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Abstract
Many scientific problems focus on observed patterns of change or on how to design 
a system to achieve particular dynamics. Those problems often require fitting dif-
ferential equation models to target trajectories. Fitting such models can be difficult 
because each evaluation of the fit must calculate the distance between the model 
and target patterns at numerous points along a trajectory. The gradient of the fit with 
respect to the model parameters can be challenging to compute. Recent technical 
advances in automatic differentiation through numerical differential equation solvers 
potentially change the fitting process into a relatively easy problem, opening up new 
possibilities to study dynamics. However, application of the new tools to real data may 
fail to achieve a good fit. This article illustrates how to overcome a variety of common 
challenges, using the classic ecological data for oscillations in hare and lynx popula-
tions. Models include simple ordinary differential equations (ODEs) and neural ordi-
nary differential equations (NODEs), which use artificial neural networks to estimate 
the derivatives of differential equation systems. Comparing the fits obtained with 
ODEs versus NODEs, representing small and large parameter spaces, and changing 
the number of variable dimensions provide insight into the geometry of the observed 
and model trajectories. To analyze the quality of the models for predicting future ob-
servations, a Bayesian-inspired preconditioned stochastic gradient Langevin dynam-
ics (pSGLD) calculation of the posterior distribution of predicted model trajectories 
clarifies the tendency for various models to underfit or overfit the data. Coupling 
fitted differential equation systems with pSGLD sampling provides a powerful way 
to study the properties of optimization surfaces, raising an analogy with mutation-
selection dynamics on fitness landscapes.
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artificial neural networks, automatic differentiation, Bayesian analysis, differential equation 
models, ecological and evolutionary dynamics, Julia programming language, Langevin 
dynamics, optimization
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1  |  INTRODUC TION

Much of science describes or predicts how things change over time. 
Differential equations provide a common model for fitting data and 
predicting future observations. Optimizing a differential equation 
model is challenging. Each observed or predicted point along a tem-
poral trajectory is influenced by the potentially large set of parame-
ters that define the model. Optimizing a model means improving the 
match between the model's trajectory and the observed or desired 
temporal path at many individual points in time.

Recent advances in machine learning have greatly improved 
the potential to optimize differential equation models (Bonnaffé 
et al., 2021; Chen et al., 2018; Rackauckas et al., 2020). However, 
when applying the methods to actual data, it is often not so easy to 
realize the promise of the new conceptual advances and software 
packages.

This article illustrates how to fit ordinary differential equation 
(ODE) models to noisy time series data. The fitted models are also 
sampled to develop an approximate Bayesian posterior distribution 
of trajectories. The posterior distribution provides a way to evaluate 
confidence in the fit to observed data and in the prediction of future 
observations.

I use the classic data for the fluctuations of lynx and hare 
populations, an example of predator–prey dynamics (Odum & 
Barrett,  1971). This example illustrates the challenges that arise 
when fitting models for any scientific problem that can be analyzed 
by simple deterministic ODEs.

My work follows on the excellent recent article by Bonnaffé 
et al.  (2021). They fit neural ODEs (NODEs) to the hare-lynx data. 
NODEs use neural networks to fit time series data to the temporal de-
rivatives of variables, in other words, NODEs estimate ODEs by using 
modern neural networks (Chen et al., 2018). Bonnaffé et al.  (2021) 
emphasized that NODEs have the potential to advance many studies 
of ecological and evolutionary dynamics. However, they encountered 
several practical challenges in their application of NODEs to the hare-
lynx data, ultimately concluding that “it is our view that the training of 
these models remains nonetheless intensive.”

Challenges with Bonnaffé et al.'s method include long computa-
tion times, limited flexibility with regard to studying alternative or 
larger models within the same computational framework, and lack 
of connection to rapidly developing technical advances in automatic 
differentiation (Frank,  2022a). A recent update by Bonnaffé and 
Coulson  (2022) provides an alternative solution for some of these 
challenges.

2  |  MATERIAL S AND METHODS

Extending Bonnaffé et al.  (2021), I advance practical aspects of 
fitting ODE and NODE models. I show that several computational 
techniques provide a relatively easy way to fit and interpret such 
models. The computer code provides the specific methods by which 
I achieve each advance. Here, I emphasize six points.

2.1  |  Comparing NODE and ODE models

First, my computer code provides a switch between fitting a high-
dimensional NODE or a simple low-dimensional ODE to the same 
data. Dimensionality here refers to the size of the parameter space. 
The switch makes it easy to compare the two types of model.

Conceptually, both NODE and ODE models are basic systems of 
ordinary differential equations. In practice, the difference concerns 
the typically much greater dimensionality of the NODE models and 
the wide variety of high-quality tools available to build, compute, 
and evaluate complex neural network architectures. The NODE 
models usually have much greater flexibility and power to fit com-
plex patterns but also suffer from computational complexity and a 
tendency to overfit data.

2.2  |  Dummy variables

Second, I evaluate the costs and benefits of adding dummy variables 
to the fitting process (Dupont et al., 2019). For example, there are 
two variables in the case of hare and lynx. To those two variables, 
we may add additional variables to the system. We may think of 
those additional dummy variables as unobserved factors (Bonnaffé 
et al., 2021). For example, if there is one additional factor that signifi-
cantly influences the dynamics, then trying to fit a two-dimensional 
model to the data will be difficult because the actual trajectories 
trace pathways in three dimensions. Dimensionality here refers to 
the number of variables in the system.

2.3  |  Data smoothing

Third, I smoothed the original data before fitting the models. 
Deterministic models can only fit the general trends in the data. 
Stochastic fluctuations may interfere with the fitting process, which 
typically gains from a smoother cost function, in which the cost func-
tion decreases as the quality of the fit improves. To reduce large fluc-
tuations, I first log-transformed the data and normalized by subtracting 
the mean for each variable of the times series (Bonnaffé et al., 2021). 
Then, to emphasize trends in the data, I smoothed the time series with 
a cubic spline. I added an interpolated time point between each pair 
of observed time points. I then smoothed the augmented data with 
a Gaussian filter. Figure 1 shows the original and the smoothed data.

2.4  |  Sequential fitting

Fourth, simultaneously fitting all points in the time series may pre-
vent finding a good fit. The complexity of the optimization surface 
may be too great when starting from random parameters. Sequential 
fitting can help, first fitting the initial part of the time series, then 
adding later time points in a stepwise manner. However, when add-
ing additional points, weighted equally with prior points, a strong 
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    |  3 of 10FRANK

discontinuity may arise in the fitting process. That discontinuity may 
push the fitting process too far away to recover a smooth approach 
to a good fit. To fix that issue, I slowly increased the weighting of 
later points, which provided greater continuity in the optimization 
process and better convergence to relatively good fits.

2.5  |  Approximate Bayesian posterior

Fifth, I estimate a distribution of temporal trajectories for a fitted 
model by analogy with sampling the Bayesian posterior distribution 
of the model parameters. The distribution of trajectories provides a 
measure of the confidence in the quality of a fit to the data and of 
predictions for future unobserved observations.

To sample the posterior distribution of fitted parameters and 
associated trajectories, I first fit the model by standard gradi-
ent descent methods, using the Adam learning algorithm (Kingma 
& Ba,  2014). Then, with the fitted model as an initial condition, I 

calculated the preconditioned stochastic gradient Langevin dynam-
ics (pSGLD) (Li et al., 2015). In essence, a deterministic force moves 
each parameter toward a locally better fit, and a stochastic force 
causes parameter fluctuations.

For a gradient of the loss function with respect to the param-
eter, g, and a given hyperparameter, ϵ, the stochastic force dom-
inates the deterministic force when ϵg  << 1. Thus, when the fit 
is sufficiently near a local optimum and the associated gradient 
multiplied by ϵ is small, the model parameter value fluctuates ran-
domly in a way that approximately samples the Bayesian poste-
rior. Here, hyperparameter means a parameter that controls the 
fitting process rather than a fitted parameter of the model, fol-
lowing the common convention in the machine learning literature 
(Goodfellow et al., 2016).

In this study, I used a standard machine learning quadratic loss 
function (Goodfellow et al., 2016). In particular, the loss is the sum of 
squared deviations between each target time point in the smoothed 
data and the value of the model trajectory at that time point.

F I G U R E  1 The hare and lynx (circles) 
and smoothed (curves) data. The x-axis 
shows time in years, with one original 
observation per year over the 91 years of 
data collection. All models were fit to the 
smoothed curves at half-yearly intervals, 
creating 181 time points for each species. 
For each curve, the original data were first 
transformed by the natural logarithm and 
then normalized by the average value of 
the log-transformed observations. Data 
from Bonnaffé et al. (2021), originally 
from Odum and Barrett (1971).
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4 of 10  |     FRANK

A quadratic loss associates with the Bayesian estimator for the 
mean of a parameter's posterior distribution given a non-informative 
prior. However, in this study, I used pSGLD to sample the distribution 
of parameters around a local optimum for a fitted model, in which 
each observation is a multidimensional parameter vector describing 
a differential equation model. That distribution provides a rough 
estimate of the confidence in the fitted parameter values and the 
associated trajectories, inspired by Bayesian principles rather than 
adhering strictly to the assumptions of Bayesian analysis.

2.6  |  Julia computer language

Finally, I used the Julia programming language (Bezanson et al., 2017). 
Debate about choice of language often devolves into subjective fac-
tors. However, in my interpretation for fitting differential equation 
models, the current status of Julia provides several clear advantages.

Julia is much faster than popular alternatives, such as Python and 
R (Perkel, 2019). Speed matters, transforming difficult or essentially 
undoable optimizations into problems that can easily be solved on a 
standard desktop computer. I did all of the runs for this article on my 
daily working desktop computer using only the CPU, completing the 
most complex runs in at most a few hours, without any special effort 
to optimize the code or the process. Many useful runs for complex 
fits could be done in much less than an hour.

The Julia package DifferentialEquations.jl has a very wide 
array of numerical solvers for differential equations (Rackauckas & 
Nie, 2017). Using an appropriate solver with the correct tolerances is 
essential for fitting differential equations. I used the solvers Rodas4P 
for ODE problems and TRBDF2 for NODE problems. These solvers 
handle the instabilities that frequently arise when fitting oscillatory 
time series data. Further experimentation would be useful to test 
whether other solvers might be faster or handle instabilities better.

Efficient optimization of large models typically gains greatly from 
automatic differentiation (Baydin et al., 2018; Margossian, 2019). In 
essence, the computer code automatically analyzes the exact deriv-
atives of the loss function with respect to each parameter, rapidly 
calculating the full gradient that allows the optimization process to 
move steadily in the direction that improves the fit (Frank, 2022a).

For fitting differential equations, the special challenge arises be-
cause each time point along the target trajectory to be fit must be 
matched by using the differential equation solver to transform the 
model parameters into a predicted time point along the calculated 
trajectory. That means that differentiating the loss function with re-
spect to the parameters must differentiate through the numerical 
solver for the system of differential equations. It must do so for each 
target point. In this study, the target trajectory consisted of 181 time 
points for hare and lynx trajectories, requiring each calculation of a 
loss function or derivative of the loss to analyze the match between 
the data and 362 numerically evaluated trajectory points.

The Julia package DiffEqFlux.jl provides automatic differen-
tiation through many different solvers (Rackauckas et al.,  2020). 
Other languages provide similar automatic differentiation, but in 

my experience, the process is either much slower or more limited in 
a variety of ways. By contrast, the Julia package works simply and 
quickly, with many options to adjust the process.

The DiffEqFlux.jl package also provides a broad set of tools to 
build neural network models. Those models can easily be analyzed 
as systems that estimate differential equations, NODEs which can 
be optimized with a few lines of code (Rackauckas et al., 2019).

Documentation of the DiffEqFlux.jl package presents several 
examples of fitting differential equation models. However, the toy 
datasets do not bring out many of the challenges one faces when 
trying to fit the kinds of noisy data that commonly arise in prac-
tice. The methods discussed here may be broadly useful for many 
applications.

2.7  |  Overview of the models

Each model has n variables, two for hare and lynx and n−2 for dummy 
variables tracking unobserved factors. The models seek to match 
the log-transformed and smoothed data shown in data. The differ-
ential equation for the vector of variables u in the ODE models has 
the form

in which the n2 + n parameters are in the n × n matrix, S, and the n vec-
tor, b. The function f maps the n dimensional input to an n dimensional 
output, potentially inducing nonlinearity in the model. One typically 
selects f from the set of common activation functions used in neural 
network models. For all runs reported here, I used f = tanh applied in-
dependently to each dimension. I chose tanh because it is a common 
default in neural networks, can produce both positive and negative 
values, is centered at zero, and has a relatively steep gradient near zero 
(Sharma et al., 2020). In practice, it worked well for this study. With 
regard to Equation (1), it would be easy to study alternative ODE forms. 
However, in this article, I focus on Equation (1).

For each numerical calculation of a predicted trajectory, I set 
the initial condition to the data values for the first two dimensions. 
For the other n − 2 dimensions, I set a random initial value at the 
start of an optimization run. My code includes the option to op-
timize the initial values for the n − 2 dummy variables by consid-
ering those values as parameters of the model. However, in my 
preliminary studies, optimizing the dummy initial conditions did not 
provide sufficient advantages. I did not use that option in the runs 
reported here.

Typical NODE models are neural networks that take n inputs 
(Chen et al., 2018). The n outputs are the vector of derivatives, du∕dt . 
Common neural network architectures provide a variety of systems 
for calculating outputs from inputs. The Julia software packages in-
clude simple ways to specify common and custom architectures.

I used a simple two-layer architecture, in which each of the n 
inputs flows to N internal nodes. Each internal node produces an 
output that is a weighted sum of the inputs, each weight a model 

(1)du

dt
= f(Su − b),
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    |  5 of 10FRANK

parameter, plus an additional parameter added as a constant. Each of 
those outputs is transformed by an activation function, f, for which 
I again chose f = tanh. Those N outputs were then used as inputs 
into a second layer that produced n outputs as the weighted sum of 
inputs plus a constant. The second layer did not use an activation 
function to transform values.

This basic two-layer architecture has (n + 1)N + n(N + 1) param-
eters. The runs in the following section used N = 20 and n = 2, 3, 4, 
yielding 102, 143, and 184 parameters for the increasing values of n.

The parameters and output for all computer models are included 
with the source code files.

3  |  RESULTS

3.1  |  ODE versus NODE, varying n

I fit ODE and NODE models for n = 2, 3, 4. For each of those six com-
binations, Figure 2 shows the model fits against the smoothed data 
for the full 90-year period of observations.

The hare and lynx estimated abundances comprise the n = 2 core 
variables of the analysis. Adding dummy variables to make n > 2 im-
proves the fit. That improving fit with rising n can be seen in Figure 2 
by the better match between the data and model trajectories as one 
moves down the fitting sets in each column.

NODE models fit better than ODE models, associated with the 
greater number of parameters in NODE models. The better fits can 
be seen by comparing the NODE sets in the right column against 
their matching ODE sets in the left column.

One expects better fits by adding variable dimensions to increase 
n or adding parameter dimensions in NODE models. The benefit 
here is to see exactly how the fits change with the different changes 
in the models. For example, the phase plots in the next subsection 
show clearly how the constraints of the relatively low-dimension pa-
rameter space of the ODE models limits the fit when compared with 
the flexibility of the larger parameter space in the NODE models.

3.2  |  Phase plots

Figure  2 shows temporal trajectories for each species and each 
dummy variable, plotting abundance versus time. By contrast, phase 
plots draw trajectories by mapping the n variables at each time to a 
point in n-dimensional space. Combining the n-dimensional points at 
different times traces a trajectory through phase space.

Figure  3 shows phase plots for ODE and NODE models with 
n = 3 variables. The upper plots limit the trajectories to the n = 2 
dimensions for the hare and lynx data (blue) and model predic-
tions (gold). In two dimensions, the trajectories do not match well. 
However, one can see that the ODE model in the upper left traces a 
regular cycle confined to a small part of the two-dimensional phase 
space, whereas the NODE model in the upper right moves widely 
over the space.

The three-dimensional phase plots in the lower panels of Figure 3 
clarify the differences between the ODE and NODE models. For 
those three-dimensional plots, I used the third dimension from the 
models' dummy variable to augment both the data and the model 
prediction trajectories. For the ODE model in the lower left panel, 
the model's phase trajectory remains confined to a limited part of 
a two-dimensional plane, whereas the data wander over the third 
dimension.

Adding the third dummy variable for the NODE model in the 
lower right panel greatly enhances the match between the model 
predictions and the data. One can see the trajectory of that third 
variable in Figure 2, right column, middle set for NODE and n = 3, in 
the bottom panel of that set. In that case, the dummy variable starts 
near an abundance of 1 (e0) and declines toward 0 

(

e−300
)

.
By spreading the two-dimensional hare and lynx dynamics over a 

third dimension that declines steadily with time, the messy and visu-
ally mismatched data and model trajectories in the two-dimensional 
phase plot shown in the upper right panel of Figure  3 are trans-
formed into smoothly oscillating and matching three-dimensional 
trajectories in the lower right panel of that figure.

It could be that the high-dimensional and flexible parameter 
space of the n = 3 NODE model has discovered the simple geometry 
of the phase dynamics. One could of course find that geometry in 
other ways. The main advantage of the NODE model is that it does 
the fit quickly and automatically without any explicit assumptions 
about the shape of the dynamics.

3.3  |  Predicting future observations

Which models do best at predicting future outcomes? Given a single 
time series, one typically addresses that question by splitting the 
data. The first training subset provides data to fit the models. The 
second test subset measures the quality of the predictions.

I trained the six models in Figure 2 on the data from the first 61 
yearly observations (0–60). I then compared the predictions of those 
models to the observed data for the subsequent 30 years (60–90). 
Figure 4 shows the results.

I obtained predicted values for a model by calculating the mod-
el's temporal trajectory for a particular set of fitted parameters. The 
predictions are the temporal trajectory over the test period, the 
years 60–90. A single trajectory represents the predictions for one 
set of fitted parameters.

When making predictions, one wants an estimate of the pre-
dicted values and also a measure of confidence in the predictions. 
How much variability is there in the trajectories when using alterna-
tive sets of fitted parameters?

To obtain a distribution of fitted parameter sets, I used the 
pSGLD method described earlier. That method provides a Bayesian-
motivated notion of the posterior parameter distribution. To draw 
the predicted gold trajectories in Figure 4, I estimated the posterior 
parameter distribution and then randomly sampled 30 parameter 
sets from that distribution.
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    |  7 of 10FRANK

How do the different models in Figure 4 compare with regard 
to the quality of their predictions during the test period, 60–90? 
Starting at the top left, ODE n = 2, the model predictions are pre-
cise but inaccurate. The small variation in trajectories during the test 
period reflects the high precision, whereas the large differences be-
tween the predictions and the data with regard to the timing of the 
oscillations reflect the low accuracy.

The low accuracy (high loss) during the training period and poor 
fit during the test period suggest that this model is underfit. Here, 
underfit roughly means that the dimensionality of the variables or of 
the parameters is not sufficient to fit the data.

Next, consider the lower left model in that figure, ODE n = 4. 
That model has high accuracy during the training period, but very 
low precision during the prediction period. The model seems to be 
overfit.

During the prediction period, the NODE models for n = 3, 4 also 
have relatively low precision and varying but typically not very good 
accuracy. Those models may also be overfit, for which overfit means 
roughly that the models' high dimensionality caused such a close fit 
to the fluctuations in the training data that the models failed to cap-
ture the general trend in the data sufficiently to predict the outcome 
in the test period.

F I G U R E  2 Fit of models to the smoothed data. Gold curves show predicted trajectories. In each set, the top plot shows hare data (blue), 
and the second plot shows lynx data (green). Subsequent plots show dummy variables when n > 2. The loss sums the squared deviations 
between the smoothed data and the model trajectories. I measured the deviations for both species at the 181 half-yearly intervals, yielding 
362 squared-deviation components in the loss calculations.

F I G U R E  3 Phase plots for ODE (left) and NODE (right) models with n = 3. Blue curves trace the data trajectories, and gold curves trace 
the models' predicted trajectories. The upper plots show only the hare and lynx variables for the data and model, tracing n = 2 dimensional 
trajectories. The lower plots add the third dummy dimension variable from the model to both the data and model trajectories.
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8 of 10  |     FRANK

Finally, consider the two best models with regard to predictions 
during the test period, ODE n = 3 and NODE n = 2. Those models have 
intermediate accuracy during the fitted period, which seemed to avoid 
underfitting and overfitting. During the test period, both models had 
moderately good accuracy with regard to the timing of oscillations and 

moderately good precision with regard to variation in the predicted tra-
jectories. Although the fits are far from perfect, they are good given the 
short training period in relation to the complex shape of the dynamics.

To support these conclusions for the quality of the predicted fits 
during the test period, I calculated loss values for a sample of 3000 

F I G U R E  4 Fit of models to the first 61 yearly observations (0–60) of the 91 yearly observations (0–90). The vertical dotted line shows the 
end of the fitted training period. The subsequent 30 years from 60 to 90 comprise the predictions of the model relative to data not used in 
fitting. The layout of the plots and colors for the various curves match Figure 2, with blue for smoothed hare data, green for smoothed lynx 
data, and gold for the predicted trajectories of the models. For the predicted trajectories, I randomly chose 30 parameter combinations from 
the posterior distribution of parameters obtained by pSGLD sampling. The loss values are calculated for the training period, 0–60.
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    |  9 of 10FRANK

trajectories for each of the six plots in Figure  4. The four best fits 
with the lowest loss values, given as mean ± standard deviation, are 
NODE2 = 43 ± 6, ODE3 = 78 ± 22, ODE2 = 96 ± 15, NODE3 = 180 ± 39. 
Repeating the procedure yielded similar values for all except ODE3. In 
49 of 80 separate samples of 3000 trajectories, the mean ODE3 values 
were less than the ODE2 mean of 96. Overall, ODE3 appears to be 
better on average than ODE2 but with a heavier tail of larger values.

A technical challenge arises when deciding how long to run the 
sampling period for pSGLD and what hyperparameters to use to con-
trol that process. When does one have a sufficient estimate for the 
posterior distribution of trajectories? In a typical run for this study, 
I first ran the pSGLD sampling for a warm-up period that created 
5000 parameter sets and associated trajectories. I collected 10,000 
or more parameter sets and associated trajectories by pSGLD. For 
each trajectory, I calculated the loss for the full time over both the 
training and test periods.

I concluded that the sample was sufficient when the distribution 
of loss values for the first half of the 10,000 generated parameter 
sets was reasonably close to the distribution of loss values for the 
second half of the generated parameter sets. As long as the loss dis-
tributions were not broadly different, the plotted trajectory distri-
butions typically did not look very different.

One could also study posterior distributions for individual pa-
rameters. However, in this study, there was no reason to analyze 
individual parameters.

4  |  DISCUSSION

The various technical advances greatly enhance the ease of fitting 
alternative differential equation models. New possibilities arise to 
analyze dynamics, gain insight into process, improve predictions, and 
enhance control.

In this article, I focused on fitting observed dynamics from a nat-
ural system. Alternatively, one could study how to design a system 
to achieve desired dynamics or to match a theoretical target pattern 
(Hiscock, 2019).

The pSGLD method to sample parameter combinations near a 
local optimum also raises interesting possibilities for future study. 
Technically, it is a remarkably simple and computationally fast method. 
Conceptually, it creates a kind of random walk near a local optimum on 
a performance surface, similar to mutation-selection dynamics near a 
local optimum of a fitness landscape (Neher & Shraiman, 2011). That 
analogy suggests the potential to gain further understanding of ge-
netic variation and evolutionary dynamics on complex fitness surfaces.

The reviewers asked about what insights into ecology might arise 
from this study. For example, how do the growth rate and competi-
tion parameters compare between the ODE model with n = 3 and 
the NODE model with n = 2? What additional information can we 
learn from the best fitted ODEs beyond the classic Lotka-Volterra 
model? What ecological meaning could the additional dummy vari-
ables have? What are the application prospects and the limitations 
in applying this kind of approach?

I agree that these are essential questions to answer over the long 
term. Otherwise, the methods do not advance our understanding 
of ecological data and ultimately provide little value. However, my 
intent for this study was primarily methodological. If we are even-
tually going to improve our ability to deal with such questions, we 
must initially solve the methodological challenges. In my view, the 
commonly analyzed hare and lynx data provide a nice test case for 
exploring new methods but do not provide nearly enough informa-
tion to say anything significant about ecology. I hesitate to overint-
erpret. I do believe that as our methods improve, we will be able to 
apply such methods to broader data sets and to design analyses that 
will improve our understanding of ecology. But that improvement is 
a long-term goal. This is an early step toward that goal.
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