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a b s t r a c t 

As systems become more robust against perturbations, they can compensate for greater sloppiness in the 

performance of their components. That robust compensation reduces the force of natural selection on 

the system’s components, leading to component decay. The paradoxical coupling of robustness and decay 

predicts that robust systems evolve cheaper, lower performing components, which accumulate greater 

mutational genetic variability and which have greater phenotypic stochasticity in trait expression. Pre- 

vious work noted the paradox of robustness. However, no general theory for the evolutionary dynamics 

of system robustness and component decay has been developed. This article takes a first step by linking 

engineering control theory with the genetic theory of evolutionary dynamics. Control theory emphasizes 

error-correcting feedback as the single greatest principle in robust system design. Linking control the- 

ory to evolution leads to a theory for the evolutionary dynamics of error-correcting feedback, a unifying 

approach for the evolutionary analysis of robust systems. This article shows how increasingly robust sys- 

tems accumulate more genetic variability and greater stochasticity of expression in their components. The 

theory predicts different levels of variability between different regulatory control architectures and differ- 

ent levels of variability between different components within a particular regulatory control system. The 

theory also shows that increasing robustness reduces the frequency of system failures associated with 

disease and, simultaneously, causes a strong increase in the heritability of disease. Thus, robust error cor- 

rection in biological regulatory control may partly explain the puzzlingly high heritability of disease and, 

more generally, the surprisingly high heritability of fitness. 

© 2019 Elsevier Ltd. All rights reserved. 
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1. Introduction 

As a system’s robustness increases, it becomes less sensitive to

perturbations. A robust system also becomes less sensitive to the

effects of deleterious mutation, a particular kind of perturbation.

Less sensitivity to mutation means that the force of natural selec-

tion against mutation becomes weaker. That weakened selection

leads to the accumulation of more mutations and increased genetic

variability, a consequence of mutational robustness ( Rutherford and

Lindquist, 1998; de Visser et al., 2003; Wagner, 2013 ). 

Previously, I suggested a more general principle that influences

the design dynamics of all systems, the paradox of robustness. The

better a system becomes at compensating for perturbations and er-

rors, the more the system’s components will tend to decay in per-

formance ( Frank, 2004, 2007b, 2013 ). Better error correction begets

more errors. 

Component decay may take the form of increased variability or

sloppiness in function, of which mutational variance is one special
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i  

r  

https://doi.org/10.1016/j.jtbi.2019.02.012 

0022-5193/© 2019 Elsevier Ltd. All rights reserved. 
ase. Alternatively, when robust systems can compensate for poor

omponents, the system’s components may decay to less costly

nd lower performing types. In that case, the economics of effi-

iency favors robust systems to use cheaper components. 

Such economic arguments of efficiency seemingly must apply

o the design dynamics that shape all systems. However, no broad

heory has developed general aspects of robust system design dy-

amics in relation to the decay of system components. How does

he ongoing duality of improved system robustness and compo-

ent decay shape the path by which complex systems are created?

hat are the consequences for system characteristics? 

This article takes an initial step toward a broad theory. I focus

n error-correcting feedback for the initial analysis of robustness,

ecause error correction is the single greatest principle of robust

ystem design ( ̊Aström and Murray, 2008; Dorf and Bishop, 2016;

rank, 2018a; Ogata, 2009 ). 

In an error-correcting feedback system, the error measures the

ifference between a systems actual output and its target. By feed-

ng back the error as an input, the system can move in the di-

ection that reduces the error. Error correction compensates ro-

https://doi.org/10.1016/j.jtbi.2019.02.012
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ustly for misinformation about system dynamics and for pertur-

ations to system components. Excellent performance often follows

n spite of limited information, sloppy components, and noisy sig-

als. 

Engineering control theory provides a rich, highly developed

heory of error-correcting feedback. I connect the insights of con-

rol theory with the well developed theory of evolutionary dynam-

cs for genetic systems. This link between control theory and ge-

etics provides a first step toward a theory for the evolutionary

ynamics of feedback control. 

This article focuses on the consequences of robust feedback

ontrol for the patterns of genetic and phenotypic variability that

rise by evolutionary dynamics. The final Conclusions section sum-

arizes key results and promising directions for future study. 

. Background 

The first article in this series developed the methods to analyze

erformance, dynamics, and feedback loops ( Frank, 2018b ), based

n the general principles of control theory ( ̊Aström and Murray,

008; Dorf and Bishop, 2016; Frank, 2018a; Ogata, 2009 ). This sec-

ion briefly reviews the methods of that first article. I will then use

hose methods to develop new analyses of genetic and phenotypic

ariability in relation to control architecture. 

.1. Goals of the analysis 

A brief overview of the four analytical sections of this article

ets the context for the review of methods. The first analysis fo-

uses on the sensitivity to perturbation of different control archi-

ectures. This analysis depends on the basic principles of control

oop architecture and the measure of performance, J . The param-

ter γ weights the relative importance for different com ponents of

erformance. 

The second analysis considers the evolution of the mean and

tandard deviation of performance (fitness). Once again, the focus

s on the consequences of alternative control architectures. The key

arameters include α, which sets the intrinsic dynamics of all or-

anisms, and the variable p i and q j values that determine how an

ndividual modulates its intrinsic dynamics in response to the en-

ironment. 

The third analysis focuses the evolution of the variables that set

he response dynamics of each individual. The fourth analysis mea-

ures the tendency for poor performance, or disease, to be influ-

nced by an inherited genetic tendency. 

.2. Performance and fitness 

I focus on two components of performance, homeostasis and

racking. Those two components typically trade off. A good home-

static system tends to respond weakly to external disturbance in-

uts but, in consequence, tends to be a poor tracking system that

nly slowly follows the long-term changes in environmental inputs.

For homeostasis, I analyze the system’s response to a single in-

ense perturbation of short duration. Performance measures the

eviation of the system from its homeostatic setpoint 

 p = 

∞ ∫ 
0 

y 2 d t, 

n which y ( t ) is the system output at time t , and y = 0 is the target

etpoint for the system. Thus, J p measures the total squared devi-

tion of the system in response to a perturbation. I use the classic

irac delta impulse perturbation applied at time zero, which im-

oses an input of infinite intensity and infinitesimal duration at

ime zero. 
For tracking, I analyze the error deviation, e = y − u, in which

ach term depends on time, t , with u as the environmental input

hat sets the system target state, yielding the measure of tracking

erformance 

 s = 

T ∫ 
0 

e 2 d t 

rom an initial time t = 0 until some final time, t = T . I will typ-

cally use T = 20 , which is sufficient to describe how well a sys-

em adjusts to an environmental change. The error deviations are

easured in response to a step-change in the environmental input,

 (t) = 0 for t < 0 and u (t) = 1 for t ≥ 0. This tracking component of

erformance, J s , captures the system’s step response. 

Total performance is a combination of step and perturbation re-

ponse 

 = J s + γJ p , (1)

n which γ weights the importance of the homeostatic perturba-

ion response relative to the tracking step response. 

Lower values of J correspond to smaller squared deviations

rom target phenotypes. Thus, minimal values of J correspond to

aximal performance. 

For evolutionary analysis, we can transform performance mea-

ures into fitness as 

 (J ) = exp 

[
−
( J 

J 

∗ − 1 

)2 
/

2 σ 2 

]
, (2) 

n which J 

∗ is the optimum (minimum) value of the performance

easure, thus optimum (maximum) fitness is one, and minimum

tness is zero. Smaller values of σ 2 correspond to a more rapid

ecline in fitness with a change in performance. I typically use
2 = 0 . 01 , which corresponds to σ = 0 . 1 , and approximately a 40%

ecline in fitness for a 10% reduction in performance. 

.3. Dynamics and transfer functions 

We can transform the temporal dynamics in the time variable t

or a differential equation such as 

¨
 + a 1 ̇ x + a 2 x = 

˙ u + bu (3)

nto an expression in the complex Laplace variable s as 

 (s ) = 

Y (s ) 

U(s ) 
= 

s + b 

s 2 + a 1 s + a 2 
. (4)

he numerator expresses a polynomial in s derived from the coef-

cients of u from the right side of Eq. 3 . Similarly, the denominator

xpresses a polynomial in s derived from the coefficients in x from

he left side of Eq. 3 . The eigenvalues for the process, P , are the

oots of s for the polynomial in the denominator. 

From Eq. 4 , we may write Y (s ) = U(s ) P (s ) . In words, the output

ignal, Y ( s ), is the input signal, U ( s ), multiplied by the transforma-

ion of the input signal by the process, P ( s ). Because P ( s ) multiplies

he signal, we may think of P ( s ) as the signal gain or amplification,

hich is the ratio of output to input, Y / U . 

The simple multiplication of the signal by a process means that

e can easily cascade multiple input-output processes. In Fig. 1 a, a

reprocessing controller of the form C(s ) = U(s ) /R (s ) takes an ex-

ernal environmental input signal, R , and outputs a control signal,

 . Thus, we can write a cascade, R → C → P → Y , that takes input, R ,

nd transforms that input via a preprocessing controller, C , and a

rocess, P , to yield an output, Y , as 

 (s ) = R (s ) C(s ) P (s ) = R (s ) 
U(s ) 

R (s ) 

Y (s ) 

U(s ) 
. 

hese functions of s are called transfer functions . 
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Fig. 1. Control systems in which a modifiable controller, C , alters the dynamics of 

an intrinsic, unmodifiable plant process, P . (a) Open loop system, for which the in- 

put signal, R , leads to the output, Y , through R → G → Y for the internal open loop 

processing system, G = CP. (b) Closed feedback loop, for which the input signal, R , 

leads to the output, Y , through R → G → Y for the internal closed loop processing 

system, G = CP/ (1 + CP) , as described in Eq. 5 . Here, negative feedback means sub- 

tracting the output from the input. That subtraction appears as “−1 ” in the control 

loop diagram, following standard control theory convention. 
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2.4. Feedback loops 

With transfer functions, we can easily calculate the total system

response of a feedback loop. Consider the steps by which we can

analyze the dynamics of the feedback loop in Fig. 1 b. 

If we write all signals and internal processes as transfer func-

tions, with Y as the transfer function for the output signal, R as

the transfer function for a system setpoint given as the system in-

put, and E = R − Y as the transfer function for the error between

the external setpoint and the actual output, then the direct line of

signal processing between the input and the output without feed-

back yields an output Y = CP E, because transfer functions multiply

along a signal line. Substituting E = R − Y into the previous input-

output expression, we obtain 

 = 

CP 

1 + CP 
R = GR. 

The complete feedback loop system, G , that takes input R and

yields output Y is 

G = 

CP 

1 + CP 
= 

L 

1 + L 
(5)

in which L = CP is often called the open loop component of the

system—the open part of the system without the feedback that

closes the loop. 

2.5. Optimized loop example 

The analyses in this article begin with simple control loop ex-

amples, with structures such as those in Fig. 1 . I use the intrinsic,

unmodifiable “plant” process 

P = 

1 

s 2 + αs + 1 

, (6)

which corresponds to the dynamics of the second-order differential

equation 

ẍ + α ˙ x + x = u 

for system state x ( t ) and input u ( t ), with the single parameter α,

and with system output equivalent to system state, y ≡ x . Optimiz-

ing the performance measure, J , in Eq. 1 yields α = J = 

√ 

1 + γ ,
n which γ weights the relative importance of homeostasis versus

racking. I use this optimal value for α in all analyses. Thus, we

an study how modifiable processes can be added to a system to

chieve improved performance. 

For the open loop in Fig. 1 a, the controller, C , alters the input

ignal that is passed into the intrinsic process, P . For the controller,

 use 

 = 

q 0 s 
2 + q 1 s + q 2 

p 0 s 2 + p 1 s + p 2 
. (7)

ptimization methods find the best values of the q i and p i param-

ters. With optimized parameters, we can then study the sensi-

ivity of the system to genetic or phenotypic variability in those

arameters. Numerical optimization ( Frank, 2018b ) based on the

erformance measure in Eq. 1 suggests that the optimal controller

ypically transforms the uncontrolled second order plant system, P ,

nto the first order open loop controlled system G = CP in Fig. 1 a,

n which 

 = 

p 

s + p 
. (8)

he optimized controller is 

 = 

p 
(
s 2 + αs + 1 

)
s 

= 

p 

s + p 

1 

P 
, (9)

ith p = 1 / 
√ 

γ . The optimized open loop has performance J =
 

γ , which improves on the optimized unmodified plant, P , with

erformance J = 

√ 

1 + γ . The optimized parameters of C with re-

pect to the general form in Eq. 7 are 

q 0 = p = 1 / 
√ 

γ

q 1 = pα = 

√ 

(1 + γ ) /γ

q 2 = p = 1 / 
√ 

γ

p 0 = 0 

p 1 = 1 

p 2 = p = 1 / 
√ 

γ . (10)

Fig. 1 shows that both open and closed loops process the input

ignal, R , into the output signal, Y , through some internal signal

rocessing, G , such that the systems can be written as R → G → Y .

hus, for optimized open and closed loops, G typically takes the

ame form, even though the two control loop architectures arrive

t that final overall processing by different controllers. 

For the open loop, G = CP, and for the closed loop, G is given

n Eq. 5 . For the closed loop to produce the same optimal G as the

pen loop, given in Eq. 8 , the optimal closed loop controller is 

 = 

p 
(
s 2 + αs + 1 

)
s 

= 

p 

s 

1 

P 
, (11)

ith parameters equivalent to those in Eq. 10 , except that p 2 = 0 . 

. Sensitivity of control loops 

To study the sensitivity of systems to genetic and phenotypic

ariation, we can analyze changes in performance with changes in

he controller parameters given in the previous section. For the ex-

mples in this section, I use γ = 2 . 

.1. Open vs closed loop sensitivity 

Fig. 2 a compares the sensitivity of the open versus closed loops

n Fig. 1 for changes in the controller parameters. For the open

oop (blue curves), I initially set all parameters to the optimum val-

es in Eq. 10 . Then, for each parameter one at a time, I varied the
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Fig. 2. Sensitivity comparison between systems. (a) Open loops (blue curves) versus closed loops (gold curves) with respect to variations in the controller parameters. The 

x -axis covers θ2 x , with θ as the optimal value and x over the range ± 2. The height of each curve is the fitness relative to a maximum value at the optimal parameter value 

in the center of each plot at x = 0 . The optimal parameter for p 0 is zero, thus that parameter is not shown. The optimal closed loop parameter for p 2 is zero, thus there is no 

gold curve for the closed loop for that parameter. For p 1 , the sensitivity curves overlap, thus only the gold curve appears. (b) Single closed loop (gold curves) versus double 

closed loop (green curves). The x -axis range is ± 4. The single loop gold curves match the gold curves from the upper panels, adjusted for the different x -axis scaling. (For 

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 3. Double closed loop feedback. The inner loop is identical to the single closed 

loop in Fig. 1 b. The outer loop provides a second error-correcting mechanism that 

potentially reduces the system’s sensitivity to parameter variations in the inner 

loop. 
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alue over θ2 x for the optimal parameter value, θ , and the range

f x over ± 2. 

For each parametric variation, I calculated the performance

easure in Eq. 1 , and then transformed performance into fitness

n Eq. 2 . Thus, each curve shows the variation in fitness as a func-

ion of variation in a single parameter, holding the other parame-

ers constant at their optimal values. 

For the closed loop (gold curves), I followed the same proce-

ure. The only difference is that the optimal closed loop value for

he parameter p 2 is zero, thus there is no closed loop gold curve

or that parameter. 

The closed loop is less sensitive to variations in the q param-

ters. The intrinsic error correction of feedback compensates for

arametric variations when compared to an open loop, which

acks any intrinsic correction for errors. The closed loop q param-

ters would be expected to maintain significantly greater genetic

ariability. 

For a given genotype, phenotypic fluctuations in the less sen-

itive closed loop parameters would have less fitness consequence

han similar fluctuations in open loop parameters. Thus, natural se-

ection for regulation of expression would be weaker, and greater

bserved phenotypic stochasticity in those parameters would be

xpected. 

The relative relaxation of sensitivity for the various q parame-

ers differs, leading to predicted differences in genetic and pheno-

ypic variability. This example suggests that one may construct a

undamental theory for genetic and phenotypic variability in rela-

ion to the architecture of control and the associated sensitivities

f particular system components. 
The error correction of feedback loops may create particu-

arly strong robustness and insensitivity to parametric fluctua-

ions. Thus, a natural association arises between enhanced sys-

em robustness and associated genetic and phenotypic decay in the

erformance of certain system components ( Frank, 2004, 2007b,

013 ). 

.2. Double closed loop sensitivity 

Robustness mechanisms in the form of feedback loops may be

ayered on top of each other in control architectures. For example,

ig. 3 shows a double feedback loop. The inner loop matches the
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Fig. 4. Sensitivity of the double feedback loop to variations in the additional r and k parameters introduced with the double loop architecture. The x -axis is the value of 

the parameter with the optimum at zero and varying over the range 2 x for x ± 4. (a) Sensitivity of fitness to changes in k (blue) and r (gold) of the outer controller, D , 

holding the inner loop values of those parameters in the controller C at their optimum. The overlapping curves are approximately the same. (b) Sensitivity of the inner loop 

controller parameter, q 2 , for different values of k in both the inner and outer loop controllers, with k = 1 /r (blue), k = 2 /r (gold), and k = 8 /r (green). (For interpretation of 

the references to color in this figure legend, the reader is referred to the web version of this article.) 
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basic feedback architecture of Fig. 1 b. The outer loop adds another

error correcting layer of control. How much does the extra robust-

ness of the outer loop reduce the sensitivity of the controller pa-

rameters of the inner loop? 

Fig. 2 b compares the sensitivities of a single closed loop

( Fig. 1 b) in the gold curves with the sensitivities of the double

closed loop ( Fig. 3 ) in the green curves. The double loop greatly re-

duces the sensitivities of the controller parameters. That enhanced

robustness and reduced sensitivity of the double loop will lead to

the accumulation of greater genetic variability and the expression

of greater phenotypic stochasticity. 

To calculate the double loop sensitivity, one has to start with

the altered optimal parameters for the controller, C , and the opti-

mal parameters for the additional system component, D . We be-

gin with the inner loop given earlier: L = CP and G = L/ (1 + L ) .

Then, applying the same logic to the outer loop, we can write

the complete system as H = DG/ (1 + DG ) . The optimized full sys-

tem, H , has the same dynamics as the previous optimized systems,

H = p/ (s + p) with p = 1 / 
√ 

γ . 

Let the parametric form of the outer controller be D = k + kr/s,

a standard proportional-integral controller from basic control the-

ory ( ̊Aström and Murray, 2008; Dorf and Bishop, 2016; Frank,

2018a; Ogata, 2009 ). Then the optimal controller is 

 = 

p 

ks + kr − p 

1 

P 
, (12)

which yields the controller parameters as in Eq. 10 with p 1 = k

and p 2 = kr − p. In the numerical example shown in Fig. 2 b, I used

r = 10 and k = 1 /r. 

Fig. 4 shows the effects of varying r or k on aspects of system

sensitivity. In Fig. 4 a, I varied r or k within the outer loop con-

troller, D , but kept the default values of r = 10 and k = 1 /r for the

inner controller, C . The plot shows that system performance does

not change significantly when r or k is multiplied by a factor of 2 x 

for x ≈ 1/3, which means altering the parameter by approximately

± 26%. 

Fig. 4 b shows the effect of varying k in both the inner and outer

loops on the sensitivity of the parameter q 2 of the controller, C . The

outer blue curve of Fig. 4 b corresponds to k = 1 /r, which matches

the outer green curve of Fig. 2 b for q 2 . The middle gold curve of

Fig. 4 b corresponds to k = 2 /r. The inner green curve of Fig. 2 b cor-

responds to k = 8 /r, which approximately matches the inner gold

curve of Fig. 2 b. Thus, the reduced sensitivity of the inner loop pa-

rameters induced by the double feedback loop architecture is itself

sensitive to variation in the matching k parameter of the inner and

outer loops. 
. Computer simulations 

The previous sections suggested that additional error-correcting

eedback enhances robustness and reduces sensitivity. To evaluate

hose predictions, I studied an evolutionary model of the various

ontrol loop designs with respect to fitness and aspects of genetic

nd phenotypic variability. 

I used computer simulations to handle the full complexity of

he genetics, expression of traits, and calculation of fitness. The

upplementary Information (SI) describes the details of the simula-

ions and the parameters used in various simulation experiments.

he individual simulation experiments vary subsets of parameters

actorially, as described in the SI. The SI also provides additional

nalyses of the simulation output. The following sections highlight

he key results. 

. Robustness and fitness 

How does the robustness of error-correcting feedback influence

tness? To study that question, we can compare fitness for the

hree control loop designs: open loop, single error-correcting feed-

ack loop, and double error-correcting feedback loop. In theory,

reater error correction should enhance robustness. We can ana-

yze robustness by studying the mean and standard deviation in

tness for evolving populations with respect to varying levels of

erturbation to the intrinsic plant process, P . 

Fig. 5 shows that increased error correction robustly protects

gainst perturbations. For example, the green line in Fig. 5 a shows

he mean fitness response of the three control designs when the

lant parameter, α, in Eq. 6 is strongly perturbed. The error cor-

ection of the single (S) feedback loop significantly increases fit-

ess compared to the open (O) loop that cannot correct errors. The

ouble (D) feedback loop can restore the same high fitness level as

n the case for which the plant parameter is not perturbed (blue

ine). 

Similarly, in Fig. 5 b, the variation in fitness in the population

or the double (D) loop remains no greater under strong perturba-

ion to the plant (green line) than for the unperturbed case (blue

ine). In summary, single error correction provides some protec-

ion against perturbation and lessens the effects of perturbation,

hereas double error correction provides essentially perfect pro-

ection against perturbation. 

The simulations summarized in Fig. 5 also have mutation,

hich causes variation in the genetically determined component of

he controller parameters, and nongenetic stochastic fluctuations in

he controller parameters (see SI). Those fluctuations in controller

arameters prevent the population from reaching an optimal mean

tness of one. However, those controller fluctuations do not cause
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Fig. 5. Plots of (a) mean fitness and (b) standard deviation in fitness in relation to open (O), single (S), and double (D) control loops. The lines show different levels of 

perturbation to the intrinsic plant parameter in Eq. 6 , α = 

√ 

1 + γ = 

√ 

3 , for γ = 2 . The value of α in an individual is α = 

√ 

3 × 2 ξ , in which ξ is a random number drawn 

from a Gaussian distribution with mean of zero and standard deviation of aSD . The values of aSD are 0 (blue lines), 0.25 (gold lines), and 0.5 (green lines). Results from 

Experiment A as described in the Supplementary Information. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 

this article.) 

Fig. 6. Plots of (a,c) mean fitness and (b,d) standard deviation in fitness, as in Fig. 5 . (a,b) The lines show different levels of σ 2 , the parameter in Eq. 2 that determines the 

rate of change in fitness, w (J ) , with change in performance, J . The values of σ 2 are 0.01 for relatively rapid change in fitness with change in performance (blue lines), 0.1 

for relatively intermediate change in fitness with change in performance (gold lines), and 1 for relatively slow change in fitness with change in performance (green lines). 

(c,d) The lines show different levels of the mutation rate, with 10 −4 (blue lines), 10 −3 (gold lines), and 10 −2 (green lines). Results from Experiment B as described in the 

Supplementary Information. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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ignificant differences in the success of the three control loop de-

igns, as can be seen in the relative flatness of the blue lines. 

Fig. 6 shows the relative robustness of the three control loop

esigns with respect to two other parameters. In the top pan-

ls (a,b), the lines from green to blue show an increasing rate of

hange in fitness with changes in performance, corresponding to a

ecline in σ 2 in Eq. 2 . In other words, the blue lines show high

ensitivity of fitness to small changes in performance. High sensi-

ivity would occur if the performance characteristics had a strong

nfluence on the organism’s success. By contrast, the weaker sen-

itivity of fitness to performance in the green lines would occur if
erformance for the particular trait played a smaller overall role in

he lifetime success of an organism. 

The results in Fig. 6 a,b show, once again, that a single error-

orrecting loop provides significantly improved robustness relative

o an open loop. The double loop achieves almost complete ro-

ust protection, even when fitness becomes very sensitive to small

hanges in performance (blue lines). 

In the bottom panels, Fig. 6 c,d, the mutation rate increases from

he blue to the green lines. The very high mutation rate in the

reen lines degrades fitness and increase variability, whereas the

ower, more realistic rates in the blue and gold lines show that
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Fig. 7. Variability of system components in simulated populations. Each curve is a cumulative distribution function of inherited values. The colors show different control 

architectures corresponding to different levels of error-correcting feedback and robustness: open loop with no feedback (blue), single error-correcting feedback loop (gold), 

and double error-correcting feedback loop (green). The columns from left to right show variability for the parameters p 1 , p 2 , q 0 , q 1 , and q 2 . See text for explanation. In the 

second column, for the single feedback loop, p 2 has its optimum value at zero, thus the associated gold curve does not appear. The Supplementary Information provides full 

details of the methods and simulation data. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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as mutation rate declines, fitness mean and standard deviation

change relatively little. 

6. Genetic and phenotypic variability 

As the robustness of error-correcting feedback increases, we

may expect evolutionary dynamics to accumulate more variability

in system parameters. Put another way, better error correction at

the system level begets more errors at the component level. 

Particular components vary in their tendency to accumulate

variability. The tendency to vary depends on how much enhanced

error correction reduces the sensitivity of fitness to variability in

a particular component. Fig. 2 shows how each additional error-

correcting feedback layer reduces the sensitivity of particular com-

ponents. 

For example, the sensitivity of fitness to variability in the con-

troller parameter q 2 decreases greatly from the least robust open

loop (blue) to the single feedback loop (gold) to the double feed-

back loop (green). By contrast, enhanced robustness changes fit-

ness sensitivity relatively less with respect to variations in q 0 . 

In Fig. 2 , the analysis of variability for each component assumed

that all other components were fixed at their optimum value. In

an actual population, all of the components vary simultaneously.

Additionally, relative sensitivity provides insight into relative vari-

ability, but does not by itself determine the actual amount of vari-

ability. The computer simulations provide insight into robustness

and component variability that arise by evolutionary dynamics.

The Supplementary Information describes the simulation methods

and data analysis. 

In the simulated populations, two inherited genes influence the

variability of each controller parameter. The expressed parame-

ter value in an individual is the value encoded by its first gene

multiplied by 2 z , in which z is a random number drawn from a

Gaussian distribution with mean of zero and standard deviation of

stochWt × δ. The value of stochWt is a parameter of the simulated

population, and δ is the value encoded by the second gene. The

two genes may be thought of as encoding the inherited genetic

value of a parameter and the inherited tendency for phenotypic

variability in expression of that parameter. 

Fig. 7 summarizes the variability of the controller parameters

in a simulated population. The top-left panel shows the variability

in the inherited genetic value of the parameter p 1 over all individ-

uals in the population. Each curve is the cumulative distribution

function (CDF) for the probability distribution of genetic values. 

Along the horizontal axis, the curve is centered at the median

genetic value of the distribution, at half the maximum height of
he CDF curve, which varies between zero and one. The genetic

alues along the horizontal axis vary logarithmically from the me-

ian multiplied by 1 / 
√ 

2 to the median multiplied by 
√ 

2 . The flat-

er the CDF curve, the more widely variable the genetic values are

n the population. The frequency of any small interval of genetic

alues along the horizontal axis is proportional to the slope of the

DF curve. 

The three CDF curves in each upper panel show the differ-

nt control architectures. The blue curve plots an open loop with

o error correction, the gold curve plots a single error-correcting

eedback loop, and the green curve plots a double error-correcting

eedback loop. Robustness increases from the lowest robustness

epresented by the blue curve to the highest robustness repre-

ented by the green curve, with the gold curve in the middle. 

The double feedback loop (green), which is the most robust, ac-

umulates the greatest inherited genetic variability in all parame-

ers. The open loop (blue), which is the least robust, accumulates

he least amount of variability. 

These patterns of variability for the inherited genetic value

atch the main prediction that increasing system robustness cor-

esponds to greater component variability. 

The lower panels show the inherited tendency for stochastic

ariability in phenotypic expression. The horizontal axis ranges

rom zero, for no stochasticity, to one, for relatively high stochas-

icity. CDF curves that are flatter and to the right correspond to

reater stochasticity of expression. Again, the tendency is for the

ost robust double feedback loop to have the greatest variability,

hich in this case corresponds to higher values of stochasticity. 

These results for variability tend to follow the predicted sensi-

ivities in Fig. 2 . Thus, we can use fundamental theory to predict

ow particular components of a regulatory control system accumu-

ate genetic variability and stochastic variability in phenotypic ex-

ression. The theory suggests that certain components in the regu-

atory control system will tend to be highly variable, whereas other

omponents will be less variable. 

The Supplementary Information provides details about the sim-

lation methods, the various simulation experiments, the simula-

ion data, and the methods of data reduction. 

. Heritability of disease 

Many human diseases have a significant heritable genetic com-

onent ( Eichler et al., 2010; Frank, 20 07a; Manolio et al., 20 09 ).

hy doesn’t natural selection remove the deleterious genes that

ause disease? The paradoxical nature of robustness may partly ex-

lain the high heritability of disease ( Frank, 2004 ). 
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Fig. 8. Robustness reduces disease frequency and increases the heritability of disease. The horizontal axis shows the percentage of individuals in a population with a fitness 

reduction of more than 10%, classified as diseased. The vertical axis shows a measure of heritability ( Eq. 13 ). The rows show rising mutation rates from bottom to top of 

10 −4 , 10 −3 , 10 −2 . The columns show increasing intensity of selection from left to right with σ 2 = 10 0 , 10 −1 , 10 −2 . The colored points show increasing robustness from open 

loop (blue) to single feedback loop (gold) to double feedback loop (green). Each panel shows three replicate points for each colored loop type. In some panels, the three 

points overlap and appear as one or two. Data from Experiment D, as described in the Supplementary Information. (For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this article.) 
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Increased robustness protects against the failures caused by

erturbations, reducing disease. Better robustness also allows in-

reased inherited variability in each component of the system

 Fig. 7 ). Thus, when a robust system fails in disease, it may be

ore likely to do so because an individual has inherited faulty

omponents. In other words, robustness may reduce the frequency

f disease and raise the heritability of disease. 

Fig. 8 shows that robustness does reduce disease frequency and

ncrease the heritability of disease. In that figure, disease is defined

s a reduction in fitness of greater than 10% from optimum fitness.

he horizontal axes show the percentage of the population that

xpress disease. As robustness increases from open loop (blue) to

ingle feedback loop (gold) to double feedback loop (green), the

requency of disease declines. The symbol φ denotes the frequency

f disease, with 100 φ as the percentage of disease. 

The vertical axes measure the tendency of disease caused by

nherited genes, a measure of heritability. The figure follows the

redicted pattern: increased robustness reduces the frequency of

isease and raises the heritability of disease. 

The rows show increasing mutation rate from bottom to top.

ore mutation raises the frequency of diseased individuals and in-

reases both genetic variability and the heritability of disease. 

The columns show increasingly intense natural selection from

eft to right. Greater selection intensity means that the same

henotypic deviation in performance from the optimum yields a

reater reduction in fitness. As selection intensity rises, more indi-

iduals fall into the disease category. Heritability declines because

reater selection intensity reduces genetic variability and increases

he relative contribution of stochastic perturbations that arise in-

ependently of genotype. 

I measured heritability by recalculating fitness 100 times for

ach individual that fell into the disease category. Each fitness re-

alculation yields a different result because of stochastic perturba-

ions. In particular, the intrinsic process parameter α varies ran-

omly, and each controller parameter has a stochastic component

f expression, with the amount of stochastic variability for each

arameter determined by a separate genetic locus. 
I scored each fitness recalculation for whether it fell within the

isease category of a 10% or greater reduction in fitness from the

aximum. The value of ψ is the frequency of disease when ag-

regating over all fitness recalculations for all individuals initially

alling into the disease class. 

I defined a heritability measure as 

 = 

{
1 − log ψ/ log φ ψ ≥ φ
log φ/ log ψ − 1 ψ < φ. 

(13) 

 value of H = 0 means that ψ = φ, the frequency of recalculated

isease, ψ , was equal to the initial frequency of disease, φ. When

quality occurs, recalculation of fitness for a randomly chosen in-

ividual who is initially in the disease class shows no greater ten-

ency to fall again into the disease class than a randomly chosen

ndividual from the entire population. Thus, H = 0 means that dis-

ase is, on average, not associated with inherited genetic predispo-

ition. 

A value of H = 1 means that ψ = 1 , with all of the recalculated

tnesses for diseased individuals falling into the disease category.

erfect repeatability of disease upon recalculation means that in-

erited genetic predisposition completely determines disease. 

. Conclusions 

I highlight key results and promising directions for future work.

Layering of multiple robustness mechanisms greatly im-

roves system performance. In Fig. 5 , robustness increases along

he horizontal axis from an open loop (O) with no error correc-

ion to a single (S) error-correcting feedback loop to a double (D)

rror-correcting feedback loop. 

The single loop performs better than the open loop. However,

he single loop still suffers a degradation in performance when sig-

ificant perturbations influence intrinsic system dynamics. By con-

rast, the double layering of error correction upon error correction

ompensates almost completely for significant perturbations to in-

rinsic system dynamics. 
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The layering of robust error-correcting mechanisms greatly

boosts performance. Evolutionary dynamics may often favor such

layering of error-correcting regulatory control. 

Greater robustness increases both genetic variability and

stochasticity of trait expression. The top row of Fig. 7 shows the

genetic variation of five different parameter values that control the

system’s dynamic response to input. The center of each plot is near

the optimal value. The flatter the curve, the more widely variable

the genetic values for the trait. Variability rises significantly as ro-

bustness increases from an open loop (blue) to a single feedback

loop (gold) to a double feedback loop (green). 

The bottom row of Fig. 7 shows the inherited genetic value that

determines the stochastic fluctuations in trait expression. The flat-

ter the curve, the more high values there are in the population for

stochasticity of expression. Stochasticity rises significantly as ro-

bustness increases from open loop (blue) to single feedback (gold)

to double feedback (green). 

Theory makes strong comparative predictions about the rel-

ative variability of different system components. Variability in

some components has relatively little effect on robust system per-

formance, whereas variability in other components has relatively

stronger effects on performance. Thus, the theory provides a fun-

damental basis for predicting the relative genetic variability among

components and the relative stochasticity of expression. 

Fig. 2 shows how variation in individual components influ-

ences fitness. A broad flat curve means that large deviations in

a component have small effects on fitness. For example, compo-

nent q 2 in the top row changes from a very narrow, sensitive

curve in an open loop (blue) to a broader, less sensitive curve

in a single feedback loop (gold). In the third row, the q 2 panel

compares the same single feedback loop (gold) with a double

feedback loop (green). The double loop is significantly less sen-

sitive than the single loop. By this theory, one expects that each

additional robustness layer significantly increases the variability

of q 2 . 

By contrast, the change in sensitivity with robustness is much

less for q 0 . Thus, the associated change in variability with robust-

ness should be relatively lower for q 0 than for q 2 . Those theory

curves were obtained by analyzing the sensitivity of system fitness

to variations in each component, holding all other components at

their optimum value. In real systems, all components will vary si-

multaneously. 

The computer simulation output in Fig. 7 supports the predic-

tion that the variability of q 2 (fifth column) changes more with in-

creasing robustness than the variability of q 0 (third column). 

Robustness reduces the frequency of disease. I measured dis-

ease intensity by the fraction of the population with fitness re-

duced by at least X %. In the simulation analysis, I used 10%. Ro-

bustness reduced disease frequency, as shown in Fig. 8 . The hori-

zontal axis of each panel is the percentage of individuals classified

as diseased. As robustness increased from open loop (blue) to sin-

gle feedback loop (gold) to double feedback loop (green), disease

frequency declined. 

It may seem obvious that robustness should decrease disease

frequency. However, the evolutionary dynamics of robustness in re-

lation to disease can be complex. As system robustness increases,

fitness improves. But simultaneously, as system robustness in-

creases, components tend to decay in performance, which reduces

fitness ( Frank, 2004, 2007b, Lynch, 2012 ). 

The net effect of robustness on system performance depends on

the balance between the initial gain in system performance and

the decay in system performance that follows as components de-

cay. In this case, the net effect was a significant decline in disease

as robustness increased. At present, no general theory clarifies how

the opposing forces balance at equilibrium and the consequences

for disease frequency. I suspect there is some economic marginal
aw of gains and losses in performance that explains the balance

t equilibrium. 

Robustness increases the heritability of disease and the her-

tability of fitness. A feedback system corrects error. Good error

orrection requires a reasonably accurate estimate of errors and a

echanism to respond appropriately to error estimates. Thus, ro-

ust systems may be more sensitive to inherited changes that alter

ntrinsic error correction than to stochastic perturbations that can

e compensated by error-correcting feedback. 

In other words, greater robustness may lead to a higher heri-

ability of performance, because the genetically determined error-

orrection system dominates the performance of highly robust sys-

ems. To analyze that prediction in the simulations, I measured the

eritability of disease. For each individual that fell below the cutoff

f a 10% reduction in fitness from the optimum, I recalculated fit-

ess 100 times. Each recalculation included random perturbations

o the system dynamics. 

I measured heritability by the tendency for an individual ini-

ially classified as diseased to repeatedly fall into the disease class.

he higher the repeatability, the more strongly disease is deter-

ined by inherited genotype rather than stochastic perturbations.

ig. 8 shows that increasing robustness strongly enhances the her-

tability of disease. 

Perhaps intrinsic robustness partially explains the puzzlingly

igh heritability of many diseases ( Eichler et al., 2010; Frank,

0 07a; Manolio et al., 20 09 ). Also, fitness itself is often highly her-

table. That high heritability for fitness has been considered a puz-

le because natural selection should, in principle, rapidly remove

enetic variability for fitness ( Mousseau and Roff, 1987 ). Robust-

ess may explain the high heritability of fitness. 

Promising directions for future work. Each additional layer of

obustness causes the lower-level components to decay. How are

ystem design dynamics influenced by this inevitable system lay-

ring and component decay? How does layering and system design

y evolutionary processes differ from design by human designers? 

It would seem that design dynamics would favor substituting

 cheaper, lower-performing component when a system becomes

rotected by an additional robustness mechanism ( Frank, 2007b ).

ow important are such economic considerations in understanding

esign dynamics? 

I focused on the simplest type of error correction. How do the

arious advanced types of robustness mechanisms alter design dy-

amics? Control theory provides tools to analyze adaptive (learn-

ng) robustness mechanisms and other mechanisms such as model

redictive control ( Frank, 2018a ). Can we develop general under-

tanding of the various types of robustness and their consequences

or evolutionary dynamics? 

The theory predicts that different system components will accu-

ulate different amounts of variability in response to robustness.

uch predictions provide a theory for the relative levels of genetic

ariability and stochasticity of trait expression. Modern technol-

gy provides much data about genetic variability and single-cell

tochasticity of gene expression. In principle, it should be possible

o test the theory against those data. 

However, an open challenge remains to connect abstract no-

ions of error-correcting dynamics to individual genes and to par-

icular molecules within complex biochemical networks of reac-

ions ( Frank, 2018b ). Making that connection between function and

echanism remains an essential challenge for understanding the

esign of biological systems. 
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