
Ecology and Evolution. 2023;13:e9895.	 		 	 | 1 of 10
https://doi.org/10.1002/ece3.9895

www.ecolevol.org

Received:	13	September	2022  | Revised:	19	February	2023  | Accepted:	23	February	2023
DOI: 10.1002/ece3.9895

R E S E A R C H A R T I C L E

Optimizing differential equations to fit data and predict
outcomes

Steven A. Frank

This	is	an	open	access	article	under	the	terms	of	the	Creative	Commons	Attribution	License,	which	permits	use,	distribution	and	reproduction	in	any	medium,	
provided	the	original	work	is	properly	cited.
©	2023	The	Author.	Ecology and Evolution	published	by	John	Wiley	&	Sons	Ltd.

Department	of	Ecology	and	Evolutionary	
Biology,	University	of	California,	Irvine,	
California,	USA

Correspondence
Steven	A.	Frank,	Department	of	Ecology	
and	Evolutionary	Biology,	University	of	
California,	Irvine,	CA	92697-	2525,	USA.
Email:	saf@stevefrank.org

Funding information
Donald	Bren	Foundation;	National	Science	
Foundation,	Grant/Award	Number:	DEB-	
1939423;	U.S.	Department	of	Defense,	
Grant/Award	Number:	W911NF2010227

Abstract
Many	scientific	problems	focus	on	observed	patterns	of	change	or	on	how	to	design	
a	 system	 to	 achieve	 particular	 dynamics.	 Those	 problems	often	 require	 fitting	 dif-
ferential	equation	models	to	target	trajectories.	Fitting	such	models	can	be	difficult	
because	each	evaluation	of	 the	 fit	must	calculate	 the	distance	between	 the	model	
and	target	patterns	at	numerous	points	along	a	trajectory.	The	gradient	of	the	fit	with	
respect	 to	 the	model	 parameters	 can	be	 challenging	 to	 compute.	Recent	 technical	
advances	in	automatic	differentiation	through	numerical	differential	equation	solvers	
potentially	change	the	fitting	process	into	a	relatively	easy	problem,	opening	up	new	
possibilities	to	study	dynamics.	However,	application	of	the	new	tools	to	real	data	may	
fail	to	achieve	a	good	fit.	This	article	illustrates	how	to	overcome	a	variety	of	common	
challenges,	using	the	classic	ecological	data	for	oscillations	in	hare	and	lynx	popula-
tions.	Models	include	simple	ordinary	differential	equations	(ODEs)	and	neural	ordi-
nary	differential	equations	(NODEs),	which	use	artificial	neural	networks	to	estimate	
the	 derivatives	 of	 differential	 equation	 systems.	 Comparing	 the	 fits	 obtained	with	
ODEs	versus	NODEs,	representing	small	and	large	parameter	spaces,	and	changing	
the	number	of	variable	dimensions	provide	insight	into	the	geometry	of	the	observed	
and	model	trajectories.	To	analyze	the	quality	of	the	models	for	predicting	future	ob-
servations,	a	Bayesian-	inspired	preconditioned	stochastic	gradient	Langevin	dynam-
ics	(pSGLD)	calculation	of	the	posterior	distribution	of	predicted	model	trajectories	
clarifies	 the	 tendency	 for	 various	models	 to	 underfit	 or	 overfit	 the	 data.	Coupling	
fitted	differential	equation	systems	with	pSGLD	sampling	provides	a	powerful	way	
to	study	the	properties	of	optimization	surfaces,	 raising	an	analogy	with	mutation-	
selection	dynamics	on	fitness	landscapes.

K E Y W O R D S
artificial	neural	networks,	automatic	differentiation,	Bayesian	analysis,	differential	equation	
models,	ecological	and	evolutionary	dynamics,	Julia	programming	language,	Langevin	
dynamics,	optimization

T A X O N O M Y C L A S S I F I C A T I O N
Theorectical	ecology

 20457758, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ece3.9895, W

iley O
nline L

ibrary on [20/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.ecolevol.org
mailto:
https://orcid.org/0000-0001-7348-7794
http://creativecommons.org/licenses/by/4.0/
mailto:saf@stevefrank.org
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fece3.9895&domain=pdf&date_stamp=2023-03-19

2 of 10  |     FRANK

1  |  INTRODUC TION

Much	of	science	describes	or	predicts	how	things	change	over	time.	
Differential	equations	provide	a	common	model	for	fitting	data	and	
predicting	 future	 observations.	 Optimizing	 a	 differential	 equation	
model	is	challenging.	Each	observed	or	predicted	point	along	a	tem-
poral	trajectory	is	influenced	by	the	potentially	large	set	of	parame-
ters	that	define	the	model.	Optimizing	a	model	means	improving	the	
match	between	the	model's	trajectory	and	the	observed	or	desired	
temporal	path	at	many	individual	points	in	time.

Recent	 advances	 in	 machine	 learning	 have	 greatly	 improved	
the	 potential	 to	 optimize	 differential	 equation	 models	 (Bonnaffé	
et	al.,	2021;	Chen	et	al.,	2018;	Rackauckas	et	al.,	2020).	However,	
when	applying	the	methods	to	actual	data,	it	is	often	not	so	easy	to	
realize	 the	promise	of	 the	new	conceptual	advances	and	software	
packages.

This	 article	 illustrates	how	 to	 fit	 ordinary	differential	 equation	
(ODE)	models	to	noisy	time	series	data.	The	fitted	models	are	also	
sampled	to	develop	an	approximate	Bayesian	posterior	distribution	
of	trajectories.	The	posterior	distribution	provides	a	way	to	evaluate	
confidence	in	the	fit	to	observed	data	and	in	the	prediction	of	future	
observations.

I	 use	 the	 classic	 data	 for	 the	 fluctuations	 of	 lynx	 and	 hare	
populations,	 an	 example	 of	 predator–	prey	 dynamics	 (Odum	 &	
Barrett,	 1971).	 This	 example	 illustrates	 the	 challenges	 that	 arise	
when	fitting	models	for	any	scientific	problem	that	can	be	analyzed	
by	simple	deterministic	ODEs.

My	 work	 follows	 on	 the	 excellent	 recent	 article	 by	 Bonnaffé	
et	 al.	 (2021).	 They	 fit	 neural	ODEs	 (NODEs)	 to	 the	 hare-	lynx	 data.	
NODEs	use	neural	networks	to	fit	time	series	data	to	the	temporal	de-
rivatives	of	variables,	in	other	words,	NODEs	estimate	ODEs	by	using	
modern	neural	networks	 (Chen	et	al.,	2018).	Bonnaffé	et	al.	 (2021)	
emphasized	that	NODEs	have	the	potential	to	advance	many	studies	
of	ecological	and	evolutionary	dynamics.	However,	they	encountered	
several	practical	challenges	in	their	application	of	NODEs	to	the	hare-	
lynx	data,	ultimately	concluding	that	“it	is	our	view	that	the	training	of	
these	models	remains	nonetheless	intensive.”

Challenges	with	Bonnaffé	et	al.'s	method	include	long	computa-
tion	times,	 limited	flexibility	with	regard	to	studying	alternative	or	
larger	models	within	the	same	computational	 framework,	and	 lack	
of	connection	to	rapidly	developing	technical	advances	in	automatic	
differentiation	 (Frank,	 2022a).	 A	 recent	 update	 by	 Bonnaffé	 and	
Coulson	 (2022)	provides	an	alternative	solution	 for	some	of	 these	
challenges.

2  |  MATERIAL S AND METHODS

Extending	 Bonnaffé	 et	 al.	 (2021),	 I	 advance	 practical	 aspects	 of	
fitting	ODE	and	NODE	models.	 I	show	that	several	computational	
techniques	 provide	 a	 relatively	 easy	way	 to	 fit	 and	 interpret	 such	
models.	The	computer	code	provides	the	specific	methods	by	which	
I	achieve	each	advance.	Here,	I	emphasize	six	points.

2.1  |  Comparing NODE and ODE models

First,	my	computer	code	provides	a	switch	between	fitting	a	high-	
dimensional	NODE	or	a	 simple	 low-	dimensional	ODE	 to	 the	 same	
data.	Dimensionality	here	refers	to	the	size	of	the	parameter	space.	
The	switch	makes	it	easy	to	compare	the	two	types	of	model.

Conceptually,	both	NODE	and	ODE	models	are	basic	systems	of	
ordinary	differential	equations.	In	practice,	the	difference	concerns	
the	typically	much	greater	dimensionality	of	the	NODE	models	and	
the	wide	 variety	 of	 high-	quality	 tools	 available	 to	 build,	 compute,	
and	 evaluate	 complex	 neural	 network	 architectures.	 The	 NODE	
models	usually	have	much	greater	flexibility	and	power	to	fit	com-
plex	patterns	but	also	suffer	from	computational	complexity	and	a	
tendency	to	overfit	data.

2.2  |  Dummy variables

Second,	I	evaluate	the	costs	and	benefits	of	adding	dummy	variables	
to	the	fitting	process	(Dupont	et	al.,	2019).	For	example,	there	are	
two	variables	in	the	case	of	hare	and	lynx.	To	those	two	variables,	
we	may	 add	 additional	 variables	 to	 the	 system.	We	may	 think	 of	
those	additional	dummy	variables	as	unobserved	factors	(Bonnaffé	
et	al.,	2021).	For	example,	if	there	is	one	additional	factor	that	signifi-
cantly	influences	the	dynamics,	then	trying	to	fit	a	two-	dimensional	
model	 to	 the	 data	will	 be	 difficult	 because	 the	 actual	 trajectories	
trace	 pathways	 in	 three	 dimensions.	Dimensionality	 here	 refers	 to	
the	number	of	variables	in	the	system.

2.3  |  Data smoothing

Third,	 I	 smoothed	 the	 original	 data	 before	 fitting	 the	 models.	
Deterministic	 models	 can	 only	 fit	 the	 general	 trends	 in	 the	 data.	
Stochastic	fluctuations	may	interfere	with	the	fitting	process,	which	
typically	gains	from	a	smoother	cost	function,	in	which	the	cost	func-
tion	decreases	as	the	quality	of	the	fit	improves.	To	reduce	large	fluc-
tuations,	I	first	log-	transformed	the	data	and	normalized	by	subtracting	
the	mean	for	each	variable	of	the	times	series	(Bonnaffé	et	al.,	2021).	
Then,	to	emphasize	trends	in	the	data,	I	smoothed	the	time	series	with	
a	cubic	spline.	I	added	an	interpolated	time	point	between	each	pair	
of	observed	time	points.	 I	 then	smoothed	the	augmented	data	with	
a	Gaussian	filter.	Figure 1	shows	the	original	and	the	smoothed	data.

2.4  |  Sequential fitting

Fourth,	simultaneously	fitting	all	points	in	the	time	series	may	pre-
vent	finding	a	good	fit.	The	complexity	of	the	optimization	surface	
may	be	too	great	when	starting	from	random	parameters.	Sequential	
fitting	can	help,	first	fitting	the	 initial	part	of	the	time	series,	then	
adding	later	time	points	in	a	stepwise	manner.	However,	when	add-
ing	 additional	 points,	weighted	 equally	with	 prior	 points,	 a	 strong	

 20457758, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ece3.9895, W

iley O
nline L

ibrary on [20/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

    |  3 of 10FRANK

discontinuity	may	arise	in	the	fitting	process.	That	discontinuity	may	
push	the	fitting	process	too	far	away	to	recover	a	smooth	approach	
to	a	good	fit.	To	fix	 that	 issue,	 I	slowly	 increased	the	weighting	of	
later	points,	which	provided	greater	continuity	 in	 the	optimization	
process	and	better	convergence	to	relatively	good	fits.

2.5  |  Approximate Bayesian posterior

Fifth,	 I	estimate	a	distribution	of	 temporal	 trajectories	 for	a	 fitted	
model	by	analogy	with	sampling	the	Bayesian	posterior	distribution	
of	the	model	parameters.	The	distribution	of	trajectories	provides	a	
measure	of	the	confidence	in	the	quality	of	a	fit	to	the	data	and	of	
predictions	for	future	unobserved	observations.

To	 sample	 the	 posterior	 distribution	 of	 fitted	 parameters	 and	
associated	 trajectories,	 I	 first	 fit	 the	 model	 by	 standard	 gradi-
ent	 descent	methods,	 using	 the	Adam	 learning	 algorithm	 (Kingma	
&	Ba,	2014).	 Then,	with	 the	 fitted	model	 as	 an	 initial	 condition,	 I	

calculated	the	preconditioned	stochastic	gradient	Langevin	dynam-
ics	(pSGLD)	(Li	et	al.,	2015).	In	essence,	a	deterministic	force	moves	
each	 parameter	 toward	 a	 locally	 better	 fit,	 and	 a	 stochastic	 force	
causes	parameter	fluctuations.

For	a	gradient	of	the	loss	function	with	respect	to	the	param-
eter,	g,	and	a	given	hyperparameter,	ϵ,	 the	stochastic	force	dom-
inates	 the	 deterministic	 force	when	 ϵg << 1.	 Thus,	when	 the	 fit	
is	 sufficiently	 near	 a	 local	 optimum	 and	 the	 associated	 gradient	
multiplied	by	ϵ	is	small,	the	model	parameter	value	fluctuates	ran-
domly	 in	 a	way	 that	 approximately	 samples	 the	Bayesian	poste-
rior.	 Here,	 hyperparameter	 means	 a	 parameter	 that	 controls	 the	
fitting	 process	 rather	 than	 a	 fitted	 parameter	 of	 the	model,	 fol-
lowing	the	common	convention	in	the	machine	learning	literature	
(Goodfellow	et	al.,	2016).

In	this	study,	I	used	a	standard	machine	learning	quadratic	loss	
function	(Goodfellow	et	al.,	2016).	In	particular,	the	loss	is	the	sum	of	
squared	deviations	between	each	target	time	point	in	the	smoothed	
data	and	the	value	of	the	model	trajectory	at	that	time	point.

F I G U R E 1 The	hare	and	lynx	(circles)	
and	smoothed	(curves)	data.	The	x-	axis	
shows	time	in	years,	with	one	original	
observation	per	year	over	the	91 years	of	
data	collection.	All	models	were	fit	to	the	
smoothed	curves	at	half-	yearly	intervals,	
creating	181	time	points	for	each	species.	
For	each	curve,	the	original	data	were	first	
transformed	by	the	natural	logarithm	and	
then	normalized	by	the	average	value	of	
the	log-	transformed	observations.	Data	
from	Bonnaffé	et	al.	(2021),	originally	
from	Odum	and	Barrett	(1971).

 20457758, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ece3.9895, W

iley O
nline L

ibrary on [20/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

4 of 10  |     FRANK

A	quadratic	loss	associates	with	the	Bayesian	estimator	for	the	
mean	of	a	parameter's	posterior	distribution	given	a	non-	informative	
prior.	However,	in	this	study,	I	used	pSGLD	to	sample	the	distribution	
of	parameters	around	a	local	optimum	for	a	fitted	model,	 in	which	
each	observation	is	a	multidimensional	parameter	vector	describing	
a	 differential	 equation	 model.	 That	 distribution	 provides	 a	 rough	
estimate	of	 the	confidence	 in	 the	 fitted	parameter	values	and	 the	
associated	trajectories,	 inspired	by	Bayesian	principles	rather	 than	
adhering	strictly	to	the	assumptions	of	Bayesian	analysis.

2.6  |  Julia computer language

Finally,	I	used	the	Julia	programming	language	(Bezanson	et	al.,	2017).	
Debate	about	choice	of	language	often	devolves	into	subjective	fac-
tors.	However,	in	my	interpretation	for	fitting	differential	equation	
models,	the	current	status	of	Julia	provides	several	clear	advantages.

Julia	is	much	faster	than	popular	alternatives,	such	as	Python	and	
R	(Perkel,	2019).	Speed	matters,	transforming	difficult	or	essentially	
undoable	optimizations	into	problems	that	can	easily	be	solved	on	a	
standard	desktop	computer.	I	did	all	of	the	runs	for	this	article	on	my	
daily	working	desktop	computer	using	only	the	CPU,	completing	the	
most	complex	runs	in	at	most	a	few	hours,	without	any	special	effort	
to	optimize	the	code	or	the	process.	Many	useful	runs	for	complex	
fits	could	be	done	in	much	less	than	an	hour.

The	 Julia	 package	 DifferentialEquations.jl	 has	 a	 very	 wide	
array	of	numerical	solvers	for	differential	equations	(Rackauckas	&	
Nie,	2017).	Using	an	appropriate	solver	with	the	correct	tolerances	is	
essential	for	fitting	differential	equations.	I	used	the	solvers	Rodas4P	
for	ODE	problems	and	TRBDF2	for	NODE	problems.	These	solvers	
handle	the	instabilities	that	frequently	arise	when	fitting	oscillatory	
time	 series	data.	 Further	experimentation	would	be	useful	 to	 test	
whether	other	solvers	might	be	faster	or	handle	instabilities	better.

Efficient	optimization	of	large	models	typically	gains	greatly	from	
automatic	differentiation	(Baydin	et	al.,	2018;	Margossian,	2019).	In	
essence,	the	computer	code	automatically	analyzes	the	exact	deriv-
atives	of	the	 loss	function	with	respect	to	each	parameter,	 rapidly	
calculating	the	full	gradient	that	allows	the	optimization	process	to	
move	steadily	in	the	direction	that	improves	the	fit	(Frank,	2022a).

For	fitting	differential	equations,	the	special	challenge	arises	be-
cause	each	time	point	along	the	target	trajectory	to	be	fit	must	be	
matched	by	using	the	differential	equation	solver	to	transform	the	
model	parameters	 into	a	predicted	time	point	along	the	calculated	
trajectory.	That	means	that	differentiating	the	loss	function	with	re-
spect	 to	 the	parameters	must	differentiate	 through	 the	numerical	
solver	for	the	system	of	differential	equations.	It	must	do	so	for	each	
target	point.	In	this	study,	the	target	trajectory	consisted	of	181	time	
points	for	hare	and	lynx	trajectories,	requiring	each	calculation	of	a	
loss	function	or	derivative	of	the	loss	to	analyze	the	match	between	
the	data	and	362	numerically	evaluated	trajectory	points.

The	 Julia	 package	 DiffEqFlux.jl	 provides	 automatic	 differen-
tiation	 through	 many	 different	 solvers	 (Rackauckas	 et	 al.,	 2020).	
Other	 languages	 provide	 similar	 automatic	 differentiation,	 but	 in	

my	experience,	the	process	is	either	much	slower	or	more	limited	in	
a	variety	of	ways.	By	contrast,	the	Julia	package	works	simply	and	
quickly,	with	many	options	to	adjust	the	process.

The	DiffEqFlux.jl	package	also	provides	a	broad	set	of	 tools	 to	
build	neural	network	models.	Those	models	can	easily	be	analyzed	
as	systems	that	estimate	differential	equations,	NODEs	which	can	
be	optimized	with	a	few	lines	of	code	(Rackauckas	et	al.,	2019).

Documentation	 of	 the	 DiffEqFlux.jl	 package	 presents	 several	
examples	of	fitting	differential	equation	models.	However,	 the	toy	
datasets	do	not	bring	out	many	of	 the	challenges	one	 faces	when	
trying	 to	 fit	 the	 kinds	 of	 noisy	 data	 that	 commonly	 arise	 in	 prac-
tice.	The	methods	discussed	here	may	be	broadly	useful	 for	many	
applications.

2.7  |  Overview of the models

Each	model	has	n	variables,	two	for	hare	and	lynx	and	n−2	for	dummy	
variables	 tracking	 unobserved	 factors.	 The	models	 seek	 to	match	
the	log-	transformed	and	smoothed	data	shown	in	data.	The	differ-
ential	equation	for	the	vector	of	variables	u	in	the	ODE	models	has	
the	form

in	which	the	n2 + n	parameters	are	in	the	n × n	matrix,	S,	and	the	n vec-
tor,	b.	The	function	f	maps	the	n	dimensional	input	to	an	n	dimensional	
output,	potentially	 inducing	nonlinearity	 in	 the	model.	One	typically	
selects f	from	the	set	of	common	activation	functions	used	in	neural	
network	models.	For	all	runs	reported	here,	I	used	f = tanh	applied	in-
dependently	to	each	dimension.	I	chose	tanh	because	it	is	a	common	
default	 in	 neural	 networks,	 can	produce	both	positive	 and	negative	
values,	is	centered	at	zero,	and	has	a	relatively	steep	gradient	near	zero	
(Sharma	et	al.,	2020).	 In	practice,	 it	worked	well	for	this	study.	With	
regard	to	Equation	(1),	it	would	be	easy	to	study	alternative	ODE	forms.	
However,	in	this	article,	I	focus	on	Equation	(1).

For	each	numerical	 calculation	of	a	predicted	 trajectory,	 I	 set	
the	initial	condition	to	the	data	values	for	the	first	two	dimensions.	
For	the	other	n − 2	dimensions,	 I	set	a	random	initial	value	at	the	
start	of	 an	optimization	 run.	My	code	 includes	 the	option	 to	op-
timize	 the	 initial	 values	 for	 the	n − 2	 dummy	variables	by	consid-
ering	 those	 values	 as	 parameters	 of	 the	 model.	 However,	 in	 my	
preliminary	studies,	optimizing	the	dummy	initial	conditions	did	not	
provide	sufficient	advantages.	I	did	not	use	that	option	in	the	runs	
reported here.

Typical	 NODE	models	 are	 neural	 networks	 that	 take	 n	 inputs	
(Chen	et	al.,	2018).	The	n	outputs	are	the	vector	of	derivatives,	du∕dt .	
Common	neural	network	architectures	provide	a	variety	of	systems	
for	calculating	outputs	from	inputs.	The	Julia	software	packages	in-
clude	simple	ways	to	specify	common	and	custom	architectures.

I	 used	 a	 simple	 two-	layer	 architecture,	 in	which	 each	 of	 the	n
inputs	 flows	 to	N	 internal	 nodes.	 Each	 internal	 node	 produces	 an	
output	 that	 is	a	weighted	sum	of	 the	 inputs,	each	weight	a	model	

(1)du

dt
= f(Su − b),

 20457758, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ece3.9895, W

iley O
nline L

ibrary on [20/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

    |  5 of 10FRANK

parameter,	plus	an	additional	parameter	added	as	a	constant.	Each	of	
those	outputs	is	transformed	by	an	activation	function,	f,	for	which	
I	 again	 chose	 f = tanh. Those N	 outputs	were	 then	used	as	 inputs	
into	a	second	layer	that	produced	n	outputs	as	the	weighted	sum	of	
inputs	plus	a	constant.	The	second	 layer	did	not	use	an	activation	
function	to	transform	values.

This	basic	two-	layer	architecture	has	(n + 1)N + n(N + 1)	param-
eters.	The	runs	in	the	following	section	used	N = 20	and	n = 2, 3, 4,	
yielding	102,	143,	and	184	parameters	for	the	increasing	values	of	n.

The	parameters	and	output	for	all	computer	models	are	included	
with	the	source	code	files.

3  |  RESULTS

3.1  |  ODE versus NODE, varying n

I	fit	ODE	and	NODE	models	for	n = 2, 3, 4.	For	each	of	those	six	com-
binations,	Figure 2	shows	the	model	fits	against	the	smoothed	data	
for	the	full	90-	year	period	of	observations.

The	hare	and	lynx	estimated	abundances	comprise	the	n = 2 core
variables	of	the	analysis.	Adding	dummy	variables	to	make	n > 2 im-
proves	the	fit.	That	improving	fit	with	rising	n	can	be	seen	in	Figure 2
by	the	better	match	between	the	data	and	model	trajectories	as	one	
moves	down	the	fitting	sets	in	each	column.

NODE	models	fit	better	than	ODE	models,	associated	with	the	
greater	number	of	parameters	in	NODE	models.	The	better	fits	can	
be	 seen	by	 comparing	 the	NODE	sets	 in	 the	 right	 column	against	
their	matching	ODE	sets	in	the	left	column.

One	expects	better	fits	by	adding	variable	dimensions	to	increase	
n	 or	 adding	 parameter	 dimensions	 in	 NODE	models.	 The	 benefit	
here	is	to	see	exactly	how	the	fits	change	with	the	different	changes	
in	the	models.	For	example,	the	phase	plots	in	the	next	subsection	
show	clearly	how	the	constraints	of	the	relatively	low-	dimension	pa-
rameter	space	of	the	ODE	models	limits	the	fit	when	compared	with	
the	flexibility	of	the	larger	parameter	space	in	the	NODE	models.

3.2  |  Phase plots

Figure 2	 shows	 temporal	 trajectories	 for	 each	 species	 and	 each	
dummy	variable,	plotting	abundance	versus	time.	By	contrast,	phase	
plots	draw	trajectories	by	mapping	the	n	variables	at	each	time	to	a	
point	in	n-	dimensional	space.	Combining	the	n-	dimensional	points	at	
different	times	traces	a	trajectory	through	phase	space.

Figure 3	 shows	 phase	 plots	 for	 ODE	 and	 NODE	models	 with	
n = 3	 variables.	 The	 upper	 plots	 limit	 the	 trajectories	 to	 the	n = 2
dimensions	 for	 the	 hare	 and	 lynx	 data	 (blue)	 and	 model	 predic-
tions	(gold).	 In	two	dimensions,	the	trajectories	do	not	match	well.	
However,	one	can	see	that	the	ODE	model	in	the	upper	left	traces	a	
regular	cycle	confined	to	a	small	part	of	the	two-	dimensional	phase	
space,	whereas	 the	NODE	model	 in	 the	upper	 right	moves	widely	
over	the	space.

The	three-	dimensional	phase	plots	in	the	lower	panels	of	Figure 3
clarify	 the	 differences	 between	 the	ODE	 and	NODE	models.	 For	
those	three-	dimensional	plots,	I	used	the	third	dimension	from	the	
models'	dummy	variable	 to	augment	both	 the	data	and	 the	model	
prediction	trajectories.	For	the	ODE	model	in	the	lower	left	panel,	
the	model's	phase	trajectory	 remains	confined	to	a	 limited	part	of	
a	 two-	dimensional	plane,	whereas	 the	data	wander	over	 the	 third	
dimension.

Adding	 the	 third	 dummy	 variable	 for	 the	 NODE	model	 in	 the	
lower	 right	 panel	 greatly	 enhances	 the	match	between	 the	model	
predictions	and	 the	data.	One	can	see	 the	 trajectory	of	 that	 third	
variable	in	Figure 2,	right	column,	middle	set	for	NODE	and	n = 3,	in	
the	bottom	panel	of	that	set.	In	that	case,	the	dummy	variable	starts	
near	an	abundance	of	1	(e0)	and	declines	toward	0	

(

e−300
)

.
By	spreading	the	two-	dimensional	hare	and	lynx	dynamics	over	a	

third	dimension	that	declines	steadily	with	time,	the	messy	and	visu-
ally	mismatched	data	and	model	trajectories	in	the	two-	dimensional	
phase	 plot	 shown	 in	 the	 upper	 right	 panel	 of	 Figure 3	 are	 trans-
formed	 into	 smoothly	 oscillating	 and	 matching	 three-	dimensional	
trajectories	in	the	lower	right	panel	of	that	figure.

It	 could	 be	 that	 the	 high-	dimensional	 and	 flexible	 parameter	
space	of	the	n = 3	NODE	model	has	discovered	the	simple	geometry	
of	the	phase	dynamics.	One	could	of	course	find	that	geometry	 in	
other	ways.	The	main	advantage	of	the	NODE	model	is	that	it	does	
the	 fit	 quickly	 and	 automatically	without	 any	explicit	 assumptions	
about	the	shape	of	the	dynamics.

3.3  |  Predicting future observations

Which	models	do	best	at	predicting	future	outcomes?	Given	a	single	
time	 series,	 one	 typically	 addresses	 that	 question	 by	 splitting	 the	
data.	The	first	training	subset	provides	data	to	fit	the	models.	The	
second	test	subset	measures	the	quality	of	the	predictions.

I	trained	the	six	models	in	Figure 2	on	the	data	from	the	first	61	
yearly	observations	(0–	60).	I	then	compared	the	predictions	of	those	
models	to	the	observed	data	for	the	subsequent	30 years	 (60–	90).	
Figure 4	shows	the	results.

I	obtained	predicted	values	for	a	model	by	calculating	the	mod-
el's	temporal	trajectory	for	a	particular	set	of	fitted	parameters.	The	
predictions	 are	 the	 temporal	 trajectory	 over	 the	 test	 period,	 the	
years	60–	90.	A	single	trajectory	represents	the	predictions	for	one	
set	of	fitted	parameters.

When	making	 predictions,	 one	 wants	 an	 estimate	 of	 the	 pre-
dicted	values	and	also	a	measure	of	confidence	 in	the	predictions.	
How	much	variability	is	there	in	the	trajectories	when	using	alterna-
tive	sets	of	fitted	parameters?

To	 obtain	 a	 distribution	 of	 fitted	 parameter	 sets,	 I	 used	 the	
pSGLD	method	described	earlier.	That	method	provides	a	Bayesian-	
motivated	notion	of	 the	posterior	parameter	distribution.	To	draw	
the	predicted	gold	trajectories	in	Figure 4,	I	estimated	the	posterior	
parameter	 distribution	 and	 then	 randomly	 sampled	 30	 parameter	
sets	from	that	distribution.

 20457758, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ece3.9895, W

iley O
nline L

ibrary on [20/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

6 of 10  |     FRANK

 20457758, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ece3.9895, W

iley O
nline L

ibrary on [20/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

    |  7 of 10FRANK

How	do	 the	different	models	 in	Figure 4	 compare	with	 regard	
to	 the	 quality	 of	 their	 predictions	 during	 the	 test	 period,	 60–	90?	
Starting	at	the	top	 left,	ODE	n = 2,	 the	model	predictions	are	pre-
cise	but	inaccurate.	The	small	variation	in	trajectories	during	the	test	
period	reflects	the	high	precision,	whereas	the	large	differences	be-
tween	the	predictions	and	the	data	with	regard	to	the	timing	of	the	
oscillations	reflect	the	low	accuracy.

The	low	accuracy	(high	loss)	during	the	training	period	and	poor	
fit	during	the	test	period	suggest	that	this	model	is	underfit.	Here,	
underfit	roughly	means	that	the	dimensionality	of	the	variables	or	of	
the	parameters	is	not	sufficient	to	fit	the	data.

Next,	 consider	 the	 lower	 left	model	 in	 that	 figure,	ODE	n = 4.
That	model	has	high	accuracy	during	 the	 training	period,	but	very	
low	precision	during	the	prediction	period.	The	model	seems	to	be	
overfit.

During	the	prediction	period,	the	NODE	models	for	n = 3, 4	also	
have	relatively	low	precision	and	varying	but	typically	not	very	good	
accuracy.	Those	models	may	also	be	overfit,	for	which	overfit	means	
roughly	that	the	models'	high	dimensionality	caused	such	a	close	fit	
to	the	fluctuations	in	the	training	data	that	the	models	failed	to	cap-
ture	the	general	trend	in	the	data	sufficiently	to	predict	the	outcome	
in	the	test	period.

F I G U R E 2 Fit	of	models	to	the	smoothed	data.	Gold	curves	show	predicted	trajectories.	In	each	set,	the	top	plot	shows	hare	data	(blue),	
and	the	second	plot	shows	lynx	data	(green).	Subsequent	plots	show	dummy	variables	when	n > 2.	The	loss	sums	the	squared	deviations	
between	the	smoothed	data	and	the	model	trajectories.	I	measured	the	deviations	for	both	species	at	the	181	half-	yearly	intervals,	yielding	
362	squared-	deviation	components	in	the	loss	calculations.

F I G U R E 3 Phase	plots	for	ODE	(left)	and	NODE	(right)	models	with	n = 3.	Blue	curves	trace	the	data	trajectories,	and	gold	curves	trace	
the	models'	predicted	trajectories.	The	upper	plots	show	only	the	hare	and	lynx	variables	for	the	data	and	model,	tracing	n = 2	dimensional	
trajectories.	The	lower	plots	add	the	third	dummy	dimension	variable	from	the	model	to	both	the	data	and	model	trajectories.

 20457758, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ece3.9895, W

iley O
nline L

ibrary on [20/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

8 of 10  |     FRANK

Finally,	 consider	 the	 two	 best	 models	with	 regard	 to	 predictions	
during	the	test	period,	ODE	n = 3	and	NODE	n = 2.	Those	models	have	
intermediate	accuracy	during	the	fitted	period,	which	seemed	to	avoid	
underfitting	 and	overfitting.	During	 the	 test	period,	 both	models	had	
moderately	good	accuracy	with	regard	to	the	timing	of	oscillations	and	

moderately	good	precision	with	regard	to	variation	in	the	predicted	tra-
jectories.	Although	the	fits	are	far	from	perfect,	they	are	good	given	the	
short	training	period	in	relation	to	the	complex	shape	of	the	dynamics.

To	support	these	conclusions	for	the	quality	of	the	predicted	fits	
during	the	test	period,	 I	calculated	 loss	values	for	a	sample	of	3000	

F I G U R E 4 Fit	of	models	to	the	first	61	yearly	observations	(0–	60)	of	the	91	yearly	observations	(0–	90).	The	vertical	dotted	line	shows	the	
end	of	the	fitted	training	period.	The	subsequent	30 years	from	60	to	90	comprise	the	predictions	of	the	model	relative	to	data	not	used	in	
fitting.	The	layout	of	the	plots	and	colors	for	the	various	curves	match	Figure 2,	with	blue	for	smoothed	hare	data,	green	for	smoothed	lynx	
data,	and	gold	for	the	predicted	trajectories	of	the	models.	For	the	predicted	trajectories,	I	randomly	chose	30	parameter	combinations	from	
the	posterior	distribution	of	parameters	obtained	by	pSGLD	sampling.	The	loss	values	are	calculated	for	the	training	period,	0–	60.

 20457758, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ece3.9895, W

iley O
nline L

ibrary on [20/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

    |  9 of 10FRANK

trajectories	 for	 each	 of	 the	 six	 plots	 in	 Figure 4.	 The	 four	 best	 fits	
with	 the	 lowest	 loss	 values,	 given	as	mean ± standard	deviation,	 are	
NODE2	=	43 ± 6,	ODE3	=	78 ± 22,	ODE2	=	96 ± 15,	NODE3	=	180 ± 39.	
Repeating	the	procedure	yielded	similar	values	for	all	except	ODE3.	In	
49	of	80	separate	samples	of	3000	trajectories,	the	mean	ODE3	values	
were	 less	than	the	ODE2	mean	of	96.	Overall,	ODE3	appears	to	be	
better	on	average	than	ODE2	but	with	a	heavier	tail	of	larger	values.

A	technical	challenge	arises	when	deciding	how	long	to	run	the	
sampling	period	for	pSGLD	and	what	hyperparameters	to	use	to	con-
trol	that	process.	When	does	one	have	a	sufficient	estimate	for	the	
posterior	distribution	of	trajectories?	In	a	typical	run	for	this	study,	
I	 first	 ran	 the	pSGLD	sampling	 for	 a	warm-	up	period	 that	 created	
5000	parameter	sets	and	associated	trajectories.	I	collected	10,000	
or	more	parameter	sets	and	associated	trajectories	by	pSGLD.	For	
each	trajectory,	I	calculated	the	loss	for	the	full	time	over	both	the	
training	and	test	periods.

I	concluded	that	the	sample	was	sufficient	when	the	distribution	
of	 loss	values	for	the	first	half	of	the	10,000	generated	parameter	
sets	was	reasonably	close	to	the	distribution	of	loss	values	for	the	
second	half	of	the	generated	parameter	sets.	As	long	as	the	loss	dis-
tributions	were	not	broadly	different,	the	plotted	trajectory	distri-
butions	typically	did	not	look	very	different.

One	 could	 also	 study	 posterior	 distributions	 for	 individual	 pa-
rameters.	However,	 in	 this	 study,	 there	was	 no	 reason	 to	 analyze	
individual	parameters.

4  |  DISCUSSION

The	various	technical	advances	greatly	enhance	the	ease	of	fitting	
alternative	 differential	 equation	models.	New	possibilities	 arise	 to	
analyze	dynamics,	gain	insight	into	process,	improve	predictions,	and	
enhance	control.

In	this	article,	I	focused	on	fitting	observed	dynamics	from	a	nat-
ural	system.	Alternatively,	one	could	study	how	to	design	a	system	
to	achieve	desired	dynamics	or	to	match	a	theoretical	target	pattern	
(Hiscock,	2019).

The	 pSGLD	 method	 to	 sample	 parameter	 combinations	 near	 a	
local	 optimum	 also	 raises	 interesting	 possibilities	 for	 future	 study.	
Technically,	it	is	a	remarkably	simple	and	computationally	fast	method.	
Conceptually,	it	creates	a	kind	of	random	walk	near	a	local	optimum	on	
a	performance	surface,	similar	to	mutation-	selection	dynamics	near	a	
local	optimum	of	a	fitness	landscape	(Neher	&	Shraiman,	2011).	That	
analogy	 suggests	 the	potential	 to	gain	 further	understanding	of	 ge-
netic	variation	and	evolutionary	dynamics	on	complex	fitness	surfaces.

The	reviewers	asked	about	what	insights	into	ecology	might	arise	
from	this	study.	For	example,	how	do	the	growth	rate	and	competi-
tion	parameters	compare	between	 the	ODE	model	with	n = 3	 and	
the	NODE	model	with	n =	2?	What	additional	 information	can	we	
learn	from	the	best	 fitted	ODEs	beyond	the	classic	Lotka-	Volterra	
model?	What	ecological	meaning	could	the	additional	dummy	vari-
ables	have?	What	are	the	application	prospects	and	the	limitations	
in	applying	this	kind	of	approach?

I	agree	that	these	are	essential	questions	to	answer	over	the	long	
term.	Otherwise,	 the	methods	 do	 not	 advance	 our	 understanding	
of	ecological	data	and	ultimately	provide	 little	value.	However,	my	
intent	for	this	study	was	primarily	methodological.	 If	we	are	even-
tually	going	to	 improve	our	ability	to	deal	with	such	questions,	we	
must	 initially	solve	the	methodological	challenges.	 In	my	view,	the	
commonly	analyzed	hare	and	lynx	data	provide	a	nice	test	case	for	
exploring	new	methods	but	do	not	provide	nearly	enough	informa-
tion	to	say	anything	significant	about	ecology.	I	hesitate	to	overint-
erpret.	I	do	believe	that	as	our	methods	improve,	we	will	be	able	to	
apply	such	methods	to	broader	data	sets	and	to	design	analyses	that	
will	improve	our	understanding	of	ecology.	But	that	improvement	is	
a	long-	term	goal.	This	is	an	early	step	toward	that	goal.

AUTHOR CONTRIBUTIONS
Steven A. Frank:	Conceptualization	(lead);	data	curation	(lead);	formal	
analysis	 (lead);	funding	acquisition	(lead);	 investigation	(lead);	meth-
odology	 (lead);	 project	 administration	 (lead);	 resources	 (lead);	 soft-
ware	 (lead);	 supervision	 (lead);	 validation	 (lead);	 visualization	 (lead);	
writing	–		original	draft	(lead);	writing	–		review	and	editing	(lead).

ACKNOWLEDG MENTS
A	preprint	of	this	manuscript	is	on	arXiv	(Frank,	2022b).

FUNDING INFORMATION
The	 Donald	 Bren	 Foundation,	 National	 Science	 Foundation	 grant	
DEB-	1939423,	 and	 DoD	 grant	 W911NF2010227	 support	 my	
research.

CONFLIC T OF INTERE S T S TATEMENT
The	author	declares	that	the	research	was	conducted	in	the	absence	
of	any	commercial	or	financial	relationships	that	could	be	construed	
as	a	potential	conflict	of	interest.

DATA AVAIL ABILIT Y S TATEMENT
All	data	and	code	are	available	at	https://github.com/evolb	io/FitODE
and	 on	 Zenodo	 at	 https://doi.org/10.5281/zenodo.6463624. The
parameters	and	output	used	 to	generate	 the	 figures	 in	 this	article	
are	only	available	at	Zenodo.

ORCID
Steven A. Frank https://orcid.org/0000-0001-7348-7794

R E FE R E N C E S
Baydin,	A.	G.,	Pearlmutter,	B.	A.,	Radul,	A.	A.,	&	Siskind,	 J.	M.	 (2018).	

Automatic	differentiation	in	machine	learning:	A	survey.	Journal of
Machine Learning Research,	18,	1–	43.

Bezanson,	J.,	Edelman,	A.,	Karpinski,	S.,	&	Shah,	V.	B.	(2017).	Julia:	A	fresh	
approach	to	numerical	computing.	SIAM Review,	59,	65–	98.

Bonnaffé,	W.,	&	Coulson,	T.	(2022).	Fast fitting of neural ordinary differen-
tial equations by Bayesian neural gradient matching to infer ecological
interactions from time series data.	arXiv:2209.06184.

Bonnaffé,	W.,	Sheldon,	B.	C.,	&	Coulson,	T.	(2021).	Neural	ordinary	dif-
ferential	 equations	 for	 ecological	 and	 evolutionary	 time-	series	
analysis.	Methods in Ecology and Evolution,	12,	1301–	1315.

 20457758, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ece3.9895, W

iley O
nline L

ibrary on [20/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://github.com/evolbio/FitODE
https://doi.org/10.5281/zenodo.6463624
https://orcid.org/0000-0001-7348-7794
https://orcid.org/0000-0001-7348-7794

10 of 10  |     FRANK

Chen,	 R.	 T.	Q.,	 Rubanova,	 Y.,	 Bettencourt,	 J.,	 &	Duvenaud,	 D.	 (2018).	
Neural	ordinary	differential	equations.	arXiv:1806.07366.

Dupont,	E.,	Doucet,	A.,	&	Teh,	Y.	W.	 (2019).	Augmented	neural	ODEs.	
Advances in Neural Information Processing Systems,	32.

Frank,	S.	A.	 (2022a).	Automatic	differentiation	and	the	optimization	of	
differential	 equation	 models	 in	 biology.	 Frontiers in Ecology and
Evolution,	10,	1010278.

Frank,	S.	A.	(2022b).	Optimizing	differential	equations	to	fit	data	and	pre-
dict	outcomes.	arXiv:2204.07833.

Goodfellow,	I.,	Bengio,	Y.,	&	Courville,	A.	(2016).	Deep learning.	MIT	Press.
Hiscock,	T.	W.	 (2019).	Adapting	machine-	learning	algorithms	 to	design	

gene	circuits.	BMC Bioinformatics,	20,	214.
Kingma,	D.	P.,	&	Ba,	J.	(2014).	Adam:	A	method	for	stochastic	optimiza-

tion.	arXiv:1412.6980.
Li,	 C.,	 Chen,	 C.,	 Carlson,	 D.,	 &	 Carin,	 L.	 (2015).	 Preconditioned	 sto-

chastic	 gradient	 Langevin	 dynamics	 for	 deep	 neural	 networks.	
arXiv:1512.07666.

Margossian,	 C.	 C.	 (2019).	 A	 review	 of	 automatic	 differentiation	 and	
its	 efficient	 implementation.	 WIREs Data Mining and Knowledge
Discovery,	9,	e1305.

Neher,	R.	A.,	&	Shraiman,	B.	I.	(2011).	Statistical	genetics	and	evolution	of	
quantitative	traits.	arXiv:1108.1630.

Odum,	E.	P.,	&	Barrett,	G.	W.	 (1971).	Fundamentals of ecology	 (3rd	ed.).	
W.	B.	Saunders.

Perkel,	 J.	 M.	 (2019).	 Julia:	 Come	 for	 the	 syntax,	 stay	 for	 the	 speed.	
Nature,	572,	141–	142.

Rackauckas,	C.,	 Innes,	M.,	Ma,	Y.,	Bettencourt,	J.,	White,	L.,	&	Dixit,	V.	
(2019).	 DiffEqFlux.jl—	A	 Julia	 library	 for	 neural	 differential	 equa-
tions.	arXiv:1902.02376.

Rackauckas,	C.,	Ma,	 Y.,	Martensen,	 J.,	Warner,	 C.,	 Zubov,	K.,	 Supekar,	
R.,	Skinner,	D.,	&	Ramadhan,	A.	(2020).	Universal	differential	equa-
tions	for	scientific	machine	learning.	arXiv:2001.04385.

Rackauckas,	C.,	&	Nie,	Q.	(2017).	DifferentialEquations.jl—	A	performant	
and	 feature-	rich	 ecosystem	 for	 solving	 differential	 equations	 in	
Julia.	Journal of Open Research Software,	5,	15.

Sharma,	S.,	Sharma,	S.,	&	Athaiya,	A.	(2020).	Activation	functions	in	neu-
ral	 networks.	 International Journal of Engineering Applied Sciences
and Technology,	4,	310–	316.

How to cite this article: Frank,	S.	A.	(2023).	Optimizing	
differential	equations	to	fit	data	and	predict	outcomes.	
Ecology and Evolution,	13,	e9895.	https://doi.org/10.1002/
ece3.9895

 20457758, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ece3.9895, W

iley O
nline L

ibrary on [20/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1002/ece3.9895
https://doi.org/10.1002/ece3.9895

	Optimizing differential equations to fit data and predict outcomes
	Abstract
	1|INTRODUCTION
	2|MATERIALS AND METHODS
	2.1|Comparing NODE and ODE models
	2.2|Dummy variables
	2.3|Data smoothing
	2.4|Sequential fitting
	2.5|Approximate Bayesian posterior
	2.6|Julia computer language
	2.7|Overview of the models

	3|RESULTS
	3.1|ODE versus NODE, varying n
	3.2|Phase plots
	3.3|Predicting future observations

	4|DISCUSSION
	AUTHOR CONTRIBUTIONS
	ACKNOWLEDGMENTS
	FUNDING INFORMATION
	CONFLICT OF INTEREST STATEMENT
	DATA AVAILABILITY STATEMENT

	REFERENCES

