
Ecology and Evolution. 2023;13:e9895.	 ﻿	  | 1 of 10
https://doi.org/10.1002/ece3.9895

www.ecolevol.org

Received: 13 September 2022 | Revised: 19 February 2023 | Accepted: 23 February 2023
DOI: 10.1002/ece3.9895

R E S E A R C H A R T I C L E

Optimizing differential equations to fit data and predict
outcomes

Steven A. Frank

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,
provided the original work is properly cited.
© 2023 The Author. Ecology and Evolution published by John Wiley & Sons Ltd.

Department of Ecology and Evolutionary
Biology, University of California, Irvine,
California, USA

Correspondence
Steven A. Frank, Department of Ecology
and Evolutionary Biology, University of
California, Irvine, CA 92697-2525, USA.
Email: saf@stevefrank.org

Funding information
Donald Bren Foundation; National Science
Foundation, Grant/Award Number: DEB-
1939423; U.S. Department of Defense,
Grant/Award Number: W911NF2010227

Abstract
Many scientific problems focus on observed patterns of change or on how to design
a system to achieve particular dynamics. Those problems often require fitting dif-
ferential equation models to target trajectories. Fitting such models can be difficult
because each evaluation of the fit must calculate the distance between the model
and target patterns at numerous points along a trajectory. The gradient of the fit with
respect to the model parameters can be challenging to compute. Recent technical
advances in automatic differentiation through numerical differential equation solvers
potentially change the fitting process into a relatively easy problem, opening up new
possibilities to study dynamics. However, application of the new tools to real data may
fail to achieve a good fit. This article illustrates how to overcome a variety of common
challenges, using the classic ecological data for oscillations in hare and lynx popula-
tions. Models include simple ordinary differential equations (ODEs) and neural ordi-
nary differential equations (NODEs), which use artificial neural networks to estimate
the derivatives of differential equation systems. Comparing the fits obtained with
ODEs versus NODEs, representing small and large parameter spaces, and changing
the number of variable dimensions provide insight into the geometry of the observed
and model trajectories. To analyze the quality of the models for predicting future ob-
servations, a Bayesian-inspired preconditioned stochastic gradient Langevin dynam-
ics (pSGLD) calculation of the posterior distribution of predicted model trajectories
clarifies the tendency for various models to underfit or overfit the data. Coupling
fitted differential equation systems with pSGLD sampling provides a powerful way
to study the properties of optimization surfaces, raising an analogy with mutation-
selection dynamics on fitness landscapes.

K E Y W O R D S
artificial neural networks, automatic differentiation, Bayesian analysis, differential equation
models, ecological and evolutionary dynamics, Julia programming language, Langevin
dynamics, optimization

T A X O N O M Y C L A S S I F I C A T I O N
Theorectical ecology

 20457758, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ece3.9895, W

iley O
nline L

ibrary on [20/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.ecolevol.org
mailto:
https://orcid.org/0000-0001-7348-7794
http://creativecommons.org/licenses/by/4.0/
mailto:saf@stevefrank.org
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fece3.9895&domain=pdf&date_stamp=2023-03-19

2 of 10  |     FRANK

1  |  INTRODUC TION

Much of science describes or predicts how things change over time.
Differential equations provide a common model for fitting data and
predicting future observations. Optimizing a differential equation
model is challenging. Each observed or predicted point along a tem-
poral trajectory is influenced by the potentially large set of parame-
ters that define the model. Optimizing a model means improving the
match between the model's trajectory and the observed or desired
temporal path at many individual points in time.

Recent advances in machine learning have greatly improved
the potential to optimize differential equation models (Bonnaffé
et al., 2021; Chen et al., 2018; Rackauckas et al., 2020). However,
when applying the methods to actual data, it is often not so easy to
realize the promise of the new conceptual advances and software
packages.

This article illustrates how to fit ordinary differential equation
(ODE) models to noisy time series data. The fitted models are also
sampled to develop an approximate Bayesian posterior distribution
of trajectories. The posterior distribution provides a way to evaluate
confidence in the fit to observed data and in the prediction of future
observations.

I use the classic data for the fluctuations of lynx and hare
populations, an example of predator–prey dynamics (Odum &
Barrett, 1971). This example illustrates the challenges that arise
when fitting models for any scientific problem that can be analyzed
by simple deterministic ODEs.

My work follows on the excellent recent article by Bonnaffé
et al. (2021). They fit neural ODEs (NODEs) to the hare-lynx data.
NODEs use neural networks to fit time series data to the temporal de-
rivatives of variables, in other words, NODEs estimate ODEs by using
modern neural networks (Chen et al., 2018). Bonnaffé et al. (2021)
emphasized that NODEs have the potential to advance many studies
of ecological and evolutionary dynamics. However, they encountered
several practical challenges in their application of NODEs to the hare-
lynx data, ultimately concluding that “it is our view that the training of
these models remains nonetheless intensive.”

Challenges with Bonnaffé et al.'s method include long computa-
tion times, limited flexibility with regard to studying alternative or
larger models within the same computational framework, and lack
of connection to rapidly developing technical advances in automatic
differentiation (Frank, 2022a). A recent update by Bonnaffé and
Coulson (2022) provides an alternative solution for some of these
challenges.

2  |  MATERIAL S AND METHODS

Extending Bonnaffé et al. (2021), I advance practical aspects of
fitting ODE and NODE models. I show that several computational
techniques provide a relatively easy way to fit and interpret such
models. The computer code provides the specific methods by which
I achieve each advance. Here, I emphasize six points.

2.1  |  Comparing NODE and ODE models

First, my computer code provides a switch between fitting a high-
dimensional NODE or a simple low-dimensional ODE to the same
data. Dimensionality here refers to the size of the parameter space.
The switch makes it easy to compare the two types of model.

Conceptually, both NODE and ODE models are basic systems of
ordinary differential equations. In practice, the difference concerns
the typically much greater dimensionality of the NODE models and
the wide variety of high-quality tools available to build, compute,
and evaluate complex neural network architectures. The NODE
models usually have much greater flexibility and power to fit com-
plex patterns but also suffer from computational complexity and a
tendency to overfit data.

2.2  |  Dummy variables

Second, I evaluate the costs and benefits of adding dummy variables
to the fitting process (Dupont et al., 2019). For example, there are
two variables in the case of hare and lynx. To those two variables,
we may add additional variables to the system. We may think of
those additional dummy variables as unobserved factors (Bonnaffé
et al., 2021). For example, if there is one additional factor that signifi-
cantly influences the dynamics, then trying to fit a two-dimensional
model to the data will be difficult because the actual trajectories
trace pathways in three dimensions. Dimensionality here refers to
the number of variables in the system.

2.3  |  Data smoothing

Third, I smoothed the original data before fitting the models.
Deterministic models can only fit the general trends in the data.
Stochastic fluctuations may interfere with the fitting process, which
typically gains from a smoother cost function, in which the cost func-
tion decreases as the quality of the fit improves. To reduce large fluc-
tuations, I first log-transformed the data and normalized by subtracting
the mean for each variable of the times series (Bonnaffé et al., 2021).
Then, to emphasize trends in the data, I smoothed the time series with
a cubic spline. I added an interpolated time point between each pair
of observed time points. I then smoothed the augmented data with
a Gaussian filter. Figure 1 shows the original and the smoothed data.

2.4  |  Sequential fitting

Fourth, simultaneously fitting all points in the time series may pre-
vent finding a good fit. The complexity of the optimization surface
may be too great when starting from random parameters. Sequential
fitting can help, first fitting the initial part of the time series, then
adding later time points in a stepwise manner. However, when add-
ing additional points, weighted equally with prior points, a strong

 20457758, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ece3.9895, W

iley O
nline L

ibrary on [20/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

    |  3 of 10FRANK

discontinuity may arise in the fitting process. That discontinuity may
push the fitting process too far away to recover a smooth approach
to a good fit. To fix that issue, I slowly increased the weighting of
later points, which provided greater continuity in the optimization
process and better convergence to relatively good fits.

2.5  |  Approximate Bayesian posterior

Fifth, I estimate a distribution of temporal trajectories for a fitted
model by analogy with sampling the Bayesian posterior distribution
of the model parameters. The distribution of trajectories provides a
measure of the confidence in the quality of a fit to the data and of
predictions for future unobserved observations.

To sample the posterior distribution of fitted parameters and
associated trajectories, I first fit the model by standard gradi-
ent descent methods, using the Adam learning algorithm (Kingma
& Ba, 2014). Then, with the fitted model as an initial condition, I

calculated the preconditioned stochastic gradient Langevin dynam-
ics (pSGLD) (Li et al., 2015). In essence, a deterministic force moves
each parameter toward a locally better fit, and a stochastic force
causes parameter fluctuations.

For a gradient of the loss function with respect to the param-
eter, g, and a given hyperparameter, ϵ, the stochastic force dom-
inates the deterministic force when ϵg << 1. Thus, when the fit
is sufficiently near a local optimum and the associated gradient
multiplied by ϵ is small, the model parameter value fluctuates ran-
domly in a way that approximately samples the Bayesian poste-
rior. Here, hyperparameter means a parameter that controls the
fitting process rather than a fitted parameter of the model, fol-
lowing the common convention in the machine learning literature
(Goodfellow et al., 2016).

In this study, I used a standard machine learning quadratic loss
function (Goodfellow et al., 2016). In particular, the loss is the sum of
squared deviations between each target time point in the smoothed
data and the value of the model trajectory at that time point.

F I G U R E 1 The hare and lynx (circles)
and smoothed (curves) data. The x-axis
shows time in years, with one original
observation per year over the 91 years of
data collection. All models were fit to the
smoothed curves at half-yearly intervals,
creating 181 time points for each species.
For each curve, the original data were first
transformed by the natural logarithm and
then normalized by the average value of
the log-transformed observations. Data
from Bonnaffé et al. (2021), originally
from Odum and Barrett (1971).

 20457758, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ece3.9895, W

iley O
nline L

ibrary on [20/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

4 of 10  |     FRANK

A quadratic loss associates with the Bayesian estimator for the
mean of a parameter's posterior distribution given a non-informative
prior. However, in this study, I used pSGLD to sample the distribution
of parameters around a local optimum for a fitted model, in which
each observation is a multidimensional parameter vector describing
a differential equation model. That distribution provides a rough
estimate of the confidence in the fitted parameter values and the
associated trajectories, inspired by Bayesian principles rather than
adhering strictly to the assumptions of Bayesian analysis.

2.6  |  Julia computer language

Finally, I used the Julia programming language (Bezanson et al., 2017).
Debate about choice of language often devolves into subjective fac-
tors. However, in my interpretation for fitting differential equation
models, the current status of Julia provides several clear advantages.

Julia is much faster than popular alternatives, such as Python and
R (Perkel, 2019). Speed matters, transforming difficult or essentially
undoable optimizations into problems that can easily be solved on a
standard desktop computer. I did all of the runs for this article on my
daily working desktop computer using only the CPU, completing the
most complex runs in at most a few hours, without any special effort
to optimize the code or the process. Many useful runs for complex
fits could be done in much less than an hour.

The Julia package DifferentialEquations.jl has a very wide
array of numerical solvers for differential equations (Rackauckas &
Nie, 2017). Using an appropriate solver with the correct tolerances is
essential for fitting differential equations. I used the solvers Rodas4P
for ODE problems and TRBDF2 for NODE problems. These solvers
handle the instabilities that frequently arise when fitting oscillatory
time series data. Further experimentation would be useful to test
whether other solvers might be faster or handle instabilities better.

Efficient optimization of large models typically gains greatly from
automatic differentiation (Baydin et al., 2018; Margossian, 2019). In
essence, the computer code automatically analyzes the exact deriv-
atives of the loss function with respect to each parameter, rapidly
calculating the full gradient that allows the optimization process to
move steadily in the direction that improves the fit (Frank, 2022a).

For fitting differential equations, the special challenge arises be-
cause each time point along the target trajectory to be fit must be
matched by using the differential equation solver to transform the
model parameters into a predicted time point along the calculated
trajectory. That means that differentiating the loss function with re-
spect to the parameters must differentiate through the numerical
solver for the system of differential equations. It must do so for each
target point. In this study, the target trajectory consisted of 181 time
points for hare and lynx trajectories, requiring each calculation of a
loss function or derivative of the loss to analyze the match between
the data and 362 numerically evaluated trajectory points.

The Julia package DiffEqFlux.jl provides automatic differen-
tiation through many different solvers (Rackauckas et al., 2020).
Other languages provide similar automatic differentiation, but in

my experience, the process is either much slower or more limited in
a variety of ways. By contrast, the Julia package works simply and
quickly, with many options to adjust the process.

The DiffEqFlux.jl package also provides a broad set of tools to
build neural network models. Those models can easily be analyzed
as systems that estimate differential equations, NODEs which can
be optimized with a few lines of code (Rackauckas et al., 2019).

Documentation of the DiffEqFlux.jl package presents several
examples of fitting differential equation models. However, the toy
datasets do not bring out many of the challenges one faces when
trying to fit the kinds of noisy data that commonly arise in prac-
tice. The methods discussed here may be broadly useful for many
applications.

2.7  |  Overview of the models

Each model has n variables, two for hare and lynx and n−2 for dummy
variables tracking unobserved factors. The models seek to match
the log-transformed and smoothed data shown in data. The differ-
ential equation for the vector of variables u in the ODE models has
the form

in which the n2 + n parameters are in the n × n matrix, S, and the n vec-
tor, b. The function f maps the n dimensional input to an n dimensional
output, potentially inducing nonlinearity in the model. One typically
selects f from the set of common activation functions used in neural
network models. For all runs reported here, I used f = tanh applied in-
dependently to each dimension. I chose tanh because it is a common
default in neural networks, can produce both positive and negative
values, is centered at zero, and has a relatively steep gradient near zero
(Sharma et al., 2020). In practice, it worked well for this study. With
regard to Equation (1), it would be easy to study alternative ODE forms.
However, in this article, I focus on Equation (1).

For each numerical calculation of a predicted trajectory, I set
the initial condition to the data values for the first two dimensions.
For the other n − 2 dimensions, I set a random initial value at the
start of an optimization run. My code includes the option to op-
timize the initial values for the n − 2 dummy variables by consid-
ering those values as parameters of the model. However, in my
preliminary studies, optimizing the dummy initial conditions did not
provide sufficient advantages. I did not use that option in the runs
reported here.

Typical NODE models are neural networks that take n inputs
(Chen et al., 2018). The n outputs are the vector of derivatives, du∕dt .
Common neural network architectures provide a variety of systems
for calculating outputs from inputs. The Julia software packages in-
clude simple ways to specify common and custom architectures.

I used a simple two-layer architecture, in which each of the n
inputs flows to N internal nodes. Each internal node produces an
output that is a weighted sum of the inputs, each weight a model

(1)du

dt
= f(Su − b),

 20457758, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ece3.9895, W

iley O
nline L

ibrary on [20/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

    |  5 of 10FRANK

parameter, plus an additional parameter added as a constant. Each of
those outputs is transformed by an activation function, f, for which
I again chose f = tanh. Those N outputs were then used as inputs
into a second layer that produced n outputs as the weighted sum of
inputs plus a constant. The second layer did not use an activation
function to transform values.

This basic two-layer architecture has (n + 1)N + n(N + 1) param-
eters. The runs in the following section used N = 20 and n = 2, 3, 4,
yielding 102, 143, and 184 parameters for the increasing values of n.

The parameters and output for all computer models are included
with the source code files.

3  |  RESULTS

3.1  |  ODE versus NODE, varying n

I fit ODE and NODE models for n = 2, 3, 4. For each of those six com-
binations, Figure 2 shows the model fits against the smoothed data
for the full 90-year period of observations.

The hare and lynx estimated abundances comprise the n = 2 core
variables of the analysis. Adding dummy variables to make n > 2 im-
proves the fit. That improving fit with rising n can be seen in Figure 2
by the better match between the data and model trajectories as one
moves down the fitting sets in each column.

NODE models fit better than ODE models, associated with the
greater number of parameters in NODE models. The better fits can
be seen by comparing the NODE sets in the right column against
their matching ODE sets in the left column.

One expects better fits by adding variable dimensions to increase
n or adding parameter dimensions in NODE models. The benefit
here is to see exactly how the fits change with the different changes
in the models. For example, the phase plots in the next subsection
show clearly how the constraints of the relatively low-dimension pa-
rameter space of the ODE models limits the fit when compared with
the flexibility of the larger parameter space in the NODE models.

3.2  |  Phase plots

Figure 2 shows temporal trajectories for each species and each
dummy variable, plotting abundance versus time. By contrast, phase
plots draw trajectories by mapping the n variables at each time to a
point in n-dimensional space. Combining the n-dimensional points at
different times traces a trajectory through phase space.

Figure 3 shows phase plots for ODE and NODE models with
n = 3 variables. The upper plots limit the trajectories to the n = 2
dimensions for the hare and lynx data (blue) and model predic-
tions (gold). In two dimensions, the trajectories do not match well.
However, one can see that the ODE model in the upper left traces a
regular cycle confined to a small part of the two-dimensional phase
space, whereas the NODE model in the upper right moves widely
over the space.

The three-dimensional phase plots in the lower panels of Figure 3
clarify the differences between the ODE and NODE models. For
those three-dimensional plots, I used the third dimension from the
models' dummy variable to augment both the data and the model
prediction trajectories. For the ODE model in the lower left panel,
the model's phase trajectory remains confined to a limited part of
a two-dimensional plane, whereas the data wander over the third
dimension.

Adding the third dummy variable for the NODE model in the
lower right panel greatly enhances the match between the model
predictions and the data. One can see the trajectory of that third
variable in Figure 2, right column, middle set for NODE and n = 3, in
the bottom panel of that set. In that case, the dummy variable starts
near an abundance of 1 (e0) and declines toward 0

(

e−300
)

.
By spreading the two-dimensional hare and lynx dynamics over a

third dimension that declines steadily with time, the messy and visu-
ally mismatched data and model trajectories in the two-dimensional
phase plot shown in the upper right panel of Figure 3 are trans-
formed into smoothly oscillating and matching three-dimensional
trajectories in the lower right panel of that figure.

It could be that the high-dimensional and flexible parameter
space of the n = 3 NODE model has discovered the simple geometry
of the phase dynamics. One could of course find that geometry in
other ways. The main advantage of the NODE model is that it does
the fit quickly and automatically without any explicit assumptions
about the shape of the dynamics.

3.3  |  Predicting future observations

Which models do best at predicting future outcomes? Given a single
time series, one typically addresses that question by splitting the
data. The first training subset provides data to fit the models. The
second test subset measures the quality of the predictions.

I trained the six models in Figure 2 on the data from the first 61
yearly observations (0–60). I then compared the predictions of those
models to the observed data for the subsequent 30 years (60–90).
Figure 4 shows the results.

I obtained predicted values for a model by calculating the mod-
el's temporal trajectory for a particular set of fitted parameters. The
predictions are the temporal trajectory over the test period, the
years 60–90. A single trajectory represents the predictions for one
set of fitted parameters.

When making predictions, one wants an estimate of the pre-
dicted values and also a measure of confidence in the predictions.
How much variability is there in the trajectories when using alterna-
tive sets of fitted parameters?

To obtain a distribution of fitted parameter sets, I used the
pSGLD method described earlier. That method provides a Bayesian-
motivated notion of the posterior parameter distribution. To draw
the predicted gold trajectories in Figure 4, I estimated the posterior
parameter distribution and then randomly sampled 30 parameter
sets from that distribution.

 20457758, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ece3.9895, W

iley O
nline L

ibrary on [20/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

6 of 10  |     FRANK

 20457758, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ece3.9895, W

iley O
nline L

ibrary on [20/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

    |  7 of 10FRANK

How do the different models in Figure 4 compare with regard
to the quality of their predictions during the test period, 60–90?
Starting at the top left, ODE n = 2, the model predictions are pre-
cise but inaccurate. The small variation in trajectories during the test
period reflects the high precision, whereas the large differences be-
tween the predictions and the data with regard to the timing of the
oscillations reflect the low accuracy.

The low accuracy (high loss) during the training period and poor
fit during the test period suggest that this model is underfit. Here,
underfit roughly means that the dimensionality of the variables or of
the parameters is not sufficient to fit the data.

Next, consider the lower left model in that figure, ODE n = 4.
That model has high accuracy during the training period, but very
low precision during the prediction period. The model seems to be
overfit.

During the prediction period, the NODE models for n = 3, 4 also
have relatively low precision and varying but typically not very good
accuracy. Those models may also be overfit, for which overfit means
roughly that the models' high dimensionality caused such a close fit
to the fluctuations in the training data that the models failed to cap-
ture the general trend in the data sufficiently to predict the outcome
in the test period.

F I G U R E 2 Fit of models to the smoothed data. Gold curves show predicted trajectories. In each set, the top plot shows hare data (blue),
and the second plot shows lynx data (green). Subsequent plots show dummy variables when n > 2. The loss sums the squared deviations
between the smoothed data and the model trajectories. I measured the deviations for both species at the 181 half-yearly intervals, yielding
362 squared-deviation components in the loss calculations.

F I G U R E 3 Phase plots for ODE (left) and NODE (right) models with n = 3. Blue curves trace the data trajectories, and gold curves trace
the models' predicted trajectories. The upper plots show only the hare and lynx variables for the data and model, tracing n = 2 dimensional
trajectories. The lower plots add the third dummy dimension variable from the model to both the data and model trajectories.

 20457758, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ece3.9895, W

iley O
nline L

ibrary on [20/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

8 of 10  |     FRANK

Finally, consider the two best models with regard to predictions
during the test period, ODE n = 3 and NODE n = 2. Those models have
intermediate accuracy during the fitted period, which seemed to avoid
underfitting and overfitting. During the test period, both models had
moderately good accuracy with regard to the timing of oscillations and

moderately good precision with regard to variation in the predicted tra-
jectories. Although the fits are far from perfect, they are good given the
short training period in relation to the complex shape of the dynamics.

To support these conclusions for the quality of the predicted fits
during the test period, I calculated loss values for a sample of 3000

F I G U R E 4 Fit of models to the first 61 yearly observations (0–60) of the 91 yearly observations (0–90). The vertical dotted line shows the
end of the fitted training period. The subsequent 30 years from 60 to 90 comprise the predictions of the model relative to data not used in
fitting. The layout of the plots and colors for the various curves match Figure 2, with blue for smoothed hare data, green for smoothed lynx
data, and gold for the predicted trajectories of the models. For the predicted trajectories, I randomly chose 30 parameter combinations from
the posterior distribution of parameters obtained by pSGLD sampling. The loss values are calculated for the training period, 0–60.

 20457758, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ece3.9895, W

iley O
nline L

ibrary on [20/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

    |  9 of 10FRANK

trajectories for each of the six plots in Figure 4. The four best fits
with the lowest loss values, given as mean ± standard deviation, are
NODE2 = 43 ± 6, ODE3 = 78 ± 22, ODE2 = 96 ± 15, NODE3 = 180 ± 39.
Repeating the procedure yielded similar values for all except ODE3. In
49 of 80 separate samples of 3000 trajectories, the mean ODE3 values
were less than the ODE2 mean of 96. Overall, ODE3 appears to be
better on average than ODE2 but with a heavier tail of larger values.

A technical challenge arises when deciding how long to run the
sampling period for pSGLD and what hyperparameters to use to con-
trol that process. When does one have a sufficient estimate for the
posterior distribution of trajectories? In a typical run for this study,
I first ran the pSGLD sampling for a warm-up period that created
5000 parameter sets and associated trajectories. I collected 10,000
or more parameter sets and associated trajectories by pSGLD. For
each trajectory, I calculated the loss for the full time over both the
training and test periods.

I concluded that the sample was sufficient when the distribution
of loss values for the first half of the 10,000 generated parameter
sets was reasonably close to the distribution of loss values for the
second half of the generated parameter sets. As long as the loss dis-
tributions were not broadly different, the plotted trajectory distri-
butions typically did not look very different.

One could also study posterior distributions for individual pa-
rameters. However, in this study, there was no reason to analyze
individual parameters.

4  |  DISCUSSION

The various technical advances greatly enhance the ease of fitting
alternative differential equation models. New possibilities arise to
analyze dynamics, gain insight into process, improve predictions, and
enhance control.

In this article, I focused on fitting observed dynamics from a nat-
ural system. Alternatively, one could study how to design a system
to achieve desired dynamics or to match a theoretical target pattern
(Hiscock, 2019).

The pSGLD method to sample parameter combinations near a
local optimum also raises interesting possibilities for future study.
Technically, it is a remarkably simple and computationally fast method.
Conceptually, it creates a kind of random walk near a local optimum on
a performance surface, similar to mutation-selection dynamics near a
local optimum of a fitness landscape (Neher & Shraiman, 2011). That
analogy suggests the potential to gain further understanding of ge-
netic variation and evolutionary dynamics on complex fitness surfaces.

The reviewers asked about what insights into ecology might arise
from this study. For example, how do the growth rate and competi-
tion parameters compare between the ODE model with n = 3 and
the NODE model with n = 2? What additional information can we
learn from the best fitted ODEs beyond the classic Lotka-Volterra
model? What ecological meaning could the additional dummy vari-
ables have? What are the application prospects and the limitations
in applying this kind of approach?

I agree that these are essential questions to answer over the long
term. Otherwise, the methods do not advance our understanding
of ecological data and ultimately provide little value. However, my
intent for this study was primarily methodological. If we are even-
tually going to improve our ability to deal with such questions, we
must initially solve the methodological challenges. In my view, the
commonly analyzed hare and lynx data provide a nice test case for
exploring new methods but do not provide nearly enough informa-
tion to say anything significant about ecology. I hesitate to overint-
erpret. I do believe that as our methods improve, we will be able to
apply such methods to broader data sets and to design analyses that
will improve our understanding of ecology. But that improvement is
a long-term goal. This is an early step toward that goal.

AUTHOR CONTRIBUTIONS
Steven A. Frank: Conceptualization (lead); data curation (lead); formal
analysis (lead); funding acquisition (lead); investigation (lead); meth-
odology (lead); project administration (lead); resources (lead); soft-
ware (lead); supervision (lead); validation (lead); visualization (lead);
writing – original draft (lead); writing – review and editing (lead).

ACKNOWLEDG MENTS
A preprint of this manuscript is on arXiv (Frank, 2022b).

FUNDING INFORMATION
The Donald Bren Foundation, National Science Foundation grant
DEB-1939423, and DoD grant W911NF2010227 support my
research.

CONFLIC T OF INTERE S T S TATEMENT
The author declares that the research was conducted in the absence
of any commercial or financial relationships that could be construed
as a potential conflict of interest.

DATA AVAIL ABILIT Y S TATEMENT
All data and code are available at https://github.com/evolb​io/FitODE
and on Zenodo at https://doi.org/10.5281/zenodo.6463624. The
parameters and output used to generate the figures in this article
are only available at Zenodo.

ORCID
Steven A. Frank https://orcid.org/0000-0001-7348-7794

R E FE R E N C E S
Baydin, A. G., Pearlmutter, B. A., Radul, A. A., & Siskind, J. M. (2018).

Automatic differentiation in machine learning: A survey. Journal of
Machine Learning Research, 18, 1–43.

Bezanson, J., Edelman, A., Karpinski, S., & Shah, V. B. (2017). Julia: A fresh
approach to numerical computing. SIAM Review, 59, 65–98.

Bonnaffé, W., & Coulson, T. (2022). Fast fitting of neural ordinary differen-
tial equations by Bayesian neural gradient matching to infer ecological
interactions from time series data. arXiv:2209.06184.

Bonnaffé, W., Sheldon, B. C., & Coulson, T. (2021). Neural ordinary dif-
ferential equations for ecological and evolutionary time-series
analysis. Methods in Ecology and Evolution, 12, 1301–1315.

 20457758, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ece3.9895, W

iley O
nline L

ibrary on [20/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://github.com/evolbio/FitODE
https://doi.org/10.5281/zenodo.6463624
https://orcid.org/0000-0001-7348-7794
https://orcid.org/0000-0001-7348-7794

10 of 10  |     FRANK

Chen, R. T. Q., Rubanova, Y., Bettencourt, J., & Duvenaud, D. (2018).
Neural ordinary differential equations. arXiv:1806.07366.

Dupont, E., Doucet, A., & Teh, Y. W. (2019). Augmented neural ODEs.
Advances in Neural Information Processing Systems, 32.

Frank, S. A. (2022a). Automatic differentiation and the optimization of
differential equation models in biology. Frontiers in Ecology and
Evolution, 10, 1010278.

Frank, S. A. (2022b). Optimizing differential equations to fit data and pre-
dict outcomes. arXiv:2204.07833.

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press.
Hiscock, T. W. (2019). Adapting machine-learning algorithms to design

gene circuits. BMC Bioinformatics, 20, 214.
Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimiza-

tion. arXiv:1412.6980.
Li, C., Chen, C., Carlson, D., & Carin, L. (2015). Preconditioned sto-

chastic gradient Langevin dynamics for deep neural networks.
arXiv:1512.07666.

Margossian, C. C. (2019). A review of automatic differentiation and
its efficient implementation. WIREs Data Mining and Knowledge
Discovery, 9, e1305.

Neher, R. A., & Shraiman, B. I. (2011). Statistical genetics and evolution of
quantitative traits. arXiv:1108.1630.

Odum, E. P., & Barrett, G. W. (1971). Fundamentals of ecology (3rd ed.).
W. B. Saunders.

Perkel, J. M. (2019). Julia: Come for the syntax, stay for the speed.
Nature, 572, 141–142.

Rackauckas, C., Innes, M., Ma, Y., Bettencourt, J., White, L., & Dixit, V.
(2019). DiffEqFlux.jl—A Julia library for neural differential equa-
tions. arXiv:1902.02376.

Rackauckas, C., Ma, Y., Martensen, J., Warner, C., Zubov, K., Supekar,
R., Skinner, D., & Ramadhan, A. (2020). Universal differential equa-
tions for scientific machine learning. arXiv:2001.04385.

Rackauckas, C., & Nie, Q. (2017). DifferentialEquations.jl—A performant
and feature-rich ecosystem for solving differential equations in
Julia. Journal of Open Research Software, 5, 15.

Sharma, S., Sharma, S., & Athaiya, A. (2020). Activation functions in neu-
ral networks. International Journal of Engineering Applied Sciences
and Technology, 4, 310–316.

How to cite this article: Frank, S. A. (2023). Optimizing
differential equations to fit data and predict outcomes.
Ecology and Evolution, 13, e9895. https://doi.org/10.1002/
ece3.9895

 20457758, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ece3.9895, W

iley O
nline L

ibrary on [20/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1002/ece3.9895
https://doi.org/10.1002/ece3.9895

	Optimizing differential equations to fit data and predict outcomes
	Abstract
	1|INTRODUCTION
	2|MATERIALS AND METHODS
	2.1|Comparing NODE and ODE models
	2.2|Dummy variables
	2.3|Data smoothing
	2.4|Sequential fitting
	2.5|Approximate Bayesian posterior
	2.6|Julia computer language
	2.7|Overview of the models

	3|RESULTS
	3.1|ODE versus NODE, varying n
	3.2|Phase plots
	3.3|Predicting future observations

	4|DISCUSSION
	AUTHOR CONTRIBUTIONS
	ACKNOWLEDGMENTS
	FUNDING INFORMATION
	CONFLICT OF INTEREST STATEMENT
	DATA AVAILABILITY STATEMENT

	REFERENCES

