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Abstract

Anomaly detection is a well-established field in machine learning, identifying observations
that deviate from typical patterns. The principles of anomaly detection could enhance our
understanding of how biological systems recognize and respond to atypical environmen-
tal inputs. However, this approach has received limited attention in analyses of cellular
and physiological circuits. This study builds on machine learning techniques—such as
dimensionality reduction, boosted decision trees, and anomaly classification—to develop
a conceptual framework for biological circuits. One problem is that machine learning
circuits tend to be unrealistically large for use by cellular and physiological systems. I
therefore focus on minimal circuits inspired by machine learning concepts, reduced to the
cellular scale. Through illustrative models, I demonstrate that small circuits can provide
useful classification of anomalies. The analysis also shows how principles from machine
learning—such as temporal and atemporal anomaly detection, multivariate signal inte-
gration, and hierarchical decision-making cascades—can inform hypotheses about the
design and evolution of cellular circuits. This interdisciplinary approach enhances our
understanding of cellular circuits and highlights the universal nature of computational
strategies across biological and artificial systems.

Keywords: biological design; evolution; artificial intelligence; boosted decision trees;
dimensional reduction; internal model principle

1. Introduction

Many biological circuits sense danger. Some respond to common molecular patterns
associated with attack. Others perceive environmental threats for which fear or fighting
may be helpful [1-5].

An unusual or surprising environment provides another clue of danger. For example,
the absence of an expected event could signal an anomaly. The famous comment by
Sherlock Holmes about the dog that did not bark illustrates an anomalous absence of an
expected event [6].

A Scotland Yard detective asked Holmes: “Is there any other point to which you
would wish to draw my attention?” Holmes answered: “To the curious incident of the dog
in the night-time.” The detective replied: “The dog did nothing in the night-time.” Holmes
countered: “That was the curious incident.”

Intuitively, humans have a sense of anomaly, when unexpected events trigger height-
ened alertness. The word “eerie” captures the notion of discomfort when “things don’t add
up” in an unfamiliar situation.
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For these reasons, anomaly detection focuses on deviations from what is typical.
An anomaly detection circuit must learn an internal model of the typical pattern. Any
departure from that model triggers a warning. This approach contrasts with detecting
specific danger signals that directly indicate peril, instead emphasizing deviations from
common observations.

In mammalian brains, hippocampal circuits detect anomalies [7-9]. Immune systems
may have such circuits [10,11]. Self versus nonself recognition is not fully understood [12]
and might, in some cases, depend on detecting anomalous patterns as nonself. Plants
might use anomalous volatile organic compounds of neighbors as nonspecific danger
signals [13,14]. However, few biological studies emphasize nonspecific anomaly detection.

This article introduces anomaly detection in machine learning [15-18]. Computational
models use a wide variety of circuit types to detect anomalies. Those different types of
computational circuits suggest the kinds of biological circuits that might detect anomalies.
Because anomaly detection is a type of classification problem, aspects of this topic also
provide insight into other biological classification challenges.

2. Contributions of This Work
2.1. Overview of the Series

This article continues the series on circuit design in biology and machine learning [19].
The series uses insights from machine learning to understand how evolutionary processes
build biological circuits. The first article in the series introduced the motivation and
challenges for linking biological and machine learning circuits, with examples [19]. This
subsection adds further background.

Three facts suggest that machine learning may provide insight into the evolutionary
aspects of biological design. First, machine learning and biological organisms often face
similar challenges. How can environmental inputs be classified into categories? How can a
system predict future inputs? What is the best response to a type of environment?

Second, natural selection is one type of learning algorithm. Machine learning deploys
a broader range of algorithms. But those different algorithms tend to modify systems in
broadly similar ways [20-22].

Third, machine learning and biology often solve challenges by using a computational
network to build an input-output response circuit. Here, we think of a biochemical
network as a kind of circuit that takes inputs and computes outputs. When machine
learning computes solutions without an explicit network, usually the computation can be
embedded within a network to achieve the same result.

The fact that machine learning and biology typically build responses by creating
computational circuits means that we can study how machine learning solves particular
kinds of problems and use those solutions to make predictions about how evolutionary
processes design biological circuits to solve the same sorts of challenges.

This series emphasizes simple biochemical circuits, primarily in cells. The analogy
between neurobiological and machine learning circuits is well known, although directly
linking the architecture and function of biological and computational circuits remains an
ongoing challenge [23-27].

By contrast, relatively little work has been conducted to match cellular or physiological
circuits to common machine learning architectures. Two challenges arise.

First, although many biochemical circuits in cells have been identified and partially
understood, it is not easy to describe complete circuits, understand their computational
architecture, and evaluate the sorts of computations that are used to achieve their function.
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Second, computational networks in machine learning tend to be much larger than
could reasonably fit within a cell. Thus, we must develop new machine learning models
that emphasize greatly reduced size.

Given those constraints, this series primarily aims to outline a new theory that links
these two subjects. Some general predictions arise about the architecture of biological circuits.
Overall, these articles show the broad conceptual links between particular external challenges
and the types of biological circuits that may be favored by evolutionary processes.

2.2. Insights from Anomaly Detection

This article develops the following points, often with simple illustrative models and
example quantitative analyses.

* Machine learning provides new ideas for how cellular and physiological circuits may
solve anomaly detection.

* Some challenges require evaluating a single atemporal multivariate input for anomalies.
Others require estimating deviations from recent temporal trends. Simple models
illustrate different circuit designs for atemporal and temporal cases.

* Detecting anomalies often requires evaluating multivariate patterns in inputs by in-
tegrating signals from ensembles of sensors or receptors. This article reviews basic
measures of signal information.

¢ Digital sensors reduce continuous analog inputs to discrete binary outputs, losing
information but also reducing sensitivity to noise and measurement error. Digital
sensors are easier to implement and easier to combine into broader circuits.

* Machine learning uses large circuits. Cells require small circuits. This article shows that
small circuits can achieve significant resolving power.

* Some anomalies differ in mean input values. Summing the inferences by individual
sensor outputs provides a good response.

* Other anomalies differ in correlations between inputs. Decision trees work well, each
sensor responding within a sequence based on the output of prior sensors.

* Machine learning often deploys cascades of circuits, such as a cascade of separate
decision trees.

¢ Each small circuit passes its response to the next circuit, which corrects errors and boosts
response quality.

* Learning a sequence of boosted circuits matches the likely way that evolution works,
sequentially improving an existing cascade of small modular subsolutions.

* Dimensional reduction provides a potential alternative for anomaly detection. Typical
multivariate inputs can be reduced to a lower dimension, similar to principal component
analysis. An anomalous input tends to be relatively distant from typical inputs in the
reduced space.

¢ Small encoder circuits can reduce dimensionality, classifying differences in the correla-
tional structure of typical and anomalous inputs. In general, dimensional reduction is
likely to be a major feature of biological circuits.

* Asin all problems of biological design, evolutionary tuning with respect to tradeoffs
inevitably plays a central role in shaping biological circuits.

3. Timescale
3.1. Instantaneous Versus Time-Dependent Inputs

Timescale broadly influences the kinds of circuits that can succeed in anomaly detec-
tion. Most anomaly detection methods consider multiple inputs at one point in time. If a

single multivariate input is unusual compared with the set of typical multivariate points,
then that unusual input is classified as an anomaly.



Entropy 2025, 27, 896

4 0f 20

In some cases, an anomaly must be considered with respect to recent temporal
trends [28,29]. For example, reactive oxygen species are often used as weapons in mi-
crobial warfare. A rapid increase in concentration of these dangerously reactive molecules
may signal an attack.

For multivariate problems that use a single atemporal input, a machine learning
method typically classifies by some sort of clustering, partitioning, or dimensional reduc-
tion [15-18]. The common inputs fall toward one cluster, or in a particular direction away
from a partition, or in a particular location in a reduced space of constructed dimensions.
The anomalous inputs are those that are not near the common set.

Temporal problems also require classification [28,29]. However, before classification,
one must adjust for the temporal dependence of the input stream. For example, typical
inputs may follow a rising trend. An anomaly must be measured against the expected input
from the current trend, which requires a circuit to maintain an updated trend estimate.

3.2. Biological Response Times

Atemporal classification of anomalies demands a sufficiently fast circuit. The mul-
tivariate perception of input must be accomplished before the environment changes sig-
nificantly. The calculations to classify must follow with sufficiently short lag to allow an
appropriate response.

A neurobiological circuit would likely be quick enough to conduct atemporal classi-
fication. For cellular or physiological circuits, response speeds vary widely for different
components, from slow biochemical reactions to fast receptors. If the environment changes
significantly faster than a circuit’s classification inference, then such a circuit may not be
able to classify the current environment as if it were an instantaneous isolated event.

Temporal classification over input sequences alters the timescale constraints. The cir-
cuit’s estimate of trends in inputs may update continuously, although with a time lag.
The circuit can work well if its update lag is shorter than the timescale over which environ-
mental trends change.

For temporal classification problems, neurobiological circuits would likely be quick
enough for most challenges. Cellular and physiological circuits may sometimes be quick
enough if intrinsic temporal smoothing of trend estimation provides sufficient information.

At present, we know little about the cellular and physiological response times of
anomaly detection circuits. I limit the discussion to three brief comments.

First, cellular receptors can potentially respond on the timescale of their ligand on—off
rates, which are often very fast. So, at the receptor level, sensory information may be able
to keep up with environmental change.

Second, some cellular states depend on electric gradients, which change rapidly and
can be transmitted at relatively high speed [30]. These fast components of cellular response
might provide a sufficient basis for speedy circuits.

Third, slower downstream biochemical reactions might constrain circuit design. Differ-
ent biochemical processes vary in their response times [31]. Altering the concentrations of
reactants often triggers the fastest response. Covalent modifications of enzymes are slower
than changes in reactant concentrations. Altering enzyme production or degradation rates
is typically the slowest modification of biochemical circuits.

Many other factors could change biochemical response times. However, those factors
are likely to be slow relative to the responses of receptors or electric gradients.
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4. Simple Mechanisms
4.1. Atemporal Biochemical Mechanism

This subsection briefly illustrates how we may think about mechanistic components
in biological circuits. The example describes a simple circuit for atemporal challenges.
The following subsection considers temporal challenges.

As a first step, a circuit may determine how each input dimension deviates from its
typical value. We begin with a widely observed empirical relation in biochemistry, the Hill
function [32-34]. This function describes a common pattern by which an input level is
transformed into an output response as

uk

L

(1)
in which u is the input, k is a coefficient that determines shape, and m is the input at which
the response achieves one-half of its maximum level. The notation u|m, k identifies u as the
input variable given the parameters m and k that determine response. In the following, I
assume that all functions share the same k value, which is dropped from the notation to
simplify the expressions.

We seek a circuit that identifies an anomalous input by its deviation from a standard
input level, u*. Suppose a receptor balances stimulative and repressive forces in relation to
input level, given by the difference between two Hill functions

P(ulmy, my) = h(u|lmy) — ah(u|my), ()

in which a is a weighting on the repressive effect to achieve a relative balance between
the two forces. We can choose a4 so that 7 evaluated at u* is a minimum, creating a circuit
that increases in output as the input, u, deviates from the minimum, u* (see caption for
Figure 1).

0.03r

0.02f

0.01r

Receptor response

0.00}

Input, u

Figure 1. Receptor response for atemporal anomaly detection. When the input is at the typical
value of u* = 3, the receptor responds with a minimal value. As the input increasingly deviates
from its typical value, the receptor returns an increasing response. The likelihood of an anomalous
condition rises with the receptor response value. Thus, this receptor provides a simple atemporal
way to classify inputs as normal or anomalous. This figure derives from Equation (3), with m; =1,
k = 2, and a set so that u* = 3 is a minimum. To obtain a minimum at u*, we search for a such
that d?/du = 0 and d??/du?® > 0 when evaluated at u*. For k = 2 and m; > my, we obtain
a = (2m? +u* +4)(m3+u* + 2)2/(2m§ +u* +4) (m? +u* +2)°. As my and m, become large,

a— (my/my)2.
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For numerical convenience, we can subtract the value of 7 at its minimum to obtain a
receptor that returns zero when the input is at its standard level, #*, and returns increasing
values as u increasingly deviates from u*, as in

r(u|m1, mZ) = f’(u|m1, mZ) - ?(u*|m1r mZ)' (3)

Figure 1 illustrates how this receptor identifies anomalous deviations from typical input
values. The cutoff for classifying an anomaly may evolve by natural selection in a biological
context or be estimated from data in a machine learning context. Multivariate input requires
combining multiple receptor responses to identify anomalies.

4.2. Anomalous Deviation from Temporal Trend

The problem of how cells predict trends has received little attention. This section
shows how a very simple biochemical process could in principle be used by cells.

Suppose the value of typical inputs, u*, changes over time. A circuit must estimate the
current typical input. That estimate of u* and the current input value, #, can be used in
Equation (3) to obtain the receptor signal.

If we choose sufficiently large values of the m parameters, then a — (my/m1)? (see
caption of Figure 1). With approximately constant 4, to calculate the receptor response in
Equation (3), we only need to track the dynamics of u* given the input, u. We can track the
dynamics of u* by including in the circuit

u* = Au—u*), 4)

in which u is a stochastically changing input, and u* is an exponential moving average of
u, with the overdot denoting the derivative with respect to time. The parameter A controls
the speed at which the internal moving average estimate responds to changing inputs. This
process simply describes the production or degradation rate of a molecule in response to
the level of a stimulating input.

Using the moving average estimate for typical inputs, u*, in Equation (3) allows
the receptor to adjust to changing environmental conditions. Figure 2 shows how this
adaptable receptor detects anomalous deviations in the input signal.

In the only similar model that I found, a circuit estimates the ratio of a current input
relative to the recent value of typical inputs [35]. The goal was ratio estimation, which the
authors called fold change. Significant deviations of the ratio from one could also be used
for anomaly detection.

To obtain a fold-change circuit, instead of using the receptor in Equation (3), we
combine the moving average estimate from Equation (4) with

u

y= U(E V) (5)
which approximately matches the circuit given published fold-change circuit [35]. If the
dynamics respond sufficiently quickly to changes, with large enough A and v, then y
measures the ratio of the current input u to the recent typical input, u*.

In this ratio-estimating biochemical circuit, the response time may differ from the
response time of a receptor-based circuit approximated by Equation (3). Typically, receptors
respond more quickly than biochemical reactions. However, it is not clear if natural
processes more easily build and tune circuits based on receptors or biochemical reactions
in solution.
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Figure 2. Receptor response for temporal anomaly detection. (a) The blue input signal, u, was
generated by a stochastic process du = 0.0002(10,000 — ) df + 0.02u dW + zu dN, in which dW is a
Wiener process that generates continuous Gaussian noise with a mean of 0 and a standard deviation
of 1, and dN is a Poisson jump process that generates random discrete jumps at rate 0.2. Each jump
multiplies the current input, u, by z, which for each jump takes on a value 0.95 or 1.05 with equal
probability. The gold moving average, u*, is given by Equation (4) with A = 10. (b) The blue spikes
show the timing and direction of the random anomalous jumps for this sample run. The levels of
=+1 for the spikes are arbitrary values. The gold curve shows the receptor output from Equation (3)
multiplied by 25, with k = 2, m; = 10,000, mp = 1000, and a given by the solution in the caption for
Figure 1 with u* = my. The gold receptor spikes match the blue anomalous input jumps, signaling
anomalies. The freely available Julia computer code provides full details about assumptions and
methods for all figures in this article [36].

5. Multivariate Signals

The prior subsections analyzed deviations in a single dimension. Detecting anomalies
often requires combining information from multiple dimensions. For example, identifying
attacks on a computer network depends on the number of data bytes sent to the target
computer that may be under attack, the number of data bytes returned to the potential
attacker by the target computer, and the type of connection, such as email or web page.

Two widely used test datasets for computer network attack include those network
measures along with several other dimensions of data [37,38]. The challenge is to classify
whether a network connection to a target computer is a normal use or an attack. Is
the connection pattern described by the multivariate measures of the connection typical
or anomalous?

Many different machine learning methods have been applied to these bench-
mark datasets [39—-41]. The next subsection begins by evaluating each data dimen-
sion independently to infer anomalies and then combining the information in the
independent dimensions.

The following subsections analyze the information in the correlation between dimen-
sions by combining the dimensions into a decision tree or by using hierarchical dimension
reduction by encoders, two widely used machine learning methods that may map relatively
easily to biological circuits.

I start with artificial data to illustrate the methods. I then turn to real data that contrasts
typical computer network connections with anomalous connections from attack.
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I use the computer data because we do not have large datasets with multivariate
measurements of typical and anomalous biological inputs. The goal here is to illustrate
the key principles of circuit design that may be important for understanding how natural
processes shape biological responses. Anomaly detection has hardly been studied in cellular
biology but seems likely to be important in some circumstances.

5.1. Independent Data Dimensions and Ensembles

Suppose an input generates n independent data dimensions. For a typical input,
the value in each dimension is a random sample from a normal distribution with mean m;
and standard deviation ¢. Similarly, an anomalous input generates 1 independent values,
each sampled from a normal distribution with mean m, and standard deviation ¢. Assume
typical inputs are usually smaller than anomalous inputs, m; < m,.

Suppose a biological circuit can average the n independent values associated with
each input. Then, the standard deviation of the average value is o/ +/n. The circuit classifies
the average value as typical if it is less than a threshold value, 7, and anomalous if greater
than the threshold.

Figure 3a illustrates how a change in threshold value alters the circuit’s success at
classifying inputs. A smaller threshold causes a higher rate of classification as anomalous,
which increases both the true rate of predicting anomalies and the false rate of predicting
anomalies. As the threshold changes, the curve traces the tradeoffs between those different
aspects of successful classification. The area under the curve (AUC) provides one way to
measure the overall quality of the circuit’s ability to classify inputs.

Figure 3b shows how the circuit’s response characteristics improve for increasing
levels of 1, the number of data dimensions sampled by the circuit. More data dimensions
provide more precise information about whether the input is typical or anomalous.

m
N\
% o
08|

06

0.998 64

04t
AUC = 0.64

0.2

True predicted anomaly

0 0‘2 0‘4 0‘6 0‘8 1
False predicted anomaly False predicted anomaly

Figure 3. Classification of input as typical or anomalous by a circuit that averages n independent
input values and makes a decision based on the average value. Inputs are continuous numerical
values. In this example, I generated inputs by randomly sampling a normal distribution with a
standard deviation of o = 40. For typical and anomalous inputs, the distribution means are 100 and
120, respectively. (a) The circuit takes # = 1 dimensions of input. The circuit uses a threshold, 7, such
that the circuit classifies inputs below the threshold as typical and above the threshold as anomalous.
The curve plots the frequency of truly predicted anomalies as a function of T versus the frequency of
falsely predicted anomalies as a function of T, generating a receiver operating characteristic (ROC)
curve. The area under the curve (AUC) measures the resolving power of the circuit that describes the
tradeoff between true positive and false positive classifications over all of the thresholds. (b) For each
case in which the true generating process is either typical or anomalous, I generated n independent
samples for the associated probability distribution. The circuit measures the average of the inputs,
which, when compared to the n = 1 case in the left panel, has the same mean and a reduced standard
deviation, o/ +/n = 40/+/n. The reduced variation provides the circuit with greater resolving power,
described by the increasing AUC with increasing n.
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5.2. Digital Circuits

Precise estimates for each of the n data values may be difficult for biological sensors,
making the circuit sensitive to perturbations in measurement. Suppose instead that each
sensor encoded its response in a binary way, which we can label as 0 or 1. In other words,
each sensor converts its analog input to a digital output: a 0 response when the value
is below some threshold and a 1 response above the threshold. Such analog to digital
conversion can be approximated by the Hill function response described by Equation (1),
which is widely observed in biology [32-34].

With digital sensors, a circuit only has to combine the information into an overall
frequency of 1 values, which are the anomaly signals. For example, if each sensor can
trigger the activation of a transcription factor, then those transcription factors can bind to a
gene promoter. By this process, the promoter can produce a response that grades with the
overall frequency of anomaly signals from the sensors.

This digital circuit requires two threshold values. First, T sets the point below which
an individual sensor returns 0 for a typical input and above which the sensor returns 1 for
an anomalous input. Second, a threshold ¢ sets the frequency of 1 responses among the
individual sensors required for the circuit to return an overall classification of anomalous
for a multivariate input.

Figure 4 shows how the two thresholds interact. Higher curves correspond to increas-
ing numbers of sensors, 1. In (a), with ¢ = 1/3, low thresholds for the individual sensors,
T, cause increasing n to provide relatively high false predicted anomalies (false positives).
This pattern can be seen by starting with the lower curve for n = 1 and the smallest labeled
threshold of 90 marked by the gold circle.

0.8 0.8

0.6

0.4

¢=2/3

True predicted anomaly

0.2r 0.2

0 012 0‘,4 0‘.6 0‘.8 1‘ 0 04‘2 014 016 0‘.8 1
False predicted anomaly False predicted anomaly

Figure 4. Anomaly classifier in which each sensor conducts an analog to digital conversion,
with n = 1,4,16,64 sensors for curves from bottom to top. The generation of continuous input
into each sensor is described in the caption of Figure 3. In this case, each sensor receives an inde-
pendent input value and independently scores its input as 0 for typical or 1 for anomalous based
on the threshold shared by all sensors. Colored circles on each curve denote particular threshold
values for the individual sensors. The overall classification by the circuit depends on the frequency
of 1 values returned by the individual sensors. The circuit returns an anomaly if the frequency of
1 values by individual sensors is greater than ceiling(¢n)/n, in which the ceiling function returns
the smallest integer greater than or equal to its argument. (a) Curves for ¢ = 1/3. (b) Curves for
¢ = 2/3. Increasing the frequency threshold, ¢, lowers both the true and false positive classification
rates, which can be seen by comparing the same sensor threshold values between the two panels.
When ¢ = 1/2, the threshold locations, 7, are intermediate between the two panels. The AUCs are
0.64,0.72,0.87,0.99 for curves from bottom to top in both panels. The AUC values for ¢ = 1/2 are
slightly higher in the third significant digit for larger n. Overall, the AUC circuit performance is
very flat as a function of varying frequency cutoff, ¢, over (1/3,2/3), suggesting that ¢ may be a
nearly neutral trait over a wide range in the AUC sense of measuring performance over a range of
individual sensor thresholds, .
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As n increases and the curves rise, the gold circle for 90 moves to the right because the
rate of false predicted anomalies along the x-axis increases. The reason is that, with both a
low individual sensor threshold and a low overall threshold, the expected outcome for a
typical input is a false positive prediction of anomaly. As # increases, the variance declines
and the expected outcome increasingly dominates.

In Figure 4b, with ¢ = 2/3, high thresholds for the individual sensors tend to cause
an increase in the inputs being predicted as typical. This increase raises the false positive
rate of typical predictions, which corresponds to a reduced level along the y-axis for true
predicted anomalies. Once again, as n increases, the variance declines and the expected
outcome increasingly dominates, causing a drop in true predicted anomalies.

Figure 5 shows that analog to digital conversion by sensors decreases the maximum
available information. The lower blue curve traces the smaller error rate for a fully analog
circuit that averages the actual values coming into the sensors, as in Figure 3. The up-
per gold curve shows the rise in the error rate caused by the information lost to digital
conversion, as in Figure 4.

08l
digital
9D o6+
@©
.
—
o]
t 04,
5 0
©
°
F o2f
07\ 1 1 1 1 1 Il
1 2 4 8 16 32 64

Number of sensors, n

Figure 5. The cost of digitizing the response of individual sensors. The curves show that an increase
in the number of sensors, 7, reduces the total error rate as the sum of the false negative and false
positive rates. In prior figures, the false negative rate is the false predicted anomaly rate, and the false
positive rate is one minus the true predicted anomaly rate. The lower blue analog curve corresponds
to a circuit that averages the values perceived by the n individual sensors. The upper gold digital
curve corresponds to a circuit in which each sensor transforms its input into a 0 response when the
input value is below a sensor-specific threshold and a 1 response otherwise. For a given number of
sensors, 1, the digital circuit produces more errors because digitization at the individual sensor level
loses information.

Digital circuits reduce information but are simpler to construct and often are more ro-
bust. Small perturbation will usually not alter the 0/1 classification by a sensor. By contrast,
many sources of noise will cause variability in a measured analog value.

5.3. Computer Network Anomaly Detection

In the NSL-KDD dataset of attacks on a central computer, a digital ensemble of sensors
performs very well at detecting anomalous computer network characteristics associated
with attacks. This dataset is widely used as a benchmark for machine learning studies of
anomaly detection. The dataset contains measurements for many features of the computer
network [38].

A freely available Python (NSL-KDD-01-EDA-OneR: 0.929 ROC-AUC, version 3, 2022)
notebook calculated how well each of 36 features could independently classify an input as
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a typical network pattern or an anomalous attack [42]. The analysis used the area under the
curve (AUC) to measure the resolving power of a feature, as in Figure 3. Features with high
resolving power included the amount of data sent by the remote computer to the target
computer, the amount of data returned to the remote computer, the kind of service request
to the target, such as email or web page, and the number of recent connections by the same
remote computer.

The AUC values for 22 of 36 features were greater than 0.5, which means those features
had some resolving power. The top 15 AUC values ranged from 0.82 to 0.66. If each sensor’s
response is encoded as 0 for typical and 1 for anomalous, then an ensemble digital analysis
can be created by summing the values for the 22 resolving features. The ensemble circuit’s
AUC score is 0.93, which is good.

F1 provides another measure of classification success, combining how often a positive
prediction is correct and how often a positive input is correctly predicted [43]. The ensemble
circuit’s F1 score is 0.9, which is also good.

Reducing the number of sensors to the top 4 with individual AUC values above 0.75,
the ensemble AUC score is 0.92, and the F1 score is 0.89. Thus, a small and simple ensemble
of digital sensors performs well for this classic benchmark dataset.

5.4. Extra Information in Multivariate Pattern

In the ensemble digital model, each sensor passes a digital response. That response
can easily be combined with the outputs of other digital sensors to create an overall circuit
response. Simple biological circuits may often be built in this way.

The digital ensemble uses each dimension of the input independently. Each digital
sensor takes one input value and responds as a one-step decision tree (Figure 6a). If the
input is greater than some threshold, the decision tree responds one way. Otherwise, it
responds the other way.

Figure 6. Decision trees for an anomaly detection classification problem. The challenge is to classify a
multivariate data input with values x; for thei =1, ..., N data dimensions. (a) A tree of depth 1 that
predicts classification based on one feature of a multivariate observation, x;. If x; is greater than or
equal to a threshold, ¢1, then the tree returns a decision value, D,. Otherwise, it returns Dj. If there
is only a single tree, then the decision value determines the classification. Alternatively, there may
be an ensemble of trees, each tree analyzing a different data dimension. In an ensemble, each tree
contributes a separate decision value that can be combined with the values from other trees to make
an overall classification decision. (b) A tree of depth 2 that uses three different data features.

However, a multivariate pattern rarely occurs as a collection of independent dimen-
sions. Most machine learning methods extract some of the extra multivariate information.
The following sections consider two common machine learning circuits that may apply
widely in biology.
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6. Boosted Decision Trees
6.1. Deep Trees

A simple extension uses deeper decision trees. In Figure 6b, the input value for the first
feature of the multivariate data is split at some threshold value. If the first feature is greater
than its threshold, then a second split occurs based on another feature and a different
threshold. If the first feature is less than its threshold, then the second split happens based
on different criteria.

A deeper tree analyzes multiple inputs, allowing for decisions that include correlations
between different feature dimensions of the data. A tree of depth n creates 2" —1 ~ 2"
splits in the data. For example, if a system has the capacity to create 2° = 64 splits, then
it can create 2° = 1 trees of depth 6, or 2! = 2 trees of depth 5, or 2> = 4 trees of depth 4,
and so on.

Approximately, for 2" splits, the system can create 2™ trees of depth 2"~"". Typically,
machine learning applications perform better by using many trees of shallower depth
rather than a small number of deep trees. Various methods exist for creating multiple trees
and combining them into a single decision ensemble [44,45].

6.2. Boosting and Biological Design

The most widely successful method creates trees by a boosting process [46]. Boosting
creates trees sequentially, starting with a single relatively small tree. Then, with an opti-
mized first tree, the algorithm adds a second tree that corrects errors made by the first tree.
The process continues adding trees in this way, each tree boosting the success achieved by
the prior ensemble.

Boosting seems like a good description of how biological circuits may be designed by
natural selection. Initially, a small circuit may provide some information. A second circuit
may boost performance, followed by a third, and so on. Sequentially boosted improvement
may be the essence of biological design.

6.3. Typical vs. Anomalous Data as Self vs. Nonself

Figure 7 illustrates some of the tradeoffs in building an ensemble of boosted trees.
In this case, I generated an artificial set of data with both typical and anomalous inputs by
sampling from multivariate normal distributions. Each input has f feature dimensions.

For the typical data, each feature dimension has a mean value drawn randomly from a
normal distribution with mean zero and standard deviation ¢. I call that standard deviation
the mean scale because o determines the scale of the fluctuations among the means of the
different dimensions.

The variance in each dimension is one, so the f-dimensional correlation matrix is
also the covariance matrix. I generated that matrix by a random draw from a uniform
distribution over all possible correlation matrices [47]. Once this distribution is set for
typical data, all typical observations come from this single distribution.

For the anomalous data, I used the same process to create a new multivariate normal
distribution for each observation. Each anomalous observation is a single random draw
from a unique distribution. Thus, classification requires recognizing what a typical obser-
vation looks like when compared with a wide variety of anomalous data patterns rather
than recognizing specific signatures of danger. This structure captures the essence of self
versus nonself discrimination. Here, the typical pattern defines self, and the anomalous
observations define nonself, the variety of patterns distinct from self [48-53].
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Figure 7. Performance of boosted decision tree ensembles for classifying typical versus anomalous
inputs. (a-i) Mean scale influences the amount of deviation in mean values between typical and
anomalous inputs. F1 score measures the success of a circuit in classifying typical and anomalous
data [43]. That score combines how often a prediction of anomaly is correct with how often an
anomalous input is correctly identified. Features is the number of dimensions in the data. Trees is the
number of trees in an ensemble circuit. Depth is the depth of each tree in a circuit. The text describes
the methods and main conclusions for this figure. I generated one dataset with 32 features and used
subsets of the feature data for the various plots so that the correlation structure of the data was
consistent between the various comparisons. The boosted tree ensemble was calculated by the widely
used xgboost algorithm [54]. For T trees each of depth , the total number of splits is (2” — 1) T.

6.4. Performance

Figure 7a shows the success of a boosted decision tree circuit. For that panel, the circuit
has 4 trees, each of depth 2. As the mean scale increases along the x-axis, the circuits
improve at detecting anomalies. A greater mean scale implies that, for each feature,
the average deviation between the mean values of the typical and anomalous observations
rises. Decision trees can easily detect differences in mean values for a feature by splitting at
a threshold that likely separates typical and anomalous inputs.

The different curves show the varying numbers of features available in the data.
More features tend to increase the largest deviations in mean values between typical and
anomalous observations. More features also tend to increase the difference in multivari-
ate correlation structure between typical and anomalous observations because greater
dimensionality increases the space of possible correlation patterns.

The other panels show the increase in classification success as the number of trees or
the depth of trees increases. Deeper trees are particularly good at identifying differences
in multivariate patterns caused by correlations between features. That benefit can be seen
by comparing the success of the deeper trees at low values of mean scale, for which
there is little information available from differences in mean values between typical and
anomalous observations.
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The structure of this particular problem provides a strong challenge for anomaly
detection because no common pattern exists among the anomalous inputs. Additionally,
the generating process for the observations creates wide scatter among both typical and
anomalous inputs. Nonetheless, the boosted tree ensembles significantly discriminate
between typical and anomalous inputs.

6.5. Boosted Trees and Biological Circuit Evolution

Each node of a tree is simply a binary split based on input. Thus, any biological circuit
that expresses the commonly observed Hill response could implement a node of a decision
tree [32-34]. Combining information from multiple trees is also likely to be something that
simple biological systems could achieve.

As I mentioned earlier, the sequential process of building boosted trees likely matches
the natural tendency for evolutionary processes to create solutions by adding improvements
to an initial design. Thus, the simple way in which tree-like decision nodes can be imple-
mented biologically and the sequential process of boosting make boosted trees an excellent
model for cellular and neural circuits that solve challenges of classification and decision.

7. Encoders and Internal Models
7.1. Dimensional Reduction

Encoders reduce dimension by compressing inputs into informative components (for
background, see Box 2 of Frank [19]). Dimensional reduction by encoding can be an effective
way to identify anomalous environmental conditions. A common autoencoder method
first compresses the f features of an input to a representation in a lower f’-dimensional
space. It then expands that representation back to the original f dimensions, attempting to
match the original input closely.

An autoencoder uses patterns in the data [41]. For example, suppose the second
feature tends to follow a particular function of the third and fourth features. In that case,
the compression method can discard the second feature and recreate that feature during
decompression. When a good autoencoder compresses and then decompresses an input,
the final decompressed value tends to be close to the original input.

If anomalous inputs lack some of the patterns in typical inputs, an autoencoder built
for typical inputs will often distort an anomalous input during the encoding—-decoding
sequence. The output for an anomalous input will often be farther from the original input
than usually happens for typical inputs. Thus, the distance between the input and the
output of an autoencoder can be used to classify inputs as typical or anomalous.

Using a sequence of compression steps often creates a more effective encoding. If,
for example, the initial data have 2" features, a first compression stage may reduce to
2"~1 dimensions, followed by compression to 2”2 dimensions, and so on. Sequential
compression helps to create an internal model of the data [18,55-57]. When sequentially
compressing images of faces, early steps may focus on facets such as eyes, ears, nose,
and mouth. Later steps may consider relations between those parts, providing an internal
model of how a typical face tends to look [58—60].

7.2. Anomaly Detection

For this article, we are particularly interested in the simplest effective circuits. A full
autoencoder requires both encoding compression and decoding decompression. A simpler
approach uses only the encoding step. We convert the f features in the input to f' com-
pressed dimensions. If we design an encoder that tends to create a large distance between
typical and anomalous inputs in the f’-dimensional representation, then we can use that
distance to detect anomalies.
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Figure 8 illustrates how an encoder separates typical and anomalous inputs. In this
example, the four input dimensions were reduced to two output dimensions using a single-
layer neural network. That small network separated typical and anomalous observations
with high accuracy.

2L | ® Typical
Anomalous
Decision Boundary

Encoded Dimension 2

= = o 1
Encoded Dimension 1

Figure 8. Encoder model that reduces 4-dimensional inputs to 2 dimensions, separating typical
and anomalous observations. I used the same methods to generate the data as for boosted trees,
described previously. Of the initial 100,000 observations, 10% are anomalies, and the rest are typical.
I'randomly split the data into a training set composed of 70% of the observations and the remainder
in the test set to evaluate the fitted model. This plot shows a random subset of the test data with
approximately 2700 typical observations and 300 anomalous observations. Compared with Figure 9,
the mean scale value here is 1.6, and the number of features is 4. I used a distinct dataset for this
figure to provide a visualization that shows the separation between typical and anomalous points
more clearly. In this case, the F1 score is 0.96, corresponding to relatively few misclassified points.
The model encoded the 4 input dimensions to 2 output dimensions with a single layer of a neural
network using 10 parameters.
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Figure 9. Encoder model to separate typical from anomalous inputs. The labels on each curve
describe the number of features, f, in the data. I used the same methods to generate the data as for
boosted trees, described previously. (a) I generated three separate input datasets and calculated F1
scores for each to compensate for peculiarities of any particular dataset. I then averaged the three
values for each mean scale by feature combination. The overall pattern and magnitudes for each
separate dataset were similar. For each dataset, I generated 32 features. I then used the first f features
in the set for each curve. If we compress from inputs with f = 2" feature dimensions to a single
output dimension, then a full encoder model has (2f +5)(f — 1) /3 parameters when # is an integer.
(b) I began calculation for each point using all 32 features. I then iteratively deleted the single feature
that provided the least information, measured by the smallest reduction in F1 when deleting that feature.
I continued until the specified number of features for a particular curve remained. This iterative deletion
method provided a better set of features than simply picking the first f features as in (a).
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7.3. Factors Influencing Circuit Accuracy

Figure 9a compares an encoder’s classification efficacy under different conditions.
The F1 score measures classification efficacy, combining how often a positive prediction is
correct and how often a positive input is correctly predicted [43]. The mean scale influences
the amount of variation between typical and anomalous mean values in each dimension of
the data.

The full data initially contained f = 32 features. I then calculated F1 scores by using
only the first f = 4,8,16 feature dimensions. Each line in the figure is labeled with the
number of features used, f = 2". For this figure, an encoder reduces dimensionality from
the f = 2" inputs to 2° = 1 output, using 7 layers in the neural network encoder.

Three conclusions follow from this figure. First, between typical and anomalous inputs,
larger differences in mean values for each dimension make it easier to detect anomalies,
shown in the figure as the mean scale increases along the x-axis.

Second, sampling more features of the data improves classification. The improvement
occurs primarily for small values of the mean scale, in which mean differences provide
limited information. In those situations, a classifier can succeed when it is able to infer
distinctions between typical and anomalous inputs in the correlation pattern among the
dimensions. In this example, raising the number of features enhances the information
about correlational pattern, providing increasingly accurate classification.

The third conclusion is that, given a sufficient number of features, an encoder can
achieve nearly perfect classification for these input data. In this case, an encoder using all
32 features of the data made very few classification errors.

The encoder for f = 32 features achieved high success by optimizing the 713 pa-
rameters in its encoding network. For f = 4,8,16, the circuits required 13, 49, and
185 parameters.

7.4. Simplifying Circuits

Figure 9b shows that, for a given performance level measured by F1, we can find
simpler circuits with the same performance. In that plot, the calculation of each point began
with all 32 features. I then iteratively removed one feature at a time, dropping the feature
that provided the least amount of information, measured by the smallest decline in F1. I
continued dropping features in this way, providing an F1 measure for f = 1,2,...,32 for
each mean scale level. The plot shows curves for particular f values.

Choosing the best f features of the full 32 in the data provides a better F1 score than
taking the first f features in the data, as expected. Put another way, for a given F1 level of
performance, we can use a smaller circuit if we select the best features rather than using
a fixed feature set. The amount by which a circuit can be reduced for a given F1 score
depends on the particular data structure, as shown by the plots.

We could further reduce the number of parameters in a circuit by imposing a cost on
each parameter. A cost favors a parameter to decline close to zero when it adds relatively
little improvement in performance. We then obtain a simplified circuit by pruning all
parameters near zero.

Overall, relatively small encoder circuits can achieve good classification for some types
of data.

8. Discussion

I have focused on anomalies as unusual observations, anything that differs from what
is typical. Detection does not depend on specific anomalous patterns or danger signals.
Instead, a system creates a model of a typical input and infers when an input differs
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from that internal model, something like “That’s an unusual smell” or “I've never seen
that before”.

Sensory or neural adaptation provides a simple example. Many biological circuits
adjust their baseline by averaging over recent inputs. That baseline allows the circuit to
measure deviations from what has recently been typical [61-65]. I presented simple circuits
in Equations (4) and (5) that adapt to recent trends. An ensemble of such circuits could
classify multivariate inputs.

Self versus nonself recognition occurs widely throughout biology [66-75]. In some
cases, nonself is recognized by direct pattern recognition, which does not require the more
challenging kinds of circuits discussed in this article. In other cases, self recognition is more
complex and not fully understood [12]. It seems that systems sometimes recognize what is
self and classify as anomalous those observations that do not fit the self pattern, potentially
sharing properties with the machine-learning circuits discussed in this article.

The human hippocampus appears to recognize novelty in certain contexts [7-9]. Fur-
ther studies suggest that memory creates a model of what is common. The system classi-
fies inputs as novel or unusual when they deviate significantly from expectations [76,77].
With regard to the analyses in this article, some sort of dimensional reduction likely encodes
the internal model.

Cellular and physiological systems would likely gain from anomaly detection.
The models in this article suggest the kinds of small circuits that could work within
these constrained biological systems.
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