N, for 0 < m 1, which agrees with
Bulmer's numerical results for N = 2, and for his
haploid results for N = 2, 3, and 4. [For the haploid
case, b is the same as in equation (5)].

My results here agree with Bulmer's conclusion
that the sex ratio is independent of the migration
rate in an island model. The discrepancy with
Frank (1985, 1986) noted by Bulmer is caused by
the explicit assumption in my earlier papers that
there is no limit on resources available to females,

1
(5)
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in contrast to Bulmer's fixed number of breeding
sites. With no competition among females, the sex
ratio is of the form 1- b„,, d : 1 + b„2,6 (Frank,
1986). Bulmer conjectured that the ESS under his
scenario is independent of migration rate because
of the balancing forces of increased competition
among males against increased competition among
females. The analysis here shows that this is partly
correct, but that the fate of genes ibd from females'
mates must also be considered [see equation (3)].

Bulmer obtained a number of other interesting
results. For example, in a haploid model in which
all of the males and none of the females disperse
before mating, he found that the ESS was more
female biased when fathers control the sex ratio
than when mothers control the sex ratio. In this case
the ESS is of the form 1 : 1 - bc ,y, where bc,y is
the regression of controlling genotype on female
progeny. It is clear that a father will only be related
to his daughters and no other females, since he is
a newly arrived immigrant. So, the regression of
father on female progeny will be 11 N. When a
mother controls the sex ratio, she is of course
related to her own daughters, but in addition there
is a chance that other mothers in the group are
related to her, so her regression on females is
greater than 1/ N. For this haploid case with mating
after dispersal, it is straightforward to obtain an
analytic solution for any amount of male and
female migration under either mother or father
control (see Appendix).

Another interesting set of results by Bulmer is
the haplodiploid case, with mating before a frac-
tion m of the already mated females disperse.
Haplodiploidy is a challenge for adaptive func-
tions like the one used above, since these functions
count number of grandprogeny. Hamilton (1979)
conjectured that the adaptive function approach
can be saved by simply weighting the number of
grandprogeny through sons by the number of genes
ibd in the son from the controlling genotype, and
likewise weighting grandprogeny through daugh-
ters by the number of genes ibd in daughters (see
Frank, 1986, for details). When all the females
disperse after mating (m = 1) and there is maternal
control, the genetic value technique yields
(1/2)(1 + F) - F : (1/2)(1 + 3F) + F. Again, the
genetic value of a son is the number of genes ibd
minus the number interfered with, and the value
of a daughter is the number of genes ibd plus the
number obtained from mates. With random set-
tling, ( m = 1), F = 1/ (4N - 3), and substituting in
gives the standard result reported by Hamilton
(1979) and Taylor and Bulmer (1980).
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APPENDIX

The derivation of the ESS sex ratio is presented
for the following scenario: (i) The genetic system
is haploid. (ii) The offspring disperse before mat-
ing. Males disperse with probability me, and
females disperse with probability m 9 . (iii) Control
of the sex ratio can be by either the mother or
father. In order to develop a general solution for
either case, let c denote the controlling genotype,
where c = d for paternal control, and c= for
maternal control.

Following the general approach outlined in this
paper, the genetic value of sons to daughters is,

1 - ( 1 - me) 2 b,,e : 1 - ( 1 - m9 ) 2 bc, 9 , (Al)

where bc .„ d and bc .„ 2 are the regressions of controll-
ing genotype on males and females of the progeny
generation before dispersal. Since the genetic sys-
tem is haploid, the expected number of alleles ibd
in a male or female progeny with respect to some
arbitrary allele is the same as the frequency of
alleles ibd in the composite formed by the
offspring's mother plus the sperm she obtains from
her mate. So bc ._*d and bc,y are both equal to
bc-comp, where comp refers to mated composites
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in the parental generation. With this notation we
can apply the definition of regression (Hamilton,
1972) and obtain

Fc4-4►comP
be-->comp=

(112)(1-4-

where F is now generalised to describe the correla-
tion between alleles chosen randomly from the two
groups indexed by the subscripts on F. Substituting
(A2) into (Al) and rearranging, we obtain the ESS
sex ratio

1+ – 2(1 – me)2Fc–comp
r* – 

2+2F9 – 2((1 – me) 2 + (1– m9) 2 ) Fc....mp •

(A3)

To obtain a solution we need the following recur-
rence relations

Fv= (1– me)(1–m9)K

Fyy = (1– m9)2K

Fed = (1– md)2K

K = (1/2N)(1+F)

((N –1)/ 4N)(Fyy+2Fv+ Fc3,6)

F,comp = (1/2N)(1+Fv)

(( N –1)12N)(Fcc+

Solving for the correlation between mates,
which is the usual fixation index, one obtains

Fv= 2(1– me)(1 – my)/ Q	 (A4)

Q = 4N-2N(1–me)(1– my) – (N – l)

X ((1— Md ) 2 + (1 M9)2).

To illustrate with some special cases, suppose
that control is maternal, c = Y, then

4N+ (N – 1)((1 –my)2 –(1 – md)2)

(A5)

If my =1 and me = 0, then substituting (A5)
and (A4) into (A3) yields r* = (N – 1)/(2N –1),
and if my = 0 and me =1, then r* =
N(3N+1)/(6N2 -3N+1), which agrees with
Bulmer's (1986) numerical results.

(A2)

F94+comp
2NQ

Note added in proof—The use of regression coefficients for p
is intended as a conjecture, for which there are both good
rationalisations and good circumstantial evidence. Peter D.
Taylor (submitted) had independently and rigourously derived
results analogous to my genetic value methodology that also use

Hamilton-type regression (or pedigree) coefficients. Taylor has
also proved a general theorem that formally links exact genetic
models with Price covariance models (hierarchical selection),
and with inclusive fitness models based on regression
coefficients.
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