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The evolutionary design of regulatory control balances various tradeoffs in performance. Fast reaction 

to environmental change tends to favor plastic responsiveness at the expense of greater sensitivity to 

perturbations that degrade homeostatic control. Greater homeostatic stability against unpredictable dis- 

turbances tends to reduce performance in tracking environmental change. This article applies the classic 

principles of engineering control theory to the evolutionary design of regulatory systems. The engineering 

theory clarifies the conceptual aspects of evolutionary tradeoffs and provides analytic methods for devel- 

oping specific predictions. On the conceptual side, this article clarifies the meanings of integral control, 

feedback , and design , concepts that have been discussed in a confusing way within the biological litera- 

ture. On the analytic side, this article presents extensive methods and examples to study error-correcting 

feedback, which is perhaps the single greatest principle of design in both human-engineered and nat- 

urally designed systems. The broad framework and associated software code provide a comprehensive 

how-to guide for making models that focus on functional aspects of regulatory control and for making 

comparative predictions about regulatory design in response to various kinds of environmental challenge. 

The second article in this series analyzes how alternative regulatory designs influence the relative levels 

of genetic variability, stochasticity of trait expression, and heritability of disease. 

© 2018 Elsevier Ltd. All rights reserved. 

1

 

T  

l  

b  

s  

o  

m  

i

 

t  

p  

f  

s

 

i  

s  

t  

K

 

b  

t  

n  

g  

i  

(  

 

p  

p  

e  

o  

g  

b  

a  

h

 

i  

c  

l  

h

0

. Introduction 

Regulatory control adjusts the expression of labile characters.

he study of labile characters has developed along two separate

ines. Molecular systems biology and physiology emphasize the

iochemical mechanisms and immediate response of observable

ystems. Evolutionary biology analyzes how phenotypically labile

r plastic characters influence variability in populations and ulti-

ate reproductive function, causing change in the design of organ-

sms. 

Studies rarely combine the details of regulatory control archi-

ecture with the evolutionary analysis of variability and change in

opulations. In this article, I work toward building the theoretical

oundation for integrating regulatory control and evolutionary per-

pectives ( Koonin and Wolf, 2006; Soyer, 2012 ). 

In the mechanistic literature, studies in systems biology, phys-

ology, and behavior consider how regulatory control systems re-

pond to changes in the environment. These disciplines have rich

heories about adjustable phenotypes ( Alon, 2007a; Ingalls, 2013;

eener and Sneyd, 2009; Mazur, 2006 ). 
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In the evolutionary literature, studies focus on the association

etween characters and reproductive fitness, the correlation be-

ween characters, the processes that influence genetic and phe-

otypic variation in populations, the evolutionary dynamics of

enes and characters, and the consequences of lability or plastic-

ty for the evolutionary origins of new characters and new species

 DeWitt and Scheiner, 20 04; Pigliucci, 20 01; West-Eberhard, 2005 ).

Lande (2014) emphasized that most evolutionary theories of

lasticity focus on how characters are set during a brief critical

eriod of development. Few theoretical studies have analyzed the

volution of labile characters that adjust continuously through-

ut an organism’s lifetime ( Fischer et al., 2014; Frank, 2002; Man-

el and Clark, 1988; McNamara and Houston, 1996 ). How can we

roaden the insights of evolutionary analysis to include the rich

rray of labile characters at the molecular, physiological, and be-

avioral level? 

As a first step, I will use the general approach of engineer-

ng control theory to describe the universal features of regulatory

ontrol architecture ( Iglesias and Ingalls, 2009 ). Control theory al-

ows us to relate particular design aspects of regulatory control to

volutionary problems. For example, error-correcting feedback is a

eneral design property common to many regulatory control sys-

ems. How can we relate error-correcting feedback to evolutionary

https://doi.org/10.1016/j.jtbi.2018.12.023
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jtb
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aspects of design tradeoffs between different components of per-

formance? What are the consequences of those tradeoffs for ge-

netic variability and stochasticity in phenotypic expression? 

In this series of articles, I combine the methods and insights of

engineering control theory with the evolutionary analysis of labile

characters. This first article introduces the methods and analyzes

fundamental design tradeoffs for labile characters. The second ar-

ticle in this series studies the consequences of alternative con-

trol architectures for genetic variability, phenotypic stochasticity

in trait expression, and the heritability of disease ( Frank, 2018b ).

Further articles develop the interplay between control architecture

and evolutionary dynamics. 

2. Overview 

This article analyzes evolutionary design tradeoffs for regulatory

control systems. To develop basic concepts, I focus on two design

goals. First, how do organisms track changing environmental sig-

nals with plastic, responsive regulatory control? Second, how do

organisms maintain a homeostatic setpoint in spite of environmen-

tal perturbations? 

Those two goals typically trade off, because faster responsive-

ness often improves environmental tracking but degrades home-

ostatic maintenance. The tradeoff between plastic responsiveness

and homeostatic maintenance depends on additional performance

tradeoffs, which I develop throughout this article. 

I emphasize the analytic methods by which one can model the

various tradeoffs and make predictions about organismal design. I

also discuss how one should think about the fundamental concepts

of regulatory design. 

Initially, I focus on functional design aspects of control, such as

error-correcting feedback, rather than on mechanistic aspects, such

as how particular molecules change in expression. Ultimately, the

theory must merge functional and mechanistic perspectives in par-

ticular applications. However, an evolutionary foundation must be-

gin with the basic framing of function. 

On the functional side, error-correcting feedback is perhaps the

single greatest design principle in both human-engineered and

naturally evolved control systems. Yet, the biological literature on

error-correcting feedback control presents various and sometimes

conflicting meanings of feedback . To clarify the meaning of feed-

back , one has to have a clear notion of the meaning of design in

biological systems. 

By developing those broad analytic and conceptual topics, this

article presents a how-to guide for making and interpreting evolu-

tionary models of regulatory control in biology. 

The first section begins with a simple model for tracking a

changing environmental signal. The second section introduces the

methods of engineering control theory. That theory provides the

most powerful tools for analyzing and interpreting regulatory con-

trol with respect to design goals, such as tracking and homeostasis.

The third section presents some alternative mechanisms by

which a biological system could control a process to achieve a de-

sign goal. One typically begins with some intrinsic dynamical pro-

cess, such as a biochemical reaction, and then considers how an or-

ganism modulates those given dynamics to improve performance.

Control designs include integrating deviations from target dynam-

ics, feeding back error into the system so it can self-correct, and

using filters to reject unwanted inputs. 

The fourth section clarifies key concepts of control that are of-

ten discussed in a confused way within the biological literature.

Those concepts include integral control, feedback , and design . 

The fifth and sixth sections summarize major design tradeoffs

and present performance measures that can be used to model

those tradeoffs. I emphasize the tradeoffs among the plastic re-

sponsiveness of environmental tracking, the homeostatic rejection
f perturbations, system stability, and the costs of controls that

odulate dynamics. 

I also consider how the various performance goals may trade

ff with robustness, which is the reduced sensitivity to random

erturbations and other uncertainties. Another key tradeoff con-

erns performance in relation to different frequencies of inputs.

etter performance to slowly changing inputs may trade off against

oorer performance with respect to more rapidly changing inputs. 

The seventh section analyzes the dynamics of an intrinsic bio-

ogical process, such as a biochemical reaction. Study of an intrin-

ic process in the absence of modulating control sets the stage for

he eighth section, which provides a detailed analysis of how error-

orrecting feedback control can modulate the intrinsic process and

mprove performance. 

The analysis of performance leads to explicit models of the var-

ous design goals and tradeoffs of control systems. I develop op-

imization methods and present several analytical and numerical

xamples. 

The ninth through twelfth sections emphasize particular design

radeoffs. Each section presents analytic methods and numerical

xamples. The tradeoffs with performance include the costs of con-

rol, the balance between plastic responsiveness and homeostatic

aintenance, the costs and benefits of error feedback versus sim-

ler direct control architectures, and the consequences of improv-

ng system stability subject to the cost of reduced performance. 

The final section discusses extensions and conclusions. The sup-

lemental files provide all of the software code in Wolfram Mathe-

atica and C ++ used to develop the analysis, numerical examples,

nd graphics. That code includes details of the methods and anal-

sis. The code also forms the basis for developing novel research

rojects on regulatory control. 

. Environmental signal tracking 

Lande’s (2014) simple exponential model for environmental

racking provides a good way to link the current evolutionary lit-

rature of phenotypic plasticity to the concepts and methods of

ngineering control theory. 

Following Lande, suppose that the labile component of pheno-

ype tracks the environment by the simple differential equation 

˙ x + ax = u, (1)

n which the overdot denotes differentiation with respect to time,

 , the term x ( t ) is the phenotypic deviation from the initial condi-

ion, x (0) = 0 , and phenotypic deviations are driven by the envi-

onmental input signal, u ( t ). I use notation that provides a natural

onnection to control theory. The relation to Lande’s notation is

 ( t ) ≡ ξ t , a ≡λ, and u ( t ) ≡λφ( εt ). 

By standard analysis, the phenotypic deviation from the initial

aseline at time t is 

x (t) = 

∫ t 

0 

e −aτ u (t − τ ) d τ. (2)

his process describes how the phenotypic deviation, x , arises from

he sequence of environmental input signals, u ( τ ), and the intrinsic

ate of decay for phenotypic deviations, a . 

If we know the dynamics of the environmental signal, u ( τ ), we

an use the integral solution to calculate x ( t ). However, such calcu-

ations can be tedious and often provide little insight. For example,

e might ask, in general, how an increase in the rate of tracking

djustment, a , influences the benefit of closely tracking the envi-

onment versus the cost of responding too strongly to noisy signals

r over-adjusting to sudden environmental shifts. 
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Fig. 1. Mechanistic descriptions of control. (a) The input-output flow in Eq. (4) . The 

input, U ( s ), is itself a transfer function. However, for convenience in diagramming, 

lower case letters are typically used along pathways to denote inputs and outputs. 

For example, in (a), u can be used in place of U ( s ). In (b), only lower case let- 

ters are used for inputs and outputs. Panel (b) illustrates the input-output flow of 

Eq. (5) . These diagrams represent open loop pathways, because there is no closed 

loop feedback pathway that sends a downstream output back as an input to an ear- 

lier step. (c) A basic closed loop process and control flow with negative feedback. 

The circle between r and e denotes addition of the inputs to produce the output. In 

this figure, e = r − y, is the error between the environmental reference input, r , and 

the system output, y . From Frank (2018a) . 
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. Control theory analysis 

The classic control theory approach to the analysis of dynamics

rovides much easier calculations of system response and much

eeper insight into general aspects of tradeoffs in the design of re-

ponsive systems. In addition, control theory analysis encourages

 more explicit description for the mechanistic basis of biologi-

al regulatory systems. With an explicit description of regulatory

ontrol, one can connect the specific design tradeoffs for pheno-

ypes to the underlying consequences for genetic variability and

he stochastic aspects of phenotypic expression. 

This section briefly reviews two key aspects of classic control

heory. I follow my recent tutorial exposition ( Frank, 2018a ). Addi-

ional details can be found in standard texts of control theory (e.g.,
˚ strm and Murray, 2008; Dorf and Bishop, 2016; Ogata, 2009 ). The

ollowing sections apply these control theory analytical methods to

volutionary aspects of phenotypic plasticity, emphasizing the key

radeoffs that influence design. Throughout this article, the refer-

nces in this paragraph can be used to follow up on technical as-

ects of signal processing and control theory. 

.1. Transfer functions 

Transfer functions are a particularly important tool in control

heory analysis. Here, I list some of the basic notation and how

ne can use transfer functions to analyze dynamics. Good introduc-

ions can be found in most textbooks on control theory (e.g., Åstrm

nd Murray, 2008; Dorf and Bishop, 2016; Ogata, 2009 ). My tuto-

ial provides many basic examples and discusses limitations and

otential remedies ( Frank, 2018a ). 

We can transform the temporal dynamics of any linear time-

nvariant differential equation in the time variable t into an ex-

ression in the complex Laplace variable s . For example, given the

ifferential equation in the time variable t as 

ẍ + a 1 ̇ x + a 2 x = 

˙ u + bu (3) 

ith y ≡ x (see below), we can write the dynamics equivalently

ith functions of the complex Laplace variable s as 

P (s ) = 

Y (s ) 

U(s ) 
= 

s + b 

s 2 + a 1 s + a 2 
. (4) 

he numerator expresses a polynomial in s derived from the coef-

cients of u in Eq. (3) . Similarly, the denominator expresses a poly-

omial in s derived from the coefficients in x from the left side of

q. (3) . The eigenvalues for the process, P , are the roots of s for the

olynomial in the denominator. 

From Eq. (4) and the matching picture in Fig. 1 a, we may write

 (s ) = U(s ) P (s ) . In words, the output signal, Y ( s ), is the input sig-

al, U ( s ), multiplied by the transformation of the input signal by

he process, P ( s ). Because P ( s ) multiplies the signal, we may think

f P ( s ) as the signal gain or amplification, which is the ratio of out-

ut to input, Y / U . 

Following the conventions of control theory, the system output

 expresses a transformation of the internal system state, X . In our

nitial examples, the output is equivalent to the internal system

tate, y ( t ) ≡ x ( t ), and thus Y ( s ) ≡ X ( s ). 

The simple multiplication of the signal by a process means that

e can easily cascade multiple input-output processes. For exam-

le, Fig. 1 b shows a system with extended input processing. The

ascade begins with an initial reference input, r , which is trans-

ormed into the command input, u , by a preprocessing controller,

 , and then finally into the output, y , by the intrinsic process, P .

he input-output calculation for the entire cascade follows easily

y noting that C(s ) = U(s ) /R (s ) , yielding 

Y (s ) = R (s ) C(s ) P (s ) = R (s ) 
U(s ) 

R (s ) 

Y (s ) 

U(s ) 
. (5) 
hese functions of s are called transfer functions . 

The transfer function in Eq. (4) includes the exponential track-

ng model in Eq. (1) as a special case. We can write that transfer

unction for Eq. (1) as 

P (s ) = 

1 

s + a 
. 

e can always multiply P by any constant to change the output

y that constant value. So we may choose to multiply P by a and

rite the exponential tracking model as 

P (s ) = 

a 

s + a 
. (6) 

his modified form has the benefit that as s → 0, the gain of the

rocess, P , goes to a normalized value of one. This normalized ex-

ression of P is the classic form of the basic low-pass filter, as de-

cribed in the next section. 

.2. Frequency domain 

In a standard temporal analysis, we might begin with a descrip-

ion of dynamics, such as Eq. (1) , and ask how the system state

 ( t ) changes with various fluctuating inputs, u ( t ). In control theory

anguage, how do fluctuations in the input signal u influence the

utput signal, x ? 

A linear time-invariant system transforms a sine wave input

nto a sine wave output at the same frequency, but with altered

agnitude and phase. Consider the response of the system in

q. (1) , with associated transfer function Eq. (6) , to sine wave in-

uts of frequency, ω. The left column of panels in Fig. 2 illustrates

he fluctuating output in response to the green sine wave input.

he blue (slow) and gold (fast) responses correspond to parameter

alues in Eq. (6) of a = 1 and a = 10 . 

Both the slow and fast transfer functions pass low frequency in-

uts into nearly unchanged outputs. At higher frequencies, they fil-

er the inputs to produce greatly reduced magnitude, phase-shifted
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Fig. 2. Response of the low pass filter in Eq. (6) . The blue (slow) and gold (fast) responses correspond to parameter values in Eq. (6) of a = 1 and a = 10 . (a-c) Temporal 

dynamics in response to input u ( t ) (green curve) as sine waves with varying frequencies, ω. The y -axes show the sine wave patterns for inputs (green) and outputs (blue 

and gold). (d) Response of Eq. (6) to unit step input, u (t) = 0 for t < 0 and u (t) = 1 for t ≥ 0. (e) The output-input gain ratio for the transfer function in Eq. (6) as a function 

of input frequency. This Bode plot shows the gain on a scale of 20log 10 (gain). A log gain value of zero corresponds to a gain of one, log (1) = 0 , which means that the output 

magnitude equals the input magnitude. (f) The phase shift of the output vs input sine waves as function of the input frequency, ω. This Bode phase plot shows the angular 

phase shift in degrees. Original figure and additional details in Frank (2018a) . (For interpretation of the references to color in this figure legend, the reader is referred to the 

web version of this article.) 
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outputs. The transfer function form of Eq. (6) is therefore called a

low pass filter, passing low frequencies and blocking high frequen-

cies. The two filters in this example differ in the frequencies at

which they switch from passing low frequency inputs to blocking

high frequency inputs. 

The Bode gain plot in Fig. 6 e provides a particularly important

summary of a dynamical system’s response to fluctuating inputs.

The gain is the ratio of the output magnitude to the input magni-

tude, the amount by which the transfer function amplifies its in-

put. The Bode plot shows a transfer function’s gain at various input

frequencies. 
. Mechanisms of phenotypic response 

The simple exponential tracking model in Eq. (1) can be related

o different underlying mechanisms that control phenotypic re-

ponse to the environment. This section describes three alternative

echanistic systems of control. The alternative mechanisms have

ifferent evolutionary consequences. The alternatives also highlight

undamental principles that apply broadly to regulatory control

ystems in biology. The following sections analyze these three dif-

erent mechanistic interpretations. 
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Fig. 3. An exponential process response, P , with the output signal modified by post- 

processing. The black components are intrinsic aspects that cannot be modified. The 

gold components are the affine transformation of the intrinsic process output, x , to 

yield the final output, y = α + βx . The variables α and β of the affine transforma- 

tion can be genetically variable and modified by evolutionary processes. This de- 

scription of an exponential system with genetically variable affine postprocessing 

matches Lande’s (2014) model. (For interpretation of the references to color in this 

figure legend, the reader is referred to the web version of this article.) 
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Fig. 4. Feedback loop with an integral controller. (a) The black box is fixed as an 

intrinsic process, the gold components can be adjusted by evolutionary or other 

design processes. (b) The entire feedback loop can be collapsed into a single transfer 

function and associated box, G , which is the exponential process. The denominator 

of G represents the feedback loop component, which is a designed feature, and so is 

entirely in gold. (For interpretation of the references to color in this figure legend, 

the reader is referred to the web version of this article.) 
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.1. Uncontrolled process 

The exponential response to the environment may be an intrin-

ic aspect of the organism. Fig. 3 illustrates an intrinsic exponential

rocess, P . In control theory, P typically signifies an unmodifiable

plant” process. 

Within the scope of our biological analysis, we consider the in-

rinsic process to be constrained and not subject directly to change.

ny modification of the organism’s response must arise by prepro-

essing the input signal that comes into P or postprocessing the

utput signal produced by P . 

Fig. 3 illustrates Lande’s (2014) model, in which the black com-

onents show the environmental input, u , and the intrinsic ex-

onential organismal response, x . The gold postprocessing yields

he final response, y = α + βx, in which the postprocessing can be

odified by natural selection through the genetically variable traits

and β . 

In this case, the component of phenotypic lability subject to

atural selection is the affine transformation of the intrinsic re-

ponse x , into the final organismal response, y. Affine transforma-

ion simply means a constant shift and stretch, here a shift by α
nd a stretch (or shrink) by β . 

An intrinsic exponential response may arise by a relatively sim-

le process. If the rate of increase in the response depends on the

nput, ˙ x = u, and the response degrades at a rate proportional to

he current response level, ˙ x = −ax, then we obtain the basic dif-

erential equation for the exponential response ˙ x + ax = u, as given

n Eq. (1) . For example, x may be a molecule produced at a rate

nfluenced by an incoming signal, u , and degraded at a constant

ate, a . Such stimulus-triggered production and intrinsic degrada-

ion describe the most basic biochemical system response. 

.2. Integral control and feedback 

Suppose an organism’s intrinsic “plant” response to input sim-

ly mimics the input level. For example, organismal surface tem-

erature may closely track the ambient temperature. Fig. 4 a

llustrates an intrinsic “plant” with P = 1 , a simple pass-through

rocess in which the output y = uP is equal to the input u . 

Such instantaneous tracking of the environment has the benefit

f quick adjustment to external change. But rapid adjustment can

lso be costly. Short-term rapid external fluctuations may simply

e noise in the input, such as fluctuations in light intensity that

ause rapid shifts in the local surface temperature. Organisms of-

en benefit by ignoring very rapid, noisy fluctuations, and tracking

lower changing, more reliable signals of the external environment.

In addition, the intrinsic pass-through process may have

tochastic error, δ, with an associated plant, P = 1 + δ. Ideally, the
rganism could correct for such intrinsic fluctuations and potential

nknown internal biases. 

How can an organism track the slower, more reliable external

ignals, reject the noisy external fluctuations, and adjust to any bi-

ses or fluctuations in the internal pass-through plant process? 

Fig. 4 a shows how an organism can modulate its response

hrough two genetically modifiable components, shown in gold. 

First, the signal coming into the intrinsic plant may be altered

y a controller, C . In control theory, the controller can be modi-

ed by design to alter the input signal, u , passed into the intrinsic

lant process. Here, we assume “design” means evolutionary pro-

esses, such as natural selection, subject to the constraint that the

ontroller can only take on forms that can be realized by the or-

anism’s physiology and genetics. 

Second, the organism’s final output response, y = x, is fed back

nto the system as an additional input. By feeding back the out-

ut and subtracting that feedback from the external environmental

ignal, now labeled as r for the external reference, the actual value

hat enters the first preprocessing controller step is e = r − y . That

alue is the error difference between the external environmental

eference signal and the actual output by the system. 

Error feedback is perhaps the single most powerful mechanism

f system design in both human-engineered and naturally evolved

ystems. By feeding the error into the system as its primary input,

he system can always correct any perturbations and misspecifica-

ions by moving to reduce the error. If the error is positive, the sys-

em moves to increase the output. If the error is negative, the sys-

em moves to reduce the output. With error-correcting feedback, a

loppy, poorly specified system can still perform well. 

Now consider the first modifiable component, the controller.

o transform the error input, e , into the control command, u , the

rganism could potentially use any process that can be realized

hysiologically and genetically. Here, in order to develop the al-

ernative interpretations of the fundamental exponential model, I

onfine the controller to be the transfer function, C(s ) = a/s, with

odifiable parameter, a . The transfer function 1/ s is a pure inte-

rator, because it corresponds to the differential equation ˙ x = e for

nput e and internal state, x . Thus, the value of the internal state

s the integral of the error input, x (t) = 

∫ t 
e (τ ) d τ . The a term in
0 
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Fig. 5. The exponential process as a preprocessor, F , that filters the environmen- 

tal reference signal before entering a postprocessing feedback loop. (a) Here, F is 

assumed to be a fixed aspect of the organism, such as an unmodifiable sensor of 

the environment. In other cases, we may consider F as a modifiable designed filter 

of system input. The postprocessing feedback loop includes an unmodifiable intrin- 

sic plant process, P , and a modifiable controller and feedback process. (b) We can 

collapse the post-processing feedback loop into a single transfer function and as- 

sociated box, G . We may interpret G as a non-feedback description of a dynamical 

process or as a feedback loop. Our interpretation depends on whether we consider 

the tendency to attract toward the reference input as an intrinsic unmodifiable as- 

pect of the dynamics or as a modifiable feedback feature designed to move the 

system toward the reference value at a particular rate. 
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the numerator of C = a/s multiplies the integral output of C by the

constant value, a . 

Another compelling benefit of transfer functions is that we can

easily calculate the total system response of a feedback loop. If

we write all signals and internal processes as transfer functions,

with Y as the transfer function for the output signal, y , and E as

the transfer function for the error signal, e , then the direct line of

signal processing between the input and the output without feed-

back yields an output Y = CP E, because transfer functions multiply

along a signal line. Noting that E = R − Y and substituting that ex-

pression into the previous input-output expression, we obtain 

Y = 

CP 

1 + CP 
R = GR. (7)

The complete feedback loop system, G , that takes input R and

yields output Y is 

G = 

CP 

1 + CP 
= 

L 

1 + L 
(8)

in which L = CP is often called the open loop component of the

system—the open part of the system without the feedback that

closes the loop. In this case, we have C = a/s and P = 1 , thus

G = a/ (s + a ) is our basic exponential process in Eq. (6) . In gen-

eral, the transfer functions C and P can describe any linear time-

invariant system. 

5.3. Low-pass preprocessing filter 

An organism may perceive the environment through a sensor,

which transforms the environmental input signal. In Fig. 5 , the sen-

sor or preprocessing filter, F , transforms the input, r , by our stan-

dard exponential process. The filtered signal, f , then enters the or-

ganismal system, where it may be further processed by the system,

G . I show G as a feedback loop in this example. 

The feedback loop in Fig. 5 a contains the standard components:

a intrinsic process, P , that cannot be modified, a modifiable con-

troller, C , and an optional feedback loop that is included among

the modifiable components of the system. This postprocessing sys-

tem may include an integral component in the controller of the

feedback loop. 
. Interpretation of integral control and feedback 

Integral control and feedback are key concepts in control the-

ry. Those key concepts are sometimes misunderstood when ana-

yzing systems designed by natural biological processes. Consider,

or example, a system in which the production rate of some entity

s proportional to the input, and the production rate is balanced

y a matching degradation rate. The dynamics follow the simple

xponential process of Eq. (1) , with transfer function in Eq. (6) . 

Should we interpret that exponential process as a designed

ystem with integral control and error-correcting feedback or as

 simple unitary component with an exponential response? That

road question raises three specific questions. 

.1. What is integral control? 

An intuitive understanding of integral control can be obtained

rom Eqs. (7) and (8) . If the input reference signal, R , is a constant,

hen the system can match its output to the input and reduce the

rror to zero only if G = 1 . For G → 1, we must have L → ∞ . In prac-

ice, we must have a very high amplification of the input signal by

he open loop, L . 

The higher the open loop gain, the more strongly a feedback

ystem drives the error toward zero. We can describe that role of

igh open loop gain in a feedback system directly by expressing

he error, E = R − Y, from Eqs. (7) and (8) as 

E = 

1 

1 + L 
. (9)

his equation expresses one of the great principles of design. High

pen-loop amplification of a signal drives the error to zero in a

eedback loop. Powerful error-correcting feedback compensates for

any kinds of perturbations, uncertainties, and sloppy components

hat perform poorly. Nonlinearities can often be thought of as un-

ertainties in linear system dynamics. Thus, an error-correcting

eedback system designed as if it were linear often performs well if

he actual dynamics follow particular kinds of nonlinearity ( Frank,

018a; Vinnicombe, 2001 ). 

How do we obtain a very high gain for the open loop, L , when

he input signal is constant? If L has an integrator component, 1/ s ,

hen s → 0 implies L → ∞ . A temporally constant reference input

ssociates with a zero frequency input, which corresponds to s = 0

n a standard analysis of sine wave inputs. Thus, L must have an

ntegral component in order for the system to achieve a perfect

atch to a constant input signal. 

The recent systems biology literature on responsive biochem-

cal processes has elevated integral control to an almost mythi-

al status by which biological systems achieve a perfect matching

esponse to transient environmental inputs, often called “perfect

daptation” ( Yi et al., 20 0 0 ). Although true, one must understand

hree key points. 

First, feedback is a powerful error-correcting design feature that

ypically requires high gain. 

Second, to achieve high gain at low input frequency, L must in-

rease for small s values, which correspond to low frequency in-

uts. A pure integrator 1/ s goes to infinity at zero frequency. In

ractice, high gain at low frequency is sufficient. 

Third, integral control simply means that, for some component

f the system, the production rate of a molecule or other physical

ntity is proportional to the input signal. That production is typ-

cally balanced by a degradation process. Proportional production

nd balancing degradation arise often in biochemical systems and

orm the most basic type of feedback loop, creating exponential

omponents. Thus, integral control and “perfect adaptation” are not

ystical achievements, but instead are common outcomes of basic

eedback dynamics. 
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.2. What is feedback? 

A process that balances production and degradation may be

hought of as a feedback system. However, a process that produces

eat and passively dissipates that heat would not typically be

hought of as a feedback process to regulate heat. When should we

onsider balancing forces as feedback ( Fig. 4 a), and when should

e consider the same dynamics as a unitary component of system

ynamics ( Fig. 4 b)? 

Recent systems biology analyses of phenotypically responsive

iochemical interactions add further confusion to the meaning of

eedback. For example, the classification of molecular network mo-

ifs and control architecture sometimes use feedback to describe a

ystem in which the concentration of one molecule influences the

ynamics of a second molecule, and the concentration of the sec-

nd molecule in turn influences the dynamics of the first molecule.

hat notion of feedback emphasizes the mutual influence between

hysical entities ( Alon, 2007a; 2007b ). 

Control theory emphasizes an alternative, abstract notion of

eedback, in which system dynamics can be interpreted as in

ig. 4 a. In that abstract interpretation, there is some reasonable

ay in which to describe the system as subtracting the output

rom the external input and then feeding that error difference as

he input into the system. 

The confusion in the systems biology literature is particularly

trong, because that subject emphasizes both the abstract con-

rol theory analysis of systems and the incompatible interpreta-

ion of feedback as mutual influence between physical entities

 Alon, 2007a ). Until one realizes the distinction between the alter-

ative interpretations of feedback, the literature can be difficult to

nderstand. However, it is worthwhile to sort things out, because

ystems biology has developed the most comprehensive conceptual

nd mechanistic analyses of phenotypically responsive systems. A

lear notion of design helps. 

.3. What is a designed system? 

When should we describe a balance between production and

egradation by the special design concepts of integral control and

eedback? 

In general, a modifiable component that has been tuned to

chieve some goal forms part of a designed system. The goal may

e a target that has been set within a human-engineering context.

r the goal may be the consequence of natural biological processes

hat shape phenotypes as if they were designed to achieve partic-

lar functions favored by natural selection. 

Williams (1966) clarified the biological interpretation of design.

n Williams’ view, if a fish jumps out of the water and then returns

o the water by gravity, we would not consider the path of return

 designed feature. Gravity is a sufficient explanation. By contrast,

f the fish uses its modified fins as sails to slow the rate of return,

hen the use of fins as sails is a designed feature to achieve the

oal of altering the path of return to the water. 

What about a simple biochemical system of production and

egradation that acts as an exponential process? If the production

ate has been modified to achieve high amplification in response to

ow frequency input signals, then that integral control aspect may

e thought of as a designed feature. By contrast, an intrinsic reac-

ion that passively changes its production in response to changing

mbient temperature may be thought of as an inevitable physical

onsequence of the input energy. 

With regard to feedback, degradation rates can be modified

y reactions that specifically destroy a molecule or by changes in

olecular structure that alter the rate of degradation. If the degra-

ation rate has been modified to balance production and track

ome target setpoint of molecular abundance, then degradation
cts as a designed feedback mechanism. By contrast, an intrinsic

ecay rate may be thought of as an inevitable physical process

ather than as a feedback design. 

. Design tradeoffs 

I focus on the tradeoffs faced by evolutionary processes in the

esign of organisms. This section lists some of the key biological

radeoffs, expressed in terms of the methods and insights of engi-

eering control theory. 

Designed systems typically have multiple goals. For example, an

rganism gains by adjusting to environmental changes. It also gains

y homeostatically holding its internal state in response to noisy

nvironmental fluctuations. 

Often, there may be tradeoffs between alternative goals. The

ore rapidly an organism changes its state to track environmen-

al changes, the more susceptible it may be to environmental fluc-

uations that disrupt the organism’s internal homeostasis. In other

ords, there may be a tradeoff between the phenotypic plasticity

f environmental tracking and homeostatic regulation. 

Other tradeoffs arise. The rate of system adjustment to exter-

al environmental changes may influence the tendency of the sys-

em to become unstable. Instability of a critical system may lead to

eath. The costs of building and running additional control struc-

ures must be balanced against the added benefits provided by

hose extra controls. 

To summarize, four common design goals often tradeoff against

ach other: environmental tracking, homeostatic regulation, stabil-

ty, and the costs of control. We may add robustness as a fifth de-

ign goal, in which robustness means reduced sensitivity to ran-

om perturbations and other uncertainties. 

. Measures of performance 

To analyze design with respect to tradeoffs, we must have mea-

ures of performance. In biology, one usually uses various mea-

ures of reproductive success or fitness as the ultimate measure

f performance. Analysis of phenotypic plasticity requires explicit

ssumptions about how tracking, regulation, stability, and costs

ranslate into the ultimate measure of reproductive performance. 

I use the classic quadratic measure of performance from control

heory ( Anderson and Moore, 1989 ). Tracking considers how far

he actual system output, or phenotype, is from the optimum. The

sual performance measure sums up the Euclidean distances be-

ween the optimum and the actual output at each point in time as

he squared errors, e = (r − y ) 2 , between the target reference sig-

al, r ( t ), and the system output, y ( t ). Summing over all infinitesi-

al time intervals from an initial time t = 0 to a final time T yields

he quadratic measure 

J = 

∫ T 

0 

e 2 d t. 

ptimal performance minimizes the total error, J , subject to any

rocesses that constrain the system. 

Homeostatic regulation concerns deviations from a constant tar-

et value. We can, without loss of generality, take the target to be

 ( t ) ≡ 0. Thus, the performance metric for homeostatic regulation is

 , in which e 2 becomes y 2 , the squared deviation of the pheno-

ype from the constant setpoint. 

Tradeoffs often arise between tracking and homeostatic regu-

ation. The more rapidly a system can track changes in the target

eference signal, r ( t ), the more strongly a system tends to deviate

rom a constant homeostatic setpoint in response to random per-

urbations. Put another way, a beneficial response to a true change

n the environmental input signal can also lead to a detrimental
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Fig. 6. Examples of second-order dynamics mechanisms. (a) A cascade of exponen- 

tial processes. The incoming signal u stimulates production of x 1 , which degrades 

at rate a 1 . The level of x 1 stimulates production of x 2 , which degrades at rate a 2 . 

Dynamics given in Eq. (13). (b) The first part of this mechanism is the same as the 

upper panel, with u stimulating production of x 1 , which degrades at rate α. In addi- 

tion, x 1 and x 2 are coupled in a negative feedback loop. Dynamics given in Eq. (14). 
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response to a false, noisy fluctuation in environmental or other in-

puts. 

Typically, we also wish to consider the costs of control. For ex-

ample, driving a system toward its optimum value often requires

energy and other investments. The greater the energy expended

per unit time, the faster the system can drive its output toward

its optimum. However, performance must also consider minimiz-

ing the costs of energy expended and other investments in con-

trol. Thus, the classic performance measure of control is typically

written as 

J = 

∫ T 

0 

( e 2 + ρ ˜ u 

2 ) d t, (10)

in which ˜ u (t) is a function of the magnitude of the signal, u ( t ), that

the system uses to control its dynamics, as in Fig. 1 c, and 

∫ 
˜ u 2 d t is

proportional to the total signal power. I use ˜ u = u − r, the differ-

ence between the control signal, u , and the input reference signal,

r . This choice sets the cost for control to zero when the controller

simply outputs the unchanged reference signal. 

The parameter ρ weights the relative importance of the track-

ing error and the cost of control. This performance metric, J , bal-

ances the tradeoff between minimizing the tracking error and min-

imizing the cost of control. 

Stability sets an additional dimension of performance. For ex-

ample, suppose we minimize J to obtain an optimally controlled

system with respect to the tradeoff between tracking error and

control costs. Our optimal system may be prone to instability in

response to small perturbations. Instability often leads to complete

system failure. 

To obtain a better control design, we often must impose a sta-

bility constraint on the minimization of performance, J . For ex-

ample, we may require that the system remain stable to partic-

ular kinds and magnitudes of perturbations. Such a constraint is

often called a stability margin of safety, or simply a stability mar-

gin. Because instability is often disastrous, robust engineering de-

sign methods and natural biological design processes tend opti-

mize performance subject to constraints on the stability margin. 

Specifying a stability margin is technically more challenging

than writing a simple performance metric ( Frank, 2018a; Vinni-

combe, 2001 ). I provide some examples in later sections. 

We may also consider the robustness of various performance

measures in relation to particular kinds of uncertainty. Greater

robustness reduces the sensitivity of performance to uncertainty.

However, reduced sensitivity may come with the cost of reduced

maximum performance with respect to the target environment for

which the design is tuned. 

9. Intrinsic plant process 

I will illustrate the main design tradeoffs by a variety of ex-

amples. Each example typically begins with an intrinsic plant pro-

cess that describes some fixed biochemical reaction or organismal

input-output response. Given an intrinsic process, we may then

consider how natural biological processes design regulatory con-

trol systems to modulate the intrinsic dynamics. 

Before turning to the design problems, it is useful to have a

clear sense of a simple set of generic intrinsic processes that can

be used to build various initial examples. I focus on a basic second-

order differential equation that is a reduced form of Eq. (3) , as 

ẍ + α ˙ x + x = u, (11)

with associated transfer function 

P = 

1 

s 2 + αs + 1 

. (12)

For α ≥ 2, we can factor the denominator so that 

P = 

(
1 

s + a 1 

)(
1 

s + a 2 

)
, 
n which a 1 + a 2 = α and a 1 a 2 = 1 . The factored expression shows

hat we can think of this system as the pair of cascading exponen-

ial processes shown Fig. 6 a, because a cascade is described by the

roduct of the transfer functions for each component. Algebraically,

e can express the cascade by rewriting the second-order differen-

ial equation as a pair of first-order equations 

˙ x 1 = −a 1 x 1 + u (13a)

˙ x 2 = −a 2 x 2 + x 1 , (13b)

ith system output y = x 2 . A cascade of exponential processes

ust be very common, because an exponential response arises

rom the most basic chemical process of production balanced by

egradation. 

Alternatively, for any real value of α, including α ≥ 2, we can

ewrite the second-order differential equation as a pair of first-

rder equations 

˙ x 1 = −αx 1 − x 2 + u (14a)

˙ x 2 = x 1 , (14b)

ith system output y = x 2 . These first-order equations yield a sim-

le graphical representation of a process that follows the dynam-

cs of the second-order system, as shown in Fig. 6 b. The figure

hows that this system can be described by a process with a nega-

ive feedback loop between two components, x 1 and x 2 . Note that

feedback” in this sense describes a mechanistic interaction be-

ween two physical entities rather than the logical notion of “feed-

ack” in a designed error-correcting control system. 

When α = u = 0 , the system is a pure oscillator that follows a

ine wave. For 0 < α < 2 and u = 0 , the system follows damped os-

illations toward the equilibrium at zero, because the degradation

f x 1 at rate −α causes a steady decline in the amplitude of the

scillations about the equilibrium. 
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0. Costs and benefits of error feedback 

The examples in the prior section for the dynamics of x 1 and

 2 represent the intrinsic plant process, P . Fig. 6 shows u → P , the

ontrol signal u as the input to the intrinsic process, P . 

How can a system alter the dynamics of P in order to improve

erformance with respect to particular design goals? This section

ompares two basic approaches. 

First, the system can modulate the control input signal, u , by

odifying the dynamics of a controller process, C , as in Fig. 1 b.

n that system, the external environmental reference signal, r , en-

ers as the system input into the controller, C , which outputs the

ontrol signal u that becomes the input into the intrinsic system

rocess, P , which produces the final system output, y . That path-

ay is an open loop, because the system output, y , is not fed back

s input to close the loop. 

In the second approach to altering system dynamics, the output

 is subtracted from the reference signal, r , and the resulting error

 = r − y is fed back into the system as its input. The signal pro-

essing pathway in Fig. 1 c is a closed loop, because the output is

ed back into the system. 

This section compares the performance costs and benefits of an

pen loop system without feedback and a closed loop system with

eedback. 

0.1. Performance metric: plasticity vs homeostasis 

To analyze tradeoffs, we need a performance measure. Before

hoosing a measure, it is useful to consider two attributes with

espect to the goals for this section. First, we want a measure that

rovides sufficient generality to achieve broad insight and also pro-

ides sufficient specificity to allow numerical illustration. Second,

e want a measure that emphasizes the tradeoff between the re-

ponsiveness of plasticity to environmental change and the ability

o hold a homeostatic setpoint in response to random perturba-

ions. 

Often, a system that responds relatively quickly to environmen-

al change also deviates more easily from a homeostatic setpoint.

 tradeoff occurs between responsive plasticity and homeostasis. 

Responsiveness can be measured in many different ways. Clas-

ic control theory often analyzes how quickly and accurately a

ystem responds to a step change in the environmental reference

ignal. For example, the environmental signal may initially be a

onstant value of zero to represent the baseline environment. Then,

uppose the environment shifts instantaneously to a constant value

f one. How does the system respond to that unit step change? 

Using the measure in Eq. (10) , we can write the step-response

erformance between an initial time, t = 0 , and an arbitrary final

ime, T , as 

J s = 

∫ T 

0 

( e 2 + ρ ˜ u 

2 ) d t, (15) 

Fig. 7 a shows how the second-order dynamics in Eq. (12) re-

ponds to a step change in input. For the various values of the pa-

ameter α illustrated in the figure, the caption lists the associated

erformance measure, J s with ρ = 0 , which reduces J s to the in-

egral of the quadratic error, e 2 . 

Homeostasis, or regulation to hold a setpoint, also can be mea-

ured in many different ways. Classic control theory often analyzes

ow a single, large instantaneous perturbation causes a system to

eviate from its setpoint, and the path that the system follows as it

eturns to its setpoint. Technically, at some time instant, say t = 0 ,

he system experiences a perturbation to its input of infinite en-

rgy and infinitesimal duration, a Dirac delta impulse perturbation.

n the typical analysis, the input is a constant value of zero be-

ore and after the perturbation. Thus, the error is the output de-

iation from zero, y , and the control deviation from the input is
˜  = u − r = u for input r = 0 , so we can write the performance as

J p = 

∫ ∞ 

0 

( y 2 + ρu 

2 ) d t. (16) 

Fig. 7 b shows how the second-order dynamics in Eq. (12) re-

ponds to an impulse perturbation in input. For the various values

f the parameter a illustrated in the figure, the caption lists the as-

ociated performance measure, J p with ρ = 0 , which reduces J p 

o the integral of the quadratic deviation of the output from the

ero setpoint. 

In signal processing theory, an integral of the squared devia-

ions over an infinite time period, such as 
∫ ∞ 

0 y 2 d t, is referred to as

he energy of a signal. For finite energy signals, an interesting iden-

ity provides conceptual and numerical benefits. For the response

o an impulse perturbation input, the energy is proportional to a

easure, H 2 , of the area under the Bode magnitude plot curve,

uch as in Fig. 2 e. Thus, we can use the frequency response of a

ystem to understand and to calculate a system’s intrinsic homeo-

tatic regulation. 

The total performance measures the tradeoff between plasticity

nd homeostasis as 

J = J s + γJ p , (17) 

n which γ describes the weighting of the homeostatic perfor-

ance in response to perturbation relative to the plasticity perfor-

ance in response to a step change in the environmental reference

ignal. Optimal performance minimizes J , as shown in Fig. 7 d. 

For this example, I weighted the control signal by ρ = 0 , thus

gnoring the cost of control. With that assumption, α = 

√ 

1 + γ in

he second order process P in Eq. (12) yields the optimal perfor-

ance value J = 

√ 

1 + γ , which balances the tradeoff between

lasticity and homeostasis. See the supplementary Mathematica

ode for the derivation of the optimal value of α and associated

inimization of J . In some of the analyses below, I vary α around

ts optimal value as a way in which to introduce environmental

erturbations. 

0.2. Optimal open and closed loops 

This section analyzes the costs and benefits of error feedback.

o quantify those costs and benefits, I compare the design and per-

ormance of a system without feedback and a system with feed-

ack. 

We can denote the system generically from Fig. 1 as r → G → y ,

n which the r is the environmental reference input signal, y is the

ystem output, and the transfer function, G , represents all of the

ystem components between the input and output signals. 

Consider the open loop system in Fig. 1 b. We can write that

ystem as G = CP = L, in which C is the controller transfer func-

ion, P is the plant transfer function, and L denotes the open loop,

P , between the input and the output. The closed loop system in

ig. 1 c has G = L/ (1 + L ) , as derived in Eq. (8) . For the plant, I use

 in Eq. (12) , which depends on the parameter, α. 

The analysis proceeds as follows. First, all derivations in this

ection start by optimizing the performance metric, J , in Eq. (17) ,

gnoring signal costs, ρ = 0 . 

Second, I use the value of α in the plant, P , that optimizes

he performance metric, J in Eq. (17) , for the uncontrolled system

 → P → y . From the previous section, we have the optimal value

= 

√ 

1 + γ and associated optimal performance J = 

√ 

1 + γ . By

sing the optimal value of α, we can consider how a controller im-

roves system performance by altering the constraints on the dy-

amics rather than by simply tuning the plant’s intrinsic dynamics.

Third, for the controller, I use 

C = 

q 0 s 
2 + q 1 s + q 2 

p 0 s 2 + p 1 s + p 2 
. (18) 
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Fig. 7. Performance metric for plasticity versus homeostasis. (a) Responsive plasticity to a unit step change in the environmental reference signal. The curves from top to 

bottom show α = 1 , 2 , 4 from Eq. (12) . (b) Homeostatic return to setpoint after impulse perturbation. Same underlying dynamics and parameter values as the upper panel. 

(c) The components of performance given by the cost metrics J s in blue and γJ p in gold for γ = 3 and varying values of the parameter α along the x -axis. Lower values 

of the cost metrics correspond to better performance. (d) Total performance cost J = J s + γJ p for γ = 3 . The optimal minimum J = 

√ 

1 + γ = 2 is at α = 

√ 

1 + γ = 2 . (For 

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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Optimization finds the best values of the q i and p i parameters. For

the performance metric described in the previous paragraphs, the

numerical optimization analysis suggests that, for both open and

closed loop systems, the optimal controller typically transforms the

uncontrolled second order plant system, r → P → y , into the first or-

der controlled system r → G → y , in which 

G = 

p 

s + p 
. (19)

For all numerical optimizations, I used the NMinimize proce-

dure from version 11.3 of Wolfram Mathematica ( https://www.

wolfram.com/mathematica/ ) or the differential evolution method

from version 2.7 of the Pagmo optimization software library ( https:

//esa.github.io/pagmo2/ ). 

10.3. Optimal controllers 

For the open loop system, in which G = L = CP, we can write 

C = 

1 

P 

(
p 

s + p 

)
= 

p( s 2 + αs + 1 ) 

s + p 
, 

so that in the system G = CP, the 1/ P term in the controller cancels

the plant, P . In the control optimization of deterministic systems,

such canceling of terms often occurs, because the system can re-

shape response dynamics by removing the fixed plant dynamics

and replacing those dynamics with the modifiable dynamics of the

controller. 

For the closed loop system, in which L ∗ = C ∗P, we can write 

C ∗ = 

1 

P 

(
p 

s 

)
= 

p( s 2 + αs + 1 ) 

s 

= p 

(
s + α + 

1 

s 

)
. (20)
his form is known as a proportional, integral, derivative (PID) con-

roller, the most widely used general controller in systems engi-

eering. From the right-hand side, the term α amplifies the input

ignal by a constant value of proportionality, the term 1/ s yields

he integral of the input signal, and the term s yields the deriva-

ive of the input signal. These three terms provide wide scope for

odulating the dynamics of a feedback system. 

The controller C ∗ yields the open loop 

L ∗ = C ∗P = 

p 

s 
. 

n earlier sections, I discussed how an open loop integrator, L ∗ =
p/s, yields a closed loop low pass filter with exponential dynamics.

hus, we obtain 

G = 

L ∗

1 + L ∗
= 

p 

s + p 
, 

hich is a simple first order low pass filter, as in Eq. (6) . A low

ass filter corresponds to basic exponential dynamics, as discussed

n earlier sections. These derivations show that the optimizing con-

rollers transform the second order plant, P , into the first order low

ass filter system, G . 

The supplementary Mathematica file demonstrates analytically

hat p = 1 / 
√ 

γ yields the optimal performance J = 

√ 

γ . Thus, the

ptimal controllers shown here improve the optimized plant per-

ormance from the uncontrolled value of 
√ 

1 + γ to the controlled

alue of 
√ 

γ . For the analytic analysis, the time period for the step

esponse performance in Eq. (15) is T = ∞ . In numerical analysis,

he step response typically converges to the reference input, r , by

 = 20 , as illustrated in the various example plots. 

Fig. 8 compares the dynamics of the unmodified plant, P , with

he optimized open loop system, G = CP . The unmodified plant,

https://www.wolfram.com/mathematica/
https://esa.github.io/pagmo2/
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Fig. 8. Dynamics of the unmodified plant, P , from Eq. (12) , with γ = 1 and optimal parameter α = 

√ 

1 + γ = 

√ 

2 (blue curves) compared with the optimized open and closed 

loop systems with dynamics given by the low pass filter G = p/ (s + p) with p = 1 / 
√ 

γ = 1 (gold curves). The left panel shows the unit step response, and the right panel 

shows the impulse perturbation response. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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hown in the blue curves, has reasonably good response charac-

eristics, because we chose the parameter α = 

√ 

1 + γ to optimize

he performance cost metric. For γ = 1 , the unmodified plant has

erformance J = 

√ 

2 . The optimized open loop, shown in the gold

urves, improves the response characteristics, yielding an improved

erformance metric, J = 1 . 

0.4. Comparing open vs closed loop systems 

When the plant is a known, deterministic process, the optimal

pen and closed loop systems yield the same system response.

e can write both open and closed loop systems as r → G → y , in

hich G is the open or closed loop processing of the input, r , to

ield the output, y . 

Typically, the closed loop system is more costly to build and

un, because it requires sending a measure of the output, y , back

o controller input, and subtracting that output from the reference

nput, r , to produce an error signal, e = r − y . The open loop sys-

em does not require that extra signal transmission and process-

ng. Thus, for known deterministic systems, open loops generally

utperform closed loops. 

That general advantage of open loops is a well known princi-

le of engineering control design. As noted by Vinnicombe (2001 ,

. xvii): “There are two, and only two, reasons for using feedback.

he first is to reduce the effect of any unmeasured disturbances

cting on the system. The second is to reduce the effect of any un-

ertainty about systems dynamics.”

Closed loop systems with feedback can often correct for distur-

ance and uncertainty. With a feedback measure of error, a closed

oop system can always do well simply by moving in the direc-

ion that reduces the error. By contrast, open loop systems cannot

orrect themselves because they lack a measure of error. With re-

ard to design principles, the key question concerns how often in-

vitable uncertainties favor the complexity of closed loop feedback

ver the simplicity of an open loop design. 

0.5. Sensitivity to uncertainty 

In this section, I analyze uncertainties in the dynamics of the

ntrinsic plant process and in the controller. I show that a closed

oop design is much less sensitive to those uncertainties than an

pen loop design. 

Fig. 9 a illustrates how the performance cost metric, J , in-

reases as the plant process parameter, α, takes on variable values,
ˆ , yielding the uncertain plant 

P = 

1 

s 2 + ˆ αs + 1 

. (21) 

he open loop (gold curve) and closed loop (blue curve) take on

heir identical minimum values at the optimum ˆ α = α = 

√ 

1 + γ ,

ith γ = 1 in this example. As ˆ α varies, the open loop performs

uch worse than the closed loop. In other words, the open loop is

uch more sensitive to variations in plant system dynamics than

s the closed loop. 

Similarly, Fig. 9 b illustrates the greater open loop sensitivity

o variations in the controller dynamics. In this case, the con-

roller parameter q 2 takes on variable values around its optimum

t 1 / 
√ 

γ . 

0.6. General analysis of sensitivity 

Closed loop systems are generally less sensitive to parametric

ariations than are open loop systems. We can study that general

attern of sensitivity by analyzing the derivatives of the systems

ith respect to parameter variations. In particular, write an open

oop system as L and a closed loop system as L ∗/ (1 + L ∗) , and let ∂ 
e the partial derivative with respect to some parameter, θ . Then

e can write the parametric derivative to describe the relative sen-

itivity of closed versus open loop systems 

S = 

∂( close d ) 

∂( open ) 
= 

∂[ L ∗/ ( 1 + L ∗) ] 
∂L 

= 

∂L ∗

∂L 

1 

( 1 + L ∗) 2 
. 

t low frequency inputs, closed loop systems typically have high

ain values for their open loop components, L ∗, causing the closed

oop systems to be much less sensitive to parametric variations. 

In the example of this section, L = CP and L ∗ = C ∗P, for which P

epends on the variable parameter ˆ α, as shown in Eq. (21) . Taking

he partial derivative with respect to ˆ α, the relative sensitivity of

he closed versus open loop systems is 

S = 

C ∗

C 

1 

( 1 + C ∗P ) 2 
. 

oting from Fig. 1 that we can express the open loop system as

 = RCP and the closed loop system as Y = REC ∗P, equating these

xpressions for Y yields C ∗/C = 1 /E. From Eq. (9) , we have 1 /E =
 + L ∗ = 1 + C ∗P, thus the relative sensitivity reduces to the simple

xpression 

S = 

1 

1 + C ∗P 
= 

1 

1 + L ∗
, 
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Fig. 9. Sensitivity of open loop (gold curve) and closed loop (blue curve) systems to parametric variations in dynamics. The y -axis shows the performance cost metric, J , 
and the x -axis shows a variable parameter. (a) The plant dynamics parameter, α, takes on variable values, ˆ α. (b) The controller dynamics parameter, q 2 , takes on variable 

values. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 10. Sensitivity of closed versus open loop systems given in Eq. (22) . As in 

Fig. 2 e, this Bode plot shows the logarithm of the transfer function gain (magni- 

tude) versus the logarithm of the input frequency. 
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which provides a very general description for the reduced sensi-

tivity of closed loop error feedback systems relative to open loop

systems with respect to variations in the plant process, P . 

For this particular example, we can use the expression for C ∗ in

Eq. (20) and P in Eq. (12) , yielding 

S = 

s 

s + p 
. (22)

These relative sensitivity expressions further demonstrate the

power of transfer functions for the analysis of control dynamics.

Using the general properties of transfer functions, we can describe

how sensitivity changes with the frequency of inputs to the sys-

tem. At low frequency, s → 0, the relative sensitivity of closed ver-

sus open loops declines toward zero, implying a large advantage

for closed loop systems versus open loop systems. 

In general, we can plot the relative sensitivity on a log scale by

using the Bode magnitude plot method in Fig. 2 e, yielding the re-

lation between relative sensitivity, S, and frequency, as shown in

Fig. 10 . In that figure, we see a pattern analogous to the classic

high pass filter. At high input frequencies, the system has a gain of

one ( log (1) = 0) , corresponding to equal sensitivity of open and

closed loops. As the input frequency declines, the relative sensitiv-

ity of the closed loop declines. 
0.7. Frequency tradeoffs 

The sensitivity pattern in relation to frequency illustrates a key

oint about control system design. When considering tradeoffs, we

ust often analyze how tradeoffs change in relation to the fre-

uency of inputs and the frequency of perturbations to a system.

ften, improving performance at one frequency band reduces per-

ormance at another frequency band, creating an additional per-

pective on the tradeoffs in design. 

The essence of the plasticity versus homeostasis tradeoff comes

own to a tradeoff between an organism’s response to different

requencies of inputs. In the examples here, plasticity associates

ith the response to a step change in input, and homeostasis cor-

esponds to the response to an impulse perturbation. 

Consider the response to a step input in terms of frequency. A

tep input has a transfer function 1/ s , in which the input has a lot

f energy at low frequency (small s ) and decreasing energy as fre-

uency increases. If an organism filters out high frequency inputs

nd responds to low frequency inputs, it will slowly and accurately

djust to long-term environmental change. The more strongly the

rganism responds to high frequency inputs, the more rapidly the

rganism adjusts to sudden step changes in environmental state.

e may say that greater high frequency sensitivity corresponds to

 more malleable and rapid plastic response. 

The plasticity versus homeostasis tradeoff arises because the

reater the plastic response to the high frequency components of

tep inputs, the more strongly the organism’s homeostasis will be

isrupted by impulse perturbations. In particular, an impulse input

as a constant transfer function, which corresponds to an input

ith equal energy over all frequencies. The wider the frequency

ands that the organism filters out and does not respond to, the

ess sensitive the organism is to impulse perturbations that disturb

omeostasis. 

Putting all of that together, responding to low frequencies is

ost important for plasticity, because step inputs with transfer

unction 1/ s strongly weight the lower frequencies. By contrast,

omeostasis gains by filtering all frequencies equally, because im-

ulse energy is uniformly distributed over all frequencies. Thus, to

alance good plasticity and good homeostasis, the organism must

espond to inputs in the lower frequency band and reject inputs in

he higher frequency band. 

As γ declines, the performance metric weights the plastic step

esponse more strongly than the homeostatic perturbation re-

ponse. Thus, a decline in γ favors the organism to increase its

ange of high frequency sensitivity, to achieve the benefit of faster,
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ore malleable plastic response while paying the relatively low

ost of suffering greater homeostatic perturbation. 

The parameter p = 1 / 
√ 

γ in Eq. (19) corresponds to the point

t which the system more strongly filters relatively higher fre-

uencies. As γ declines and performance weights plasticity more

trongly than homeostasis, the optimal organismal design moves

he frequency cutoff p to higher values, causing the organism to

espond to relatively higher frequency inputs. 

0.8. Sensitivity and variability 

The closed loop system is less sensitive to parameter variations

han the open loop system. Less sensitivity means that mutations

ave less effect on performance. Thus, the theory predicts that the

losed loop systems will accumulate more genetic variability than

he open loop systems ( Frank, 2004; 2007 ). 

Less sensitivity also means that a system can tolerate greater

tochasticity in phenotypic expression with less consequence for

erformance. Thus, the theory predicts that the closed loop sys-

ems will have greater phenotypic stochasticity in gene expression

han the open loop systems ( Frank, 2013 ). 

A subsequent article in this series develops the prediction that

ow sensitivity and high robustness enhance genetic and pheno-

ypic variability. 

0.9. Summary 

Error feedback compensates for uncertainty and stochastic per-

urbation. Because most biological systems have uncertain or

tochastic aspects, feedback control inevitably plays a key role in

iological design. However, the net benefit of feedback depends

n the frequency of system inputs and on the various costs asso-

iated with running the relatively complex control loop of error

orrection. 

One aspect of cost arises from the extra components and energy

equired to build and run the feedback loop. Another aspect of cost

oncerns the strength of the control signal required to correct er-

ors. The next section considers the costs associated with control

ignal strength. 

1. Costs of control 

In the prior section on optimizing open and closed loops, I ig-

ored the cost of the control signal. This section extends that prior

ptimization to include the control costs, by assuming that the

ontrol cost weighting is greater than zero, ρ > 0. 

The general performance cost metric from Eq. (17) is J =
 s + γJ p . The step input response component, J s , was defined in

q. (15) as 

J s = 

∫ T 

0 

( e 2 + ρ ˜ u 

2 ) d t, 

or which ˜ u = u − r is the difference between the control signal, u ,

nd the environmental reference input signal, r . For a step input,

 = 1 . The control cost depends on how much the control process

auses a deviation from the external environmental state. 

Similarly, the impulse perturbation response component J p was

efined in Eq. (16) as 

J p = 

∫ ∞ 

0 

( y 2 + ρu 

2 ) d t. 

or an impulse response, the environmental reference signal is zero

xcept for an infinite impulse over an infinitesimal duration around

ime t = 0 , so ˜ u = u − r ≡ u . In the numerical calculations of the

ontrol signal cost, I ignore the infinitesimal impulse interval, and

um up the deviations over the period t > 0, after the impulse. 
1.1. Control signal dynamics 

To analyze the control costs, we need expressions for the dy-

amics of the control signal, u . For the open loop system in Fig. 1 b,

he control signal is simply the response of the controller to the

eference input. Thus, U = C, and we can study the control signal

esponse by analyzing the controller transfer function. 

For the closed loop in Fig. 1 c, the control signal arises as the

esponse of the controller, C , to the error input signal, E , thus U =
C. From Eq. (9) , E = 1 / (1 + L ) , in which L = CP . Thus the control

ignal is U = C/ (1 + L ) . 

In deterministic systems with known dynamics, the optimal

pen and closed loop systems will produce the same control sig-

al. Thus, the optimal controller for the open loop system, C , will

e related to the optimal controller for the closed loop system, C ∗,

y the relation C = EC ∗. 

The error component, E , typically reduces the magnitude of the

eference input, R . Thus, the optimal closed loop controller by it-

elf tends to amplify signals much more strongly than the optimal

pen loop controller. 

In terms of biology, this theory predicts that controlling sub-

ystems designed to modulate internal biochemical signals within

 broader system will amplify signals in very different ways when

n open versus closed loops. 

1.2. Zero cost pass-through controller 

Before studying the role of variable costs in shaping the trade-

ff between plasticity and homeostasis, it is useful to consider the

pecial case of high control signal costs. 

If the cost weighting, ρ , for the control signal is very high,

hen the optimal system will reduce the control signal deviation

˜  = u − r to zero, which means u = r. In that case, the optimal con-

roller will simply pass through the unchanged reference signal,

nd the optimized control signal is U = 1 . In this case, the open

oop controller is simply C = 1 . 

For closed loops, noting that L ∗ = C ∗P, the closed loop controller

s 

U 

∗ = 

C ∗

1 + C ∗P 
= 1 , 

hus 

C ∗ = 

1 

1 − P 
. 

It seems likely that as ρ increases, the benefit of the closed loop

ystem with regard to plant uncertainty and disturbance rejection

eclines until that benefit disappears at the pass through limit for

arge ρ . The following section analyzes that conjecture. 

2. Plasticity vs homeostasis 

We can now consider quantitative examples of two key trade-

ffs in control system design. First, systems typically must trade

ff plastic responsiveness to changing environments versus home- 

static buffering against perturbations. Second, systems trade off

he costs of producing control signals to adjust dynamics versus

he benefits of those control signals to manipulate dynamics. 

2.1. Performance metric expression of tradeoffs 

The prior sections developed a performance metric that cap-

ures the two tradeoffs. The full expression of the performance

etric can be written as 

J = J s + γJ p 

= 

∫ T 

0 

( e 2 + ρ ˜ u 

2 ) d t + γ

∫ ∞ 

0 

( y 2 + ρu 

2 ) d t. (23) 
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Fig. 11. The tradeoffs between plasticity, homeostasis, and the costs of control signals. Each panel shows log 2 of a component of performance versus log 2 γ . The text describes 

the different com ponents of performance. Within each panel, the five curves correspond to log 10 ρ = −4 , −3 , . . . , 0 . In panel (a), the values of ρ rise from the bottom to the 

top curve, whereas in the other panels, the values of ρ decline from the top to the bottom curve. 
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The first line emphasizes the plasticity versus homeostasis tradeoff.

The parameter γ weights the relative importance of plastic respon-

siveness, given by the step response performance, J s , and home-

ostatic buffering, given by the perturbation response, J p . Smaller

values correspond to higher performance. Thus, a greater value of

γ favors improving homeostatic performance at the expense of re-

duced plasticity. 

The second line emphasizes the tradeoff associated with con-

trol signal strength. A greater value of ρ favors reducing the con-

trol signal strength. Reduced control signal strength may alter the

tradeoff between plasticity and homeostasis, as illustrated in the

following example. 

12.2. Numerical example 

This example begins with the optimized plant in Eq. (21) , with

ˆ α = 

√ 

1 + γ . The general form of the controller is given in Eq. (18) .

For each combination of γ and ρ parameters, I used the differen-

tial evolution method of Pagmo 2.7 to find a candidate combina-

tion of controller parameters that optimizes (minimizes) the per-

formance metric in Eq. (23) . 

The optimal controllers differ for open and closed loops. How-

ever, when the system is deterministic and there is no uncertainty

in the plant dynamics, the optimized open and closed loops have

identical dynamics and control signals, as described in the prior

section. Thus, this example does not differentiate between opti-

mized open and closed loops. The following section develops this

example when the plant parameter α varies, which highlights the

differences between open and closed loops under uncertainty. 

We can partition the total performance metric in Eq. (23) into

four components. From J s , the components in the step response

are: (a) the squared error deviation from the environmental set-

point, e 2 , and (b) the squared control signal deviation from the

signal that would occur in a pass-through controller, ˜ u 2 . From J p ,
he components in the perturbation response are: (c) the squared

eviation from the baseline zero setpoint, y 2 , and (d) the squared

ontrol signal deviation from zero, u 2 . The various components are

eighted by the parameters γ and ρ . 

Fig. 11 shows the components of performance in optimized

ystems. Lower values correspond to better performance. Panels

a–d) present the four components of performance in the order

iven in the prior paragraph. Each panel plots log 2 of the com-

onent performance versus log 2 γ . The curves in each panel show

og 10 ρ = −4 , −3 , . . . , 0 . In panel (a), the values of ρ rise from the

ottom to the top curve, whereas in the other panels, the values of

decline from the top to the bottom curve. 

In Fig. 11 , comparing panels (a) and (b) illustrates the primary

lasticity versus homeostasis tradeoff. As γ increases, the perfor-

ance metric depends more strongly on homeostasis, causing the

omeostasis component to show improved (lower) contributions to

 and an associated rise in the plasticity component. In essence,

he system responds more slowly to environmental changes, which

enefits homeostatic performance with respect to perturbations

nd weakens plastic responsiveness to a rapid, long-term shift in

he environment. 

As the cost of the control signal rises, the system shifts to-

ard improved homeostatic performance at the expense of re-

uced plastic responsiveness. In the homeostatic response of panel

b), rising signal cost, ρ , corresponds to lower (better) perfor-

ance curves. In the plastic response of panel (a), the opposite

attern of higher (worse) performance associates with rising signal

ost. 

The plasticity versus homeostasis tradeoff with rising signal

osts occurs because high signal costs tend to favor a lower con-

rol signal intensity and thus a slower system response. A slower

ystem reduces the rate of plastic responsiveness to a sudden,

ong-term environmental shift and also reduces the sensitivity of

he system to short-term perturbations that disturb homeostasis. 
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Fig. 13. Log ratio of open versus closed loop performance when averaged over vari- 

able plant dynamics. The x -axis shows log 2 γ . The curves from top to bottom plot 

results for increasing values of ρ . 
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Panels (c) and (d) show the inevitable decline in control signal

nergy with rising signal cost. The higher signal energies in panel

d) reflect the strong system response to the high-intensity instan-

aneous jolt to the system caused by the perturbation. 

3. Open vs closed loops 

The previous section assumed that the parameters controlling

he intrinsic plant dynamics are known and constant. For known

lant dynamics, optimized open and closed loops perform identi-

ally. If plant dynamics deviate from the assumed form, open and

losed loops typically perform differently. 

This section considers the relative performance of open versus

losed loops for variable plant dynamics. As in previous sections, I

escribe variable plant dynamics with Eq. (21) , in which the opti-

ized plant has parameter α = 

√ 

1 + γ . The open and closed loops

re then optimized with respect to the optimized plant. I then ana-

yze the open and closed loop responses when the plant parameter

ˆ varies around the optimum α. 

Fig. 12 illustrates the relative performance of open versus closed

oops as ˆ α varies over ( α/2, 2 α). The curve plots log 2 J o / J c , the

og ratio of the open loop performance relative to the closed loop

erformance. The curve touches zero at ˆ α = α. For other values of

ˆ , the closed loop outperforms the open loop, which means that

he closed loop has a lower J value than the open loop. 

Fig. 12 shows the same information as Fig. 9 a, but plotted in

 different way. The advantage of Fig. 12 is that we can take the

verage performance ratio over the range of ˆ α values as a rough

easure of the relative advantage of the closed loop versus the

pen loop for variable plant dynamics. The averaged relative per-

ormance metric is the integral area under the curve in Fig. 12 di-

ided by the range of ˆ α values. For Fig. 12 , the average height of

he curve is 0.108. 

Plotting Fig. 12 requires specific parameter values for γ and

, which determine the relative weighting of various performance

omponents. In that figure, γ = 1 and ρ = 0 . 

Fig. 13 plots the averaged performance metric for varying val-

es of γ and ρ . The x -axis shows log 2 γ . The curves show varying

alues of ρ . The top curve is for ρ = 0 . The subsequent curves are

or log 10 ρ = −4 , −3 , −2 , −1 . 

Closed loops perform relatively better for small γ , correspond-

ng to greater emphasis on plastic responsiveness to sudden onset,

ong-term changes in the environment. Because closed loops use

he error as input, they strongly drive the system toward a new

etpoint when far from that setpoint and smoothly ease up on the

ush toward the setpoint as the gap is closed. Closed loops also

erform better for lower values of ρ , because they benefit from
ig. 12. Log ratio of open versus closed loop performance for variable plant dynam- 

cs. The x -axis shows the varying plant parameter ˆ α from Eq. (21) . 
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trong control signals to drive the system when far from the target

etpoint. 

For the parameters considered here, closed loops outperform

pen loops. However, closed loops require additional components,

nternal measurements, and signal transduction, which may add

dditional costs. With those additional costs, simpler open loop

ystems will tend to outperform closed loops when there is rela-

ively little uncertainty, when control signals are costly, and when

omeostatic rejection of perturbation is more heavily weighted

han plastic responsiveness (high γ ). 

4. Performance vs stability under uncertainty 

Instability often causes a system to fail. To protect against in-

tability, a well designed system may trade lower performance in

eturn for broader stability against perturbations or uncertainties. 

For example, previous sections optimized a controller solely for

erformance with respect to the fixed dynamics of a given plant.

n this section, I consider optimized controllers subject to the con-

traint that they must remain stable to a broad range of alternative

lant dynamics. A broader stability margin reduces performance of

he system for the target dynamics of the given plant. 

In the previous analyses, I began with the plant 

P = 

1 

s 2 + αs + 1 

= 

1 

D 

, 

ith α = 

√ 

1 + γ and D = s 2 + αs + 1 . I then found optimal con-

rollers with respect to the fixed dynamics of this plant. This sec-

ion extends that analysis by requiring that the optimized system

lso be stable with respect to the alternative plant, ˜ P , with α = ˜ α,

or a given value ˜ α < 0 . 

A system is stable if the real part of its maximum eigenvalue is

ess than zero. The eigenvalues of a system described by its trans-

er function are the roots of the characteristic polynomial in s in

he denominator of the transfer function. The alternative plant, ˜ P ,

s unstable for ˜ α < 0 because, by the Routh–Hurwitz stability cri-

erion, all coefficients of a quadratic must have the same sign to

e stable. 

An open loop essentially cannot stabilize an unstable plant,

hereas a closed loop can sometimes stabilize an unstable plant.

n particular, suppose we have a controller C = n/d, in which the

umerator n and the denominator d are polynomials of s , and d

s stable with maximum real eigenvalue less than zero. The open

oop for the alternative plant is 

C ̃  P = 

n 

d 

1 

s 2 + ˜ αs + 1 

= 

n 

d 

1 ˜ 

. 

D 
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Fig. 14. Value of ˜ α in an alternative plant, ˜ P , that destabilizes a closed loop op- 

timized for the target plant, P . The x -axis shows the value of log 2 γ used in the 

optimized performance metric. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 15. Relative performance of a closed loop optimized subject to a stability mar- 

gin constraint compared with a closed loop optimized without a stability mar- 

gin constraint. The plot shows log 2 of the performance ratio. The curves from 

bottom to top show an increasing stability margin constraint, corresponding to 

˜ α = −0 . 2 , −0 . 4 , −0 . 8 , −1 . 6 . The x -axis is log 2 γ . 
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The roots of the denominator will include the roots of ˜ D = s 2 +
˜ αs + 1 , thus the system is unstable unless we can get rid of

this quadratic component from the alternative plant. Suppose that

n/ ̃  D = c for a constant, c , in other words, that n cancels ˜ D . That

cancellation removes the eigenvalues associated with 

˜ D , and the

system is now stable because d is stable. 

Although such eigenvalue (pole) cancellation works in theory,

it is difficult in practice to achieve sufficiently accurate cancel-

lation, particularly in biological systems. In essence, an unstable

plant cannot be stabilized by an open loop controller. Because open

loop systems cannot satisfy the constraint of stabilizing alternative

plants with ˜ α < 0 , we consider open loops to fail for this con-

strained optimization problem. 

For a closed loop, the system with the alternative plant is 

C ̃  P 

1 + C ̃  P 
= 

n 

d ̃  D + n 

. 

This system is stable if we can find a controller with numerator, n ,

and denominator, d , that stabilizes the characteristic polynomial,

d ̃  D + n . For a controller such as in Eq. (18) , we will often be able

to find stabilizing parameter combinations. 

For the closed loop, the optimization problem is to find the best

performing controlling for the system with the target plant, P , sub-

ject to the constraint that that controller also stabilizes the alter-

native plant, ˜ P , with parameter ˜ α. 

As a first step, consider a closed loop optimized for perfor-

mance with respect to the target plant, P , without any stability

constraint for the alternative plant, ˜ P . For this case, Fig. 14 shows

the value of ˜ α at which the optimized closed loop transitions to

instability, with systems below the line being unstable. 

Note that the transition depends on γ , which weights the rela-

tive importance in the performance metric of plastic responsive-

ness to a changed environment versus homeostatic performance

with respect to sudden perturbations. Larger γ weights homeo-

static performance more heavily, which favors a slower system re-

sponse. In this case, slower systems are apparently not as good at

stabilizing alternative plants as are faster systems or, put another

way, the stronger responsiveness of faster systems apparently sta-

bilizes systems more successfully than slower systems. 

For ˜ α values below the curve in Fig. 14 , the unconstrained op-

timization of closed loops creates unstable systems with respect to

the alternative challenge. The next step optimizes the closed loop

system for the target plant, P , subject to the constraint that the

system must be stable with respect to the alternative plant, ̃  P , with

value ˜ α. 
For ˜ α values below the curve, the constrained optimization will

educe the performance of the closed loop with respect to the tar-

et plant, P . The reduced performance reflects the tradeoff between

he performance in a target environment and the safety margin of

tability with respect to alternative environments. 

Fig. 15 illustrates the reduced closed loop performance to

chieve a given margin of stability. Each curve shows log 2 of

he ratio between the performance of a closed loop optimized

ubject to the constraint that it must be stable for a particu-

ar ˜ α value relative to a closed loop optimized without a sta-

ility margin constraint. The curves from bottom to top are for

˜ = −0 . 2 , −0 . 4 , −0 . 8 , −1 . 6 . The x -axis measures log 2 γ . 

As the required stability margin becomes greater with declining

˜ values, the performance cost increases to achieve the required

tability margin. As γ rises, performance depends more strongly on

omeostatic response to perturbation relative to plastic response

o a changed environment. The homeostatic response imposes a

uch stronger tradeoff between stability and performance than

oes a plastic response. 

In this case, a faster system response improves the plastic re-

ponse and the stability margin but degrades the homeostatic per-

ormance. A fast system suffers a greater deviation from the home-

static setpoint in response to perturbation than does a slow sys-

em. In other cases, a faster system response may cause overshoot

f the target setpoint, reducing stability. 

This section used system eigenvalues to develop the trade-

ff between performance and stability margin. Engineering control

heory includes more sophisticated methods for the study of sta-

ility margins ( Frank, 2018a; Vinnicombe, 2001 ). 

5. Conclusions 

This article introduced the conceptual and analytic foundation

or the evolutionary design of regulatory control. The theory pro-

ides broad, abstract predictions about various tradeoffs. Those

radeoffs include the balance among the plastic responsiveness of

nvironmental tracking, the homeostatic rejection of perturbations,

ystem stability, and the costs of controls that modulate dynamics.

dditional tradeoffs arise from robustness to unpredictable chal-

enges and from alternative responses to different frequencies of

nputs. 

This broad framework provides the tools to make sense of dis-

arate studies and to develop novel predictions about regulatory
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ontrol. To give one example of an interesting prediction, consider

he general consequences of error-correcting feedback. 

Error correction within a system compensates for fluctuations

n the performance of the system’s components. That intrinsic ro-

ustness of feedback weakens the direct selective pressure on in-

ividual components of a system. Weakened selective pressure

n components likely increases their genetic variability and their

tochasticity of expression. 

Although I have discussed those ideas in prior publications,

here has been limited work on how control architecture influences

he selective pressure on components and the broad consequences

or biological variability ( Frank, 20 04; 20 07; 2013 ). The second ar-

icle in this series builds on the framework developed here to an-

lyze genetic variability and stochasticity of expression in relation

o alternative control architectures ( Frank, 2018b ). 

Another interesting problem concerns the differences between

he control architecture of human-engineered systems and the reg-

latory networks within genomes ( Frank, 2017 ). Eukaryotic gene

xpression is influenced by transcription factors, methylation, his-

one codes, DNA folding, intron sequences, RNA splicing, noncoding

NA, and other factors. Vast wiring connectivity links genomic in-

uence to a trait. 

An engineer following classic principles of control theory would

esign a simpler system with fewer connections. Genomes are

verwired. They have far more nodes and connections than clas-

ically engineered systems. 

Why are genomes overwired? It helps to consider what other

orts of systems are overwired. Computational neural networks in

rtificial intelligence stand out. Deeply, densely connected com-

utational networks pervade modern life. New computational sys-

ems often outperform humans. 

The recent computational concepts and methods comprise deep

earning ( Goodfellow et al., 2016 ). The learning simply means using

ata, or past experience, to improve the classification of inputs and

he adjustment of response. The deep qualifier refers to the mul-

iple layers of deep and dense network connections. That wiring

epth, and the computational techniques to use vast connectivity,

riggered revolutionary advances in performance. 

How can we understand the differences between classic control

rchitecture and the actual wiring of genomes and computational

eural networks? The right approach remains an open problem. It

eems likely that the greater wiring complexity of genomes and

omputational neural networks ultimately reduce to fundamental

rinciples of classical control, but also depend on various addi-

ional aspects. 

One possibility is that the trial and error inductive building of

ontrol systems by evolutionary dynamics or computational learn-

ng gain from diffusely and densely wired networks, ultimately

chieving similar function to classic control architectures but con-

tructed by a different route. Further study along these lines will

e interesting. 
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