
Evolution, 2025, XX(XX), 1–16
https://doi.org/10.1093/evolut/qpaf065
Advance access publication 29 May 2025
Article

Circuit design in biology and machine learning.
I. Random networks and dimensional reduction
Steven A. Frank*

 

 

Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, United States
*Corresponding author: Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697–2525, United States. Email:
saf@stevefrank.org

Abstract
A biological circuit is a neural or biochemical cascade, taking inputs and producing outputs. How have biological circuits learned to solve environ-
mental challenges over the history of life? The answer certainly follows Dobzhansky’s famous quote that “nothing in biology makes sense except
in the light of evolution.” But that quote leaves out the mechanistic basis by which natural selection’s trial-and-error learning happens, which is
exactly what we have to understand. How does the learning process that designs biological circuits actually work? How much insight can we
gain about the form and function of biological circuits by studying the processes that have made those circuits? Because life’s circuits must often
solve the same problems as those faced by machine learning, such as environmental tracking, homeostatic control, dimensional reduction, or
classification, we can begin by considering howmachine learning designs computational circuits to solve problems. We can then ask: Howmuch
insight do those computational circuits provide about the design of biological circuits? How much does biology differ from computers in the
particular circuit designs that it uses to solve problems? This article steps through two classic machine learning models to set the foundation for
analyzing broad questions about the design of biological circuits. One insight is the surprising power of randomly connected networks. Another
is the central role of internal models of the environment embedded within biological circuits, illustrated by a model of dimensional reduction
and trend prediction. Overall, many challenges in biology have machine learning analogs, suggesting hypotheses about how biology’s circuits
are designed.
Keywords: biological design, evolution, artificial intelligence, reservoir networks, recurrent neural networks

Introduction
Biological circuits process information and make decisions.
For example, a metabolic response circuit may encode the
recent availability of various nutrients into a low-dimensional
internal representation within the cell. The circuit then
decodes the internal state into an appropriate metabolic
response (Wu et al., 2022).

Similarly, machine learning circuits also process informa-
tion and make decisions. Particular computational circuits
reduce dimension, classify inputs, predict environments, and
respond accordingly (Goodfellow et al., 2016).

Natural and artificial systems design their circuits by learn-
ing. Biology uses natural selection’s trial-and-error learning.
Machines use various learning algorithms. In each case, credit
for performance feeds back to circuit components. Update
rules reshape the circuits to improve future performance.

How similar are biology’s and machine learning’s circuits?
Mostly, we do not know. I review analogies and highlight
topics for study.

Importantly, what we see in machines suggests what to look
for in biology. And what works in biology provides insight
into machines. We gain a broader perspective on general-
ized notions of learning and the circuit architecture of learned
designs (Aldarondo et al., 2024; Kanwisher et al., 2023).

What about intelligence? Some people have argued that
machine learning exploits correlations, whereas biological
intelligence uses a causal model of the world (Mitchell, 2023).
But what if machines can discover and use causal models?
In any case, the comparison between machines and biology
forces clearer thinking about how learning shapes response
circuit design.

Induction by comparative example
The distinct materials of machines and biology inevitably
cause differences in speed, efficiency, work, and cost. But,
for relatively simple challenges, I do not know of limita-
tions on information processing that require machines and
organisms to solve problems with significantly different circuit
designs.

If anything, biology’s slow chemistry and evolutionary algo-
rithms for learning seem more constrained than machine
learning’s fast electricity and diverse algorithms, whereas biol-
ogy’s intrinsic parallelism and energy efficiency pose some
engineering challenges for machines. These material differ-
ences must cause low-level mechanistic differences in response
circuits. But we do not knowwhether high-level structural and
functional differences often arise by necessity (Baltussen et al.,
2024).

Received August 19, 2024; revisions received November 13, 2024; accepted March 27, 2025
Handling Editor: Mark Kirkpatrick
© The Author(s) 2025. Published by Oxford University Press on behalf of The Society for the Study of Evolution (SSE).
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/),
which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

D
ow

nloaded from
 https://academ

ic.oup.com
/evolut/advance-article/doi/10.1093/evolut/qpaf065/8152771 by guest on 01 June 2025

https://orcid.org/0000-0001-7348-7794
saf@stevefrank.org
https://creativecommons.org/licenses/by/4.0/


2 A. Frank

Put another way, we lack well-developed theory that pre-
dicts essential differences between the domains. We must
proceed inductively by accumulating various comparisons
between machine learning and biology. How do the distinct
systems solve particular challenges? Architecturally, what
sorts of similarities and differences do we see in the design
of response circuits? Are there qualitative differences in infor-
mation flow and decision making?

Ultimately, what sorts of predictions can wemake about the
design of biological response circuits? What sorts of induc-
tive generalities arise about how learning shapes circuits and
systems?

To start on these questions, I begin with some basic machine
learning circuits. I discuss possible links between each compu-
tational example and biological circuits. I emphasize simple
genetic and biochemical circuits in cells, for which there are
relatively few prior studies of this sort. I occasionally mention
neurobiological networks, for which there are many previ-
ous analyses that link computational and biological circuits
(Hebb, 1949; Jiahui et al., 2023; Kanwisher et al., 2023;
Miikkulainen, 2025; McCulloch & Pitts, 1943; Rumelhart &
McClelland, 1986).

Overview
Each article in this series develops particular comparisons
between machines and biology. This first article starts with
randomly connected reservoir networks in machine learning.
Such reservoir networks can be remarkably successful for
certain types of challenges. For example, a randomly con-
nected circuit can often predict future inputs given the recent
sequence of input values.

Reservoir networks introduce several general principles of
circuit design. The following section summarizes those prin-
ciples. After that, I consider possible biological insights from
the study of random networks in machine learning.

One insight concerns the evolutionary origin of specific
circuit designs. Consider perception and response. Percep-
tion provides little value without a matching response. How
do things get started? Machine learning’s random reservoir
networks suggest a path.

Random networks also illustrate how circuits gain from
reducing the dimensionality of their inputs. The second part
of this article continues analysis of dimensional reduction, a
process that benefits circuit designs for many different kinds
of challenges.

For example, recognizing an ear as a facial component in an
image is the reduction of a high-dimension array of pixels to
a lower-dimension model of a face. Similarly, a biological cell
may reduce the abundances of various nutrients to a single
dimensional measure of beneficial metabolic state. Machine
learning models provide many insights into how simple circuit
designs can reduce dimension to solve challenges.

The next article in this series discusses anomaly detection.
In machine learning, a particular challenge might be detecting
a rare fraudulent credit card transaction among a vast num-
ber of legitimate transactions. What pattern of inputs suggests
that something is atypical? The problem is easy if certain fea-
tures associate with danger. The problem is hard if anomalies
often arise in different ways so that all one can do is identify
anomalies by an atypical multivariate pattern.

A similar challenge arises in biology. Many particular signs
of danger can be detected relatively easily. But how does an
organism identify trouble by sensing a nonspecific deviation

from the typical multivariate pattern of inputs? The methods
and examples from machine learning provide general insights
into the circuit designs that can solve this challenge.

For example, in machine learning, what characteristics and
patterns of sensor arrays help in detecting anomalies? How
does combining information from different circuits in an
ensemble improve success? What is the role of sequential
improvement in circuit performance, an analogy with the evo-
lutionary dynamics of circuit improvement in biology? What
hypotheses do we gain about how simple biological circuits
may be designed?

Future articles in the series will explore such questions. Top-
ics include how circuits manage uncertainty, how they learn to
embed models of the world, and how machine learning tech-
niques aid in designing simple biochemical circuits. Another
topic examines how robustness influences circuit design and
complexity.

Reservoir computing
This section illustrates how randomly connected networks
store information about recent inputs. That reservoir of infor-
mation about the past can be used to predict future environ-
mental states and to respond accordingly. Random reservoir
networks first arose in computational modeling (Cucchi et al.,
2022; Gauthier et al., 2021; Jaeger, 2007; Maass et al., 2002).
Several studies then considered how biology exploits similar
reservoir networks (Czégel et al., 2021; Damicelli et al., 2022;
Goudarzi et al., 2013; Loeffler et al., 2021; Seoane, 2019; Solé
& Seoane, 2022; Yahiro et al., 2018). Box 1 and Fig. 1 provide
background on reservoir computing.

Box 1: Reservoir computing
Reservoir computing (RC) provides a model for how
complex computations can emerge from seemingly
simple network structures, mirroring the distributed
processing observed in biological circuits.

The core of RC is the reservoir, a network of inter-
connected nodes, much like a network of neurons
or a group of interacting molecules in a biochemi-
cal network of reactions. These nodes are linked by
connections that allow information to flow between
them. The connectivity is recurrent, meaning that
information can flow in feedback loops. For exam-
ple, node A can influence node B, which can influ-
ence node C, which in turn can loop back and
influence node A again.

This circular flow of information, a continuous
feedback loop, allows the system tomaintain a mem-
ory of past signals and process information over
time. Think of it as a dynamic echo chamber where
incoming signals reverberate and interact, creating a
complex internal representation of the input history.

Importantly, these internal connections are mostly
randomly formed and static. They do not change
during computation, and they are not improved or
optimized as the system learns or evolves. Instead,
they simply provide a passive vessel that stores a

D
ow

nloaded from
 https://academ

ic.oup.com
/evolut/advance-article/doi/10.1093/evolut/qpaf065/8152771 by guest on 01 June 2025



Evolution (2025), Vol. XX, No. XX 3

trace of past inputs. The inputs can be external envi-
ronmental signals or internal signals arising from
other components of the system.

Neuronal and gene regulatory networks also have
recurrent connectivity, which plays an important
role in processing temporal information. The ran-
dom connectivity of reservoirs and the lack of
change in connectivity over time suggest that precise,
predetermined wiring is not necessary for memory or
complex computation.

RC has several properties that may be important
in biology. Temporal memory arises through recur-
rent connections, enabling the reservoir to maintain
a fading memory of past inputs that determines the
network’s current state and response to new infor-
mation. Similarly, a cell’s current state reflects its
history of environmental exposures.
Distributed representation occurs because infor-

mation is not stored in a single location but instead is
spread across the entire reservoir, often in a partially
redundant manner. This distributed representation
provides robustness to noise and damage, a valuable
feature in biological networks.

The reservoir network is tolerant to imperfect
wiring because the random connectivity and stasis
mean that precise wiring is not a prerequisite for
complex computation.
Simplified learning can happen because RC pri-

marily involves adjusting how the reservoir’s activity
is interpreted rather than changing the connections
within the reservoir itself. In particular, a system uses
the stored information in the reservoir to adjust its
response or predict a future input. The system can
learn or evolve those responses, while the reservoir
network itself does not change.

RC typically has emergent functional design at a
higher level relative to the partially random nature
of lower level components. This architecture means
that it may sometimes be difficult to infer function
by starting at the lowest level and tracing upwards
in a system.
Overlapping circuits may be common because the

information stored in an RC network can be read out
in different ways for different functions. An existing
circuit may provide the basis for new functions by
evolving novel responses that read out the circuit’s
stored information in a different way.

In summary, RC provides an interesting machine
learning model for how evolution might have lever-
aged simple yet powerful design principles to cre-
ate the complex information processing capabilities
observed in living systems.

Reservoirs illustrate five important network attributes,
described in more detail below. First, reservoirs have feed-
back connections among nodes, a kind of recurrent neural
network. Recurrence provides the capacity for memory, which
allows calculations over past input sequences (Goodfellow
et al., 2016).

Second, a reservoir’s random connectivity transforms inputs
to a lower dimensional internal representation.

Third, the circuit often functions precisely in spite of the
internal randomness in design (Frank, 2023b).

Fourth, at a small scale, the individual nodes and their con-
nectivity may be nearly uncorrelated with large-scale circuit
function.

Fifth, large networks may be overwired. They often have
more parameters and connectivity than required for the prob-
lem being solved (Frank, 2017; Sorrells & Johnson, 2015).

Machine learning’s reservoir model provides analogies for
biological circuits. Before turning to those analogies for biol-
ogy, I summarize additional aspects of reservoir computing.

How do random networks store information?
Think of a liquid with a smooth surface. Drop a stone on
the surface to generate waves. Then, drop another stone, and
another. The pattern of surface waves contains information
about the temporal history of inputs.

A reservoir’s computational network acts similarly. Each
input propagates signals through the recurrent network based
on the random connectivity pattern between nodes and the
rules for updating nodes. At each point in time, the network
state contains information about the history of inputs (Maass
et al., 2002).

Prediction and response
In a computational reservoir model, the circuit can be trained
to predict the future values of environmental variables. The
randomly connected network takes in a sequence of inputs.
The internal states of the network’s nodes reflect the past
input sequence. The machine learning algorithm then fits a
regression model, using the reservoir’s current state at any
point in time to predict the future values of the environmental
variables (Chattopadhyay et al., 2020; Chepuri et al., 2024;
Frank, 2023b).

Figure 2 illustrates the response of a reservoir network. The
blue curve in (A) traces an input signal. The gold curve shows
the network’s prediction for input values. Panel (B) magnifies
part of panel (A).

Panel (C) clarifies the nature of predictions. At each point
in time, the blue curve marks the input value. The gold curve
shows the predicted input 2 time units into the future. Panels
(A) and (B) shift the gold curve 2 time units to the right so that
deviations between the curves measure the difference between
the actual and predicted future inputs. Time units are nondi-
mensional and may be interpreted on whatever scale makes
sense for a particular application.

Here are the details (Martinuzzi et al., 2022). A simple
reservoir network has N internal nodes, with nodal values
xt at time t. A random matrix, W, describes the connection
weights from each node to all nodes. The m input values at
each time are ut. The matrix Win describes the connection
weight from each input to each network node. The update
rule for nodal values is

xt+Δt = (1 – 𝛼)xt + 𝛼tanh(Wxt +Winut+Δt). (1)

The function tanh returns the hyperbolic tangent of its argu-
ment. The parameter 𝛼 sets the rate at which nodal values
update. In reservoir models, all parameters remain constant.
In later models based on this equation, the learning phase
adjusts these parameters.

D
ow

nloaded from
 https://academ

ic.oup.com
/evolut/advance-article/doi/10.1093/evolut/qpaf065/8152771 by guest on 01 June 2025



4 A. Frank

Figure 1. Reservoir networks provide information about past inputs. The simple examples here illustrate the process. The intensity of shading for each
node reflects its value, with lower values having darker shading and darker color. (A) The five nodes in this example create a circular network (Rodan & Tino,
2010). In each timestep, each node passes its value, v, transformed by tanh(v/2), to the next node, in which tanh is the hyperbolic tangent function. That
function maps its input to the range [–1,1], keeping the values in the network bounded to a useful set. The node at the top provides the external input into
the network, with input value transformed by tanh. In this example, the inputs (0.1,0.3,0.5,0.7,0.9) rise linearly over time. As the inputs proceed from left
to right, the network values encode information about the input sequence. The final state on the right has declining values around the circle when starting
from the top node, associated with the rising inputs over time. (B) Network dynamics for flat inputs, each of 0.7. In the final state, nodal values decline
more slowly. (C) Network dynamics for falling inputs, which are the reverse order of the inputs in (A). In the final state, nodal values are relatively flat,
balancing the decline of input values against the decline in values transmitted around the circle. (D) A reservoir network with 10 bidirectionally connected
nodes. Each circle of nodes shows a different instance of the same network. The weights connecting the nodes are random, and the weights connecting
each input to each node are also random. The same network connectivity is used for each instance. The input pattern for an instance is described at its
center. In this case, each input sequence has 11 values. The illustrations show the final state after all inputs. The conclusion is that a network’s final state
reflects its input pattern, providing the system with information about the history of inputs.

For simple reservoir computing, one fits a regression model
that maps the nodal values at a particular time to a future
input value. Training a network to make predictions follows
standard machine learning protocol. Split a given sequence of
inputs into a training part and a test part. Use the training part
to fit the model parameters. Use the test part to analyze how
well the system performs on data not used for training. See
the figure caption for more detail about this particular case.

This example shows that a simple randomly constructed
reservoir can store sufficient information about past inputs
to make good predictions about future inputs. Reservoir net-
works have solved a wide variety of challenging problems
(Chattopadhyay et al., 2020; Chepuri et al., 2024; Cucchi

et al., 2022; Frank, 2023b). For example, such networks
predict macroeconomic variables (Ballarin et al., 2024) and
spatiotemporal patterns of sea surface temperatures (Walle-
shauser & Bollt, 2022) and solar irradiance (Li et al., 2020).
Other studies suggest that variants of reservoir computing
networks provide good models for neurobiological circuits
(Loeffler et al., 2020, 2021).

Biological insights from reservoirs
Recurrence, memory, state, and dimension
Reservoirs have four attributes that make them particularly
good at using past inputs to predict future inputs. Those four

D
ow

nloaded from
 https://academ

ic.oup.com
/evolut/advance-article/doi/10.1093/evolut/qpaf065/8152771 by guest on 01 June 2025



Evolution (2025), Vol. XX, No. XX 5

Figure 2.Match between actual (blue) environmental inputs and predicted (gold) inputs generated by a reservoir network. See text for description of each
plot. Briefly, (A) the match over 100 nondimensional time units, (B) magnification of a short time sequence, and (C) gold curve shifted 2 units to the left. I
created the reservoir networks with the Julia programming language package ReservoirComputing.jl (Martinuzzi et al., 2022). Each network has 20 nodes.
The connectivity matrix was randomly generated with a 0.6 expected frequency of zeros. The connectivity weights were normalized to a matrix spectral
radius of 1.0, which means that the nodal values tend neither to increase nor decrease over time. The input is u(t) = sin(t) + sin(0.51t) + sin(0.22t).
The total input sequence occurred over time units t = [1,300] in increments of Δt = 0.05. In the training period during the first 200 time units, I fit a
regression model on the nodal values, x in eqn 1, to predict the input values at 2 time units into the future, which is 2/Δt = 40 sequence increments. To fit
the prediction model, I used lasso regression with an L1 regularization cost of 0.0003. That linear cost on the magnitude of the parameters prevents large
parameter values and reduces to zero those parameters that contribute little to the predicted fit. In this case, the fitted regression used 7 of the 20 nodal
values, a significant reduction in dimensionality of the input complexity. Reducing the L1 cost to zero used all 20 nodal values in the fitted regression and
gave a nearly perfect fit. The plots show the results for the inputs that were not used during the fitting procedure. The freely available Julia computer code
provides full details about assumptions and methods for all figures in this article (Frank, 2024b).

attributes are likely to shape the architecture of biological
circuits.
Recurrencemeans that information flows through feedback

loops within a network. In machine learning, one thinks of
a network as composed of connected nodes, each node con-
tributing calculations to the network’s overall computational
path.

In the simplest feed forward architecture, information flows
unidirectionally, starting from the external inputs and flowing
into the first layer of computational nodes. The outputs of that
first layer feed forward as inputs to the next layer, and so on,
until the final nodal outputs form the circuit’s response.

If a node feeds its output back as input to itself, that is a
recurrent feedback loop. Such a node gets inputs from dif-
ferent time traces of information flow. A feed forward input
represents a relatively current time trace. The self-feedback
represents a prior time trace. In general, recurrence occurs
when a node receives input from multiple time traces, with
feedback loops bringing in earlier time traces.

Recurrence creates a kind of memory. With a recurrent
loop, the input flowing into a particular node may include
both the first trace of information from the most recent exter-
nal input into the network and traces of information from
earlier inputs into the network. The temporal offset created
by recurrent flow allows a node to compute on sequences of
inputs.

At the network level, memory can arise simply by recur-
rent connectivity. Each computational node takes inputs and

produces outputs without any local memory. Alternatively,
nodes may retain memory through their internal state. For
example, a node that retains memory of its most recent output
can use that internal state as input for its next computation.
Nodes in reservoir networks may retain internal state, as in
eqn 1.

Thus, we have two distinct types of memory. Recurrent net-
work memory is a global property of the network, arising
from feedback connections that create the possibility for the
inputs into a node ultimately to trace back to external environ-
mental inputs that came into the network at different times. In
contrast, local state memory is an internal property of a single
node by which the node retains information about past inputs
into that node.

Reservoirs perform dimensional reduction of their inputs.
The temporal input sequence may be a high-dimensional vec-
tor. The reservoir’s internal nodal states reduce that high-
dimensional input to a lower dimension.

Because computational reservoirs are typically created
with random, unchanging connectivity, many of the inter-
nal states may either be redundant or not useful with
regard to the particular computational challenge. In reser-
voir computing, the overall computation picks out the use-
ful states to make a prediction about the challenge, often
using regression on the states to predict an outcome. The
prediction stage typically reduces the internal state dimen-
sionality to a much lower dimension of useful informa-
tion.

D
ow

nloaded from
 https://academ

ic.oup.com
/evolut/advance-article/doi/10.1093/evolut/qpaf065/8152771 by guest on 01 June 2025



6 A. Frank

Recurrence, memory, state, and dimension provide a basis
for evaluating biological network architecture.

Form and function, discovery, and refinement
Computational reservoirs raise three interesting questions
about biology.

First, how does a circuit’s form relate to its function? The
fact that simple random reservoirs perform well suggests that,
for circuits, the low-level connectivity patterns that determine
formmay often be weakly correlated with function. Good per-
formance arises from the nonspecific attributes of recurrence,
memory, state, and dimensional reduction, which transcend
the specific details of connectivity between nodes.

Second, how do things get started? Natural selection can
only refine the performance of something that already exists
and has the capacity for minor adjustments to improve func-
tion. Random reservoirs may be a first step in creating func-
tional circuits, providing the basis for something that initially
works and can subsequently be improved.

Third, if initial discovery arises by a network that is ran-
domly connected, how effective is natural selection at subse-
quently refining the circuit architecture? It may be that ran-
dom connectivity happens only in the initial phases of a cir-
cuit’s evolution. Subsequently, selection may refine the circuit,
hiding the initial randomness from view. Or the initial ran-
dom connectivity may be sufficiently good, making further
selection too weak to modify form.

Overall, how often do circuits first arise by co-opting an
existing network that is initially random in its connectivity
with respect to function? How often will subsequent selec-
tion erase traces of that initial randomness? In other words,
what sorts of relations between form and function should we
expect at different stages in a circuit’s evolution? The follow-
ing examples and comments suggest how we might start on
these questions.

Origin of traits: perception and response
The origin of perception-response traits poses a puzzle. Per-
ception provides no benefit without a response. A response
cannot happen without perception. How do things get
started? That question guides how we may think about form
and function, discovery, and the refinement of biological
circuits.

Reservoir computing suggests a solution. If, initially, a
randomly connected network provides information about
environmental inputs, then a biological circuit can subse-
quently use that perceived information to evolve an appro-
priate response (Frank, 2023b). Once a working perception-
response circuit is in place, natural selection may refine the
circuit.

The prior section showed how a random reservoir might ini-
tiate a new perception-response circuit. In Fig. 2, the system
takes in a single input that fluctuates in a complexly periodic
way over time. A sparsely and randomly connected network
with 20 nodes stores an imperfect and dimensionally reduced
memory of past inputs. That memory provides a sufficient
basis for a population of organisms to learn, by natural selec-
tion, how to predict future environmental states using only
the internal states of its randomly connected network. Many
studies show that random networks provide the foundation
for predicting complex patterns of future environmental fluc-
tuations (Chattopadhyay et al., 2020; Chepuri et al., 2024;
Cucchi et al., 2022; Frank, 2023b; Loeffler et al., 2020, 2021).

Given that random networks often perform very well, how
much might we expect natural selection to refine such cir-
cuits? There is a tendency in the systems biology literature to
expect that natural selection refines every small-scale feature
of a biological circuit. However, at a small scale, the intensity
of natural selection may often be rather weak relative to var-
ious stochastic evolutionary processes. Circuits may often be
more randomly or more complexly wired than expected from
a purely optimizing learning process (Frank, 2023c; Lynch,
2024; Muñoz-Gómez et al., 2021).

Prokaryotes, eukaryotes, and multicellularity
When a novel challenge arises, organisms may benefit from a
pre-existing network that is randomly connected with respect
to the new challenge. What might influence the chance that
there is a usable pre-existing network?

Comparing prokaryotes and eukaryotes provides an inter-
esting contrast. Prokaryotes typically have smaller cells that
are more limited in their total protein content. Proteome lim-
itation may constrain the transcription factor network that
comprises the primary cellular response circuits (Chen et al.,
2021; Frank, 2022a). In addition, populations of prokaryotes
may typically be larger than populations of eukaryotes. Larger
populations mean that natural selection is more likely to out-
weigh the random sampling processes of small populations,
more effectively refining the details of functional circuits and
reducing the amount of overconnected randomwiring (Frank,
2023c; Lynch, 2007).

Prokaryotic transcription factor networks may therefore be
less widely connected and more finely pruned than eukaryotic
networks. If so, then prokaryotes may be less likely to have
pre-existing networks that are essentially randomwith respect
to new challenges. And prokaryotes may be less likely than
eukaryotes to retain random or excessively wired networks
after the refining action of natural selection.

Comparing multicellular and unicellular eukaryotes, two
factors favor broader and more randomly connected net-
works in multicellular organisms. First, multicellular popu-
lations tend to be smaller, with more random fluctuations
that weaken the relative efficacy of natural selection (Lynch,
2007). Second, in multicellular organisms, individual cells are
tuned for the differentiation of functions rather than the uni-
cellular tuning for fast growth and efficient resource usage.
The greater emphasis on speed and efficiency in unicells likely
prunes the size and randomness of their circuits.

Overall, broader circuit connectivity and more randomness
likely occur in multicellular eukaryotes, followed by unicel-
lular eukaryotes, and then unicellular prokaryotes. Perhaps
the diversity and complexity of multicellular eukaryotic cellu-
lar circuits provides greater opportunity for the discovery of
novel functions.

Precise traits from sloppy components
A trait may first arise from a circuit with reservoir-like ran-
dom connectivity. Subsequently, natural selection may not be
sufficiently strong to refine and prune the network. A circuit
with reservoir-like random connectivity appears rather sloppy
in its low-level design yet can function precisely with respect
to its environmental challenge.

In other words, wemay see precise traits arising from sloppy
components (Frank, 2023c). Other evolutionary pathways
can also lead to low-level sloppiness of circuits that nonethe-
less function in a relatively precise way (Daniels et al., 2008;

D
ow

nloaded from
 https://academ

ic.oup.com
/evolut/advance-article/doi/10.1093/evolut/qpaf065/8152771 by guest on 01 June 2025



Evolution (2025), Vol. XX, No. XX 7

Frank, 2007, 2023c; Gray et al., 2010; Gutenkunst et al.,
2007; Lynch, 2012, 2024).

Network architecture
Random connectivity can be effective for certain challenges.
However, within reservoir computing, imposing some struc-
ture to connectivity patterns often improves circuit perfor-
mance or reduces the size of the required reservoir (Loeffler
et al., 2020, 2021; Rodan & Tino, 2010; Rodan & Tin̆o,
2012).

In biological circuits, hierarchy and modularity may occur
within pre-existing circuits. Or such broad-scale structuremay
evolve to refine circuit performance (Tripathi et al., 2023).
For example, Caenorhabditis elegans organizes its 302 neu-
rons into a modular architecture, which may enhance the
computational efficacy of its neural circuits (Ruach et al.,
2023).

Neurobiology
Machine learning models have long been linked to neuro-
biological circuits (Hebb, 1949; Rumelhart & McClelland,
1986; McCulloch & Pitts, 1943). Recent articles continue
to develop those connections (Jiahui et al., 2023; Kanwisher
et al., 2023), including discussion of reservoir computing as
a model for particular aspects of neurobiology (Ramezanian-
Panahi et al., 2022). Although this article emphasizes genetic
and biochemical circuits of cells, it is helpful to mention a
few applications of reservoir computing concepts to neural
circuits.

For small neural circuits, the connectivity of reservoir
wiring may be relatively repeatable from one individual to
another. With developmentally predictable wiring, the read-
out of the reservoir states can also evolve to be fixed devel-
opmentally. For larger circuits, the reservoir wiring may vary
developmentally between individuals. The internal reservoir
states no longer express predictable information about inputs
to the circuit.

In the case of larger circuits with less consistent wiring, the
organism must learn to read the circuit’s states in relation to
the particular environmental problem that the circuit must
solve. Learning to read a reservoir circuit may be the origin of
commonly observed critical learning periods (Frank, 2023b).

At a more abstract level, Czégel et al. (2021) ask how
complex intelligence may arise from underlying neural cir-
cuits. They studied a computational model of initially ran-
dom reservoir circuits within a single brain that, in effect,
teach one another. The ensemble of circuits uses Darwinian
trial-and-error selection to learn the solutions to complex
challenges.

Dimensional reduction
Systems often encode high-dimensional inputs to a low-
dimensional representation, highlighting important attributes
(Reddy et al., 2020; Sorzano et al., 2014). Systems may also
contain a model of the environment, which helps to transform
an internal representation of inputs into an appropriate action
(Bin et al., 2022; Gupta & Khammash, 2023; Schölkopf
et al., 2021). Box 2 provides general background for this
topic.

Box 2: Dimensional reduction
Understanding how cells process complex envi-
ronmental information into regulatory responses
presents a fundamental challenge in biology.
Machine learning, particularly the concept of
dimensional reduction, offers powerful analogies
for understanding how cellular networks accom-
plish this feat. Just as machine learning systems
must distill vast amounts of complex data into
meaningful patterns, cells must convert numer-
ous environmental signals into specific regulatory
decisions.

Dimensional reduction refers to the process
of converting high-dimensional data into simpler,
lower-dimensional representations while preserving
essential information. Think of how a skilled artist
can capture the essence of a complex scene in just a
few brushstrokes. The artist has learned which fea-
tures are essential to convey meaning and which can
be omitted. Similarly, both machine learning systems
and cells must learn to extract and represent the
most important aspects of their environment while
filtering out noise and redundancy.

In machine learning, encoders provide an ele-
gant solution to this challenge. An encoder is like
a skilled translator who must convey a story in
fewer words while maintaining its essential mean-
ing. The encoder learns to compress information by
identifying patterns and relationships in the input
data, creating a compact code that captures the key
features. The power of this approach lies in how
encoders discover efficient representations automat-
ically through experience. They learn which combi-
nations of features matter most for predicting out-
comes.

For example, an encoder processing images of
faces might learn to track key features such as
the distance between the eyes or the shape of the
jaw, rather than storing every pixel. This com-
pact representation contains the essential informa-
tion needed to recognize or reconstruct the face.
Similarly, cellular signaling networks may act as
biological encoders, learning over evolutionary time
to track key combinations of environmental signals
rather than responding to each input independently.

The architecture of artificial encoders may provide
clues for how cellular signaling cascades compress
environmental information into key molecular sig-
nals, which regulatory networks then expand into
broader cellular responses. Just as machine learning
encoders must balance the trade-off between com-
pression and preservation of important information,
cellular networks face similar constraints in pro-
cessing environmental signals efficiently with limited
molecular resources.

In both machine learning and cellular systems,
dimensional reduction through encoding offers sev-
eral key advantages. It filters out noise and irrelevant
variations,making responses more robust. It reduces
the complexity of information processing, making

D
ow

nloaded from
 https://academ

ic.oup.com
/evolut/advance-article/doi/10.1093/evolut/qpaf065/8152771 by guest on 01 June 2025



8 A. Frank

it more energetically efficient. Perhaps most impor-
tantly, it allows systems to generalize from past expe-
riences to new situations. Just as a machine learn-
ing model can recognize patterns in never-before-
seen data, cellular networks can mount appropriate
responses to novel combinations of environmental
signals.

Viewing cellular regulatory networks through the
lens of dimensional reduction provides valuable
insights for biological research. It suggests new
ways to analyze and model cellular decision-making,
helps predict cellular responses to complex stimuli,
and offers frameworks for understanding how cells
maintain robust responses despite noisy inputs. This
perspective also helps explain how relatively simple
molecular networks can process complex environ-
mental information and generate appropriate cellu-
lar responses.

Encoder network
An encoder network in machine learning typically processes a
high-dimensional input within its initial layer. That first layer
then passes a lower-dimensional output to the next layer of
the network. A series of dimension-reducing layers may fol-
low, each layer producing fewer outputs than the number of
inputs into the layer (Chen & Guo, 2023; Mao et al., 2024).

By forcing the system to reduce dimensionality through a
series of partial steps, each reducing layer has the opportunity
to capture different essential features of the initial input. The
sequential reduction sometimes finds efficient and effective
representations that can be difficult to find when reduction
is attempted in a single step.

The input may occur as a temporal sequence. If so, then the
initial network layer stores a memory of past inputs in order
to find an effective reduction of the input sequence. A mem-
ory trace can be created by recurrent network connections,
like those described by eqn 1.

Predicting direction of change
Suppose, for example, that a system experiences a sequence
of environmental inputs. The system gains by predicting the
direction of change for the next input relative to the current
environment. Prior inputs provide information on the next
direction of change.

I develop an example for which we can obtain the optimal
dimensional reduction and internal decision model. We can
then observe how a machine learning model discovers and
encodes a nearly optimal solution.

For many realistic problems, we may not be able to solve
for or guess what sort of circuit solution is required. In those
cases, machine learning guides us in the design of circuit
solutions and the analysis of how biological circuits solve
environmental challenges.

Looking out toward thosemore difficult problems, the basic
example developed here illustrates three points. First, very
simple networks can learn to encode efficient computational
circuits based solely on feedback about current performance.
Second, dimensional reduction is a common attribute of effec-
tive circuits. Third, circuits may encode a causal model rather

than exploit a database of correlations for past inputs. This
example extends a previous study (Frank, 2024a).

Optimal solution
To generate input sequences, start with a random walk, ût.
Then replace each value at time t by its exponential moving
average, ut = 𝛽ût + (1 – 𝛽)ut–1. Figure 3A and E show two
example sequences. The figure legend describes details.

The widespread biological applicability of this process can
be seen by writing an approximately equivalent differential
equation, u̇ = û – 𝜆u, in which u̇ is the change with respect
to time for some biological quantity, û is an input that drives
change in this quantity, and 𝜆 is the intrinsic decay rate of u.
For this differential equation, the solution for u at time t is pro-
portional to the continuous time exponential moving average
of u at that time.

Here, we return to the discrete form, which is easier to work
with for our purposes. The goal is to predict the direction of
change, the sign of Δut = ut+1 – ut. The sign is positive when

Δut = 𝛽Δût + (1 – 𝛽)Δut–1 > 0.

Because ût is a randomwalk, its change Δût is equally likely to
be positive or negative. Thus, the best prediction for the sign
of Δut is the sign of Δut–1. In other words, the most recently
observed direction of change provides the best prediction for
the next direction of change.

Roughly speaking, we may think of the recently observed
change, Δut–1, as the trend momentum. Positive momentum
means that the trend is likely to continue up. Negativemomen-
tum means that the trend is likely to continue down. Later
comments about momentum refer to this term.

The greater the momentum, the more likely the trend will
continue in the same direction. For example, the greater Δut–1,
the more negative the underlying random walk change, Δût,
must be to reverse the trend. Increasingly extreme moves in
the underlying random walk are increasingly uncommon.

Thus, an ideal internal model uses the currently observed
trend direction to predict the next direction of change. And
it uses the trend momentum to estimate the confidence in the
directional prediction.

Circuit that predicts directional change
A computational circuit can learn to solve this directional pre-
diction problem. The initial layer of the circuit has the recur-
rent memory structure in eqn 1 with a pool ofN = 2n internal
states.

For n ≥ 2, I used a sequence of layers with 2n, 2n–1,… for
dimensional reduction. In some cases, larger networks learned
more quickly. But an initial layer with two internal memory
states was sufficient. The circuit needs information only for
the current and prior inputs to generate an estimate for the
momentum, Δut–1.

I focused on this smallest two-state circuit, as shown in
Fig. 4. The figure legend describes how the circuit transforms
inputs into two internal memory states, reduces those mem-
ory states to an internal one-dimensional summary value, and
then transforms the reduced summary value into a prediction
about future change.

Figure 3 shows results for one particular circuit. That circuit
learned to predict the direction of change by adjusting its 12
internal parameters. The adjustment happened by a standard
machine learning cycle. In each cycle, I generated a sample
input such as the one shown in Fig. 3A. I then calculated the

D
ow

nloaded from
 https://academ

ic.oup.com
/evolut/advance-article/doi/10.1093/evolut/qpaf065/8152771 by guest on 01 June 2025



Evolution (2025), Vol. XX, No. XX 9

Figure 3. Encoder circuit prediction for the direction of change in a sequence of observations. The input sequence is calculated by starting with a random
walk, dũ = 𝜎dW, at ũ0 = 0 with 𝜎 = 0.2, in which dW is a Wiener process that samples a normal random variable with standard deviation of √dt,
with dt = 0.01 in all examples. The sequence values are normalized to [0,1] by affine transformation, yielding û. The sequence is then replaced by its
exponential moving average, ut = 𝛽ût+(1–𝛽)ut–Δt, sampled at discrete time points, and with u0 = û0 and 𝛽 = 0.2. Figure 4 shows the circuit architecture.
The 12 network parameters in the Fig. 4 circuit were adjusted to reduce the loss function by the Adam learning algorithm with learning rate 0.005 applied
to 25,000 randomly generated sequences. The examples in this section analyze 300 time units with 10 sample points per time unit for a total of 3,000
sample points. After optimization, new sequences were used to test performance, as follows. (A) Input sequence. (B) The fitness for each prediction is
the absolute value of the difference between the current and prior observation multiplied by –1 if the prediction about direction is incorrect. Cumulative
fitness is proportional to the sum over all predictions up to the current time point. (C, D) A magnified view of a time interval from the plots above. (E–H)
Similar plots for a second input sample.

performance by using the loss function described in the figure
legend.

Initially, a circuit predicts the direction of change with a
success rate of 0.5, equivalent to flipping a coin. The computer
code then calculates a gradient for how changes in the parame-
ters alter the performance. The algorithm adjusts the parame-
ters to improve performance slightly. The process repeats with
a new random input sequence. In this example, I used 25,000
rounds of parameter refinement.

Figure 3B and F show the performance of the circuit
after the final parameter refinement, measured as cumulative

fitness, as described in the figure legend. An upward trend
in cumulative fitness associates with an accuracy of predic-
tion for the direction of future change that is greater than the
random baseline of 50%.

The method that generated the random sequences creates
inputs for which there is an ∼80% match between the direc-
tion of change at one time and the direction of change at the
next time. Figure 5 shows that the circuit correctly predicted
the direction of change at nearly the optimal match frequency.

Figure 6 describes the mechanism that the circuit uses to
predict the direction of change. One internal memory state

D
ow

nloaded from
 https://academ

ic.oup.com
/evolut/advance-article/doi/10.1093/evolut/qpaf065/8152771 by guest on 01 June 2025



10 A. Frank

input output

X1

X2

recurrent

memory

layer

dimension

reduction

layer

output

processing

layer

Figure 4. Encoder dimensional reduction network for predicting sequence
trend. In this example, the input is a sequence of values. The recurrent
memory layer is described by eqn 1, allowing the network to calculate
information about current and past inputs and retain that information in
the internal states, xi. Output from this layer is then passed as input to
the dimension reduction layer. That layer sums an affine transformation of
each input to produce a 1D output passed to the final layer. The final layer
applies to its input an affine transformation followed by a sigmoid function,
transforming inputs on (–∞,∞) to the final output on [0,1]. The output, 𝜌,
is taken as a prediction of the direction of change of the next input value
relative to the current input value. An actual positive change in the data
associates to a target of 𝜅 = 1, and a negative change associates to a tar-
get of 𝜅 = 0. The distance between the prediction, 𝜌, and its target, 𝜅, is
the cross-entropy loss function, –𝜅log𝜌 – (1 – 𝜅)log(1 –𝜌). Figure 3 shows
an application of this circuit architecture to a particular example.

tracks the prior input. The other internal state is proportional
to the momentum. Those states provide sufficient informa-
tion to generate nearly optimal predictions about direction.
The circuit also has information about its relative confidence
in its predictions, given by the magnitude of the momentum
estimate.

Internal model
Consider a trending numerical sequence, as in the previous
examples. A circuit could learn to predict the direction of
change in the next observation in two different ways.

First, the circuit could exploit patterns of correlation. If,
for example, in the data from which the circuit learns, 8 typi-
cally follows the target sequence 2–4–5–9, then the circuit may
learn to predict a negative change in response to the target.

learned correlation 2 4 5 9 8 ⟹ –

Second, the circuit could learn an internal causal generative
model for the sequence. For example, instead of focusing on
the correlation between particular trigger sequences and the
direction of future change, the circuit might learn the sort of
causal model described in prior sections.

causal model 2 4 5 9 X ⟹ +

Here, X is predicted to be larger than 9 because of the general
tendency for trends to continue in their current direction. If a
very simple circuit with limited memory can learn this under-
lying causal model, then it can predict the direction of change
with nearly optimal accuracy.

Learning algorithms easily exploit correlations. If those cor-
relations are just sampling artifacts in the original data, then
the circuit will perform poorly in new situations. Sampling
artifacts happen frequently in datasets that are small rela-
tive to their dimensionality, sometimes causing circuits to be
fragile when focused on correlations.

Alternatively, if the learning dynamics can successfully
reduce the dimensionality of the data in relation to the circuit’s

goal, then the circuit may be able to discover a relatively
simple model that follows the contours of the underlying
causal process. A good internal causal model performs well
in response to novel input data.

We do not know how often simple cellular circuits encode
internal models of the environment rather than correlations
between environmental states. An interesting literature devel-
ops the claim that internal models are particularly powerful
solutions for prediction and control (Bin et al., 2022; Gupta&
Khammash, 2023). Of course, given complete data on all pos-
sibles sequences and perfect predictions by correlational esti-
mates, a correlational network converges to a perfect internal
model. But, in practice, small computational networks may be
able to calculate outcomes simply and quickly, whereas learn-
ing and computing highly accurate correlational predictions
may be very costly or impossible.

A biochemical circuit for trend prediction
This paper argues that machine learning and biological evo-
lutionary learning may solve similar challenges with simi-
lar kinds of circuits. For example, the previous subsections
showed how machine learning uses dimensional reduction to
solve the problem of trend prediction. In this subsection, I use
the insights from the machine learning solution to develop a
hypothesis for how a simple biochemical circuit might solve
the same problem.

In the machine learning solution, an internal model reduces
the high dimensional input sequence to a single difference
between the internal state estimates for the current input and a
recent input. The sign of that difference predicts the direction
of future change. The magnitude of that difference estimates
the confidence in the prediction.

To build a biochemical circuit, we start with the machine
learning solution’s calculation of the difference between inter-
nal estimates for inputs at different time points. The fol-
lowing system of differential equations expresses a candidate
biochemical circuit

ẋ = 𝛼u – 𝛽x
ẏ = 𝛾(𝛼u – 𝛽y)
̇z = 𝜆 + 𝜂(y – x) – 𝛿z. (2)

Overdots denote derivatives with respect to time, t. The vari-
ables x, y, z,u are functions of time. Here, u is a randomly
changing input that follows the same process as described in
the caption of Fig. 3.

For constant input, u, the molecular of abundances of x
and y have the same equilibrium values, 𝛼/𝛽. As the input, u,
changes, y changes more slowly than xwhen 𝛾 < 1. Thus, y–x
tends to be negative when u is increasing and positive when
u is decreasing. Therefore, the deviation of z from its equi-
librium, 𝜆/𝛿, estimates the direction and magnitude of recent
changes in u, providing a prediction for the direction of future
change.

Using the methods for input generation and discrete time
point sampling in the caption of Fig. 3, I optimized the six
parameters in eqn 2. Figure 7 shows the results for a particu-
lar set of optimized parameters and a single realized sequence
of the random input variable, u.

In this model, the internal states x and y approximately
track a shorter and a longer exponential moving average of
the inputs. The difference between those moving averages
anticipates future trend.

D
ow

nloaded from
 https://academ

ic.oup.com
/evolut/advance-article/doi/10.1093/evolut/qpaf065/8152771 by guest on 01 June 2025



Evolution (2025), Vol. XX, No. XX 11

Figure 5. Circuit accuracy in predicting the direction of input change. Random input sequences were generated as described in Fig. 3. For a particular
generated sequence with 100,000 sample points, the direction of change between two inputs predicted the direction of change for the next input with
frequency 0.795, which estimates the maximum accuracy that could be achieved on that sequence. For each of 10,000 novel sequences with 3,000
sample points, I calculated the deviation between the optimized circuit’s frequency of correct predictions and the maximum estimated accuracy. The
histogram shows the distribution of those deviations. The median, mean, and standard deviation refer to that distribution of deviations.

Figure 6. Mechanism used by the machine learning encoder circuit to predict the direction of change in inputs. A sequence of inputs was generated as
described in Fig. 3. These plots show a subset of the sample points. The circuit has two internal memory states, described in Fig. 4. (A) The blue curve
traces the prior input value. The gold curve shows one of the encoder circuit’s internal memory states multiplied by a constant. (B) The other internal
state rises and falls with the estimated momentum of the trend, which is the difference between the current and prior input, shown in gold. I transformed
the state value to have the same mean as the input curve, which associated a positive internal momentum estimate (gold) with a location above the
input (blue) curve and a negative momentum estimate with a location below the input curve. The blue curve is the same as in the upper panel. (C) The
predicted direction rises and falls with a function of the momentum. The sign provides the predicted direction. The magnitude describes an estimate for
the confidence of the prediction. The actual circuit outputs predicted values z on the interval (0,1). Here, I show 2(z – 0.5) so that positive and negative
values correspond to positive and negative predicted changes.

D
ow

nloaded from
 https://academ

ic.oup.com
/evolut/advance-article/doi/10.1093/evolut/qpaf065/8152771 by guest on 01 June 2025



12 A. Frank

Figure 7. Biochemical circuit prediction for the direction of change in a sequence of observations. Dynamics described by eqn 2. Parameters optimized
by the method described below. (A) Molecular abundance of x compared with the input sequence, u, in blue and gold, respectively. I multiplied u by a
constant to show the proportional match in the dynamics. The abundance of x provides a good internal estimate of the recent input value. (B) Comparison
of x and y, in blue and gold, respectively. The abundance of y responds more slowly to input changes. Thus, y – x estimates the recent difference in
input values. (C) The abundance of z provides a prediction for the direction of change in the next sampled input. This panel shows the deviation of z from
its equilibrium multiplied by the parameter 𝜙, as 𝜌 = 𝜙(z – 𝜆/𝛿). The sign and magnitude of 𝜌 predict the direction of change and the confidence in the
prediction. In this example run, the sign of 𝜌 predicted the sign of the next input change with 72.2% accuracy compared with a true match between
the sign of the difference in one increment and the sign of the difference in the next increment of 72.7%. I optimized the six parameters in eqn 2 by
minimizing the cross-entropy loss described in the caption of Fig. 4. To minimize the loss function, I obtained values for the six parameters of eqn 2 and
for 𝜙 by the Sophia algorithm with learning rate 0.005 applied to 10,000 randomly generated input sequences (Liu et al., 2024). Each input sequence was
generated over 10 time units and sampled at 0.1 time units, yielding 101 points. The times between points were interpolated linearly. To apply that input
sequence to eqn 2, the time scaling for the inputs was multiplied by 3,000 to yield a time span of 30,000 sampled at intervals of 300 time unit intervals
to obtain the 101 sample points. In each run of the minimization routine and in these plots, I skipped the first 10 sample points.

By adjusting the memory window of those moving aver-
ages through the parameters 𝛽 and 𝛾, the system can modulate
the timescales of trend estimation, future prediction, and the
tradeoff between the overall accuracy and false signal fre-
quency for trend reversals. Thus, this circuit provides a very
simple and general way in which organisms can predict future
environmental trends based on past environmental inputs
(Frank, 2024a).

In retrospect, the structure of this anticipatory circuit seems
obvious. However, I did not guess the solution until I observed
how the machine learning circuit solved this problem.

For more complex problems, following the same method
may often be helpful. First, use machine learning to search for
how a circuit might solve the problem. Second, analyze how
the machine learning circuit works. Does it embed an inter-
nal model? Third, construct and optimize a biological circuit

D
ow

nloaded from
 https://academ

ic.oup.com
/evolut/advance-article/doi/10.1093/evolut/qpaf065/8152771 by guest on 01 June 2025



Evolution (2025), Vol. XX, No. XX 13

that works in the same way. Finally, use the architecture of
the biological model as a hypothesis for how actual biological
circuits may be designed to solve the problem.

For the relatively small machine learning circuits that make
good analogies for biochemical circuits, we can often reverse
engineer the computational mechanism, as in this example.

Alternatively, we could start with a general system of dif-
ferential equations that include a large pool of potential bio-
chemical circuits. We then use machine learning methods
directly on the system of equations to search for good bio-
chemical circuit solutions to the specific challenge (Frank,
2022b, 2023a; Hiscock, 2019).

Dimensional reduction in biology
Effective circuits reduce input dimension. Borges made this
point clearly when, in his story “Funes the Memorious,”
the title character recalled every detail of every moment of
every day. Funes was incapacitated by his lack of reduction.
The story’s narrator concluded that “To think is to forget
a difference, to generalize, to abstract.” O’Gieblyn (2024)
summarized Funes incapacity:

Because Funes is incapable of forgetting any detail, he
has problems understanding language. He cannot fathom
why the word “dog” is used for so many distinct dogs,
all of which vary in size, color, and form. He cannot even
understand why the same dog is called by a single name—
why, for instance, “the dog at three fourteen (seen from
the side) should have the same name as the dog at three
fifteen (seen from the front).”

To learn is to exclude what does not matter. Dimensional
reduction shaves to the invariant core. The issues concern:
What is the best reduction for a given challenge? How is the
reduction process embedded within the circuit? How do cir-
cuits learn to accomplish such reduction? Machine learning
may become a helpful tool to answer these questions for biol-
ogy because machine learning and biology face similar chal-
lenges (Bengio et al., 2013; Chater & Brown, 2008; Kemp &
Tenenbaum, 2008; Levin, 2024; Quiroga et al., 2005; Tishby
& Polani, 2011).

This section’s examples illustrate the role of dimensional
reduction in biological circuits. They also hint at the relations
between the biological circuits discovered by natural selection
and the engineered circuits discovered by machine learning
(Eckmann & Tlusty, 2021; Gamoran et al., 2024; Kanwisher
et al., 2023; Mao et al., 2024).

Metabolism, immunity, and development
Bacterial cells switch metabolic pathways based on the inter-
nal concentrations of a few key molecules. These molecules
serve as an internal representation, condensing the high-
dimensional state of many nutrients into a simpler form used
by the cell (Kochanowski et al., 2017; Wu et al., 2022).

Many biological circuits have an hourglass architecture.
Diverse inputs cascade through the initial circuit layers toward
a narrow middle processing layer. The diverse inputs may be
thought of as the broad base of the hourglass, leading upward
toward a narrow central waist. From the limited diversity
in the narrow waist, an increasing number of different types
flow upward toward the broad output layer at the top (Csete
& Doyle, 2004, 2002; Doyle & Csete, 2011; Frank, 2023d;
Kaneko, 2024).

The narrow waist encodes a dimensionally reduced rep-
resentation of the inputs, which the circuit decodes into a
higher dimensional output. Friedlander et al. (2015) sum-
marize examples of hourglass architectures in metabolism,
immunity, and other biological pathways.

Metabolism starts with diverse nutrient inputs. Catabolic
processing reduces those inputs to 12 common intermediates,
such as pyruvate and fructose-6-phosphate. From those 12
intermediates, a cell makes most of its carbohydrates, nucleic
acids, proteins, and other diverse biochemical forms (Csete &
Doyle, 2004; Zhao et al., 2006).

Innate immune responses can be triggered by a wide diver-
sity of molecular patterns associated with invasion. The
immune system reduces those inputs to changes in a small
number of toll-like receptors, interleukins, and a few other
molecular types. That reduced immune encoding controls the
broad response in gene expression and effector molecules that
defend against attack (Beutler, 2004; Oda & Kitano, 2006;
Tang et al., 2012).

Development often flows through an hourglass circuit
(Frank, 2023d; Irie & Kuratani, 2014; Jordan & Miska,
2023; Shook & Keller, 2008). Early developmental stages
vary widely, forming the broad base of the hourglass. Interme-
diate stages reduce to fewer dimensions, the constrainedwaist.
Later stages diversify to broad variations in adult form.

In the nematode C. elegans, the developmental hourglass
constrains how proteins explore the evolutionary landscape
(Ma & Zheng, 2023). Those proteins that affect early devel-
opment evolve relatively rapidly when compared with related
nematode species, the diverse hourglass base. Proteins that
affect intermediate stages evolve relatively slowly, the dimen-
sionally reduced hourglass waist. Proteins that affect late
stages evolve relatively rapidly, the diverse hourglass top.

Doyle argued that this widely observed hourglass architec-
ture arises inevitably in all complex, robust circuits (Csete &
Doyle, 2004, 2002; Doyle & Csete, 2011; Frank, 2023d). The
dimensionally reduced narrow waist defines protocols that
connect different layers in the processing flow.

For example, in metabolism, many different biochemical
inputs are broken down into the same limited set of protocol-
like core molecules. Those core molecules provide the basis
for building new molecular types. The acquisition and break-
down of the building blocks create one layer, separate from
the second layer that builds up functional forms. The diges-
tion layer and buildup layer are connected by a dimen-
sionally reduced common protocol core. The universality of
metabolism arises from that reduced core.

Neurobiology circuits
We have the complete neural wiring diagram of C. elegans.
That connectome has an hourglass circuit architecture (Batta
et al., 2021; Sabrin et al., 2020). Information from about 90
sensory neurons flows into a middle layer of ∼80 recurrently
connected interneurons. The third layer of about 120 motor
neurons provides much of the network’s response to inputs.

The middle layer includes 10–15 highly connected neu-
rons that form the core hourglass waist, in which sen-
sory inputs compress to a low dimensional encoding. Action
follows from decoding the compressed information in the
circuit waist, linking the broad sensory input and func-
tional output layers through the narrow core protocol
layer.

D
ow

nloaded from
 https://academ

ic.oup.com
/evolut/advance-article/doi/10.1093/evolut/qpaf065/8152771 by guest on 01 June 2025



14 A. Frank

Rodent neural networks, vastly greater in size and con-
nectivity, also have an hourglass circuit architecture (Stuber,
2023). The sensory cortex takes in high dimensional infor-
mation directly from all senses and from various intermediate
processing ganglia. Those inputs are then compressed sequen-
tially through a series of layers, including the limbic and
frontal cortices, the hypothalamus, and the extended amyg-
dala, leading finally to the greatest dimensional reduction in
the core ventral tegmental area (VTA) dopamine layer.

The core VTA dopamine layer encodes the primary motiva-
tional protocols that transform the initial sensory inflow into
a dopamine encoding for goal-directed behavior. The path
from the core dopamine protocols to behavior flows through
several decoding layers that expand dimensionality, including
the ventral striatum, basal ganglia, and corticospinal motor
circuits.

In machine learning, multilayer encoding and decoding sub-
systems are often beneficial for high-dimensional challenges.
Each layer separately reduces or builds particular key dimen-
sions in the encoder–decoder process that are difficult to learn
or process simultaneously within single layers (Goodfellow
et al., 2016).

A study of human facial recognition compared how com-
putational and biological networks parse facial features and
differentiate individual faces (Jiahui et al., 2023). Both net-
works converged to essentially the same dimensional reduc-
tions for facial representation geometries and categorical
face attributes. However, the networks differed in how they
mapped the reduced encoding of facial features to the identi-
fication of individual faces.

The authors concluded that computational networks “pro-
vide a good model for early cognitive and neural face pro-
cessing of categorical attributes but are a poor model for
individuation.”

I would rephrase that conclusion. A programmer makes
many specific choices when building a computational model.
The authors found that their particular computational choices
for a deep convolutional neural network provided a good
match for the neurobiological processing of facial categori-
cal attributes. However, their particular computational imple-
mentation separated faces differently from how the neurobi-
ological network separated faces.

It is likely that different implementations of computational
models would differ in the degree to which they match the
biological networks in categorical attributes and individua-
tion. We might learn a lot about how both computational and
biological networks function by studying how various com-
putational implementations differ in their match to biology. It
often happens that initial failures ultimately reveal the greatest
insight.

For example, the ultimate performance metric in biology
likely differs from the performance metric that a program-
mer might initially choose to make a computational model.
Specifically, biological design ultimately depends on repro-
ductive success, whereas a programmer would likely use
some measure for the success in parsing individual facial
components or the success in discriminating between indi-
viduals. Reproductive success probably does not map lin-
early to a programmer’s measures of facial parsing and
discrimination.

It would be interesting to know how different performance
metrics alter machine learning circuits. That type of study
might help to understand how different aspects of dimensional

reduction in facial or other input data relate to function,
providing testable hypotheses about biological circuits.

Going forward
We know how some biological circuits work. But we know
relatively little about the full range of life’s circuits. Reverse
engineering is hard.

For some circuits in prokaryotes, we can list many of the
molecules involved and their interaction partners. But the
actual circuit designs with respect to information process-
ing, dimensional reduction, and logic at a functional level
remain open problems for many prokaryotic cellular pro-
cesses. Eukaryotic cells and tissues are more complex.

Sometimes, it is useful to take stock of what we do not
know. Rapid advances in machine learning provide a basis
for inventory, opening a way to explore how various circuit
designs handle different challenges. In addition, we can easily
alter constraints and performance metrics in machine learn-
ing to see how those factors change favored circuits. Such
methods provide powerful tools for building a conceptual
foundation and generating novel hypotheses.

Differences betweenmachine learning and biology also pro-
vide interesting conceptual challenges. Are there intrinsic dif-
ferences between natural selection and other learning algo-
rithms in how they discover and design circuits? How do
differing goals alter architecture?

Synthetic biology sets another challenge (Braccini et al.,
2023). How do we design biochemical circuits that achieve
particular functions and performance goals? Machine learn-
ing provides a powerful set of tools. To use those tools effec-
tively, we must figure out how to translate machine learn-
ing circuits into biochemical circuits or how to use machine
learning tools directly to design synthetic biological networks
(Frank, 2022b, 2023a; Hiscock, 2019; Mishra et al., 2023;
Nielsen et al., 2016; Wu & Tan, 2023).

Data availability
Software to produce the figures is available at https://github.
com/evolbio/Circuits_01.

Author contributions
S.A.F. did everything.

Funding
The Donald Bren Foundation, US Department of Defense
grant W911NF2010227, and US National Science Founda-
tion grant DEB-2325755 support my research.

Acknowledgments
For Boxes 1 and 2, I used various large language model sys-
tems to edit or generate parts of the text, including Chat-
GPT 4o, ChatGPT o1-preview, Claude 3.5 Sonnet (New), and
Gemini Pro 1.5.

References
Aldarondo, D., Merel, J., Marshall, J. D., Hasenclever, L., Klibaite, U.,

Gellis, A., Tassa, Y., Wayne, G., Botvinick, M., & Ölveczky, B. P.

D
ow

nloaded from
 https://academ

ic.oup.com
/evolut/advance-article/doi/10.1093/evolut/qpaf065/8152771 by guest on 01 June 2025

https://github.com/evolbio/Circuits_01
https://github.com/evolbio/Circuits_01


Evolution (2025), Vol. XX, No. XX 15

(2024). A virtual rodent predicts the structure of neural activity
across behaviours. Nature, 632(8025), 594–602.

Ballarin, G., Dellaportas, P., Grigoryeva, L., Hirt, M., van Huellen, S.,
& Ortega, J.-P. (2024). Reservoir computing for macroeconomic
forecasting with mixed-frequency data. International Journal of
Forecasting, 40(3), 1206–1237.

Baltussen, M. G., de Jong, T. J., Duez, Q., Robinson, W. E., &Huck, W.
T. S. (2024). Chemical reservoir computation in a self-organizing
reaction network. Nature, 631(8021), 549–555.

Batta, I., Yao, Q., Sabrin, K.M.,&Dovrolis, C. (2021). A weighted net-
work analysis framework for the hourglass effect—and its applica-
tion in the C. elegans connectome. PLOSONE, 16(10), e0249846.

Bengio, Y., Courville, A., & Vincent, P. (2013). Representation learn-
ing: A review and new perspectives. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 35(8), 1798–1828.

Beutler, B. (2004). Inferences, questions and possibilities in toll-like
receptor signalling. Nature, 430(6996), 257–263.

Bin, M., Huang, J., Isidori, A., Marconi, L., Mischiati, M., & Sontag,
E. (2022). Internal models in control, bioengineering, and neuro-
science. Annual Review of Control, Robotics, and Autonomous
Systems, 5, 55–79.

Braccini, M., Collinson, E., Roli, A., Fellermann, H., & Stano, P.
(2023). Recurrent neural networks in synthetic cells: a route to
autonomous molecular agents? Frontiers in Bioengineering and
Biotechnology, 11, 1210334.

Chater, N., & Brown, G. D. (2008). From universal laws of cognition
to specific cognitive models. Cognitive Science, 32(1), 36–67.

Chattopadhyay, A., Hassanzadeh, P., & Subramanian, D. (2020). Data-
driven predictions of a multiscale lorenz 96 chaotic system using
machine-learning methods: Reservoir computing, artificial neu-
ral network, and long short-term memory network. Nonlinear
Processes in Geophysics, 27(3), 373–389.

Chen, S., & Guo, W. (2023). Auto-encoders in deep learning—a review
with new perspectives. Mathematics, 11(8), 1777.

Chen, Y., van Pelt-KleinJan, E., van Olst, B., Douwenga, S., Boeren,
S., Bachmann, H., Molenaar, D., Nielsen, J., & Teusink, B. (2021).
Proteome constraints reveal targets for improving microbial fitness
in nutrient-rich environments. Molecular Systems Biology, 17(4),
e10093.

Chepuri, R., Amzalag, D., Antonsen, T. M., & Girvan, M. (2024).
Hybridizing traditional and next-generation reservoir comput-
ing to accurately and efficiently forecast dynamical systems.
Chaos: An Interdisciplinary Journal of Nonlinear Science, 34(6),
063114.

Csete,M.,&Doyle, J. (2004). Bow ties, metabolism and disease. Trends
in Biotechnology, 22, 446–450.

Csete, M. E., & Doyle, J. C. (2002). Reverse engineering of biological
complexity. Science, 295(5560), 1664–1669.

Cucchi, M., Abreu, S., Ciccone, G., Brunner, D., & Kleemann, H.
(2022). Hands-on reservoir computing: A tutorial for practical
implementation. Neuromorphic Computing and Engineering, 2,
032002.

Czégel, D., Giaffar, H., Csillag, M., Futó, B., & Szathmáry, E. (2021).
Novelty and imitation within the brain: A darwinian neurodynamic
approach to combinatorial problems. Scientific Reports, 11(1),
12513.

Damicelli, F., Hilgetag, C. C., & Goulas, A. (2022). Brain connectivity
meets reservoir computing. PLoS Computational Biology, 18(11),
e1010639.

Daniels, B. C., Chen, Y.-J., Sethna, J. P., Gutenkunst, R. N., & Myers,
C. R. (2008). Sloppiness, robustness, and evolvability in systems
biology. Current Opinion in Biotechnology, 19, 389–395.

Doyle, J. C., & Csete, M. (2011). Architecture, constraints, and
behavior. Proceedings of the National Academy of Sciences,
108(supplement_3), 15624–15630.

Eckmann, J.-P., & Tlusty, T. (2021). Dimensional reduction in complex
living systems: Where, why, and how. BioEssays, 43(9), 2100062.

Frank, S. A. (2007). Maladaptation and the paradox of robustness in
evolution. PLoS ONE, 2, e1021.

Frank, S. A. (2017). Puzzles in modern biology. V. Why are genomes
overwired? F1000Research, 6, 924.

Frank, S. A. (2022a). Microbial life history: The fundamental forces of
biological design. Princeton University Press.

Frank, S. A. (2022b). Optimization of transcription factor genetic
circuits. Biology, 11, 1294.

Frank, S. A. (2023a). An enhanced transcription factor repressila-
tor that buffers stochasticity and entrains to an erratic external
circadian signal. Frontiers in Systems Biology, 3, 1276734.

Frank, S. A. (2023b). Precise traits from sloppy components: perception
and the origin of phenotypic response. Entropy, 25, 1162.

Frank, S. A. (2023c). Robustness and complexity. Cell Systems, 14(12),
1015–1020.

Frank, S. A. (2023d). Robustness increases heritability: implications for
familial disease. Evolution, 77, 655–659. qpac026.

Frank, S. A. (2024a). A biological circuit to anticipate trend. Evolution
Letters, 8, qrae027.

Frank, S. A. (2024b). Circuit design in biology and machine learning.
I. Julia software code.

Friedlander, T., Mayo, A. E., Tlusty, T., & Alon, U. (2015). Evolution
of bow-tie architectures in biology. PLoS Computational Biology,
11(3), e1004055.

Gamoran, A., Lieberman, L., Gilead, M., Dobbins, I. G., & Sadeh, T.
(2024). Detecting recollection: Human evaluators can successfully
assess the veracity of others’ memories. Proceedings of the National
Academy of Sciences, 121(22), e2310979121.

Gauthier, D. J., Bollt, E., Griffith, A., & Barbosa, W. A. (2021). Next
generation reservoir computing. Nature Communications, 12(1),
1–8.

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning.
MIT Press.

Goudarzi, A., Lakin, M. R., & Stefanovic, D. (2013). Dna reservoir
computing: A novel molecular computing approach. In Solove-
ichik, D., & Yurke, B. (Eds.), DNA computing and molecular
programming (pp. 76–89). Springer International Publishing.

Gray, M. W., Lukeš, J., Archibald, J. M., Keeling, P. J., & Doolit-
tle, W. F. (2010). Irremediable complexity? Science, 330(6006),
920–921.

Gupta, A., & Khammash, M. (2023). The internal model principle
for biomolecular control theory. IEEE Open Journal of Control
Systems, 2, 63–69.

Gutenkunst, R. N., Waterfall, J. J., Casey, F. P., Brown, K. S., Myers,
C. R., & Sethna, J. P. (2007). Universally sloppy parameter sensi-
tivities in systems biology models. PLoS Computational Biology,
3, e189.

Hebb, D. O. (1949). The organization of behavior. Wiley.
Hiscock, T. W. (2019). Adapting machine-learning algorithms to design

gene circuits. BMC Bioinformatics, 20, 214.
Irie, N., & Kuratani, S. (2014). The developmental hourglass model: A

predictor of the basic body plan? Development, 141, 4649–4655.
Jaeger, H. (2007). Echo state network. Scholarpedia, 2(9), 2330.
Jiahui, G., Feilong, M., Visconti di Oleggio Castello, M., Nastase, S. A.,

Haxby, J. V., & Gobbini, M. I. (2023). Modeling naturalistic
face processing in humans with deep convolutional neural net-
works. Proceedings of the National Academy of Sciences, 120(43),
e2304085120.

Jordan, D. J., & Miska, E. A. (2023). Canalisation and plasticity on
the developmental manifold of Caenorhabditis elegans. Molecular
Systems Biology, 19(11), e11835.

Kaneko, K. (2024). Constructing universal phenomenology for bio-
logical cellular systems: An idiosyncratic review on evolutionary
dimensional reduction. Journal of Statistical Mechanics: Theory
and Experiment, 2024(2), 024002.

Kanwisher, N., Khosla, M., & Dobs, K. (2023). Using artificial neural
networks to ask ‘why’ questions of minds and brains. Trends in
Neurosciences, 46(3), 240–254.

Kemp, C., & Tenenbaum, J. B. (2008). The discovery of structural
form. Proceedings of the National Academy of Sciences, 105(31),
10687–10692.

D
ow

nloaded from
 https://academ

ic.oup.com
/evolut/advance-article/doi/10.1093/evolut/qpaf065/8152771 by guest on 01 June 2025



16 A. Frank

Kochanowski, K., Gerosa, L., Brunner, S. F., Christodoulou, D., Niko-
laev, Y. V., & Sauer, U. (2017). Few regulatory metabolites coor-
dinate expression of central metabolic genes in Escherichia coli.
Molecular Systems Biology, 13(1), 903.

Levin, M. (2024). Self-improvising memory: A perspective on memo-
ries as agential, dynamically reinterpreting cognitive glue. Entropy,
26(6), 481.

Li, Q., Wu, Z., Ling, R., Feng, L., & Liu, K. (2020). Multi-reservoir
echo state computing for solar irradiance prediction: A fast yet
efficient deep learning approach. Applied Soft Computing, 95,
106481.

Liu, H., Li, Z., Hall, D., Liang, P., & Ma, T. (2024). Sophia:
A scalable stochastic second-order optimizer for language model
pre-training.

Loeffler, A., Zhu, R., Hochstetter, J., Diaz-Alvarez, A., Nakayama, T.,
Shine, J. M., & Kuncic, Z. (2021). Modularity and multitasking in
neuro-memristive reservoir networks. Neuromorphic Computing
and Engineering, 1(1), 014003.

Loeffler, A., Zhu, R., Hochstetter, J., Li, M., Fu, K., Diaz-Alvarez,
A., Nakayama, T., Shine, J. M., & Kuncic, Z. (2020). Topolog-
ical properties of neuromorphic nanowire networks. Frontiers in
Neuroscience, 14, 184.

Lynch, M. (2007). The origins of genome architecture. Sinauer
Associates.

Lynch, M. (2012). Evolutionary layering and the limits to cellular
perfection. Proceedings of National Academy Sciences USA, 109,
18851–18856.

Lynch, M. R. (2024). Evolutionary cell biology: The origins of cellular
architecture. Oxford University Press.

Ma, F., & Zheng, C. (2023). Transcriptome age of individual cell types
in Caenorhabditis elegans. Proceedings of the National Academy
of Sciences, 120(9), e2216351120.

Maass, W., Natschläger, T., & Markram, H. (2002). Real-time com-
puting without stable states: A new framework for neural com-
putation based on perturbations. Neural Computation, 14(11),
2531–2560.

Mao, J., Griniasty, I., Teoh, H. K., Ramesh, R., Yang, R., Transtrum,
M. K., Sethna, J. P., & Chaudhari, P. (2024). The training process
of many deep networks explores the same low-dimensional mani-
fold. Proceedings of the National Academy of Sciences, 121(12),
e2310002121.

Martinuzzi, F., Rackauckas, C., Abdelrehim, A., Mahecha, M. D., &
Mora, K. (2022). Reservoircomputing.jl: An efficient and modular
library for reservoir computing models. arXiv, 2204.05117.

McCulloch, W. S., & Pitts, W. (1943). A logical calculus of ideas imma-
nent in nervous activity. Bulletin of Mathematical Biophysics, 5,
115–133.

Miikkulainen, R. (2025). Neuroevolution insights into biological neural
computation. Science, 387(6735), eadp7478.

Mishra, D., Ngam, P. N., & Tyo, K. E. (2023). Machine learning guided
design and characterization of synthetic biology parts and circuits.
Metabolic Engineering, 75, 86–101.

Mitchell,M. (2023). AI’s challenge of understanding the world. Science,
382(6671), eadm8175.

Muñoz-Gómez, S. A., Bilolikar, G., Wideman, J. G., & Geiler-
Samerotte, K. (2021). Constructive neutral evolution 20 years later.
Journal of Molecular Evolution, 89, 172–182.

Nielsen, A. A., Der, B. S., Shin, J., Vaidyanathan, P., Paralanov,
V., Strychalski, E. A., Ross, D., Densmore, D., & Voigt, C. A.
(2016). Genetic circuit design automation. Science, 352(6281),
aac7341.

Oda, K., & Kitano, H. (2006). A comprehensive map of the toll-
like receptor signaling network. Molecular Systems Biology, 2(1),
2006–0015.

O’Gieblyn, M. (2024). The trouble with reality. New York Review of
Books, March 21, 2024.

Quiroga, R. Q., Reddy, L., Kreiman, G., Koch, C., & Fried, I. (2005).
Invariant visual representation by single neurons in the human
brain. Nature, 435(7045), 1102–1107.

Ramezanian-Panahi, M., Abrevaya, G., Gagnon-Audet, J.-C., Voleti,
V., Rish, I., & Dumas, G. (2022). Generative models of brain
dynamics. Frontiers in Artificial Intelligence, 5, 807406.

Reddy, G. T., Reddy, M. P. K., Lakshmanna, K., Kaluri, R., Rajput,
D. S., Srivastava, G., & Baker, T. (2020). Analysis of dimen-
sionality reduction techniques on big data. IEEE Access, 8,
54776–54788.

Rodan, A., & Tino, P. (2010). Minimum complexity echo state
network. IEEE Transactions on Neural Networks, 22(1),
131–144.

Rodan, A., & Tin̆o, P. (2012). Simple deterministically constructed
cycle reservoirs with regular jumps. Neural Computation, 24(7),
1822–1852.

Ruach, R., Ratner, N., Emmons, S. W., & Zaslaver, A. (2023).
The synaptic organization in the caenorhabditis elegans neural
network suggests significant local compartmentalized computa-
tions. Proceedings of the National Academy of Sciences, 120(3),
e2201699120.

Rumelhart, D. E., & McClelland, J. L. (1986). Parallel distributed pro-
cessing: Explorations in the microstructure of cognition, Volume 1:
Foundations. MIT Press.

Sabrin, K. M., Wei, Y., van den Heuvel, M. P., & Dovrolis, C.
(2020). The hourglass organization of the Caenorhabditis elegans
connectome. PLoS Computational Biology, 16(2), e1007526.

Schölkopf, B., Locatello, F., Bauer, S., Ke, N. R., Kalchbrenner, N.,
Goyal, A., & Bengio, Y. (2021). Toward causal representation
learning. Proceedings of the IEEE, 109(5), 612–634.

Seoane, L. F. (2019). Evolutionary aspects of reservoir computing.
Philosophical Transactions of the Royal Society B, 374(1774),
20180377.

Shook, D. R., & Keller, R. (2008). Morphogenic machines evolve more
rapidly than the signals that pattern them: lessons from amphib-
ians. Journal of Experimental Zoology Part B: Molecular and
Developmental Evolution, 310(1), 111–135.

Solé, R., & Seoane, L. F. (2022). Evolution of brains and computers:
The roads not taken. Entropy, 24(5), 665.

Sorrells, T. R., & Johnson, A. D. (2015). Making sense of transcription
networks. Cell, 161(4), 714–723.

Sorzano, C. O. S., Vargas, J., & Montano, A. P. (2014). A survey of
dimensionality reduction techniques.

Stuber, G. D. (2023). Neurocircuits for motivation. Science, 382(6669),
394–398.

Tang, D., Kang, R., Coyne, C. B., Zeh, H. J., & Lotze, M. T. (2012).
Pamps and damps: Signals that spur autophagy and immunity.
Immunological Reviews, 249(1), 158–175.

Tishby, N., & Polani, D. (2011). Information theory of decisions
and actions. In V. Cutsuridis, A. Hussain, & J. Taylor (Eds.),
Perception-action cycle (pp. 601–636). Springer.

Tripathi, S., Kessler, D. A., & Levine, H. (2023). Minimal frustration
underlies the usefulness of incomplete regulatory networkmodels in
biology. Proceedings of the National Academy of Sciences, 120(1),
e2216109120.

Walleshauser, B., & Bollt, E. (2022). Predicting sea surface temper-
atures with coupled reservoir computers. Nonlinear Processes in
Geophysics, 29(3), 255–264.

Wu, C., Balakrishnan, R., Braniff, N., Mori, M., Manzanarez, G.,
Zhang, Z., & Hwa, T. (2022). Cellular perception of growth rate
and the mechanistic origin of bacterial growth law. Proceedings of
the National Academy of Sciences, 119(20), e2201585119.

Wu, F., & Tan, C. (2023). Machine learning in synthetic biology: recent
advances and future directions. Nature Chemical Biology, 19(6),
635–646.

Yahiro, W., Aubert-Kato, N., & Hagiya, M. (2018). A reser-
voir computing approach for molecular computing. In ALIFE
2018: The 2018 Conference on Artificial Life (pp. 31–38).
MIT Press.

Zhao, J., Yu, H., Luo, J.-H., Cao, Z.-W., & Li, Y.-X. (2006). Hierar-
chical modularity of nested bow-ties in metabolic networks. BMC
Bioinformatics, 7, 1–16.

D
ow

nloaded from
 https://academ

ic.oup.com
/evolut/advance-article/doi/10.1093/evolut/qpaf065/8152771 by guest on 01 June 2025


	Circuit design in biology and machine learning. I. Random networks and dimensional reduction
	Introduction
	Induction by comparative example
	Overview

	Reservoir computing
	How do random networks store information?
	Prediction and response

	Biological insights from reservoirs
	Recurrence, memory, state, and dimension
	Form and function, discovery, and refinement
	Origin of traits: perception and response
	Prokaryotes, eukaryotes, and multicellularity
	Precise traits from sloppy components
	Network architecture
	Neurobiology

	Dimensional reduction
	Encoder network
	Predicting direction of change
	Optimal solution
	Circuit that predicts directional change
	Internal model
	A biochemical circuit for trend prediction

	Dimensional reduction in biology
	Metabolism, immunity, and development
	Neurobiology circuits

	Going forward
	References


