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Two principles of success
Steven A. Franka,1 ID

A new PNAS article by Santos et al. (1) links two great princi-
ples of success. First, steady return typically beats variable
return (2). Second, competitors acting in a correlated way
tend to be more cooperative and successful (3, 4). Each
principle applies widely in biology, economics, and other
competitive situations. But how they interact is a challenging
problem that has received little attention. This new article
makes a good first step, leaving open a grand challenge for
mathematically skilled workers looking to advance funda-
mental understanding in biology and economics.

Let’s start with the benefits of steady success. When
investing $10,000 over 10 y, a steady return of 7% per year
yields $417 more than getting 0% and 14% in alternate years.
In each case, the average return per year is 7%. However,
the variability in the second case discounts yield.

It works the same way in biology (5). Over two gen-
erations, a yeast cell that expands its descendant lineage
threefold in each generation grows ninefold. Another cell’s
lineage that expands fourfold one generation and then
doubles in the next grows only eightfold. Both get expanded
by an average of 3 in each generation. But the latter pays
the cost of fluctuating success. We may think of the principle
as a tradeoff. It often helps to reduce average success a bit
in exchange for steadier return.

That seems simple. But the more realistic analysis for
biology is not so easy (6). Natural selection favors types
that have the greatest relative success. If we have two
competing types in a population with successes described
by the random variables X and Y , with frequencies in the
population q and 1 − q, then the change in the frequency of
the type associated with X is

Δq = q(F − 1), [1]

in which that type’s relative success is

F = X
qX + (1 − q)Y . [2]

Although it looks simple, it turns out to be difficult to draw
general conclusions about the ratio of random variables.
If so inclined, one can spend inordinate amounts of time
analyzing this equation to study how natural selection plays
out in this fundamentally realistic problem of randomness
in relative success (7, 8). Similarly, economic or game-like
competition for market share or other aspects of relative
success poses the same challenge.

The usual trick is to assume that the amount of variation
is small. Then one can write a simple approximation for F
and draw all sorts of conclusions. Most of the literature in
biology and economics does that. However, some of those
conclusions do not hold in the common situation of larger
fluctuations or in realistic scenarios of how competition is
structured. So, for this essential problem, we often lack good
basic guidelines. For example, sometimes more variation is
favored (9, 10).

This challenge is one part of what Santos et al. (1) go
after. The second part concerns another great principle of
success, the role of correlation between competitors. Let’s
introduce this second part, then look at the link made by
Santos et al.

Often, an individual’s behavior influences its own suc-
cess and the success of its neighbors. And the neighbor’s
behavior influences that individual’s success. Suppose an
individual can reduce its own success in a way that enhances
the success of all neighbors. Then a tension arises between
the competitive gain of a focal individual and the success
of the group (11).

That sort of tension occurs throughout life (12–16).
Among simple replicating molecules or among cells compet-
ing for an essential nutrient, more competitive individuals
gain more of the nutrient and grow faster. However, the
extra effort to increase nutrient uptake diverts resources
from growth. So, greater competitive ability raises success
against neighbors but lowers the overall efficiency of the
group.

All group members would do better if they grew more
slowly, using the local resources more prudently. Yet natural
selection typically favors the rapacious when competing for
common resources. Everyone does worse than they might—
the tragedy of the commons (11). Microbes typically act this
way (17). So do humans (18). It’s a universal outcome of
intrinsic competitiveness.

Correlated behavior between group members can mit-
igate this frequent tension between an individual and its
neighbors. To see this, assume an individual’s success, w,
depends on its own behavior, y , and the average behavior of
its neighbors, z. Suppose that an increase in y corresponds
to an individual reducing its own success and enhancing
its neighbors’ success, what might be called cooperative or
altruistic behavior.

To evaluate how an individual’s success changes with its
tendency for cooperation, we can look at the slope of w
with respect to y (19). When that slope is greater than zero,
the forces acting on success favor greater cooperation. To
evaluate when the slope of w with respect to y is greater
than zero, we use the chain rule of differentiation
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dw
dy = ∂w

∂y + ∂w
∂z

dz
dy

= −c + br > 0.

The symbols in the second line correspond in the same
order to the terms in the first line.

Here, c measures the cost to an individual for increasing
its cooperation. The minus sign arises because a positive
cost decreases success. The b term measures the benefit
provided by neighbors. The r term describes the change
in neighbors’ behavior with respect to the focal individual’s
behavior, a quantity related to the correlation in behavior
between partners.

In biology, r traditionally describes the genetic associa-
tion between individuals. The more genetically similar indi-
viduals are, the more correlated their behavior tends to be.
In addition, the genetic basis provides heritability and thus
completes the requirements for natural selection to change
characters over time. In different biological scenarios, we
get the same expression but with different interpretations
for costs, benefits, and correlations (16).

In biology, one traditionally expresses the condition for
cooperation to increase as

rb− c > 0,

and calls that Hamilton’s rule (20). However, it is important
to recognize the underlying generality of the expression
as a description of partial causes (17). All that we did is
partition a total change in success into components that
isolate instantaneous partial causes within a given context.
The reason that the same expression arises in different
scenarios is that the basic form of partitioning gives the
same structure in different cases. Here, derivatives for small
changes simplify the steps but we could do the same using
regression coefficients for larger changes (16, 21, 22).

Such partitions can be very useful. But effective use
requires paying attention to what they actually express.
Instantaneous partial causes isolate forces and help to
understand certain outcomes. But such instantaneous mea-
sures typically change with context.

Now we can return to combining our two principles,
following Santos et al. (1). Starting with the cooperative
part, we need to look at rb − c to evaluate how the
focal individual’s loss in its own success, c, trades off
against the neighbor benefit, b, weighted by the association
measure, r.

We also need our first principle to adjust cooperative
success by its variation. That is a technical challenge that
remains unsolved. But Santos et al. make a significant

advance. Return to Eq. 1, an expression for Δq. We can
think of q as the frequency of a more cooperative behavior
compared to an alternative type in the population that is less
cooperative. Then we ask when is Δq > 0, describing when
cooperation increases. However, Δq is stochastic because
the environment varies, causing the relative success of more
cooperative versus less cooperative behaviors to vary.

A first step would be an expression for when the expected
value of the change is greater than zero, E(Δq) > 0. Santos
et al. give that condition as

rb− c + �� � > 0.

A new PNAS article by Santos et al. links two great
principles of success.

In any measure of relative success, the
denominator is the average absolute level
of success, w̄, making the component 1/ w̄.
Here, � measures that component’s co-
efficient of variation over environmental
states. The term �measures the correlation

between 1/ w̄ and the net gain to a focal individual for being
more cooperative, rb − c. Finally, � measures the SD in the
net cooperative benefit, rb− c.

The three components of the variability effect, �� �, can
be studied empirically (1), providing an opportunity to test
the theory. This expression also shows that the variability
effect can either favor or disfavor cooperation because the
correlation term, �, can be positive or negative.

What conditions could lead to the surprising case in which
� is positive and variability enhances success? Using the
notation in Eq. 2, that typically happens when the success
of a type, X , is negatively correlated with average success,
w̄ = qX + (1 − q)Y , which requires

q + (1 − q)�xy < 0,

with �xy as the correlation between the two competing
types, X and Y .

This condition requires that q be small, which means that
the focal type has to be rare, and that �xy be negative,
which means that the types respond in opposite ways to
environmental changes. Thus, in competitive situations for
relative success or market share, rare types gain by being
different from their dominant competitors. The dominant
types gain by allocating some of their resources to copy
their opponents and keep �xy positive (23).

Overall, much remains to understand this challenging
problem. For example, different assumptions about the
causes of correlation and the context dependence of the
components likely matter. And knowing only the expected
direction of change at any moment is not sufficient for a
full analysis of a stochastic process. Nonetheless, given the
two principles’ very broad consequences for understanding
patterns of nature and human social conditions, the steps
here may stimulate a significant advance.
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