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Abstract

Organisms gain by anticipating future changes in the environment. Those environmental changes often follow stochastic trends.
The steeper the slope of the trend, the more likely the trend’s momentum carries the future trend in the same direction. This article
presents a simple biological circuit thatmeasures themomentum, providing a prediction about future trend. The circuit calculates the
momentum by the difference between a short-term and a long-term exponential moving average. The time lengths of the twomoving
averages can be adjusted by changing the decay rates of state variables. Different time lengths for those averages trade off between
errors caused by noise and errors caused by lags in predicting a change in the direction of the trend. Prior studies have emphasized
circuits that make similar calculations about trends. However, those prior studies embedded their analyses in the details of particu-
lar applications, obscuring the simple generality and wide applicability of the approach. The model here contributes to the topic by
clarifying the great simplicity and generality of anticipation for stochastic trends. This article also notes that, in financial analysis,
the difference between moving averages is widely used to predict future trends in asset prices. The financial measure is called the
moving average convergence–divergence indicator. Connecting the biological problem to financial analysis opens the way for future
studies in biology to exploit the variety of highly developed trend models in finance.
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Lay Summary

Many aspects of the environment change in irregular ways, partly random but with some tendency to follow temporary trends before
reversing. An organism would gain by measuring the current trend and anticipating the future direction of environmental change.
This article presents a simple biological circuit to anticipate future change. For example, the production rate of a molecule may be
stimulated by the level of the environmental factor of interest, such as temperature. The molecule decays at some constant rate.
Thus, molecular abundance is the balance between the stimulated production and the intrinsic decay. That abundance is a running
score of the environmental level when averaged over a period of time determined by the decay rate. If there are two such molecules
with different decay rates, the organism has estimates for environmental levels over a shorter and a longer time scale. The difference
between those two moving averages measures the recent trend in the environment. The stronger the recent trend, the more likely
the trend will continue in the same direction in the near future. This simple biological circuit may be widely used throughout life.
Financial modeling of stock prices uses a similar method to predict trends.

Introduction
Predicting future environmental change provides many bene-
fits. A microbe gains by anticipating the availability of sugars. A
plant gains by forecasting the flow of nutrients. Plasticity bene-
fits from a head start on altering physiology or form. Compet-
itive players profit by preparing for the next step in a contest
(DeWitt & Scheiner, 2004; Goo et al., 2012; Kussell & Leibler, 2005;
Mitchell et al., 2009; Pfennig, 2021; Pigliucci, 2001; Reed et al., 2010;
Shemesh et al., 2010; Siegal, 2015; Venturelli et al., 2015).

Organisms often anticipate regular patterns of change, such
as circadian rhythms or seasonal cycles. However, many regular-
ities arise as stochastic trends. To take advantage of such trends,
a biological circuit must measure past directionality and use that
measurement to predict the direction of future change.
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In the literature, studies of Escherichia coli chemotaxis develop
the most compelling models for the anticipation of trend (Alon,
2019; Shimizu et al., 2010; Tu et al., 2008). Cells measure changes
in chemical concentrations to predict whether future changeswill
be increasing or decreasing. Tjalma et al.’s (2023) excellent recent
article synthesizes past literature and develops new models.

This article introduces a simple model for anticipating trend.
Roughly speaking, the model estimates the momentum of the
current trend by the difference between a shorter-term mov-
ing average and a longer-term moving average. That estimate
of momentum predicts the future direction of change because
the future trend often continues in the direction of the current
momentum.

Most existing models, such as those for E. coli chemotaxis, also
base predictions on estimates of current or past trend. However,
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those previous models typically add specific aspects of a particu-
lar application or additional complexities, such as noise filtering.
Those additions are interesting but also obscure the simplic-
ity and generality of the underlying way in which estimates of
momentum anticipate future trend.

The model here strips nonessential features to emphasize
the fundamental structure of anticipation for simple stochastic
trends. That abstraction provides the basis for future applications
across a broader range of biological problems.

Empirically, the model predicts the primary mechanism that
organisms use to anticipate environmental trends and the pattern
of anticipatory response to environmental changes. Theoretically,
the model provides the foundation for developing further pre-
dictions about tradeoffs between rapid adjustment of anticipated
environmental changes and the susceptibility to perturbation of
the circuit that predicts trends (Tjalma et al., 2023).

The model’s simplicity also reveals a close connection to the
moving average convergence–divergence (MACD) indicator, the
most widely used measure of momentum and trend to analyze
asset prices in financial time series (Murphy, 1999; Pring, 2014;
Schwager, 1999). That connection between biological models and
financial analysis encourages application of the highly developed
models of information and anticipation in finance to biological
problems.

The challenge
Let ut be a randomly varying input signal. We wish to predict the
direction of change at a future time, t + 1, relative to the cur-
rent time, t, which means predicting the sign of Δut = ut+1 – ut.
If u changes in a purely random way, as a random walk with
no directionality, then expected prediction success above 1/2 is
not possible. For prediction to be possible, we must assume some
pattern to the fluctuations in ut.

An exponential moving average of purely random inputs is per-
haps the most generic type of trend. Start with a randomwalk, ût,
sampled at discrete times, t = 0, 1,… . Then replace each value
at time t by its exponential moving average, ut = (1 – 𝛿)ût + 𝛿ut–1.
The value of 0 ≤ 𝛿 ≤ 1 sets the memory scale, with larger val-
ues averaging over longer time periods. Here, we linearly inter-
polate between the discretely sampled points to obtain values of
ut continuously with time. Figure 1 illustrates random input and
exponential moving averages with different memory scales.

The future change in ut is positive when

Δut = (1 – 𝛿)Δût + 𝛿Δut–1 > 0. (1)

Because ût is a randomwalk, its change is equally likely to be pos-
itive or negative. Thus, the best prediction for the sign of Δut is the
sign of Δut–1. In other words, the most recently observed direction

Figure 1. Relation between random input and exponential moving averages. (A) The input is generated by a continuous random walk, dû = 0.2dW, in
whichW is a Wiener process. The continuous process is sampled at time steps of 0.1 over 10 time units to yield 100 sample points. The Fast MA curve is
an exponential moving average of the input. (B) The Slow MA curve shows a slower exponential moving average of the input. (C) Comparison of faster
(blue) and slower (green) moving averages of the input.
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of change provides the best prediction for the next direction of
change.

Roughly speaking, we may think of the currently observed
change, Δut–1, as the trend momentum. Positive momentum
means that the trend is likely to continue up. Negative momen-
tum means that the trend is likely to continue down.

The greater the momentum’s magnitude, the more likely the
trend will continue in the same direction. For example, the larger
Δut–1, the more negative the underlying randomwalk change, Δût,
must be to reverse the trend. Increasingly extreme moves in the
underlying random walk are increasingly uncommon.

Thus, an ideal internal model uses the currently observed
trend direction to predict the next direction of change. And it
uses the trend momentum to estimate the confidence in the
directional prediction.

Exponential moving average
I claimed that an exponential moving average provides a com-
mon type of trend. I made that claim because any process that
balances a fluctuating input against a steady decay describes
an exponential moving average. For example, the differential
equation

ż = u – 𝜆z (2)

determines a level of z that balances production or input, u,
against steady decay at rate 𝜆. With u0 = 0, the value of z at time
t is

z(t) = ∫
t

0
e–𝜆(t–𝜏)u(𝜏)d𝜏,

which is proportional to the continuous time exponential moving
average of z at that time. The process in Equation 1 is a discrete
time version of the balance between input and decay.

The form of Equation 2 describeswhat is perhaps themost com-
mon expression of cellular biochemistry. The concentration of a
molecule z balances the production, u, against the intrinsic decay
rate, 𝜆. Often one uses an additional parameter, 𝛼, to allow tun-
ing of the production rate, as in the following section. In general,
we may consider Equation 2 as an expression of any signal that
balances external stimulation, u, and intrinsic decay, 𝜆, including
neural or physiological signals, or more abstract signals tracked
by players in an evolutionary game.

The circuit
To predict the trend direction, the following circuit calculates the
difference between two moving averages, x and y, each average
taken over a different time scale

ẋ = 𝛼u – 𝛽x
ẏ = 𝛾 (𝛼u – 𝛽y) . (3)

Overdots denote derivatives with respect to time, t, and x, y,u
are functions of time. For constant input, u, the molecular abun-
dances of x and y have the same equilibrium values, 𝛼/𝛽. As the
input, u, changes, y changes more slowly than xwhen 𝛾 < 1. Thus,
x – y tends to be positive when u is increasing and negative when
u is decreasing. The values of x and y are approximately propor-
tional to shorter and longer exponential moving averages of the
input, u. Figure 2 illustrates the circuit.

I have presented this model abstractly to highlight generic
aspects of process. With regard to application, the magnitude of
a biological signal often arises from the opposition of production
and decay. In such cases, the parameters of production, 𝛼, and
decay, 𝛽, may be estimated empirically from data or evaluated
theoretically for their phenotypic consequences. The parameter
𝛾 scales the relative production and decay rates between two
related signals.

Figure 2. Illustration of the circuit in Equation 3. The input, u, updates the fast and slow moving averages, x and y. Those averages decay in relation
to their memory scales, 𝛽 and 𝛾𝛽, respectively, with 𝛾 < 1. The difference between the fast and slow moving averages estimates the recent trend and
predicts the direction of change in the next time period.
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An example
We can optimize the parameters relative to a particular goal. In
an evolutionary context, natural selection often tends to change
systems in the direction indicated by an optimality analysis
(Maynard Smith, 1978). Thus, we can gain clues about hownatural

selection may tune mechanistic aspects of systems in order to
predict future trends.

Figure 3 shows an example of an optimized circuit that pre-
dicts the future direction of change in ut. Define maximum
potential accuracy as the frequency at which the prior sign of

Figure 3. Prediction for the direction of change in a sequence of observations. Dynamics given by Equation 3. In this example, the parameters 𝛼, 𝛽,𝛾 were
optimized for accuracy of prediction by the Nelder–Mead method, yielding 0.1663, 0.08314, 0.2782, respectively. The plots show a subset of time points
to magnify patterns and make them easier to see. (A) The faster of the two moving averages, x, in the thicker blue curve tracks the input sequence, ut,
in thinner red curve. (B) The fast and slow moving averages, x and y, in with the fast blue curve above the slow gold curve at time points 90 and 110.
The fast blue curves in this panel and the previous one are the same. (C) The difference between the moving averages, plotted as 1000[𝜎(x – y) – 0.5], in
which 𝜎(z) = ez/(1+ ez) is the sigmoid function. The sign predicts the direction of change in the next time step. The magnitude reflects the momentum,
a measure of the relative confidence in the prediction for the future direction of change. To calculate the input sequence in Equation 1, the random
walk follows a Wiener process with mean 0 and standard deviation 0.2, and the exponential moving average memory parameter is 𝛿 = 0.2. For each
realized sequence of the random walk, the values are normalized to [0.25, 0.75] by affine transformation, yielding û. The timescale and abundances in
the plots have arbitrary units. The freely available computer code describes the scaling of time, the parameters, the optimization, and the production
of graphics (Frank, 2024).
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change in ut predicts the next sign of change, a continuation of
trend.

In Figure 3, the maximum potential accuracy is 0.8, mea-
sured by the match between the signs of sequential differences
in long input sequences. Stochasticity in the input sequence
means that sometimes the sign of the prior difference does not
match the direction of the next difference. For this example,
the optimized circuit accuracy is close the maximum poten-
tial accuracy, with a median deviation from the maximum of
0.001, calculated as the difference of the actual match between
sequential differences in the input and the circuit’s success is
predicting the sign of each future difference along the input
sequence.

Figure 3B shows the classic MACD pattern for trend predic-
tion from financial analysis. The slower signal in gold, which is
the variable y, lags the faster signal in blue, which is the vari-
able, x. A predicted trend reversal arises when the fast blue signal
crosses the slow gold signal, that is, when the sign of x–y changes.
Figure 3C traces a function of the x – y difference.

A convergence between the trends in Panels B and C pre-
dicts a continuation of the current trend. A divergence between
the trends in the two panels foreshadows a potential upcoming
change in direction for the trend.

For example, starting at time point 98, the x–y difference begins
to shrink, causing an upturn in the trend in Panel C. That uptrend
signals a slowing of the downward momentum. At first the actual

Figure 4. Tradeoff between accuracy and robustness. Same plots as Figure 1 but with slower moving averages. Optimized parameters 𝛼, 𝛽,𝛾 are
0.4179, 0.009483, 0.2587, respectively.
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trend in Panel B continues downward. Thus, the trends in the two
panels are diverging. Then, at time point 104, the actual trend
in Panel B turns up, a convergence with the trend in Panel C,
signaling the potential start of an upswing, which in fact does
occur.

Typically, a change in momentum (Panel C) precedes a change
in trend (Panel B), as happens around time point 104. The rea-
son a slowing of momentum typically precedes a change in trend
can be seen in Equation 1, which shows how changes in the direc-
tion of an exponentially smoothed input are often dominated by
the momentum term. However, when the trend changes abruptly,
momentum does not precede trend, as happens around time
point 92.

Accuracy vs. robustness
High accuracy requires that the x–y predictor in Figure 3C switches
sign immediately when the input turns down. The input appears
as the red line in Figure 3A. To achieve high accuracy in forecasting
a change in trend direction, in Figure 3B, the slower moving aver-
age, y, in gold, must remain close to the faster moving average, x,
in blue.

The small difference between the moving averages, x and
y, means that false signals can arise from small perturbations.
For example, at time point 102 in Figure 3B, the moving aver-
ages touch, predicting an imminent reversal that does not sub-
sequently occur. In addition, noise in the state variables x and y
can trigger false signals.

Figure 4 shows the circuit optimized for wider differences
between the fast and slow moving averages, x and y. In Panel B,
the wider differences provide a stronger signal during a trend but
lag in giving a signal when the trend does change direction. This
system gives fewer false signals and is robust to small perturba-
tions. However, because it lags when the trend does change, it has
a lower accuracy when using the sign of the current difference,
x – y, to predict the direction of change in the input in the next
time period. The median deviation from the maximum accuracy
is 0.12, comparedwith a deviation of 0.001 in the circuit illustrated
in Figure 3.

In general, systems can be tuned to balance various trade-
offs, such as accuracy vs. robustness (Murphy, 1999; Pring, 2014;
Schwager, 1999; Tjalma et al., 2023). In evolution, problems of
perception often must distinguish between changes in trend vs.
fluctuations caused by noise. If a system alters its internal signal
estimate too rapidly in response to noise, then many predictions
about trend will be false. If it changes too slowly, then it will lag
real changes in trend. Examples include cellular chemotaxis, sig-
nals of attack, and physiological tracking of environmental state.
The analysis here concerns how natural selection will tunemech-
anisms of perception and signal estimation in relation to those
widespread challenges of life.

Conclusion
Prior models analyzed how biochemical circuits predict future
environmental changes (Alon, 2019; Becker et al., 2015; Mitchell
et al., 2009; Shimizu et al., 2010; Tjalma et al., 2023; Tu et al.,
2008). Those models use recent differences in input to pre-
dict future changes because that is the essential nature of the
problem.

Although the prior models described biological circuits that
predict environmental changes, none of those prior analyses

presented a circuit and an explanation as simple as those given
here. In essence, the difference between a shorter, more imme-
diate moving average, x, and a longer, slower moving average, y,
provides the basis to forecast trends.

In the technical analysis of financial prices, the MACD indi-
cator for moving average convergence-divergence is calculated
as the difference between longer and shorter moving averages.
Organisms may use a similar calculation to anticipate environ-
mental trends.
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