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Abstract
Natural selection acts on traits at different scales, often with opposing consequences. This article identifies the particular forces that act at each
scale and how those forces combine to determine the overall evolutionary outcome. A series of extended models derive from the tragedy of the
commons, illustrating opposing forces at different scales. Examples include the primary tension between conflict and cooperation and the evo-
lution of virulence, sex ratios, dispersal, and evolvability. The unified analysis subsumes interactions within and between species by generalizing
multitrait interactions. Expanded notions of recombination and cotransmission arise. The core theoretical approach isolates the fundamental
forces of selection, including marginal valuation, correlation between interacting entities, and reproductive value. Those fundamental forces act
as partial causes that combine at different temporal and spatial scales. Modeling focuses on statics, in the sense of how different forces at
various scales tend to oppose each other, ultimately combining to shape traits. That type of static analysis emphasizes explanation rather than
the calculation of dynamics. The article builds on the duality between explanation versus calculation in terms of statics versus dynamics. The
literature often poses that duality as a controversy, whereas this article develops the pair as complementary tools that together provide deeper
understanding. Along the way, the unified approach clarifies the subtle distinctions between kin selection, multilevel selection, and inclusive
fitness, subsuming these topics into the broader perspectives of fundamental forces and multiple scales.
Keywords: evolutionary theory, mathematical models, group selection, kin selection, spatial processes, statics vs dynamics

Introduction
Natural selection often works in opposing ways. Mutation
continuously degrades traits but once in a while triggers adap-
tation to a novel challenge. Frequent competitive gains against
neighbors may be offset by the occasional failure of overly
competitive groups.

In these examples, selection often pushes one way, occa-
sionally it pushes the other way. Do shorter or longer time
scales dominate? When opposing forces happen over different
spatial scales, do nearby or distant scales dominate?

These temporal and spatial scales of selection relate to
the hierarchical levels of biological organization (Williams,
1966). Above the individual, groups may compete for
resources. At the species level, rates of extinction and speci-
ation vary.

Selection at each level links to a particular temporal fre-
quency and spatial extent. Multilevel analysis provides a
method to study various puzzles (Hamilton, 1975).

Do the female-biased sex ratios often seen in small isolated
groups arise by kin selection or group selection? Does species
level selection explain a lot of what we see or is it just a weak
force that rarely alters pattern? Do synergistic interactions
between species create more competitive communities?

These questions concern how selection at various levels
and scales ultimately resolves to shape biological traits. In
the past, people emphasized alternative perspectives for mul-
tiscale problems, suggesting that the different views compete
for the best perspective (Maynard Smith, 1976; Wilson, 1983;

Grafen, 1984; Queller, 1991; Okasha, 2006;West et al., 2008;
Gardner & Grafen, 2009; Leigh, 2010; Bourrat, 2015).

I show the benefits of combining approaches to get a bet-
ter picture of the whole. From this broad view, a sharp focus
on the opposing forces at different temporal and spatial scales
provides a particularly useful way to see recurring aspects in
seemingly different problems.

I build my argument through a series of specific models,
each designed to highlight the resolution of opposing forces
at different scales. For example, competition between nearby
individuals favors rapacious traits that degrade the success of
the local group, whereas competition between distant groups
favors prudent traits that enhance the success of the local
group (Wilson, 1975; Leigh, 1977). Within that context, I
clarify subtle aspects of kin selection, group selection, and
inclusive fitness.

I extend this common model of spatial scale to include
temporal aspects. For example, local competition typically
happens more frequently than distant competition. A simi-
lar contrast between time scales applies to competition within
species versus competition between species (Williams, 1966).

Combinations of hierarchical levels, spatial processes, and
temporal processes lead to a series of examples, including sex
ratios, parasite virulence, dispersal, evolvability, mutation-
selection balance, recombination-selection balance, and the
synergistic symbioses of integrated communities.

The examples taken together call for a broader concep-
tual foundation. To develop that foundation, I emphasize
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common themes and controversies in models of natural selec-
tion, including the contrast between equilibrium models and
dynamic models and the roles of calculation versus explana-
tion in theoretical analysis.

My examples focus on a small list of fundamental forces
of natural selection (Frank, 1998, 2022). Each force acts as a
partial cause in any particular model of natural history. By
emphasizing the opposing partial causes that often arise in
nature, we gain a clearer understanding of how different scales
of selection work together to shape traits (Sober, 1984).

Such explanation is distinct from the calculation of conse-
quences in more complex models. Calculation allows us to
quantify outcomes, whereas explanation provides the concep-
tual framework to understand why those outcomes occur. A
mature theory develops both explanation and calculation.

Overall, this article works toward such a mature theory. I
primarily focus on simple models and explanations to balance
the well-developed prior work on calculation. Through these
models and explanations, this article provides the founda-
tion for understanding how natural selection operates across
scales, offering new insights into both well-known and emerg-
ing evolutionary puzzles.

Essence
This section provides a concise overview of the key examples
and broader conceptual themes, emphasizing the role of scale.
Later sections build on this overview.

Opposing levels vs. multiple scales
Imagine a hypothetical pattern for the evolution of horses
(Williams, 1966). Three samples from the fossil record show
that horse size has increased over time. In Figure 1A, indi-
vidual competition within species favored larger horses over
smaller ones. Size tended to increase over time within most
species.

Alternatively, in Figure 1B, individual competition typi-
cally favored smaller horses within species. That individual
level of selection is opposed by the greater survival of the
lineage with the largest size. Overall, species-level selection
dominates, causing size to increase over time even though
individual selection favors smaller horses.

This example highlights opposing selection at two discrete
levels. In reality, selection likely works at multiple scales.

Within species, competition occurs frequently between
neighbors. Migration and competition over longer spatial
scales happen less often. Higher levels such as species births
and deaths or the major radiations that create higher taxo-
nomic scales happen with decreasing prevalence.

The small local scales often dominate because they happen
much more frequently than the larger scales (Williams, 1966).
But sometimes the larger scales play an important role.

Tragedy of the commons
Suppose some individuals compete within an isolated patch.
Rapacious types extract resources rapidly and inefficiently,
outcompete their neighbors, and export more offspring than
their local competitors. Rapacity wins at the local scale.

Another patch may be dominated by more prudent types.
They use resources more slowly and efficiently. A prudent
group ultimately exports more offspring than a rapacious
group. At a global scale, prudent patches outcompete rapa-
cious patches.
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Figure 1. Alternative mechanisms for an increase in size among a hypo-
thetical group of related species. At the three sampled times, the upper
and lower panels show the same increasing distribution of sizes. (A) In
this case, size tends to increase within each lineage. The overall increase
in size among species is consistent with natural selection favoring larger
size within each lineage. (B) Alternatively, size may tend to decrease
within each species. However, the largest species survives longer than
the others. Overall, the greater success of the largest species relative
to the smaller ones outweighs the tendency for size to decrease within
most lineages. Selection between species dominates selection between
individuals within species. Redrawn from Williams (1966).

Which type ultimately dominates? It depends on the rela-
tive force of competition within patches versus competition
between patches.

Typically, more frequent local competition means that rapa-
cious types have the edge, causing inefficient overexploitation
of common resources. This tragedy of the commons occurs
widely throughout nature (Frank, 1996b, 1998; Hardin,
1968; Leigh, 1977; Rankin et al., 2007).

However, several conditions emphasize group against group
competition, mitigating the tragedy (Alexander & Borgia,
1978; Frank, 2022; Wade, 1978; Wilson, 1980). Analysis
focuses on the relative strength of forces at the different spatial
and temporal scales.

Simple model
We can express the opposing forces of local individual com-
petition and global group competition as

w(x, y) = I(x, y)G(y). (1)

Fitness, w, depends on the relative success of an individ-
ual competing against neighbors in a local group, I, and
the success of that individual’s group in competition against
other groups, G. The competitiveness of a randomly chosen
focal individual is x, and the average competitiveness in that
individual’s group is y (Frank, 1998; Taylor & Frank, 1996).

For a simple example, let

w = x
y
(1 – y). (2)

Here, I = x/y is the relative success of the focal individual in
its group, and G = 1 – y is proportional to the success of the
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group. An increase in an individual’s competitiveness, x, gives
it an advantage in local competition against neighbors (Frank,
1994b, 1995a). However, greater individual competitiveness
within the group degrades the group’s competitiveness against
other groups by raising y, the average amount of resources
in the group that goes to competing against neighbors rather
than being productive.

Equilibrium
Later, we will consider a variety of ways to analyze and extend
this model. For now, let us use the simplest approach, high-
lighting the essential aspects of opposing levels and multiple
scales.

At any instant in a given context, natural selection tends to
increase fitness (Ewens, 1989; Fisher, 1958; Frank & Slatkin,
1992; Price, 1972b). This interpretation of increasing fitness
caused by natural selection requires that we consider total evo-
lutionary change as having two parts. One part considers the
consequences of natural selection, holding the context con-
stant. The other part considers how the changing context also
alters fitness.

For example, in frequency-dependent selection, the context
includes gene frequencies, which are held constant. Natural
selection always increases fitness when measured in the con-
text of the starting gene frequencies. However, the changing
gene frequencies caused by natural selection alter the context,
which may reduce fitness. By this analysis, natural selection
causes a partial increase in fitness, whereas the changing con-
text may cause a partial decrease in fitness. Total evolutionary
change in fitness may increase or decrease.

Much of the complexity in models arises from the fact that
contexts change, causing what happens at different instants to
change (Frank, 2015). If we take our context to be an evolu-
tionary equilibrium with respect to continuously varying trait
values, then an equilibrium typically occurs when fitness is at a
local maximum with respect to trait values (Maynard Smith,
1982). Thus, we get a candidate for a local equilibrium by
solving dw/dx = 0 and checking for a local optimum.

In this case, w depends on two variables, x and y, so we
need to use the chain rule of differentiation

dw
dx

= 𝜕w
𝜕x + 𝜕w

𝜕y
dy

dx
. (3)

Here, 𝜕w/𝜕x measures the direct change to an individual’s fit-
ness for increasing its trait value, x. The term 𝜕w/𝜕y measures
the change to an individual’s fitness via an increase in the
group average trait value, y. The term r = dy/dx describes
the change in group value, y, relative to the change in individ-
ual value, x, linking changes in y back to changes in the focal
individual’s trait, x (Frank, 1995a, 1998; Taylor & Frank,
1996).

The condition for an increase in trait value is dw/dx > 0,
which is equivalent to d logw/dx > 0. Applying the logw
condition to eqn 1 yields

𝜕x log I + r𝜕y log IG > 0, (4)

with equilibrium occurring when the left side equals zero.
Here, 𝜕𝛼 denotes the partial derivative with respect to 𝛼,
in which 𝛼 can be any variable in the analysis. Note that
in general 𝜕x log f(x) = 𝜕xf(x)/f(x), a normalized marginal
change.

In this simple analysis, all trait values are equal at a local
optimum. Thus, we obtain a candidate equilibrium by evalu-
ating dw/dx = 0 at x = y = z∗, with z∗ denoting the optimum.
When we apply this method to the fitness expression in eqn 2,
we obtain

z∗ = 1 – r. (5)

Writing that result as a ratio of competitive tendency, z∗,
relative to cooperative tendency, 1 – z∗, yields

z∗ ∶ 1 – z∗ = 1 – r ∶ r, (6)

which highlights the opposing forces acting on the trait.

Interpretation
Here, r = dy/dx measures the slope of y versus x. The
interpretation of that slope varies with context.

In the classic tragedy of the commons analysis in biology,
r is the correlation in trait value between neighbors within
groups (Frank, 1998). If individuals are highly correlated,
then they cannot gain much against neighbors who have simi-
lar competitiveness. Thus, a lower competitiveness does better
because it enhances the group component of success. Often,
the more correlated neighbors are, the more they tend to
cooperate to enhance the success of their group against other
groups.

That way of saying things matches a typical kin selection
argument (Hamilton, 1970; Queller, 1992). Genetically, the
more closely related individuals are within groups, the more
they tend to cooperate with each other. With respect to eqn 5,
more related means higher r, less competitiveness, z∗, and
more cooperation and better group success, 1 – z∗.

Alternatively, we can say the same thing in terms of the
classic models of group selection. The correlation is

r = Vb

Vt
, (7)

in which Vb is the variance in trait value between groups, and
Vt = Vw +Vb is the total variance as the sum of within-group
and between-group variance. In other words, the correlation
within groups is the same as the fraction of the total variance
that is between groups (Frank, 1986c). The ratio in eqn 6 is

z∗ ∶ 1 – z∗ = 1 – r ∶ r = Vw ∶ Vb.

More variance between groups enhances the importance
of success in group-against-group competition, favoring less
competition and more cooperation. In this model, the kin
selection and group selection interpretations are identical.
They just use different words to say the same thing (Frank,
1986c).

Our first example focused on horse speciation and evolu-
tion. In that case, we can think of size, z, as influencing both
competitiveness within lineages and lineage success relative to
other lineages.

However, the simple model in eqn 2 does not work for
macroevolutionary pattern because it assumes the same tem-
poral scale for competition within and between groups.
For the horse example, the temporal scale of competition
within species differs from the temporal scale for competition
between lineages.
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Temporal scale
We can add an adjustment to eqn 2 for different temporal
scales of competition within and between groups as

w = (x
y
) (1 – y)s, (8)

in which s is the frequency of competition between groups
or lineages relative to competition within groups. For exam-
ple, competition between species happens less frequently than
competition within species, thus s < 1. Here, s enters as an
exponent because fitness multiplies over time.

By the methods above, a candidate optimum for this
model is

z∗ = 1 – r
1 – r + rs

. (9)

In the horse example of Figure 1B, smaller size corresponds
to greater competitiveness within species, whereas larger size
provides an advantage in species-level selection. Thus, if we
continue to think of z∗ as competitiveness within groups, then
1 – z∗ provides an expression for size as

1 – z∗ = rs
1 – r + rs

,

which we can compare to the ratio in eqn 6 as

z∗ ∶ 1 – z∗ = 1 – r ∶ rs.

Obviously, this model oversimplifies the macroevolution of
size. Nonetheless, it does capture two essential forces.

First, r describes the fraction of the variance in size that
occurs between lineages. If most of the variance is between
lineages, then r rises toward one (eqn 7), causing size to
increase because greater size corresponds to greater success
of lineages. By contrast, small r means that most of the vari-
ance occurs within lineages, causing the benefit of smaller size
within species to dominate pattern.

Second, larger s associates with more frequent lineage births
and deaths, such as speciation and extinction events. More
frequent competition between lineages enhances the group
selection component, increasing the favored size.

Selection often happens at a variety of temporal scales and
frequencies. This model can easily be extended to consider the
full spectrum of selection at multiple frequencies.

Spatial scale
We can describe different spatial scales of competition by
rewriting our basic model as

w = ( x
ay + (1 – a)ȳ) (1 – y), (10)

a variant of an earlier model for the scale of competition
(Frank, 1998).

Here, a describes the scale over which individuals directly
compete against others. Larger a means more competition
against neighbors, as in our original model of eqn 2. Smaller
a shifts direct competition by individuals to the global scale
against randomly encountered individuals in the entire pop-
ulation. A random individual in that global population
expresses trait value ȳ, the average over all groups.

A candidate optimum favored by selection is

z∗ = 1 – ar
1 + r – ar

or equivalently

z∗ ∶ 1 – z∗ = 1 – ar ∶ r.

Competition becomes more global as a decreases. A lower
value of a reduces the amount of competition that is between
similar neighbors, ar, causing z∗ to rise and individuals to
become more competitive. Later, I extend this model to show
how selection may happen over a variety of spatial scales.

Symbionts, virulence, sex ratios
The processes described in these simple models occur widely
throughout life. This subsection mentions a few examples.

Symbionts living within a host may compete (Cosmides &
Tooby, 1981; Eberhard, 1980; Hoekstra, 1987, 1990; Frank,
1996a). Those symbionts that reproduce faster typically trans-
mit more rapidly to the host’s progeny or to other hosts. That
common scenario follows the tragedy of the commons. Direct
local competition increases relative success in the host. Oppos-
ing that local benefit, greater symbiont competition may dis-
rupt the host or reduce the symbionts’ contribution to the
host, degrading the symbionts’ environment and reducing the
success of the local group of symbionts.

Processes that reduce the correlation, r, between symbionts
in a host favor greater symbiont competitiveness, degrading
the success of the group of symbionts and perhaps also reduc-
ing the vigor of the host. Horizontal transmission of sym-
bionts decreases r (Ewald, 1994). In vertically transmitted
symbionts, greater mutation and larger effective population
size reduce r (Frank, 1994b).

The first cells in the history of life may have faced a simi-
lar challenge (Szathmáry & Demeter, 1987). Such protocells
are thought to have contained a population of replicating
molecules, perhaps a collection of RNA strands. Those repli-
cators competed locally within the protocells, possibly degrad-
ing the success of the local group.

Parasite virulence follows the same natural history (Ander-
son & May, 1982; Bremermann & Pickering, 1983; Ewald,
1983; Levin & Pimental, 1981). The parasites compete within
the host. Greater within host competition may degrade a
host’s vigor, reducing the group success of the parasites in
that host. Virulence is the decline in host vigor caused by the
parasites.

A common problem in sex ratio evolution also falls within
this tragedy of the commons scenario. Suppose a few mothers
lay their eggs in a restricted area. Their progeny mate within
that local arena, then the mated daughters fly away to find
new sites (Hamilton, 1967).

Let x be the fraction of a mother’s offspring that are sons,
and y be the average of x in the local group. Then the relative
success of a focal female’s sons in local mating is x/y. The total
success of those males increases with the number of females
available for mating, which is proportional to the local frac-
tion of progeny that are daughters, 1 – y. Then the mother’s
success through her sons is expressed by eqn 2, the tragedy of
the commons model (Frank, 1996a).

We could say that making more sons is a mother’s compet-
itive trait that degrades group success, whereas making more
daughters is a cooperative trait that enhances group success
(Colwell, 1981). Alternatively, we could say, by eqn 5, that the
tendency to be more cooperative increases with r, the genetic
relatedness between individuals within groups (Frank, 1986c).
The more related mothers are, the more they are favored to
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cooperate by reducing their investment in locally competitive
sons and increasing their investment in productive daughters.

We have assumed in these scenarios that reduced local com-
petition enhances group productivity. But, in some cases, the
amount of local resources and potential productivity are fixed
independently of the competitive and cooperative tendencies
of group members. If so, then reducing local competition has
no benefit through enhanced efficiency and productivity. In
that case, competition tends to increase independently of r,
the relatedness within groups (Alexander, 1974; Clark, 1978;
Frank, 1986c,b, 1998; Taylor, 1992; Wilson et al., 1992).

Dispersal
Limited local productivity favors dispersal (Hamilton&May,
1977; Ronce, 2007). Consider a mother that can add a
progeny to compete in her local patch or make a dispersing
progeny that competes in a distant patch. Adding a compet-
itive offspring locally degrades the success of related neigh-
bors, discounting the competitive benefit by r. By contrast, a
dispersing offspring will typically land in a patch with unre-
lated neighbors. Thus, greater relatedness among neighbors
favors making more dispersers to avoid reducing the success
of nearby relatives (Frank, 1986a).

A simple model illustrates how local limitation of produc-
tivity favors dispersal

w = 1 – x
1 – y + 𝛿ȳ +

x𝛿
1 – ȳ + 𝛿ȳ .

Here, x is the fraction of dispersers made by a focal individ-
ual, y is the average dispersal fraction in the local group, ȳ is
the average dispersal fraction in the population, and 𝛿 = 1 – c
is the success of dispersers that pay a cost, c, for dispersing. A
candidate equilibrium by our usual method is

z∗ = r – c
r – c2

,

with z∗ = 0 for r < c. This model shows the powerful
force favoring dispersal when local productivity is limited and
neighbors are related (Frank, 1986a).

Evolvability
Finally, consider a simple model of time scale and evolvabil-
ity, in which a lineage’s success depends on a tradeoff between
exploration and exploitation

w = (1 – c𝜇) 𝜇s.

Here, the trait 𝜇 describes the tendency of a lineage to create
new variants that explore alternative phenotypes. Typically,
novel phenotypes degrade fitness, causing a cost, c, for explo-
ration, the reduction in the trait’s ability to exploit its current
success. Once in a while, exploration pays off, here in propor-
tion to the exploration rate, 𝜇. The frequency of such payoff
relative to the imposed cost against exploitation is s. For rare
payoff, s ≪ 1, a candidate optimum is

𝜇∗ = s
c
.

This result emphasizes the benefit of exploration in propor-
tion to the frequency of payoff, s, relative to the cost imposed
by degrading a phenotype that is currently a good one, c.

On the one hand, this model captures an essential aspect
of how selection may shape evolvability. On the other hand,

the assumptions are too simple. Typically, a trait that gener-
ates novelty, such as the mutation rate, does not itself directly
cause a beneficial trait. Instead, the generative mechanism
modifies other traits (Karlin & McGregor, 1974; Otto et al.,
2013). Thus, evolvability depends on the joint evolution of a
modifying generative mechanism and a modified trait. A later
section returns to this topic.

Statics vs. dynamics
The previous models derived evolutionary equilibria, some-
times called evolutionarily stable strategies or ESSs (May-
nard Smith, 1982). The ESS is stable against invasion in the
sense that, once individuals in the population take on the
ESS, any individual with a slightly different trait value will do
worse. Mathematical variants consider different criteria for
evolutionary stability (Diekmannet al. , 2004; Eshel, 1996;
McGill & Brown, 2007). However, in most simple models,
the outcome remains essentially the same.

Analyzing equilibria provides insight into statics, the bal-
ance of forces that occurs when a system is at rest (Hibbeler,
2016; Mankiw, 2024). Of course, the statics of a system is
just a special case of the broader dynamics, so it might seem
that we should always study dynamics. The problem is that to
analyze dynamics, one has to make many specific assumptions
about how the moving parts interact under widely varying cir-
cumstances. In any realistic evolutionary problem, we never
know even approximately most of the factors involved.

We can make a lot of assumptions to analyze a mathemat-
ical model of dynamics. That teaches something. But we can
be sure that the exactness of such dynamical analysis exactly
describes nothing that ever really happens. Often, whether
such analysis is useful or approximately true is hard to know.

People have widely varying opinions about how to use static
and dynamic models to understand natural pattern (May-
nard Smith, 1982; Samuelson, 1983; Spencer & Feldman,
2005). In my opinion, the resolution is simple as long as one
keeps in mind the various costs and benefits of the different
methods (Frank, 1998).

Each method provides a unique tool to understand process.
In the absence of a specific problem and a particular goal, it
does not make sense to say that one tool is better than another.
They are different.

This article identifies the various forces of natural selec-
tion that act at different scales. Statics is typically the eas-
iest way to identify forces (Lanczos, 1986). However, once
one has a sense of statics, it is often important to consider
simple extensions to analyze dynamics. Those simple aspects
of dynamics begin the task of extending one’s understanding
more broadly, revealing when statics fails to capture essential
aspects of evolutionary process.

No matter how extensive one’s analysis, there will always
be another aspect of dynamics that can be added. It is a bit
of a game among mathematical biologists to find yet another
component of dynamics. Where should one stop? There is no
right answer. But some questions help.

Does the additional complexity reveal a broadly important
force that applies widely? Does it clarify some aspect of a
particular problem of natural history? Does the new analysis
make a prediction in a testable way?

Usually, a testable prediction takes a comparative form
(Frank, 2022). For example, in our tragedy of the commons
model in eqn 5, we derived the equilibrium trait value z∗ =
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1 – r. As genetic relatedness within groups, r, increases, indi-
viduals tend to become less competitive and more coopera-
tive. That prediction applies widely, identifying a fundamental
force that shapes traits throughout life.

Such comparisons in equilibriummodels create an approach
called comparative statics (Milgrom & Shannon, 1994;
Samuelson, 1983; Silberberg, 1974; Varian, 1992). Alterna-
tively, we might consider how dynamics changes as some
input parameter changes, comparative dynamics (Chiang,
1992; Judd, 1982; Kamien & Schwartz, 1991).

For example, in eqn 8, the parameter s is the difference
in the relative frequency of global versus local competition.
The less common global competition is, smaller s, the bigger
the ratio between the rise in competitiveness during within-
group competition and the decline in competitiveness during
the subsequent bout of between-group competition.

The way in which dynamics changes as s changes defines
a prediction of comparative dynamics. The following section
illustrates this process.

(A reviewer noted that it would be interesting to determine
when static and dynamic models make different predictions
and to explore what aspects of each model are important for
driving possible differences in results.)

Dynamics of opposing forces
This section illustrates dynamics by developing the tempo-
ral scaling model for the tragedy of the commons in eqn 8,
repeated here

w = (x
y
) (1 – y)s.

In this model, we can think of w as fitness over a full life
cycle. Competition first occurs within groups for a relative
time period of one, after which competition between groups
occurs for a relative time period of s. We then maximize w
with respect to individual trait value, x.

When analyzing dynamics, trait values may become larger
than one because of the longer periods of competition within
groups and larger differences in success between competitors.
To avoid fitness becoming negative through the term 1 – y, we
rewrite fitness as

w = (x
y
) (𝜅 – y)s, (11)

for sufficiently large 𝜅. The optimum for this model is simply
the optimum we obtained previously in eqn 9 multiplied by 𝜅,
which means that we can write

z∗

𝜅 = 1 – r
1 – r + rs

. (12)

As s declines, the time scale of competition within groups
increases relative to the time scale of competition between
groups. The greater relative time for within-group competi-
tion favors greater competitiveness, z∗. Put another way, for
each cycle, the more generations of competition within groups
relative to rounds of competition between groups, the more
the short time scale of evolution within groups dominates over
the long time scale of evolution between groups.

Dynamics
To analyze dynamics, we must make explicit assumptions. Let
there be two haploid genotypes with competitiveness values x1

and x2 that determine fitness over a full cycle of competition
within groups. The initial frequencies of the two types within
a group are q and 1–q, with global frequencies q̄ and 1–q̄. The
difference in competitiveness of types is 𝛼 = x1 – x2, and the
average competitiveness within a group is y = qx1 + (1 – q)x2.

After competition within a group with initial frequency q,
the new frequency in that group is

q′ = q + 𝛼q(1 – q)
y

. (13)

If we let the probability that a group has initial frequency q be
pq and assume that q takes on discrete values because groups
have finite size, then the new global frequency is

q̄ ′ = ∑
q

pqq′ (
wq

w̄
) , (14)

with wq = (𝜅 – y)s and w̄ = ∑pqwq. We weight each group’s
frequency after selection, q′, by the group’s relative productiv-
ity, wq/w̄. That productivity determines the group’s relative
contribution to the global pool that reassorts to form new
groups.

After each round of reassortment, the correlation between a
type’s competitiveness, x, and the average competitiveness in
the group, y, is r. To reassort types between groups with that
specified correlation, we use a specially designed distribution.

Correlated binomial distribution
When analyzing group-structured populations, we often need
to consider the correlated distribution of individuals into
groups. This section develops the correlated binomial, which
may be broadly useful in models of groups.

Suppose the current population frequency of type 1 indi-
viduals with trait value x1 is q̄. Then, 1 – q̄ is the frequency
of individuals with trait x2. The correlated binomial splits the
formation of groups into two parts. First, a fraction q̄ of the
new groups receives M individuals of type 1, and a fraction
1 – q̄ receives M individuals of type 2. The remaining N – M
individuals in each group are added according to a binomial
distribution.

Define B(k;N, q̄) as the binomial distribution of a random
variable k for a sample of size N in a population with fre-
quency q̄ of type 1 individuals. Write the correlated binomial
distribution as cB(k;N,M, q̄), which is

cB = q̄ ∗ B(k – M;N – M, q̄) + (1 – q̄) ∗ B(k;N – M, q̄),

in which ‘∗’ denotes multiplication. The probability, pq, that
a group starts with frequency q = k/N individuals of type 1 is
given by cB.

The correlation of types within groups is

r = (M
N
)
2
+ N – M

N2 .

The values of M and N are integers, so the value of r must be
chosen consistently with those integer constraints.

Optimum and polymorphism
The static analysis leading to eqn 12 predicted the optimum
unbeatable trait value. Here, I show that the dynamics given
by eqn 14 support the static analysis. In particular, I tested a
sample of starting values for q̄ and parameters N, M, s, r, and
𝜅. In each case, a trait value at the predicted optimum beat all
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other trait values and increased to a frequency of 1. The freely
available software code shows the calculations (Frank, 2024).

The numerical studies also showed that particular combi-
nations of trait values, x1 and x2, can be maintained poly-
morphically at intermediate frequencies of q̄. Polymorphism
appears to require that x1 and x2 be on opposite sides of the
predicted optimum, z∗, in eqn 12.

Phases of the cycle
When the short time scale of competition within groups
dominates, there can be significant evolution of traits
within groups. Typically, competitiveness increases during the
within-group phase of selection.

More intense competition within a group often reduces
that group’s ability to compete against other groups. Thus,
less competitive groups dominate in colonizing new resource
patches, causing competitiveness to drop at the start of each
new cycle, after the initial colonization of groups.

Observed trait values depend on when one measures indi-
viduals. For example, many generations of viral evolution
may occur within hosts between each round of transmission
between hosts. Competitiveness will be relatively high after a
long period of within host competition.

If viral competitiveness causes virulence and reduces host
fitness, then competitiveness will be relatively low at the start
of infections within hosts because, at the start of each new
infection, more viruses will have come from hosts with lower
virulence and less competitive viruses. The more virulent com-
petitive viruses were more likely to harm their hosts and
reduce their chance for transmission (Levin & Bull, 1994).

To analyze the different phases of the cycle, we can separate
the dynamics during within host and between host selection.
We can write the within host dynamics in frequency by fol-
lowing eqn 14 and dropping the between host component,
yielding

q̄ ′(t) = ∑
q

pqq′(t), (15)

in which q̄ ′(t) is the frequency at time t averaged over all
groups and not weighted by the size of the groups. As before,
a group with initial frequency q occurs with probability pq.

To calculate q′(t), the frequency in a group at time t with
initial frequency q, we use eqn 13 and express the trait values
in terms of the dynamics of growth as xi(t) = emit. We set the
interval for t to [0, 1], with the value of traits used previously
as xi = emi .

Figure 2 shows the alternating phases of within- and
between-group selection. During a period of within-group
selection, the more competitive type wins, causing a rise in
the average value of the competitive trait. At the end of each
phase of within-group competition, the groups compete for
colonizing new patches. That between-group phase causes
a drop in the frequency of competitive types because lower
competitiveness associates with greater group success.

The fluctuating changes caused by the opposing forces can
be large. In the first phase of within-group competition, the
average competitiveness rises by approximately 20%. Then
during the between-group competition phase, the average
competitiveness drops by approximately 40%. The fluctua-
tions in each phase decline as the population moves toward
its optimum value.

The prior section mentioned a prediction of comparative
dynamics. The less common global competition is, smaller s,

Figure 2. Alternating phases of within- and between-group selection. Ini-
tially, groups are formed by the correlated binomial distribution. Then,
selection occurs within each group, causing a rise in the average com-
petitive trait value. Here, the average is measured across groups without
weighting by group size. That unweighted measure expresses the aver-
age competitiveness per group, considering each group equally. After
each round of within-group selection, between-group competition causes
a sharp drop in trait values because groups with lower competitiveness
are more productive. The dynamics over a full cycle are given by eqn 14.
Parameters for this example are N = 1000, = 100, initial q = 0.9,
s = 0.9, r = 0.95065,M = 975, which lead to an optimum of z = 5.453.
The competing trait values are x1 = z and x2 = . The labeled circles
show the amount of decline in competitiveness, for different values of s,
during the first between-group competition period. Following the compar-
ative dynamics prediction given in the prior section, smaller values of s
associate with smaller declines relative to the rise in competitiveness dur-
ing the within-group competition period. The software code to produce the
figure is freely available (Frank, 2024).

the bigger the ratio between the rise in competitiveness dur-
ing within-group competition and the decline in competitive-
ness during the subsequent bout of between-group competi-
tion. In Figure 2, the circles along the initial decline during
between-group competition are labeled with different values
of s, illustrating the prediction of comparative dynamics.

Continuous vs. discrete, forces of constraint
If continuous variation in traits arises by mutation or other
processes, then eventually the optimum trait value will arise
and dominate the population. Alternatively, when only a few
distinct trait values occur, then the optimum trait is unlikely
to occur. If at least one trait value is above the optimum
and another is below the optimum, then the polymorphic
combination may be maintained.

An intrinsic limit on the set of possible trait values acts as a
force of constraint. That force of constraint restricts the evo-
lutionary flow of dynamics, potentially having a strong effect
on the observed pattern of trait values.

Mutation, short-sighted evolution
Mutation or other variance-generating mechanisms can also
influence the distribution of variation within and between
groups (Frank, 1994b; Levin & Bull, 1994). Suppose, for
example, that many generations of competition happenwithin
groups before each round of competition between groups.
If the size of each group becomes sufficiently large, then
highly competitive mutants may inevitably arise and come to
dominate within each group.

The ultimate dominance by highly competitive types within
each group greatly reduces the variance between groups. Low
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variance between groups is the same as a low value of the cor-
relation within groups, r. Even when each group is founded
by a single type and the initial correlation is r = 1, the degra-
dation of between-group variance by mutation and selection
within groups may greatly reduce the effective correlation,
favoring highly competitive types (Frank, 2010c,b, 2013).

Some viral life cycles may follow this scenario (Levin &
Bull, 1994). Within each host, there may be many genera-
tions of competition, very large populations, and relatively
high mutation rate. Inevitably, mutants with faster growth
will come to dominate within hosts. Those faster growing
variants may be more virulent, harming the host and degrad-
ing the overall potential for viruses in a host to transmit to
new hosts. In essence, the increase in local competitiveness
degrades the commons.

Such virulence and degradation of the commons can hap-
pen even when each host is infected by a single viral clone. In
that case, all of the variance is between hosts at initial infec-
tion, and r = 1. However, as mutation and selection happen
within hosts, the difference in viral populations between hosts
declines as within host competitiveness inevitably rises.

Sampling hosts when they have significant viral load leads
to a measure of high average competitiveness and high viru-
lence, even when initial infections are clonal. In other words,
virulence may be high because short-sighted local evolution
dominates the long time scale of group selection (Levin&Bull,
1994). GeorgeWilliams suggested that such short-sighted evo-
lution may dominate whenever the short time scale of local
competition happensmuchmore frequently than the long time
scale of global competition between groups (Williams, 1966).

Explanation vs. calculation
Our simple model in eqn 8 captures this essential force of rel-
ative time scale. In that model, the frequency of competition
between groups relative to competition within groups declines
as s declines. Smaller s associates with a relatively stronger
force within groups, raising the optimum competitiveness, as
shown in eqn 9. Similarly, greater mutation degrades r, also
increasing the favored value of competitiveness.

The simple static models highlight essential forces rather
than calculation of dynamics. The dynamical models provide
more detail about how things change over time. But that extra
detail imposes costs, such as the need to specify particular
values for many parameters and the tendency for the over-
all motion of a system to hide the role of the individual forces
that ultimately determine outcome.

Schumpeter (1954) noted that people are often inclined

to start from dynamic relations and then proceed to the
working out of the static ones. But … in any field of sci-
entific endeavor … always static theory has historically
preceded dynamic theory and the reasons for this seem
to be as obvious as they are sound—static theory is much
simpler to work out; its propositions are easier to prove;
and it seems closer to (logical) essentials.

Similarly, Lanczos (1986) emphasized that statics “focuses
attention on the forces, not on the moving body.”

Some people strongly emphasize a “shut up and calculate”
approach to science. The goal is to trace assumption to con-
sequence, with outcomes that can be compared with what
we actually observe without necessarily understanding why
(Dirac, 1958; Feynman, 1967; Fuchs & Peres, 2000; Mermin,
1989).

Others emphasize a “what does it mean” approach, how
can we understand the fundamental forces that shape nature,
with outcomes that can be compared with observations and
a story to explain why. This duality between calculation and
meaning became prominent during discussions about quan-
tum mechanics (Bell, 1987; Bricmont, 2016; Bohm, 1980;
Bohr, 1949; Einstein et al., 1935; Heisenberg, 1958). The
same contrast naturally arises in every scientific discipline
(Callebaut, 2012; Mayr, 1982; McCloskey, 1998; Rodrik,
2015).

Although ultimately we need both points of view, this arti-
cle emphasizes forces and meaning. Because, as Schumpeter
described, always static theory precedes dynamic theory.

Fundamental forces, partial causes
We can separate natural selection into the three forces of
marginal value, correlation, and reproductive value. Each
force defines a partial cause of change and dynamics (Frank,
1998, 2022).

Knowing about a particular force helps to explain what
happens but is not sufficient to determine outcome. For exam-
ple, most explanations of physical motion depend partly on
gravity. But knowing how gravity acts by itself does not
determine motion. There are always other forces.

Marginal value
The first general force is marginal valuation, which concerns
how natural selection tends to balance opposing forces. For
example, being bigger may help to compete and to avoid
predation. But larger size may require more resources for
maintenance and trigger easier detection by predators.

The balance occurs when a small marginal increase in size
causes equal gains and losses (Blaug, 1997; Jevons, 1871;
Marshall, 1890; Mas-Colell et al., 1995). If gains exceed
losses, then selection favors an increase. If losses exceed gains,
then selection favors a decrease.

Similarly, how does natural selection alter traits to balance
the competitive gains against neighbors versus the cooperative
efficiency of resource use? The balance typically occurs when
the marginal gain for slightly better competitive success equals
the marginal loss for slightly worse efficiency.

If the marginal gain in competition were greater than the
marginal loss in efficiency, then selection would alter traits
to enhance competition. Traits change until marginal gains
and losses balance. Overall, the marginal changes in fitness
define an instantaneous partial cause acting on a trait with a
particular value.

To develop an example of marginal gains and losses, recall
the general form for our basic tragedy of the commons model
in eqn 1

w(x, y) = I(x, y)G(y),
in which individual competitiveness against neighbors, x,
depends on a trait such as resource uptake rate. The average
resource uptake rate in the local group is y. The focal indi-
vidual’s share of local group success is I(x, y), and the group
efficiency in using resources is G(y).

Normalizing fitness to be one at the evolutionarily favored
trait value, z∗, often helps to obtain a consistent interpretation
of forces. Writing

w = I(x, y)
I(z∗, z∗)

G(y)
G(z∗)
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yields a normalized fitness of one when evaluated at the fixed
point, x = y = z∗.

We obtain the trait value that maximizes fitness by follow-
ing the steps in eqn 3 and setting the derivative equal to zero,
yielding

dw
dx

= –Cm + rBm = 0,

with

–Cm = Ix
I

Bm =
Iy
I
+

Gy

G
,

in which a subscript means a partial derivative with respect
to that variable. All functions are evaluated at the fixed point,
x = y = z∗. The marginal costs and benefits equalize at a
candidate for a maximum, yielding

Cm = rBm.

In our model of temporal scale in eqn 11, I = x/y and
G = (𝜅 – y)s. Here, x and y describe competitiveness. If we
analyze –dw/dx, then the marginal values describe the ten-
dency for efficiency, group benefit, and cooperation. Near the
optimum, z∗, the marginal costs and benefits of cooperation
are

Cm = 1
z∗

Bm = 1
z∗

+ s
𝜅 – z∗

, (16)

which leads to the optimum in eqn 12.
For any trait that can take on continuous values, an opti-

mum typically balances marginal costs and benefits.

Correlation, group selection, and kin selection
The second general force is correlation between interacting
individuals or other biological units. This subsection illus-
trates how different biological problems lead to similar look-
ing mathematical expressions for correlation. Once one rec-
ognizes the few ways in which patterns of association and
variance influence natural selection, one can distinguish the
small number of seemingly similar but actually distinct causal
processes that commonly arise (Frank, 1998).

Mathematical analyses of natural selection often lead to
expressions that include covariance terms (Robertson, 1966;
Price, 1970, 1972a). In different scenarios, those covari-
ances may arise from phenotypic correlations between group
members, variances between groups, or genetic relatedness
between interacting individuals. The covariance’s promiscu-
ity leads to confusion about the ways in which various causal
processes arise in natural selection (Frank, 1997c, 2012; Wolf
et al., 1999).

Let’s start with the basic tragedy of the commons model

w = x
y
(1 – y).

Consider a population with many independent groups. We
randomly choose a focal group, with average trait value y.
In that group, we choose a random individual with trait value
x. In this model, nothing distinguishes individuals or groups
except their trait values. Everyone is a member of the same
class.

Recall that we derived the optimum trait value to be z∗ =
1 – r, in which r is the correlation between a randomly cho-
sen individual’s trait value and the average trait value of that

individual’s group. This correlation determines the outcome.
How should we interpret the meaning of this correlation in
terms of biological processes?

We start by looking at how r arose in the derivation of
the optimum value. In that analysis, our focal individual’s fit-
ness changes with a change in its trait value, arising from the
derivative dw/dx by the chain rule given in eqn 3. We then
defined r to be the component slope dy/dx, the change in the
average trait of the focal individual’s group, y, as its own trait,
x, changes. We called r the correlation of an individual to
its local group, in which the local group average includes the
focal individual’s contribution to that group average.

More comprehensive analysis shows that the actual slope
that we need is the regression coefficient of y on x (Frank,
1997b; Taylor & Frank, 1996; Queller, 1992), which is

𝛽yx = cov(x, y)/var(x).
In the limit of small changes in x, this slope becomes the
derivative of y with respect to x. When searching for a local
optimum, we can use the small change expression of the
derivative. However, to understand the meaning of r, it is
useful to analyze the more general regression expression.

For a group size of N, the group average is y = ∑xi/N.
Using that definition of y in the regression expression leads to

𝛽yx =
1
N
+ (N – 1)𝜌

N
= r,

in which 𝜌 is the correlation between randomly chosen pairs
of different individuals within a group, and r is the correla-
tion between randomly chosen pairs of individuals sampled
from a group with replacement. In other words, r includes
the probability 1/N that the same individual will be sampled
twice.

It is easy to think of the basic tragedy model as describing
groups of individuals sampled from the same species. How-
ever, the model is more general. Different groups may rep-
resent different species. Or each group may be comprised of
individuals from different species, for example, a mixture of
different bacteria and yeast cells competing for a common
resource (Frank, 1994a).

From that wider perspective, four distinct biological pro-
cesses may influence the regression coefficient, 𝛽yx. We must
clearly separate those distinct processes in order to understand
how natural selection shapes traits. Much of the challenge and
controversy arises from the failure to separate those distinct
processes, partly hidden by the seemingly similar regression
and correlation coefficients that appear in each case.

Correlated traits
Suppose groups include a mixture of microbial species. Each
individual in the group has a competitive tendency, x, to
suck up local resources. As the local average, y, rises, the
greater allocation of individual resources toward competitive-
ness reduces the overall efficiency of the group in reproducing
and transforming resources into biomass.

The tragedy model applies. The more closely correlated
individuals are in their competitiveness trait, the more nat-
ural selection will reduce local competitiveness and enhance
group efficiency. It is easiest to imagine how this would work
when the individual trait values are influenced by genotype.
Then, the similarity defined by the regression 𝛽yx depends on
the genetic associations between the different species within
groups (Frank, 1994a).
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However, the causal process ultimately depends on pheno-
typic similarity and does not require genetic similarity. For
example, consider two individuals that form a group. Focus
on one. If its partner expresses a correlated level of compet-
itiveness, then a rise in the focal individual’s competitiveness
is associated with relatively little gain because the partner will
typically also have a higher competitiveness.

Against that small gain from enhanced competitiveness, the
cost rises significantly because both individuals have increased
their allocation to competitiveness, deteriorating the local effi-
ciency of the group. Although easiest to imagine when traits
have a genetic basis, that genetic aspect is not necessary. Only
the phenotypic correlation is required. In this case, the process
follows Aumann’s correlated equilibrium ideas from game
theory (Aumann, 1974; Frank, 1997c, 1998; Skyrms, 1996;
Moore et al., 1997; Wolf et al., 1999).

Of course there has to be some heritable tendency for the
expression of traits. Otherwise, success does not translate into
evolutionary change. However, the heritable transmissibility
of traits may differ from the factors that cause phenotypic
associations, as shown in the discussion below on inclusive
fitness (Frank, 1997c; Fromhage et al., 2024; Moore et al.,
1997; Wolf et al., 1999).

Group selection
The primary causal role of regression or correlation does not
depend on group structure. What matters is the scale that sets
the association of interacting individuals in relation to the
scale of competition for resources (Frank, 1998).

Group structure may impose the same scales on competition
and resource efficiency, making it easy to understand process.
Thus, group selection provides a convenient label when clear
boundaries occur but obscures the underlying causal processes
in other situations (Hamilton, 1975).

We mentioned earlier that in the simple tragedy model,
r = Vb/Vt, the fraction of the total variance that occurs
between groups. Although correct for certain situations, this
again obscures causal process. The correct interpretation of r
is the regression 𝛽yx. However, for that value, we must ulti-
mately understand whether a particular situation arises from
purely phenotypic associations or from an underlying genetic
basis.

Neighbor-modulated kin selection
Consider again the scenario in which groups comprise a mix-
ture of microbial species. Suppose any phenotypic correlation
has a genetic basis. The particular genes and the mechanisms
that link genotype to phenotype may differ between species.
If the total genetic variance is the same in each species, then
the result of the tragedy model depends on r, the correlation
between individual and group phenotype.

In this case, we are following the direct fitness of a focal
individual. Neighbor phenotypes modulate the fitness of our
focal individual through their effects on competition and
efficiency.

When individuals are members of different species, we
would not typically call this process kin selection. Yet, the
identical scenario with members of the same species would
commonly be called kin selection or neighbor-modulated kin
selection (Gardner et al., 2011; McGlothlin et al., 2010; Tay-
lor et al., 2007; Queller, 2011). Even for the scenario within
species, the genetic and phenotypic similarities do not have to

arise by interactions between kin in the usual sense of kinship
by recent common ancestry.

Instead, all that matters is phenotypic similarity, whether
genetic or not and, if genetic, whether truly based on kinship
by recent common ancestry.

Of course, evolutionary change over time does depend
on heritability, typically a genetic aspect of traits. The next
section analyzes the heritable contribution of different indi-
viduals to the future population.

Different classes
To analyze heritable contributions and the transmission of
traits, we must first consider the different roles that individ-
uals may play in various scenarios. Often, it makes sense to
think of different individuals with different roles as members
of different classes. Then, we must consider how trait val-
ues are transmitted by each class, the different pathways of
heritability (Frank, 1998; Taylor & Frank, 1996).

In our previous models, each individual was an actor
expressing the same type of trait. And each individual was
also a recipient, influenced by the expression of that trait in
its neighbors. We had one class of individuals, each individual
being both an actor and a recipient.

In other situations, a recipient may not express any trait,
with its fitness influenced only by the actors’ traits. For
example, parents express various traits that help their off-
spring, whereas offspring may be purely recipients of parental
benefits.

Consider an extension to our basic tragedy model, starting
with the simplified linear form in eqn 2. Here, we have two
classes of individuals. Class 1 is like our priormodels, in which
all individuals are actors that express a trait and are recipients
influenced by that expression, yielding the class fitness as

W1 = (x
y
) ( 1 – y

1 – z∗
) . (17)

In class-based models, we normalize the class fitness to be one
at equilibrium so that we can compare the fitness of different
classes on the same scale. Here, the extra denominator term
1 – z∗ provides that normalization.

For class 2, individuals receive the effects of class 1’s trait
expression but do not themselves express traits. We may
think of class 1 as productive individuals and both classes as
recipients of the products. In this case, class 2’s fitness is

W2 =
1 – y
1 – z∗

. (18)

In a class-based model, we write an overall expression for
fitness as

W = ∑
i

ciWi, (19)

in which Wi is the fitness of class i individuals, and ci weights
each class by its reproductive value, the relative contribu-
tion to the future population. The next section discusses the
reproductive value weightings.

For a model with classes, full analysis requires a bit of com-
plicated notation and discussion (Frank, 1998). Here, we pro-
vide a simplified summary that highlights the most important
concepts.

Previously, we evaluated the change in a trait by evaluat-
ing dw/dx, the change in the fitness of a single class, w, with
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respect to the trait value, x. With different classes, we need to
track the heritability of trait values to the future population by
following the different pathways of transmission for the trait
through the fitnesses of the different classes of individuals,Wi.

Label the transmissible value of traits g′, in which g is for
the genetic and other transmissible determinants of traits, and
the prime denotes the value of those factors in the future pop-
ulation. Now we need the change in fitness with respect to the
change in the transmissible value of the trait.

dW
dg′

= ∑
i

ci
dWi

dx
Ri. (20)

The Ri quantify the transmissible values through the differ-
ent classes. There are two distinct ways for tracking those
pathways of transmission.

Direct and inclusive fitness
First, in the direct fitness approach that we have been using,
an R coefficient measures the slope of an actor’s phenotype
relative to the recipients’ transmissible genetic value. In this
case, the pathway is a change in actor’s phenotype that causes
a change in recipients’ fitness that causes a change in the
recipients’ transmissible factors. Those factors transmitted by
the recipients are associated with the actor’s phenotype. This
pathway is direct because we measure how each recipient
class directly passes transmissible factors to the future (Frank,
1997c, 1998).

Second, in inclusive fitness, an R coefficient measures the
slope of a recipient’s genetic value relative to the actor’s genetic
value. In this case the pathway reverses, becoming a change in
actor’s phenotype causes a change in recipients’ fitness which
causes a change in the amount of actor’s genetic value that is
transmitted by the recipients. This pathway is inclusive to the
actor by measuring all transmission with respect to the actor’s
genetic value (Frank, 1997c, 1998).

In both cases, the Ri provide measures of heritability of
the trait associated with each class. Overall, the direct fitness
method is more general because it can handle multiple actors,
and it avoids inclusive fitness’s special assumptions needed to
reverse the direction of causality (Frank, 1997b). For some
situations, inclusive fitness may be more appealing intuitively
because it assigns all consequences of transmission to the actor
that causes changes in fitness.

Using the specific models for W1 and W2 in eqns 17 and 18,
a candidate for the optimal trait value occurs when

c1R1 (rBm – Cm) +
c2R2r
1 – z∗

= 0,

in which Bm and Cm are given in eqn 16. Solving yields

z∗ = 1 – r
1 + 𝜙r , (21)

in which 𝜙 = c2R2/c1R1. As the reproductive value and trans-
missibility of the second class increase, causing 𝜙 to increase,
the favored competitiveness of the actors, z∗, declines because
less of the transmission happens through the competitive
interactions in class 1.

This analysis shows a significant problem with group selec-
tion interpretations. In this two-class tragedy model, we have
to track several causal factors that have no easy interpretation

in terms of groups. Instead, we simply followed the path-
ways of causality and the weightings for various factors such
as reproductive value. That simple interpretation arises nat-
urally from identifying the various forces and tracing their
consequences.

Reproductive value
Reproductive value weightings describe the contribution to
the future population by different classes, the third general
force in our analysis (Charlesworth, 1994; Fisher, 1958; Tay-
lor, 1990). This subsection introduces the basic ideas and
some simple methods of analysis. The following examples
show the essential role of reproductive value in evaluating
temporal and spatial scales.

In eqn 19, we showed how to combine different classes of
individuals into an overall expression for fitness. A class that
contributes relatively little to the future population will have
relatively little influence on how traits evolve. The example
that led to eqn 21 showed how the relative reproductive val-
ues of different classes determine which class dominates the
evolution of trait values.

Traits influence reproductive value
In the prior example, the reproductive value weightings, ci, are
independent of the trait value. More realistic and challenging
problems arise when the reproductive values depend on the
trait of interest. To study that situation, we analyze the con-
sequences of trait values for each class and then combine the
results into an overall effect.

The fitness consequence for each class depends on that
class’s contribution to the future population. The contribution
has three aspects.

First, the proportion of individuals in class j influences the
contribution of that class. We write uj for the frequency of
class j.

Second, when class j individuals contribute to class i, the
value of that contribution must be weighted by the reproduc-
tive value of individuals in class i, written as vi.

For example, if class i represents dispersing individuals,
then wemust weight the contribution to class i by the expected
relative contribution of a disperser to the future population.

Third, the relative contribution of class j to class i is wij.
For example, we may be interested in wij(x, y), expressing the
effect of an individual’s trait, x, and the group average trait,
y, on the contribution from j to i.

The overall fitness valuation for the contribution of class j
to class i is viwijuj. Summing all transitions yields

W = ∑
ij

viwijuj = vAu. (22)

Here, v is the row vector of reproductive values per individual
for each class, u is the column vector of class frequencies, and
A is the matrix of wij fitness values (Frank, 1998; Taylor &
Frank, 1996).

Dispersal vs. survival
Consider a tradeoff between the production of dispersing
progeny and the future survival in the current habitat (Frank,
1998), following section 5.6 of Frank (2022).

This example has two classes. Dispersers that successfully
colonize a new patch form class 1. Having survived for
one time step in their new patch, the new colonizers and
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their nondispersing descendants form class 2. Let the fitness
components be

A = [ 0 𝛽(x)/D
1 – d 1 – 𝛿 – y] . (23)

Entries in row i and column j denote wij, the contribution
of class j individuals to class i. Thus, w11 is zero because
newly arrived colonizers of class 1 do not make dispersers but
instead survive locally at rate w21 = 1–d to form the surviving
lineage of colonizers as class 2.

The component w12 = 𝛽(x)/D describes the contribution
of the local lineage to dispersers that successfully colonize a
new patch. The local lineage’s investment in making dispersers
is x, and 𝛽(x) is the functional relation between dispersal
investment and dispersal success. Dispersal success is nor-
malized by the density-dependent factor, D, in which greater
density-dependent limitation reduces dispersal success.

The component w22 = 1 – 𝛿 – y describes the survival of the
colonizing lineage within its patch. The intrinsic loss rate is 𝛿,
which combines destruction of the patch, loss of the coloniz-
ers from a continuing resource patch, or death of a host when
the colonizers are parasites.

The intrinsic loss rate is increased by y, which is the patch
average of the trait value x that determines the number of
dispersers. As dispersal rises, the local survival rate decreases
because greater investment in dispersal uses up more of the
local common resources, similar to a tragedy of the commons
model.

When evaluating total fitness, W, from eqn 22, we need the
individual reproductive values, v, for the classes when evalu-
ated at demographic equilibrium, x = y = z∗, derived in Frank
(1998) as

v ∝ [1 – d 𝜆] , (24)

in which “∝” means proportional to. The reproductive value
of new colonizers is discounted by 1–d, which is the probabil-
ity of surviving the initial delay after colonization and before
producing dispersers. The reproductive value of residents is
augmented by 𝜆, the population reproduction rate because res-
idents have average reproductive success 𝜆 during the period
when new colonizers do not reproduce.

The value of 𝜆 is the dominant eigenvalue of the fitness
matrix A evaluated at x = y = z∗. Later, we will deal with
the fact that 𝜆 depends on the other model parameters. For
now, we consider the population’s average reproductive rate
as a separable partial cause.

The class frequencies at demographic equilibrium are pro-
portional to

u ∝ [𝛽(z
∗)/D
𝜆 ] . (25)

To obtain the trait values that maximize the total fitness in
eqn 22, we evaluate dW/dx = 0 at x = y = z∗, which includes

dA
dx

= [0 𝛽′(z∗)/D
0 –r ]

and the vectors v and u at demographic equilibrium, leading
to a solution that must satisfy v1𝛽′(z∗)/D = v2r at which the
marginal gains and losses for dispersers are equal, yielding

𝛽′(z∗) = r𝜆D
1 – d

.

If we assume that dispersal success is 𝛽(z) = zs, with s <
1, then dispersal success rises at a diminishing rate with
investment in dispersal, yielding the solution

z∗ = [ s(1 – d)
r𝜆D ]

1/(1–s)
. (26)

The various terms interact to determine the favored dispersal
rate, z∗. We can get a sense of partial causation by considering
how z∗ changes in response to partial changes in the terms. In
particular, a rise in d lowers the initial survival of colonizers
within a patch, decreasing investment in dispersal. Similarly,
a rise in 𝜆 raises the growth of patch residents, lowering the
relative value of colonizers and also decreasing investment in
dispersal.

A decrease in density-dependent limitation,D, increases the
opportunity for dispersers to find new patches, raising dis-
persal. Smaller values of s cause more rapid saturation of
dispersal success, lowering dispersal investment.

This model also expresses the tragedy of the commons.
Reduced similarity, r, favors more dispersal, which decreases
local survival and the long-term quality of the local patch. In
other words, dispersal is a competitive trait that degrades the
local commons by more rapidly extracting local resources to
develop dispersal-enhancing traits.

In this example, different classes have the same trait her-
itabilities. When those heritabilities differ by class, we must
weight each class’s success by its relative heritability for the
trait, as in the Ri coefficients of eqn 20.

These conclusions provide a rough qualitative sense of how
various forces shape dispersal. In each case, we emphasized
how a change in some factor leads to a partial pathway of
causation favoring either an increase or a decrease in dispersal.

Scale
The dispersal example illustrates natural selection’s scaling of
time and space by reproductive value. Temporally, in eqn 24,
the ratio of individual reproductive values, 𝜆/(1 –d), describes
the benefit gained by older reproductive individuals relative
to younger colonizing individuals that must survive one time
step before reproducing.

The value of 𝜆 describes population growth, with 𝜆 = 1
at steady population size. Greater population growth more
strongly emphasizes the current reproduction of nondispersers
over the future reproduction of dispersers.

Current reproduction benefits from population growth
because population size after t steps into the future is propor-
tional to 𝜆t. Thus, adding a new individual to the population
at time t provides a contribution in proportion to 𝜆–t.

A single addition to a bigger population is a smaller frac-
tional contribution to the future composition of that popula-
tion. In this case, the reproductive value ratio 𝜆/(1–d) provides
a simple measure for the scaling of time.

Spatially, in eqn 25, the number of successful dispersers
declines with increasing density dependence, D, degrading
the benefit of spatial movement. In effect, natural selection
increasingly discounts reproductive value by distance ofmove-
ment, the role of spatial scale. Similarly, larger 𝜆 and more
rapid population growth increase the relative number of res-
ident reproductives, valuing more strongly the local versus
distant scale for future contribution to the population.

These interpretations of scale follow from the population
reproductive rate, 𝜆. We mentioned earlier that 𝜆 depends
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on the other model parameters. That fact complicates the
interpretation of the model with respect to its individual
parameters.

To clarify things in analysis, one typically makes the reason-
able assumption that 𝜆 = 1, meaning that population size is in
steady state when the trait of interest is at its optimum value,
x = y = z∗. This assumption causes the density dependence
term to become

D = (1 – d)𝛽(z∗)
𝛿 + z∗

.

This expression simplifies the reproductive value expressions
and leads to an optimum trait value of

z∗ = s𝛿
r – s

for r(1 – 𝛿) > s.
However, by simplifying in this way, we lose insight into

how natural selection discounts reproduction in relation to
scale by the factor 𝜆, the population rate of reproduction.

As often happens, we face the common tradeoff between
isolating partial causes in a clear and intuitive explanatory
way versus calculating the relations between particular model
parameters and specific outcomes. Ultimately, explanation
and calculation are important in different ways, so it helps
to see things from both points of view.

Temporal scaling
In the previous section, current reproduction had different
consequences from future reproduction. A growing popula-
tion favors immediate reproduction over future reproduction.
A shrinking population favors later reproduction over current
reproduction. Overall, the intensity of natural selection acting
on a trait scales with time.

This section presents a more general tragedy of the com-
mons model that highlights temporal scaling (Frank, 2010a).
Here, we follow Section 5.7 of Frank (2022).

Suppose some individuals colonize a resource patch and
grow for many generations. They also send dispersers to col-
onize other patches. Those dispersers can be thought of as the
reproduction or fecundity of the group. Total reproduction
over the colony life cycle depends on how long the colony
survives.

We must consider, at each temporal stage in the colony life
cycle, how traits influence an individual’s relative share of the
group’s current and future genetic transmission. We multiply
that reproductive share by the total productivity of the group.

Cycle fitness
In this case, we write a single expression that combines the
fecundity and survival components of fitness over the full life
cycle. A colony grows through j = 0, 1,… temporal stages. The
fitness of a focal individual in the jth stage is

wj = I (xj, yj)
∞
∑
k=j

𝜆–k G (yk) . (27)

The first term, I, describes an individual’s share of the colony’s
long-term success. In a tragedy model (eqn 1), I increases with
an individual’s competitive trait expression, xj. For example,
I = xj/yj expresses the relative competitive success of an indi-
vidual with trait xj when competing in a group with average
competitive trait value, yj.

The second term describes the reproductive value for the
colony in the jth stage. That value is the sum of the colony suc-
cess, G, in the current stage, j, and in all future stages. Colony
reproductive value at stage k depends on yk = y0, y1,… , yk,
the average trait value at each stage up to and including the
current stage.

The colony success for each stage is multiplied by the dis-
count for the amount the population size has grown, 𝜆–k, since
colony inception at stage j = 0. We discount future repro-
duction by the expansion of the population size because a
single progeny represents a declining share in an expanding
population. In the following analysis, 𝜆 = 1, so that we can
highlight other processes that influence temporal scaling and
reproductive value.

The group success in stage k can be divided into survival
and fecundity components of reproductive value,

G (yk) = S (yk)F (yk) .

The survival to stage k is S(yk), and the fecundity is F(yk).
We find the trait vector, z∗, that maximizes fitness by simul-
taneously evaluating dwj/dxj = 0 for all j when evaluated at
x = y = z∗.

Colony tragedy of the commons
Suppose the colony grows without producing dispersers from
generations k = 0, 1,… , g–1. Then, surviving colonies remain
at constant size and produce migrants in proportion to their
fecundity in each of the following generations.

With those assumptions, the components of individual suc-
cess, group survival, and group fecundity are, respectively,

I (xj, yj) =
xj

yj

S (yk) = S (z∗
k
) [

1 – yj

1 – z∗j
]
𝜃(g–1–j)

F (yk) = F (z∗
k
) [

1 – yj

1 – z∗j
] .

Individual success, I, follows the standard tragedy model. An
individual’s share of group success in the jth generation is the
ratio of its competitive trait, xj, relative to the group average,
yj.

Survival to generation k depends on the survival in each
of the preceding generations. Thus, any cooperative enhance-
ment of survival in a particular generation carries a benefit
forward to all future generations. In this model, deviations in
group trait values only influence survival during the juvenile
generations, j < g – 1.

In each juvenile generation, j, the survival consequence of a
deviation in group trait value, yj, is [(1–yj)/(1–z∗j )]𝜃, in which
𝜃 describes nonlinear scaling. That value multiplies for each
of the g–1– j juvenile generations over which it acts. Any con-
sequence to total survival over the juvenile period also affects
cumulative survival to future reproductive generations. The
value of S(z∗k) is the baseline survival rate to generation k in a
group without deviant trait values.

The fecundity consequence for a deviation in group trait
value is (1 – yj)/(1 – z∗j ). The value of F(z∗k) is the baseline
fecundity in generation k in a group without deviant trait
values.
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Solving dwj/dxj = 0 for all j when evaluated at x = y = z∗
yields z∗j , the favored trait value in each generation j. When
expressed as the competitive to cooperative tendency, z∗j ∶
1 – z∗j , we obtain

1 – r ∶ r (1 + 𝛾j) ,

with the enhanced demographic component for the cooper-
ative tendency caused by the trait’s contribution to colony
survival as

𝛾j = {𝜃(g – j – 1) j < g – 1
0 j ≥ g – 1.

This model illustrates the increased selective force on cooper-
ative and competitive traits during the early stages of colony
growth when j is small. Put another way, selective force scales
with time.

Spatial scaling
An earlier model in eqn 10 introduced two scales of com-
petition, local, and global. This section extends the analysis
to include varying spatial scales for both competition and
cooperation.

Let fitness be

w = x
∑ aiyi

(1 –∑biyi) ,

in which all sums run over i = 0, 1,… , n, with 0 corresponding
to local interaction and each increasing step associating with
greater distance away from the focal patch. The ai and bi coef-
ficients describe the probability of interaction at each distance
for, respectively, competitive and cooperative components.

Our standard methods lead to a simple extension of earlier
results

z∗ = 1 –∑ airi
1 –∑(ai – bi) ri

,

in which ri is the correlation in trait value between an indi-
vidual in a focal patch and the average trait value at i steps
in distance from that patch. We can write this expression as
a ratio z∗ ∶ 1 – z∗ of competitive to cooperative tendency in
trait values

1 –∑ airi ∶ ∑biri.

This result illustrates how the variety of spatial scales influ-
ences trait values.

Once again, we see that group selection would be a difficult
concept to apply because there are no set group boundaries
for competition and cooperation, which happen over different
spatial scales.

A different type of spatial scaling arises when habitats vary
in quality. If individuals can adjust their trait expression to
match each habitat, then we can treat each habitat type as
posing an independent evolutionary challenge. For example,
if the quality of patch i is 𝜅i, and the average trait value in that
patch is yi, then amodified tragedy of the commons expression
for fitness is

wi =
x
yi
(𝜅i – yi)

and, as in eqn 11, we have

z∗i = 𝜅i (1 – ri) .
Alternatively, if individuals cannot adjust their traits in
response to the local conditions of patch quality, 𝜅i, and corre-
lation with neighbors, ri, then fitness is averaged over patches
of different quality and correlation

w = ∑𝛾iwi

for different patch types i that occur with frequency 𝛾i. Then,

z∗ = ∑𝛾iz∗i = ∑𝛾i𝜅i (1 – ri)

= ̄𝜅 (1 – ̄r) – cov (r, 𝜅) ,
in which overbars denote averages over the patch frequencies,
and the final term is the covariance between the correlation of
trait values within a patch, r, and patch quality, 𝜅.

Multiple traits in communities
Different species often influence each other’s fitness. For a pair
of species, individuals interact over a particular spatial scale.
Then, those interacting individuals, or their descendants, may
move together or separately over various spatial scales. The
scales of interaction and cotransmission influence how traits
evolve (Frank, 1994a; Foster & Wenseleers, 2006; Leigh Jr,
2010; Sachs et al., 2004).

Two-species tragedy of the commons
As an example, consider the fitnesses for each of two species
in an extended tragedy of the commons model

wi =
xi

yi
(1 – y1) (1 – y2) i = 1, 2.

Species i competes directly only with other members of the
same species, with locally competitive trait xi relative to the
average of that competitive trait, yi, of the same species.

The average competitive trait of species i degrades the local
environment by 1 – yi. Each species is influenced by the degra-
dation caused by both species, which combine multiplica-
tively.

We are interested in how the interaction between species
may influence competitiveness and the degradation of the
commons. The outcome depends on the cotransmission of
traits between the two species. For a pair of traits that
work particularly well together, to what extent do those trait
variants tend to stay together in subsequent interactions?

To isolate the forces acting in that situation, we must eval-
uate how selection influences the direction of change in trait
values in each species. In particular, we evaluate dwi/dxi, the
change in the fitness of an individual in the ith species relative
to a change in its trait value.

When dwi/dxi < 0, selection favors a reduction in the com-
petitive trait, which is equivalent to an increase in the tendency
for cooperation and group success. To reduce the notational
complexity and highlight how particular forces act as partial
causes, we evaluate the derivative at xi = yi = z, which means
that all individuals in both species have traits near to the same
value, z.

If we also assume that the trait variance in each species is the
same, then the condition that favors a decrease in competitive
tendency is

z > 1 – r
1 + 𝜌 .
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We can write the same result in terms of cooperative ten-
dency, 1 – z, with the condition that favors an increase in
cooperation as

1 – z < r + 𝜌
1 + 𝜌 ,

in which r is the correlation in trait value between individuals
of the same species within the spatial scale over which compe-
tition and resource degradation occur, and 𝜌 is the correlation
in trait values between interacting species with respect to that
same spatial domain.

Scale of selection relative to cotransmission
The novel factor influencing cooperation arises from the cor-
relation between species, 𝜌. Two opposing forces act on that
correlation (Frank, 1994a, 1995b, 1997a).

First, selection tends to increase the between-species corre-
lation. Pairs of trait values that work well together increase
because of their greater success. Pairs that work poorly
together decrease. In this case, a group with lower trait
values for competitiveness produces more descendants than
a group with higher trait values. That synergism between
species causes a positive correlation in trait values.

Second, when individuals from the two species disperse
independently, the recombining of individuals to form new
groups breaks up correlated combinations of trait values.
Alternatively, cotransmission of individuals and traits to form
new interacting groups maintains the correlations in trait
values created by selection.

The balance between selection and recombination deter-
mines the correlation between species, 𝜌. Many particular
assumptions influence that balance. The details are beyond
our scope, which focuses on identifying various forces as par-
tial causes rather than calculating the consequences of many
specific assumptions.

For this particular problem, the most detailed studies of the
balance between selection and recombination have been made
in classicalMendelian genetics.Wemay consider two interact-
ing traits to be encoded by two genetic loci within a genome.
Selection builds up a positive correlation between alleles that
interact in a positively synergistic way. Recombination breaks
apart those correlated allelic pairs.

Many studies have analyzed how selection and recombina-
tion interact to determine the allelic correlation between loci,
typically measured as linkage disequilibrium (Barton & Otto,
2002; Campos & Charlesworth, 2019; Hill & Robertson,
1968; Neher, 2011).

Culture, transmissible environment
I assumed two interacting species in a simple community.
However, the role of correlations between traits is much
broader. Any factor that affects the fitness of a focal individual
and its transmission to the future may play a role.

For example, a culturally transmitted attribute can influ-
ence the fitness of various biological individuals and can often
be partially cotransmitted with the trait values of some of
the individuals in a community. Thus, selection and recom-
bination between biological and cultural traits may hap-
pen in species that have cultural attributes (Feldman &
Laland, 1996; Fogarty & Otto, 2024; Lehmann & Feldman,
2008).

Similarly, an environmental attribute can influence fitness,
with continuity of environmental states through time and

space. If the environment is independent of the focal biolog-
ical traits, then selection does not change the frequency of
environments. However, it may be possible for selection to
build up associations between trait values and environmental
states (Ravigne et al., 2009).

Some studies focus on how organisms influence their envi-
ronment, sometimes called niche construction (Laland et al.,
1999; Odling-Smee et al., 2003). Other studies focus on how
the environment influences biological traits, phenotypic plas-
ticity (West-Eberhard, 2003; Pfennig, 2021). These cases dif-
fer from the simpler models above in which correlations arise
primarily by a balance between selection and recombination.
Ultimately, it would be useful to have a broad conceptual
framework that included all of these examples as special cases
of a general theory.

Evolvability
Evolvability describes the potential for a lineage to adapt to
new challenges. Evolvability often depends on the common
tradeoff between exploration and exploitation. Exploration
enhances discovery of new solutions but reduces the efficiency
of exploiting current solutions (Earl & Deem, 2004; Hansen
et al., 2023; Kirschner & Gerhart, 1998; Payne & Wagner,
2019; Pigliucci, 2008; Wagner, 2013; Wagner & Altenberg,
1996).

In biology, a lineage might explore more widely by increas-
ing the mechanisms that generate novel variation. Such mech-
anisms include mutation, sexual reproduction, enhanced phe-
notypic flexibility, and learning.

Extra variability and exploration often induce an immedi-
ate cost, degrading exploitation. Most mutations are deleteri-
ous. Sex requires various additional steps in reproduction and
breaks up well-adapted genetic combinations (Otto & Feld-
man, 1997; Otto & Lenormand, 2002; Otto, 2009). Flexible
phenotypes spend some time away from what has previously
worked best.

With regard to temporal scale, exploitation is a continu-
ous, immediate benefit. Exploration typically yields sporadic
benefits at some future time. Spatially, the local benefits of
exploitation are typically stronger than the distant benefits of
exploration.

Evolvability usually depends on the interaction between
two traits. One trait generates the variability of exploration.
A variability-generating mechanism does not by itself solve
an environmental challenge. Instead, it creates variability in
a second trait that can adapt to novel challenge (Karlin &
McGregor, 1974; Otto et al., 2013).

For example, reduced DNA repair efficacy generates more
mutants. But reduced repair does not directly do something
that is useful, such as increase the uptake of food. Instead,
it creates more variability in traits that influence how food is
taken up. When the environment changes, a variant in food
uptake may be just what is needed to cope with the new type
of feeding challenge.

This distinction between generating variation and solving
an environmental challenge means that we have a two-trait
problem. As in the prior section, the correlation between
the two traits plays a central role in evolutionary dynamics.
Thus, for evolvability, we often have a problem that combines
temporal scaling and the correlation between traits.
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Here, I illustrate the key forces in the simplest way. Suppose
fitness may be written as

w = (1 – x)n x̃k,

in which x is a trait that generates variation. An individual’s
fitness is reduced by 1–x in each time period because generat-
ing variation imposes a cost. Environmental challenges arise
after n time periods, with costs multiplying through the time
periods.

The term x̃ is the variability in a trait that can adapt to a
novel environmental challenge, defined as

x̃ = 𝜌x + (1 – 𝜌)z∗,

in which z∗ is the population-wide value of x at a candi-
date equilibrium, and 𝜌 is the correlation within a lineage
between the variance-generating trait, x, and the exploration-
benefitting variability in that lineage, x̃. As in the prior section
on multiple traits, the correlation between traits may be
enhanced by selection and degraded by recombination or
failure to cotransmit.

The calculation of 𝜌 for the dynamics of a particular sit-
uation may be complex. Here, we invoke 𝜌 as a force that
influences evolvability in our context of explanation rather
than calculation.

We can find a candidate optimum for x by evaluating
dw/dx = 0 at x = z∗. That yields

z∗ = k𝜌
n + k𝜌 .

This result is easier to parse as the ratio z∗ ∶ 1 – z∗, written as

k𝜌 ∶ n,

which is the ratio of the benefits of exploration by generat-
ing variation, k𝜌, relative to the benefits of exploitation by
reducing the generation of variation, n.

We ignored reproductive value weightings in this example.
If the population is growing, then natural selection favors
earlier reproduction over later reproduction. That weighting
of current time over future time favors greater exploitation
and reduced evolvability. By contrast, a shrinking popula-
tion favors later benefits over sooner ones, tending to enhance
evolvability.

Discussion
Natural selection explains adaptation. For example, we say
that mothers divide resources between sons and daughters to
increase maternal success. Parasites compete within hosts to
enhance their transmission. Transposons spread in genomes
to raise their future representation in populations.

In each case, natural selection presumably tunes traits to
improve reproductive success. But that perspective by itself
also hides as much as it reveals.

A mother can outcompete a neighbor by making more sons
and fewer daughters. Those sons gain a greater share of local
mating, fathering more descendants. But with fewer daughters
around, the additional sons compete for a smaller gain. The
competitive mother gains against her neighbor but the group
produces less grandprogeny. The local group loses against
groups that make fewer sons and more daughters, compet-
ing less internally. Natural selection acts one way locally and
another way globally.

Similarly, a parasite can gain an immediate benefit against
its neighbor within a host by taking more resources. But too
much exploitation can harm the host, slowly degrading the
resource on which the parasite depends. Natural selection acts
one way in the short term and another way in the long term.

A transposon’s duplication to another genomic site
enhances its short term success within its host. But too many
transposons can harm that host’s reproduction, which is also
the long-term reproduction of the transposons. Natural selec-
tion acts one way at the level of within host success and
another way at the higher level of between host success.

Opposing forces arise in each case. At one scale, natu-
ral selection pushes in one direction. At another scale, nat-
ural selection pushes in another direction. Our initial idea of
using natural selection to explain adaptation leads to a new
question.

How do the opposing forces at different scales resolve? To
understand that question, we run into two distinct approaches
within the literature. The common theoretical approach is to
make explicit assumptions about each aspect of a biological
scenario and then work out how things change over time, the
dynamics. That approach provides clarity about the relations
between particular assumptions and outcomes.

Alternatively, one can leave out most of the details and
analyze how a certain factor tends to push the system in a
particular direction. For example, if we compare situations
in which parasites in a host are more genetically similar ver-
sus less genetically similar, how does that difference alter the
tendency to harm the host? This approach takes the all-else-
equal analysis to its extreme, a kind of static analysis (Frank,
2022). How does a particular force act as a partial cause when
considered in isolation?

These alternative approaches often seem as if they were at
war with each other. The biology literature reflects the same
tension described for economics by Samuelson (1983)

Often in the writings of economists the words “dynamic”
and “static” are used as nothing more than synonyms for
good and bad, realistic and unrealistic, simple and com-
plex. We damn another man’s theory by terming it static
and advertise our own by calling it dynamic. Examples
of this are too plentiful to require citation.

The different perspectives are, of course, not actually in con-
flict. They simply provide different views of the same problem.
I like to think of statics and dynamics as different tools, such
as a screwdriver and a hammer. It is good to bring both to a
new job, you never know exactly what the challenge may be.

As Schumpeter pointed out in the quote given earlier, stat-
ics often leads the way because clear understanding of forces
as partial causes provides the best explanations for realistic
studies of complex natural phenomena.

For these reasons, I have focused in this article on provid-
ing a collection of primary opposing forces that act at differ-
ent scales. Often in biology, interpreting and explaining traits
depend on having this small catalog of forces, the entries to
be applied as needed for each case.

I gave one extended example that compared statics and
dynamics for the classic group selection problem. That
example emphasized that one has to see problems from both
perspectives to gain a complete view. And it also showed the
benefit of simplicity, the gain achieved by statics when forming
testable hypotheses. The static models typically suggest how
altering a particular force changes a trait in a predictable way.
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The remainder of the article filled in the catalog of mod-
els, each specifying simple comparative predictions. Overall,
the focus on opposing forces at different temporal and spatial
scales provided significant insight.
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