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Abstract 
Background: The abundance of different species in a community 
often follows the log series distribution. Other ecological patterns also 
have simple forms. Why does the complexity and variability of 
ecological systems reduce to such simplicity? Common answers 
include maximum entropy, neutrality, and convergent outcome from 
different underlying biological processes.  
Methods: This article proposes a more general answer based on the 
concept of invariance, the property by which a pattern remains the 
same after transformation. Invariance has a long tradition in physics. 
For example, general relativity emphasizes the need for the equations 
describing the laws of physics to have the same form in all frames of 
reference.  
Results: By bringing this unifying invariance approach into ecology, 
we show that the log series pattern dominates when the 
consequences of processes acting on abundance are invariant to the 
addition or multiplication of abundance by a constant. The lognormal 
pattern dominates when the processes acting on net species growth 
rate obey rotational invariance (symmetry) with respect to the 
summing up of the individual component processes. 
Conclusions: Recognizing how these invariances connect pattern to 
process leads to a synthesis of previous approaches. First, invariance 
provides a simpler and more fundamental maximum entropy 
derivation of the log series distribution. Second, invariance provides a 
simple derivation of the key result from neutral theory: the log series 
at the metacommunity scale and a clearer form of the skewed 
lognormal at the local community scale. The invariance expressions 
are easy to understand because they uniquely describe the basic 
underlying components that shape pattern.
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“It was Einstein who radically changed the way people thought 
about nature, moving away from the mechanical viewpoint of 
the nineteenth century toward the elegant contemplation of 
the underlying symmetry [invariance] principles of the laws of  
physics in the twentieth century” (ref. 1, p. 153).

Introduction
Ecologists have been interested in species abundance distribu-
tions (SADs) since the classic papers by Fisher2 and Preston3.  
Two major patterns have been identified depending on the size 
of the community. In a large community, abundances often  
follow the log series distribution4. Specifically, the probability 
that a species has a population size of n individuals follows  
pn/n. Communities differ only in their average population size, 
described by the parameter, p. At smaller spatial scales, the 
species abundance pattern often follows a skewed lognormal  
(a random variable is lognormally distributed when its logarithm  
is normally distributed)5,6.

It is intriguing that the species abundance distribution follows 
these simple patterns irrespective of the particular group (birds,  
insects, mammals) and region considered. Other ecological  
patterns also follow simple probability distributions7–9. Those  
patterns have attracted a lot of attention. Why does the vari-
ability and complexity of biology reduce to such a small range 
of simple distributions? How can we understand the relations  
between complex processes and simple patterns?

Approaches such as Harte’s9 maximum entropy formalism and 
Hubbell’s5 neutral theory have attempted to explain the generality 
of the log series and skewed lognormal patterns in species  
abundance distributions. Maximum entropy describes probability 
distributions that are maximally random subject to satisfying 
certain constraints10–12. This approach has a long tradition in  
physics, both in statistical mechanics and information theory. 
An early maximum entropy approach in ecology derived the  
biomass pattern of populations13–15.

Neutral theory derives probability distributions by assuming 
that all individuals are equivalent16. Variation arises by random  
processes acting on the mechanistically identical individuals. Put 
another way, the mechanistic processes are “neutral” apart from 
random processes. Both maximum entropy and neutral theory  
have been shown to provide a good fit to the empirical patterns 
of species abundance distributions. In this article, we subsume  
these two different ways of understanding the log series and  
skewed lognormal patterns with a more general perspective based 
on the concept of invariance17.

Invariance can be defined as the property by which a system  
remains unchanged under some transformation. For example,  
a circle is the same (invariant) before and after rotation  
(Figure 1a). In ecology, pattern often depends on the ways 
in which form remains invariant to changes in measurement.  
Some patterns retain the same form after uniformly stretching or  
shrinking the scale of measurement (Figure 2b). Measures of  
length provide a common example of stretch invariance. One 
can measure lengths equivalently in millimeters or centimeters  

without loss of information. As we will see, that kind of 
invariance often determines the form of observed pattern.

To give another example, consider the common and widely 
familiar pattern of the normal distribution. By the central limit  
theorem, when independent random variables are added, their  
properly normalized sum tends toward a normal distribution, 
even when the component variables themselves are not normally  
distributed. The central limit theorem and the normal distribu-
tion are often considered as unique aspects of pattern that stand  
apart from other commonly observed patterns.

The invariance perspective that we promote shows how the  
normal distribution is in fact a specific example of a wider  
framework in which to understand the commonly observed  
patterns of nature. In particular, the normal distribution arises 
from the rotational invariance of the circle18. For two variables,  
x and y, with a given squared length, x2 + y2 = r2, all combi-
nations of the variables with the same radius, r, lie along the  
circumference of a circle (Figure 1a). When each combination 
is equally likely, the rotationally invariant radius is sufficient to 
describe the probability pattern.

It is this rotational invariance that gives the particular  
mathematical form of the normal distribution, in which the aver-
age squared radius sets the variance of the distribution. By this 
perspective, the mathematical forms of all commonly observed 
distributional patterns express their unique invariances18.

The perspective of invariance was the basis for most of the great 
conceptual advances of physics in the twentieth century1. For  
example, Gell-Mann’s pioneering theoretical work on the funda-
mental particles of nature derived from invariance (symmetry) 
properties that unified understanding of known particles and pre-
dicted new particles such as quarks, which were subsequently 
observed. By contrast, general aspects of invariance have not 
been used consistently as the fundamental basis for under-
standing patterns in ecology. One exception concerns scale 
invariance, which is often discussed in ecology19–21. But scale  
invariance is typically limited to special kinds of patterns rather 
than forming a unified approach to diverse patterns.

The point of this paper is that invariance is the most general way 
in which to understand commonly observed patterns. Species  
abundance distributions provide an excellent illustration. For  
species abundances, we show that maximum entropy and neutral  
models can succeed in certain cases because they derive 
from invariance principles. However, maximum entropy and  
neutrality are often difficult to interpret because they hide their 
underlying basis in invariance.

Our unifying invariance analysis clarifies why seemingly  
different conceptual approaches have the same consequences 
for pattern. Similarly, seemingly different biological processes 
may often lead to the same observed pattern, because those  
different processes share a common basis in invariance. That  
deeper understanding suggests a more insightful way to think  
about alternative mechanistic models. It also suggests the kinds 
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Figure 1. Rotational and asymptotic invariance. (a) Transforming a circle by rotation leaves the circle unchanged (invariant), with an 
invariant radial distance at all points along the circumference. (b) Rotating regular polygons changes pattern. However, as more rotated 
polygons are added, the form converges asymptotically to a rotationally invariant circle, in which adding another rotated polygon does not 
change the pattern. Many common patterns of nature are asymptotically invariant. In this case, aggregation causes loss of all information 
except invariant radial distance. (c) The normal distribution is asymptotically invariant. The left curve describes an arbitrary probability 
pattern. The second curve expresses the sum of two randomly chosen values from the first curve. The height is the relative probability of 
the summed values. The third, fourth, and fifth curves express the sum of 4, 8, and 16 randomly chosen values from the first curve. Each 
curve width is shrunk to match the first curve. In this case, aggregation smooths the curve, causing loss of all information except the average 
squared distance from the center (the variance), which is equivalent to the average squared radial distance of rotationally invariant circles. 
(d) Extreme value distributions are asymptotically invariant. The left curve is an arbitrarily chosen probability pattern. The second curve 
expresses the probability of the largest value in a sample of two randomly chosen values from the first curve. The third, fourth, and fifth curves 
show the probability of the largest value of 4, 8, and 16 randomly chosen values. The asymptotically invariant curve on the right expresses 
exponential scaling at small values and linear scaling at large values, labeled in green and blue. Commonly observed probability distributions 
often express simple combinations of linear, logarithmic, and exponential scaling. Panels (a–c) modified from Frank17.

Figure 2. Shift and stretch invariance of the exponential distribution. (a) The left panel shows e–(x+a) for a = 0, –1, . . . , –4. Decreasing 
values of a shift the curve to the right, which is equivalent to shifting the x axis by resetting the zero point. For probability patterns, the total 
probability must be normalized to one, which means that all curves must have the same area under the curve for values of x between 
0 and ∞. To normalize the curves, the right panel plots kae

–(x + a) with ka = ea. Thus, all curves become e–x invariantly with respect to different 
shift values, a. (b) The left panel shows e–bx for b = 20, 2–1, . . . , 2–4. Decreasing values of b stretch the x axis by a factor of 2 for each 
halving of b. To normalize the average value of each probability curve to be the same, the right panel shows e–λb bx for λb = 1�= 1�b. Thus, all 
curves become e–x invariantly with respect to different stretch values, b.
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of empirical tests that may differentiate between alternative 
causal processes.

This manuscript is organized as follows. First, we highlight 
key theoretical results for species abundance distributions. Sec-
ond, we review how invariance defines probability patterns in a 
general way18,22,23. The log series distribution24 and the gamma- 
lognormal distribution for species abundances follow directly  
from the universal invariance expression of probability patterns. 
Third, we show that maximum entropy and neutrality can easily 
be understood as special examples of invariance principles.  
Finally, we discuss the broad role of invariance in the analysis  
of ecological pattern.

Key results
This article develops two key theoretical results. We highlight  
those results before starting on the general overview of invariance 
and pattern.

First, we present a simple maximum entropy derivation of the log 
series pattern. We show that constraining the average abundance  
per species is sufficient when analyzing randomness and entropy  
on the proper demographic scale25.

The simplicity of our maximum entropy derivation contrasts with 
Harte’s more complicated maximum entropy model9,26. Harte  
had to assume an additional unnecessary constraint on energy 
usage. He required that unnecessary constraint because he  
evaluated randomness on the scale of measured abundances 
rather than on the scale of demographic process. This will be 
made explicit below.

We use this result to demonstrate that maximum entropy is the 
outcome of deeper underlying principles of invariance and pat-
tern. By working at the deeper level of invariance, one obtains a 
simpler and more powerful understanding of pattern.

The second result shows that Hubbell’s5 neutral model is the  
simple expression of three basic invariances. Hubbell’s full  
range of log series and skewed lognormal (zero sum multino-
mial) results follows immediately from those three underlying  
invariances.

The three invariances correspond to a maximum entropy model  
that constrains the average abundance of species and the average 
and variance of the demographic processes influencing abun-
dance. The three invariances lead to a simple gamma-lognormal  
distribution that matches the neutral theory pattern for species  
abundances25. The gamma-lognormal is a product of the standard 
gamma and lognormal distributions.

Invariance
This section reviews how invariance considerations lead to the 
log series distribution24. We delay discussion of the gamma- 
lognormal until the later section on Hubbell’s neutral model.

Canonical form of probability distributions
We can rewrite almost any probability distribution as

                                        
λ−

= ,
T

z
zq ke                                         (1)

in which T(z) ≡ T
z
 is a function of the variable, z, and k and λ  

are constants. For example, Student’s t-distribution, usually  
written as

− += + 2 ( 1)/2
(1 / )

v

zq k z v

can be written in the form of Equation 1 with λ = (ν + 1)/2 and  
T

z
 = log(1 + z2/ν).

The probability pattern, q
z
, is invariant to a constant shift,  

T
z
 ↦ a + T

z
, because we can write the transformed probability  

pattern in Equation 1 as

λ λ− + −
= =

( )
,

a T Tz z

az
q k e ke

with k = k
a
e–λa (Figure 2a). We express k in this way because  

k adjusts to satisfy the constraint that the total probability be  
one. In other words, conserved total probability implies that the 
probability pattern is shift invariant with respect to T

z
18.

Now consider the consequences if the average of some value 
over the distribution q

z
 is conserved. For example, the average of  

z is the mean, µ, and the average of (z – µ)2 is the variance. A 
constraint causes the probability pattern to be invariant to a  
multiplicative stretching (or shrinking), T

z
 ↦ bT

z
, because

λ λ− −
= = ,

bT Tb z z
zq ke ke

with λ = λ
b
b (Figure 2b). We specify λ in this way because λ 

adjusts to satisfy the constraint of conserved average value.  
Thus, invariant average value implies that the probability pattern  
is stretch invariant with respect to T

z
.

Conserved total probability and conserved average value cause  
the probability pattern to be invariant to an affine transformation 
of the T

z
 scale, T

z
 ↦ a + bT

z
, in which “affine” means both shift  

and stretch.

The affine invariance of probability patterns with respect 
to T

z
 induces significant structure on the form of T

z
 and the 

associated form of probability patterns. Understanding that 
structure provides insight into probability patterns and the  
processes that generate them18,22,23.

In particular, Frank and Smith22 showed that the invariance of  
probability patterns to affine transformation, T

z
 ↦ a + bT

z
,  

implies that T
z
 satisfies the differential equation

α β= +
d

,
d

z
z

T
T

w

in which w(z) is a function of the variable z. The solution of this 
differential equation expresses the scaling of probability patterns 
in the generic form

                                     β

β
= −

1
( 1),

w

zT e                                     (2)

in which, because of the affine invariance of T
z
, we have added 

and multiplied by constants to obtain a convenient form, with  
T

z
 → w as β → 0.
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By writing T
z
 in this way, w expresses a purely shift-invariant 

aspect of the fundamental affine-invariant scale, because the 
shift transformation w ↦ a + w multiplies T

z
 by a constant, and  

probability pattern is invariant to constant multiplication of T
z
.  

Thus, Equation 2 dissects the anatomy of a probability pattern 
(Equation 1) into its component invariances.

With this expression for T
z
, we may write probability patterns 

generically as

                                    
βλ β− −= ( 1)/

.
we

zq ke                                     (3)

This form has the advantage that w(z) expresses the shift- 
invariant structure of a probability pattern. Most of the  
commonly observed probability patterns have a simple form for 
w23,27. That simplicity of the shift-invariant scale suggests that  
focus on w provides insight into common patterns.

Proportional processes and species abundances
To understand the log series, we must consider the relation  
n = er between the observed pattern of abundances, n, and the 
processes, r. Here, r represents the total of all proportional  
processes acting on abundance24.

A proportional process simply means that the number of indi-
viduals or entities affected by the process increases in proportion  
to the number currently present, n. Demographic processes, such as 
birth and death, act proportionally.

The sum of all of the proportional processes on abundance  
over some period of time is

0 ( )d .r m t tτ= ∫

Here, m(t) is a proportional process acting at time t to change  
abundance. Birth and death typically occur as proportional  
processes. The value of r = log n is the total of the m values 
over the total time, τ. For simplicity, we assume n

0
 = 1.

The log series follows as a special case of the generic  
probability pattern in Equation 3. To analyze abundance, focus 
on the process scale by letting the variable of interest be z ≡ r,  
with the key shift-invariant scale as simply the process variable 
itself, w(r) = r. Then Equation 3 becomes

                                ( 1)/
d d ,

re
rq r ke r

βλ β− −=                                (4)

in which q
r
dr is the probability of a process value, r, in the  

interval r + dr.

Using w(r) = r sets the the shift-invariant scale as the variable 
itself. Substituting this simplest form for the shift-invariant scale  
into the canonical equation for common probability patterns in 
Equation 3 yields the simplest generic expression of probability 
pattern as Equation 4.

We can generalize the relation between abundance and process,  
n = er, by writing nβ = eβr, which uses an additional parameter 

β to allow comparison with the canonical form of probability  
distributions in the previous subsection. When we focus on  
standard models of species abundances, we use β = 1.

We can change from the process scale, r, to the abundance  
scale, n, by noting that β log n = βr, and so, for any β, we have  
r = log n. Thus, we can use the substitutions r ↦ log n and 
dr ↦ n–1dn in Equation 4, yielding the identical probability  
pattern expressed on the abundance scale

                              1 ( 1)/
d d

n
nq n kn e n.

βλ β− − −=                              (5)

The value of k always adjusts to satisfy the constraint of invariant 
total probability, and the value of λ always adjusts to satisfy the 
constraint of invariant average value.

For proportional processes and species abundances, β = 1, 
as noted above. For that value of β, we obtain the log series  
distribution24

                                      
1

,
n

nq kn e λ− −=                                      (6)

replacing n – 1 by n in the exponential term which, because 
of affine invariance, describe the same probability pattern. 
The log series is often written with e–λ = p, and thus q

n
 = kpn/n.  

One typically observes discrete values n = 1, 2, …. See https://
doi.org/10.5281/zenodo.2597895 for the general relation between 
discrete and continuous distributions. The continuous analysis  
here is sufficient to understand pattern.

We can also write the log series on the process scale, r, from  
Equation 4, as 24

                                         .
re

rq ke λ−=                                          (7)

This form shows that the log series is the simplest expression 
of generic probability patterns in Equation 3. The log series  
arises from β = 1, associated with n = er, and from the base  
shift-invariant scale as w ≡ r for proportional processes, r.

Invariances of the log series
This subsection summarizes a few technical points about 
invariance. These technical points provide background for our  
simpler and more general derivation in the following section 
of maximum entropy models for species abundances. Those  
previous models focused only on abundances, n, without  
considering the underlying process scale, r.

We begin with invariance on the process scale, r. On that scale, 
the log series in Equation 7 is the pure expression of additive 
shift invariance to r and lack of multiplicative stretch invari-
ance to r. For example, note in Equation 7 that an additive 
change, r ↦ r + a, is compensated by a change in λ to main-
tain the overall invariance, whereas a multiplicative change, 
r ↦ br, cannot be compensated by a change in one of the con-
stants. For example, if r is net reproductive rate, then an 
improvement in the environment that adds a constant to  
everyone’s reproductive rate does not alter the log series pattern. 
By contrast, multiplying reproductive rates by a constant does 
alter pattern.
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To understand the parameter, β, from Equation 2, consider that

1 1
( 1) ( 1),

rT e nβ β

β β
= − = −

in which β is the relative curvature of the measurement 
scale for abundance, n, with respect to the scale for process,  
r. The relative curvature is β = T″/T′, with the primes denoting  
differentiation with respect to r27.

For the log series, the curvature of β = 1 describes the amount 
of bending of the abundance scale, n = er, with respect to  
multiplying the process scale, r, by a constant—the departure  
from stretch invariance.

The simple invariances with respect to process, r, become  
distorted and more difficult to interpret when we focus only on 
the observed scale for abundance, n, associated with the log  
series in Equation 6. In that form of the distribution, the canonical 
scale is

                                      
1

log .T n n
λ

= +                                      (8)

In this expression, purely in terms of abundances, the log- 
arithmic term dominates when n is small, and the linear term  
dominates when n is large. Thus, the scale changes from  
stretch but not shift invariant at small magnitudes to both shift 
and stretch invariant at large magnitudes24. Without the simple  
insight provided by the process scale, r, we are left with a  
complicated and nonintuitive pattern that is separated from its  
simple cause. That difficulty has led to unnecessary complications 
in maximum entropy theories of pattern.

Pueyo et al. developed a simple alternative approach for  
deriving the log series distribution that combines invariance 
and maximum entropy25. In their derivation, the average value 
of n is a maximum entropy constraint, and the equivalent of our  
r variable is considered as an invariant Bayesian prior in the 
sense of Jaynes12. Previous publications describe the differ-
ences between our invariance approach and the invariant prior  
maximum entropy approach of Pueyo et al.18,22,28,29.

Maximum entropy
Maximum entropy describes probability distributions that are  
maximally random subject to satisfying certain constraints10–12.  
In Equation 1, with the generic description for distributions as

d d ,
T

q ke
λ−

= z
z z z

maximum entropy interprets this form as the expression of  
maximum randomness with respect to the scale z, subject to the 
constraint that the average of Tz is fixed23.

This section begins with a maximum entropy derivation for  
the log series based on our separation between the scales of  
process, r, and observed abundance, n.

We then discuss Harte’s9,26 alternative maximum entropy 
derivation of the log series. Harte’s derivation emphasizes  

mechanistic aspects of energy constraints rather than our emphasis 
on the different scales of process and abundance.

Constraint of average abundance on process scale
The log series in Equation 7 is

d d .
re

rq r ke rλ−=

Here, T = er = n. This distribution expresses maximum entropy  
with respect to the process scale, r. The constraint is the  
ecological limitation on average abundance

                                ,
r

r rr
T e n= =                                 (9)

in which 〈·〉
r
 denotes average value with respect to the process  

scale, r.

In this case, process values, r, are maximally random, subject 
to the ecological constraint that limits abundance, n. Thus,  
maximizing entropy with respect to the process scale, r, subject  
to a constraint on the observed pattern scale, n, leads immediately 
to the log series.

Relating the process scale, r, to the scale of ecological constraint, 
n, often makes sense. Typically, environmental perturbations  
associate with changes in demographic variables, such as birth 
and death rates. Such demographic factors typically act pro-
portionally on populations, consistent with our interpretation 
of r as the aggregate of proportionally acting processes. The 
perturbations, acting on demographic variables, associate the  
process scale with the scale of randomness.

In contrast with the process scale of perturbation and random-
ness for the demographic variables, the scale of constraint  
naturally arises with respect to a limit on the number of individ-
uals, n. Thus, randomness happens on the r scale and constraint  
happens on the n scale.

It is, of course, possible to formulate alternative models 
in which randomness and constraint happen on scales that  
differ from our interpretation. Different formulations are 
not intrinsically correct or incorrect. Instead, they express  
different assumptions about the relations between process,  
randomness, and invariance. The next section considers an  
alternative formulation.

Harte’s joint constraints of abundance and energy
Harte developed comprehensive maximum entropy models of  
ecological pattern. He tested those theories with the available 
data. His work synthesizes many aspects of ecological  
pattern9.

For species abundances, Harte9,26 analyzed maximum random-
ness with respect to the scale of abundance values, n. Maximum  
entropy derivations commonly evaluate randomness on the same 
scale as the observations. In this case, with observations for the 
probabilities of abundances, p

n
, entropy on the same scale is the 

sum or integral of –p
n
 log p

n
.
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However, there is no a priori reason to suppose that the scale 
of observation is the same as the scale of randomness. The 
fact that observation, randomness, and process may occur on  
different scales often makes maximum entropy models  
difficult to develop and difficult to interpret. For example, we 
may observe the probabilities of abundances, p

n
, but randomness 

may be maximized on the scale of process, as the sum or integral  
of –p

r
 log p

r
.

In the final part of this section, we argue that invariance  
provides a truer path to the natural scale of analysis and to the 
mechanistic processes that generate pattern than does maximum 
entropy. Before comparing invariance and maximum entropy, 
it is useful to sketch the details of Harte’s maximum entropy  
model for species abundances.

The simplest maximum entropy model analyzes entropy with 
respect to abundance, n, subject to a constraint on the average 
abundance, ⟨n⟩. That analysis yields an exponential distribution

d d .
n

nq n ke nλ−=

The exponential pattern differs significantly from the observed 
log series pattern. Thus, maximizing entropy with respect to the  
scale of abundance, n, and constraining the average abundance  
is not sufficient.

From our invariance perspective, it is natural to think of the 
scale of randomness in terms of dr, the scale of proportional  
processes, rather than in terms of dn, the scale of abundance.  
Maximizing randomness with respect to dr leads directly to the  
log series, as shown in the previous section.

Harte did not consider the distinction between the exponential 
and log series patterns with respect to the scale of randomness.  
Instead, to go from the default exponential pattern of maximum 
entropy to the log series, his maximum entropy analysis 
required additional assumptions. He proceeded in the following  
way.

Suppose that the total quantity of some variable, 𝜖, is constrained 
to be constant over all individuals of all species. The average  
value per individual is ⟨𝜖⟩. It does not matter what the variable  
𝜖 is. All that matters is that the constraint exists. Harte assumed  
that 𝜖 is energy, but that assumption is unnecessary with regard  
to the species abundance distribution.

The value 𝜖 is distributed over individuals independently of  
their species identity. Thus, the variable δ |n = n𝜖 is the total value  
in a species with n individuals, with average value ⟨δ |n⟩ = n⟨𝜖⟩.

The joint distribution of n and δ is

, | .n n nq q qδ δ=

The explicit form of this joint distribution can be obtained by 
maximizing entropy subject to the constraints on the average  

abundance per species, ⟨n⟩, and the average total value in a  
species with n individuals, ⟨δ |n⟩, yielding

, .
n

nq ke eλ λ δ
δ

− − ′=

We obtain the form presented by Harte26 using the equivalence  
δ = n𝜖, yielding

, .
'n n

nq ke eλ λ− −= �

�

The species abundance distribution is obtained by

, d d .
n n

n nq q ke eλ λ− − ′= =∫ ∫
�

�
� �

Noting that ∫ e–λ′n𝜖 = 1/λ′n, and absorbing the constant λ′ into k,  
we obtain the log series for the species abunance distribution

1
.

n
nq kn e λ− −=

Maximum entropy and invariance
Harte’s maximum entropy derivation of the log series assumes 
joint constraints of abundance, n, and some auxiliary variable, 𝜖,  
which he labeled as energy. He evaluated entropy on the scales of 
n and 𝜖.

By contrast, our invariance derivation arises from a constraint 
on abundance plus evaluation of invariance or entropy on the 
scale r = log n. On that scale, the log series arises in a simple and  
clear way. There is no need for constraint of a second auxiliary  
variable.

Without an invariance argument, nothing compels us to analyze 
with respect to the r scale. Harte, without focus on invariance,  
followed the most natural approach of using n as the scale for 
maximization of randomness and for constraint. That approach  
required an auxiliary constraint on a second scale to arrive at the 
log series.

Harte’s approach was a major step in unifying the analy-
sis of empirical pattern. But, in retrospect, his approach was 
unnecessarily complicated.

One might say that Harte’s approach provided a richer theory 
because it led to predictions about both abundance and energy. 
However, the data on abundance patterns match very closely to the 
log series, whereas the data for different proxies of energy vary 
considerably9.

Our invariance approach strips away the unnecessary auxiliary  
variable. The invariance theory therefore provides a much simpler 
way to derive and to understand abundance patterns.

Maximum entropy can be thought of purely as a basic invari-
ance method of analysis. Maximum entropy distributions  
have the form in Equation 1 as

d d ,
T

q ke
λ−

= z
z z z
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in which T
z
 is the affine-invariant scale that defines the prob-

ability pattern. Thus, the method of maximum entropy is simply a  
method for deriving the affine-invariant expression, T

z
. In  

practice, maximum entropy has three limitations.

First, maximum entropy is silent with respect to the proper  
choice for the scale on which entropy is maximized and the 
constraints that set the affine-invariant expression, T

z
. By  

contrast, focus on invariance led us to the shift invariance of the 
process scale, r. That scale provided a much simpler analysis, 
in which r is the incremental scale with respect to invariance  
and the measurement scale with respect to entropy.

In other words, maximum entropy is a blind application of the 
most basic invariance principles, without any guidance about the  
proper scales for invariance, randomness, and constraint. By 
contrast, an explicit invariance approach takes advantage of the  
insight provided by the analysis of invariance.

Second, by focusing on invariance, we naturally obtain the full 
invariance (symmetry) group expression in Equation 3 as the 
generic form of probability patterns

( 1)/
.

weq ke
βλ β− −=z

That generic expression leads us to a generalization of the log  
series in Equation 5 as 24

1 ( 1)/
d d

n
nq n = kn e n,

βλ β− − −

which is a two parameter distribution for abundances with  
respect to λ and β. The log series is a special case with β = 1.

Third, invariance leads to a deeper understanding of the relation 
between observed pattern and alternative mechanistic models of 
process. The following section provides an example.

Neutrality
Here, we analyze Hubbell’s5 neutral model of species abundances 
in the light of our invariance perspective. With that example in 
mind, we then discuss more generally how neutral models relate to 
invariance and maximum entropy.

Hubbell’s neutral model
The strong recent interest in Hubbell’s neutral model follows 
from the match of the theory to the contrasting patterns of  
species abundance distributions (SADs) that have been observed 
at different spatial scales. In the theory, many local island-
like communities are connected by migration into a broader  
metacommunity. Sufficiently large metacommunities follow the  
log series pattern of species abundances. Each local community 
follows a distribution that Hubbell called the zero-sum  
multinomial30, which is similar to a skewed lognormal. As noted 
by Rosindell et al.6, it is this flexibility of the classic neutral 
model to reconcile the log series and lognormal distributions that  
allows it to fit empirical data well31.

Invariance and the gamma-lognormal distribution
Broad consensus suggests that species abundances closely  
follow the log series pattern at large spatial scales. Extensive data 
support that conclusion4.

Observed pattern at small spatial scales differs from the log  
series. Consensus favors a skewed lognormal pattern. The data 
typically show an excess of rare species, causing a skew relative 
to the symmetry of the lognormal when plotted on a logarithmic  
scale.

At small spatial scales, most recent analyses focus on data from 
a single long-term study of tree species in Panama5,30. Thus, 
some ambiguity remains about the form and consistency of the 
actual pattern at small scales. The blue curve of Figure 3 shows  
Chisholm & Pacala’s30 fit of the neutral theory to the Panama 

Figure 3. Match of the gamma-lognormal pattern in gold to the neutral theory fit in blue for Panama tree species abundances. The 
neutral theory fit to the data comes from Chisholm & Pacala’s30 analysis in their Figure 1. They used Hubbell’s neutral theory model with 
parameters J = 21,060, m = 0.075, and θ = 52.1 in their Equation 3, originally from Alonso & McKane32. The gamma-lognormal model in 
Equation 11 produces essentially the identical pattern with parameters λ = 0.00205, a = 0.491, and α = 0.0559. The abundance scale can be 
expressed equivalently on the process scale, log2 n = r/ log 2. See the Zenodo record33 for the calculations used to produce this plot.
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tree data for species abundances at small spatial scales. The gold  
curve shows the close match to the neutral theory pattern by 
a simple probability distribution derived from the analysis of  
invariance.

To obtain the matching distribution derived by invariance, we 
begin with the canonical form for probability distributions in  
Equation 3. That canonical form expresses pattern in terms of the 
shift-invariant scale, w. Next, we need to find the specific form 
of the scale w that relates this canonical form for probability  
distributions to the neutral theory. Because the neutral theory 
derives abundance, n, as an outcome of demographic processes, 
r, the fundamental shift-invariant scale for neutral theory is  
expressed in terms of the demographic process variable as

                           
2

log .
r a

w e r r
α

λ λ
= − +

 
                             (10)

Below, we discuss why this is a natural shift-invariant scale 
for neutral theory. For now, we focus on the details of the  
mathematical expressions. Recall that n = er relates measured  
abundances, n, to the demographic process scale, r. If we 
assume that β = 1 in Equation 3 and use w from Equation 10, we  
obtain

                                  
2

,
re ar r

rq ke λ α− + −=                                   (11)

with parameters λ, a, and α. We can write this distribution 
equivalently on the n scale for abundance as

                            
( )2log1

.
na n

nq kn e e α µλ − −− −= �
                           (12)

In the second distribution, µ = (a – ã)/2α. Thus, both 
distributions have the same three parametric degrees of freedom.

The right-hand exponential term of Equation 12 is a lognormal 
distribution with parameters µ and σ 2 = 1/ 2α. The remaining  
terms are a gamma distribution with parameters ã and λ. 
We call this product of the gamma and lognormal forms the 
gamma-lognormal distribution.

Figure 3 showed that the gamma-lognormal distribution matches 
the neutral theory fit for the Panama tree data. Figure 4 shows 
that the shape of the gamma-lognormal matches the shape of  
the neutral theory predictions for various mechanistic parameters  
of the neutral theory.

In summary, the neutral theory distribution appears to be nearly 
identical to a gamma-lognormal distribution when compared 
over realistic parameter values. Both distributions have the same 
three parametric degrees of freedom. Pueyo et al.25 derived the  
gamma-lognormal by using an invariance argument to obtain 
the n = er relation as a Bayesian prior for maximum entropy  
and then using additional constraints in a maximum entropy  
analysis. They also noted the good fit to Hubbell’s neutral  
theory. As mentioned above, our invariance analysis and our 
interpretation of invariance differ from Pueyo et al.’s Jayesian  
invariant prior approach for maximum entropy.

Maximum entropy and the gamma-lognormal
The constraints on pattern can be seen most clearly by rewriting 
Equation 11 as

                           
2

,
rT e ar arr

rq ke keλ λ− − + −= = � �
                          (13)

in which 2 2( )r r µ= −  is the squared deviation from µ, in which 
µ is the average value of r. This expression remains a three- 
parameter distribution because, as noted above, µ = (a – ã)/2α.

Figure 4. Match of Hubbell’s neutral theory to the gamma-lognormal distribution. The blue curve for the neutral theory and the gold 
curve for the gamma-lognormal are calculated as described in Figure 3. The parameters for the neutral theory are the same as in Figure 3, 
except as shown in each panel. We fit the parameters for the gamma-lognormal to each neutral theory curve, with values for each panel:  
(a) λ = 0.01115, a = 0.4452, and α = 0.03660; (b) λ = 0.0004209, a = 0.4622, and α = 0.05014; (c) λ = 0.002765, a = 0.3182, and α = 0; 
(d) λ = 0.001777, a = 0.2217, and α = 0.03576; (e) λ = 0.0001509, a = 0.3851, and α = 0.03667; (f) λ = 0.02519, a = 0.3726, and  
α = 0.006900. See the Zenodo record33 for the calculations used to produce these plots.
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With this set of parameters, the affine-invariant scale is

                                
2
.

r
r

a
T e r r

α

λ λ
= − +

�
�                                (14)

Note that T and w are related by Equation 2. We are using w from 
Equation 10 and β = 1, as noted below Equation 10. We ignore 
the extra –1 term in T of Equation 2, because the canonical  
form of probability distributions is invariant to adding a constant 
to T. The tilde parameters of the distribution in Equation 13 are 
interchangeable with the nontilde parameters of the identical 
distribution in Equation 12. The tilde expressions focus on the  
invariances that will help us to interpret ecological pattern. The 
nontilde expressions describe pattern in terms of the classic  
forms for the gamma and lognormal distributions.

By the standard theory of maximum entropy, q
r
 maximizes  

entropy on the incremental scale dr subject to a constraint on 
the average value of the defining affine-invariant scale, ⟨T⟩

r
. 

That constraint is the linear combination of three constraints:  
the average abundance on the process scale, ⟨n = er⟩

r
, the aver-

age demographic process value, ⟨r⟩, and the variance in the  
demographic process values, 2 .r

By maximum entropy, all of the information in Hubbell’s  
mechanistic process theory of neutrality and the matching  
gamma-lognormal pattern reduces to maximum randomness  
subject to these three constraints.

However, it is very unlikely that we would have derived the  
correct form by maximum entropy without knowing the answer in  
advance. This limitation emphasizes that maximum entropy  
provides deep insight into process and pattern, but often we need 
an external theory to guide our choice among various possible  
maximum entropy formulations.

Put another way, maximum entropy and process oriented  
theories, such as Hubbell’s model, often work together syn-
ergistically to provide deeper insight than either approach  
alone.

Invariance, information and scale
Before turning to invariance and the gamma-lognormal pattern 
of neutral theory, it is useful to consider some basic properties 
of invariance and information34,35. In particular, this subsection  
develops our claim that the affine-invariant scale provides the  
deepest insights into the relations between pattern and process.

We start by noting that, in the general expression for probability 
distributions

,
T

q ke
λ−

= z
z

the affine-invariant scale, T
z
, is equivalent to a common expression 

for the information content in a measurement, z, as

log .I q= −z z

This expression follows from assuming that: information  
depends on the probability, q

z
, of observing the measured value 

and not on the value itself; rarely observed values provide more 

information than commonly observed values; and the information 
in two independent measurements is the sum of the information 
in each measurement. From the general expression for probability 
distributions

.I λ+= –log = –logz z zq k T

Thus, an incremental change in information is equal to an  
incremental change in the affine-invariant scale

.λ= − =d d log dz z zI q T

Equivalently, the change in information with respect to a change  
in the affine-invariant scale,

                                          ,λ=
d

d

z

z

I

T
                                         (15)

is constant at all magnitudes of the measurement, z. Every  
measured increment on the T

z
 scale provides the same amount 

of information about pattern. Constancy of information at all  
magnitudes is the ideal for a measurement scale. Thus, affine  
invariance provides the ideal scale on which to evaluate the  
pattern in measurements23. Figure 5 illustrates some key properties 
of the affine-invariant scale.

Information is sometimes thought of as a primary concept. 
However, it is important to understand that, in this context,  
information and affine invariance are the same thing. Neither is 
intrinsically primary.

We prefer to emphasize invariance, because it is an explicit  
description of the properties that pattern and process must  
obey17,27,36. Further analysis of invariant properties leads to deeper 
insight. For example, only through invariance can we obtain the 
group theory expression for the canonical form of probability  
patterns (Equation 3).

By contrast, “information” is just a vague word that associates with 
underlying invariances. Further analysis of information requires 
unwinding the definitions to return to the basic invariances.

Invariance interpretation of the gamma-lognormal
We turn now to the neutral theory model for abundances at 
local spatial scales. We showed that all of the information about  
pattern and process in the neutral theory is captured by the  
gamma-lognormal pattern in Equation 13 as

2
,

rT e a r rr
rq ke keλ λ α− − + −= =

∼ ∼

which defines the affine-invariant scale in Equation 14 as

                               2
.

r
rT e ar rλ λ α= − +� �                                (16)

On this scale, changes in r provide the same amount of  
information about pattern at all magnitudes. Shifting the scale 
by a constant does not change the information about pattern in  
measurements. In other words, it does not matter where we set the 
zero point for T

r
. Similarly, uniformly stretching or shrinking the 

scale, T
r
, does not change the information in measurements of r.
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Figure 5. Continuous probability distributions can often be expressed as exponential or normal distributions with respect to the 
affine-invariant scale. A continuous distribution typically can be written as q

z
 = ke–λTz, from Equation 1. In the figure, T ≡ T

z
. (a) A parametric 

plot of q
z
 vs T

z
 is exponential. All of differences between probability distributions are contained in the form of the affine-invariant scale, T

z
. The 

change in information for each increment of the affine-invariant scale is λ, as in Equation 15. (b) A parametric plot of q
z
 vs ± zT  is normally 

distributed when describing the deviations from a unimodal peak of q
z
. The average of the deviations on the affine-invariant scale, ⟨T ⟩, 

relative to measurements on the square root of that scale, zT , is the variance, σ 2. For the normal distribution, we can think of a deviation from 
the central location on the affine-invariant scale, 2.z z=T R  as the squared radial deviations along the circumference of a circle with radius R

z
, 

describing the squared vector length for an aggregation of variables. The variance is the average of the squared radial deviations relative to 
the scale of radial measures, ,z z=T R  Most continuous unimodal distributions are, in this way, equivalent to a normal distribution when scaled 
with respect to the square root of the affine-invariant measure. See Frank17,18 for details.

We can parse the terms of Equation 16 with respect to constraint 
and invariance. When r is large, the term λer = λn dominates the 
shape of the distribution in the upper tail, which decays as

d d d
re n

rq r ke r ke rλ λ− −= =

for sufficiently large er = n. The smaller the value of λ relative 
to ã and α, the greater er must be for this pattern to dominate.  
When λ is relatively large compared with ã and α, this pattern  
dominates at all magnitudes and leads to the log series.

With respect to constraint, for large values of abundance, n, the 
constraint on average abundances dominates the way in which  
altered process influences pattern. With respect to invariance, 
a process that additively shifts or multiplicatively stretches the  
er = n values does not alter the pattern in the upper tail. Simi-
larly, pattern is invariant to a process that additively shifts  
process values, r, but processes that multiplicatively change r alter 
pattern. Thus, we can evaluate the role of particular processes  
by considering how they change n or r.

The pattern at small and intermediate values of r depends on the 
relative sizes of the parameters. If the ãr term dominates, then the 
constraint, ⟨r⟩, on the average process value is most important.  
With respect to invariance when ãr dominates, a process that  
additively shifts or multiplicatively stretches the r values does 
not alter the pattern in the lower tail. That lower tail is a rising  
exponential shape, eãr, as in Figure 4c.

When the 2rα   term is negligible at all magnitudes, the combination 
of the dominance by ãr in the lower tail, and the dominance by 
λer in the upper tail, yields the gamma distribution pattern on the 
abundance scale, n.

Finally, for magnitudes of r at which the 2 2( )r rα α µ= −  term  
dominates, the constraint, σ 2 = ⟨r – µ2⟩, on the variance in  

process values is most important. In this case, pattern follows a 
normal distribution, e–α (r–µ)2, on the r scale, which is a lognormal  
distribution on the abundance scale, n.

When combining numerous process values to obtain an over-
all net r value, approximate rotational invariance is sufficient 
for the pattern to be very close to a perfect normal curve  
(see Introduction). When measuring net squared deviations from 
the mean, which is the squared radial distance, the pattern is  
invariant to shift and stretch of the squared radial measures,  
(r – µ)2.

In practice, the lognormal pattern of abundance dominates when 
a constraint on r dominates and net values of r obey rotational  
invariance (symmetry) with respect to the summing up of the  
individual processes acting on abundance.

Any theory of process that leads to those three basic invariances 
will follow the gamma-lognormal pattern. The great unsolved  
puzzle is how specific mechanistic processes combine such that 
the structure of pattern is fully expressed by these particular  
invariances of pattern or, equivalently, by constraints on the  
average values of certain quantities in the context of maximum 
entropy. Our work opens the way for a more direct attack on 
this great puzzle by clarifying the anatomy of a pattern, thereby  
clarifying the puzzle that must be solved.

The anatomy of pattern
 [J]ust as the physiologist divides the animal world, according 
to anatomy, into families and classes, so the ornamentist is 
able to classify all pattern-work according to its structure  
[invariance]. Like the scientist, he is able even to show the  
affinity between groups to all appearance dissimilar; and, 
indeed, to point out how few are the varieties of skeleton  
upon which all this variety of effect is framed (ref. 37,  
pp. 3–4). … The fact of the matter is, the characteristic lines 
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of time-honoured patterns are mainly the direct result of the  
restrictions under which the craftsman was working (ref. 37, 
p. 47).

Invariances comprise the structural components in the anatomy 
of pattern. Commonly observed patterns almost always dissect  
completely into a few simple invariances. Our primary goal has 
been to introduce into ecological study the anatomy of pattern and 
the methods of dissection.

Identifying and naming the parts does not tell one how those 
parts came to be. In fact, common patterns are widespread  
exactly because so many different underlying mechanistic  
processes give rise to the same simple invariances.

Roughly speaking, one can think of a common pattern as an 
attractor. Each different underlying mechanistic process that  
develops into the generic form traces a distinctive path from some 
starting point to the generic endpoint of the attractor. All of the  
different mechanistic processes and starting points that end up at 
the same attractor form the basin of attraction for that pattern.

Our work characterized the anatomy of pattern—the anatomy of 
the attractors. The next step requires understanding how various  
combinations of mechanistic processes lead to one attractor or 
another. Equivalently, one can think of a mechanistic process 
as something that transforms inputs into outputs38. Three  
questions follow. How do particular cascades of input-output  
transformations ultimately combine to produce overall transfor-
mations that associate with simple invariances? What separates  
some cascades from others with regard to association with  
different invariances? In other words, how can we assign different 
mechanistic cascades to one basin of attraction or another?

If we could answer those questions, then we could predict  
whether different mechanistic processes lead to the same pattern  
or to different patterns.

The fact that different processes can attract to the same pattern 
has been widely discussed in ecology30,39–47. However, that past  
work typically did not explain common patterns in terms of  
invariance. Without invariance, one does not have a basis for 
describing the anatomy of common patterns or the reasons 
why certain processes attract to a particular pattern and others  
do not.

Invariance may provide a way to compare different  
models of process that lead to the same pattern. Among the 
many complex component processes that may occur in a model, 
which truly matter? In other words, which component processes  
shape the defining invariances and which are irrelevant? For the 
focal component processes of each model that matter, which  
empirical tests would tell us which of the alternative mechanistic 
models is the more likely match to natural processes?

Conclusions
The apparent simplicity of invariance can mislead about its  
ultimate power. For example, probability patterns express a shift 

and stretch invariant scaling. That affine-invariant scaling provides 
a constant measure of information at all magnitudes.

Shift and stretch invariance seem almost trivially simple. Yet, 
by analyzing how repeated transformations of shift and stretch  
retain invariance, we obtain the most general form that expresses 
various affine-invariant scales (Equation 2). That affine symmetry 
group defines the simple, general structure of probability patterns 
and their uniform measurement scales.

Knowing the general invariant form of probability patterns reveals 
the relations between different approaches. Invariance provides 
powerful methods to analyze pattern and process.

To sum up, our invariance approach is not just another one among 
various alternatives. Rather, it is the only way to relate process 
to pattern, because the essence of pattern is invariance. Only by  
understanding what pattern actually is and how it generally 
arises can one begin to formulate testable hypotheses about  
mechanism.

Put another way, pattern is always the interaction between, on 
the one hand, the generic aspects of invariance and scale that 
arise in all cases and, on the other hand, the particular aspects of  
biology that operate in each case. Without a clear view of that 
duality between the generic and the particular, it is easy to  
mistakenly attribute generic aspects of observed pattern to 
particular causes. To properly understand the role of specific  
mechanistic aspects in shaping pattern, one must evaluate  
pattern simultaneously from the perspectives of the generic and  
the particular.
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This paper by Frank and Bascompte explores ideas about the origins of statistical pattern in 
biology developed in previous work by Frank and Frank & Smith, and applies them to the question 
of the distributions of species population sizes commonly observed in community ecology. As the 
authors note, the distribution of population sizes in a given ecological community will tend to 
follow quite closely one of two probability distributions – the logarithmic or the skewed log-normal 
– irrespective of the physical size of the organisms in the community of interest, and the number 
of species involved. Why this should be is an important question, and one that points toward some 
general rule or principle of ecology that would be fascinating and potentially valuable to 
understand. In providing their own explanation, the authors follow a formula proven by Frank in 
earlier publications: The problem is outlined, previous efforts to explain it are described, noting ad 
hoc or special features which limit their generality, before the authors’ own explanation is 
described and its relative merits compared with the earlier attempts. 
 
It is worth taking a moment to put this work in a brief historical context of the more general topic 
of research that has occupied Frank for more than a decade, because that broader (longer?) 
perspective says something useful about the process of research into theoretical biology and the 
development of theory. Frank’s earliest publications on the topic of probability patterns in nature 
were built around the idea that constraints on information contained in myriad stochastic 
processes, together with a principle of maximum entropy, leads to a few probability patterns 
being common. This explanation raises the question of how the constraints occur. Frank’s earlier 
work led to some principles to answer that question by assuming that the constraints arise in 
solving the maximum entropy expression for probability patterns with the method of Langrangian 
multipliers. Of course, since what’s needed is an explanation for empirical observation, none of 
this is supposed to be happening to purely abstract mathematical objects, but to actual physical 
processes, when we observe them (and indeed some of the most important constraints on 
information in our data arise from how we observe), so an explanation in terms of constraints in 
Lagrangians had better have a clear and fairly direct physical interpretation; fortunately it does. 
 
A natural interpretation of the Lagrangian constraints arises in thinking about the scaling at which 
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information is gathered from the system by the process of observation and how this interacts with 
natural scales at which information is preserved in the organization of the observed system. 
Earlier publications, rooted in the maximum entropy concept, used the idea of convolution to 
describe how information could be preserved (or lost) as large numbers of random, small scale, 
processes interact and are observed. This line of thought appears to have led Frank to the 
realization that the organizing framework for the constraints is, at its core, a set of expressions 
describing patterns of invariance. Three types of invariance – shift and stretch (which combine to 
give affine invariance) and rotation, are sufficient to account for the fact that a few common 
probability patterns in biological and physical systems spanning many orders of magnitude, 
describe the majority of empirical datasets. Frank & Smith (2011)1 gives a comprehensive early 
account of using the concept of symmetries (invariances) to derive many probability patterns. A 
recent strand of papers (of which the current one is an example) employ the concept of invariance 
to show how several specific types of biological pattern arise. 
 
In these papers, the concept of invariance is given primacy, and - explicitly in the current example 
- maximum entropy is viewed as a derived property that is not needed to explain the commonality 
of probability patterns. To reiterate an earlier point, quite aside from the technical merits, 
theoretical depth, and potential applications of the work itself, Frank’s publications on this topic 
are an interesting publication trail for those studying the development of theory in biology. They 
present an example of how one scientist’s thinking on a subject changes and develops over time. 
I’m laboring the description of the context for the work, because, as I will outline in what follows, I 
think the most important critique lies not in the technical details as they apply to species 
abundance distributions, but to the epistemic basis for the whole endeavor. 
 
Invariance and maximum entropy 
Frank & Bascompte (F&B) argue that the log series for species abundance arises naturally when 
one considers two assumptions; first that there is affine invariance at the scale of proportional 
processes that act on species abundance (so, for example, birth and death), and second that there 
is a constraint on average abundance. Algebraic analysis, assuming a standard exponential form 
for the probability distribution, then shows that these two assumptions are sufficient to induce the 
log-series form; the probability distribution describing abundance. The authors contrast this 
analysis with the one owing to Harte, which is based on a maximum entropy interpretation. F&B 
note that working from first principles, assuming a constraint on average abundance, and starting 
from the assumption that entropy is maximized in the abundance distribution, one ends up with 
the exponential distribution as the maximum entropy form for species abundance. This is at odds 
with empirical observation. 
 
If we assume that the observed distribution of species abundances is a maximum entropy 
distribution, then this analysis tells us that simple constraint on the average abundance is 
insufficient to induce the observed probability pattern, which leads to three possible alternatives. 
First, some further constraint is required on the abundance distribution so that the derived form 
matches observation (this is essentially the approach taken by Harte). Second, the abundance 
distribution is itself dependent on one or more constraints in some other process (for which 
entropy is maximized) and the joint effect of these two sets of constraints results in the observed 
log series distribution (this is the approach taken by F&B). Thirdly, we abandon the premise that 
species abundance is a maximum entropy distribution and look for explanations in some other 
room in the library of all possible theories. The third option is a drastic one; especially when there 
are good arguments in related fields of research that support the idea that Nature does indeed 
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confront us with maximum entropy distributions when we make observations. For example, in 
discussing the correspondence between entropy maximization and description length 
minimization, Grunwald (2007, p644)2 writes: 
 
“we imagine a two-player game between Nature and Statistician. Nature first picks a distribution and 
then generates an outcome X according to it; Statistician picks a code and uses it to describe X. Nature is 
allowed to select any distribution she likes, as long as it satisfies E[ϕ(X)]=μ, and Statistician is allowed to 
use any code whatsoever. Nature’s goal is to maximize Statistician’s expected codelength, and 
Statistician’s goal is to minimize it. … the best (maximum codelength_ that she can achieve if she has to 
move first is equal to the best (minimum codelength) that Statistician can achieve if he has to move first. 
Surprisingly, under weak conditions both Nature’s maximin and Statistician’s minimax strategy turn out 
to be the Maxent distribution…” 
 
There is, I believe, an important connection between MDL and Frank’s program of explanation for 
biological patterns and it is captured in the quotation from Grunwald’s (2007)2 book given above. 
In a loose sense, one might cast Frank’s investigation of pattern as an inquiry into what Nature is 
doing in the game described by Grunwald. The conclusion is that she is playing a strategy of 
showing us maximum entropy distributions. As Grunwald (2007)2 points out, this is the optimal 
conclusion for us to reach (playing the role of Statistician) if we want our adopted descriptions to 
be optimal in the sense of minimizing our expected maximum error. The Kraft-McMillan inequality 
establishes the correspondence between codelength functions and probability distributions, so 
Grunwald’s game between Nature and Statistician can be rephrased directly by substituting 
“probability distribution” for “codelength”. But, there is an additional, epistemic, connection 
between MDL and what Frank and his co-authors on this and other papers are doing. 
In establishing MDL Jorma Rissanen was attempting to establish a principle for model selection 
and inference that was free from the need for prior assumptions about the process (or model) 
generating the observed data. Here is the opening paragraph of Rissanen’s (1978)3 paper on 
model selection: 
 
This study is an attempt to derive a criterion for estimation of both the integer-valued structure 
parameters and the real-valued parameters of dynamic systems starting from a single natural and 
fundamental principle: the least number of digits it takes to write down an observed sample of a time 
series. 
 
Frank’s scheme, for describing why particular models (i.e. probability distributions) describe is an 
alternative, but also hypothesis-free, attempt to describe what Nature is doing. It’s important to 
clarify what is meant in saying Frank’s approach is hypothesis-free. It is simply this. The method 
does not select a particular probability distribution (equivalently, a model or codelength function) 
for the data a priori, but instead establishes a few mechanistically motivated constraints on 
information, given the context of the data and the measuring process, and uses those to infer the 
form of the probability distribution one expects the data to follow. This idea of making well-
motivated choices about the identity of the best description of observed data is also enshrined in 
MDL in the “luckiness principle” (see Grunwald (2007)2 Ch14) further emphasizing the connection 
between the two lines of investigation. 
 
Why does this matter in relation to the paper by F&B? As I mentioned earlier the answer is more 
one of process and principle than technical detail. The importance of the current paper is that it 
adds to argument, advanced by Frank, that biological observations of all kinds can be 
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systematized; general principles operate that allow us to form expectations about the 
distributional properties of our data in a non ad hoc manner. I applaud this effort and think that 
it’s a contribution to modern biology that will come to be seen as a major advance in the 
philosophical grounding of the subject, which is why I find the current paper somewhat 
frustrating. My main concern is this. In seeking to establish an invariance principle as taking 
precedence in some epistemiological sense, over the principle of maximum entropy, I think the 
authors make a mistake, and one that threatens the clarity of the preceding work by Frank and 
others on probability patterns. In essence the problem is that invariance and maximum entropy 
are not alternatives, the former is one of two approches commonly used to solve/understand 
maximum entropy problems, the other being the method of Lagrangian multipliers. I would 
characterize the conceptual shift in this paper (from Frank’s previous work) not as a shift from 
maximum entropy to invariance, but as a shift in focus on solutions to the maxent problems from 
approaches grounded in Lagrangians to approaches derived from the concepts of invariances, 
particularly symmetry groups. Both approaches are firmly within the overall framework of 
maximum entropy. So, my main request to the authors would be that they consider re-casting the 
paper along the lines just outlined and less as a demonstration that a principle of invariance 
supersedes the maximum entropy principle in describing biological patterns, in particular species 
abundance distributions. 
To anchor this argument more firmly to the paper (and draw in the MDL connection) here are a 
couple of points where I think the authors need to offer the reader a little more support for their 
proposal. F&B argue that their approach, based on invariance, offers a clearer rationale for 
deriving/explaining appropriate distributional forms than those based in either “maximum 
entropy” or mechanistic neutral theories. For example, in the section “Maximum entropy and the 
gamma lognormal” F&B note: 
 
By maximum entropy, all of the information in Hubbell’s mechanistic process theory of neutrality and 
the matching gamma-lognormal pattern reduces to maximum randomness subject to these three 
constraints. 
 
However it is very unlikely that we would have derived the correct form by maximum entropy 
without knowing the answer in advance. This limitation emphasizes that maximum entropy 
provides deep insight into process and pattern, but often we need an external theory to guide our 
choice among various possible maximum entropy formulations. 
I would argue that subsequent derivation based on invariances is no less opaque, and someone 
attempting the derivation would, similarly, need to know where they were going in order to get 
there. It is of interest to point out that here, as in MDL, access to external theory will be of value in 
achieving results. This idea of externally motivated choice of approach is also apparent in the 
second example I would ask the authors to consider. 
In the discussion of the log series pattern, F&B contrast their approach, with that offered by Harte. 
As we already noted, F&B point out that starting from the canonical form for probability 
distributions, a constraint on the expected value for the observations leads to the exponential 
distribution as the emergent form; a result that demonstrably fails to deal with observed species 
abundance data. Harte solved this problem by introducing a second variable that is similarly 
constrained at the same scale as the expectation of abundance. F&B criticize Harte’s approach, in 
essence, on the grounds that it is an ad hoc solution, arguing that their approach, in which 
constraints (invariances) are placed on underlying demographic processes, has a clearer rationale. 
While F&B’s argument is persuasive, I think it needs to be strengthened and somewhat expanded. 
Here’s why: 
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As a I pointed out above, failure of the simple constraint on average abundance to lead to the log 
series requires us to come up with an alternative hypothesis for why the log series is observed. In 
MDL terms, we need a better description of the data. From a logical perspective, there doesn’t 
appear to be any difference between adding an assumption of a variable at the same scale as 
abundance being under constraint, and an assumption of proportional demographic processes at 
a lower scale being constrained. In fact, from a model parsimony (MDL) perspective, a model that 
relies on adding a whole additional scale of processes may be viewed as propagating unnecessary 
complication. Furthermore, it doesn’t seem like too much of a stretch to suggest that constraints 
on proportional processes at a lower scale, might not give rise to quantity at the same scale as the 
expectation of abundance that is similarly constrained, when measured at that scale? Is the issue 
simply one of how phenomenological one likes one’s models to be? And if so, what guidance can 
be given to those who want to pursue the type of analysis proposed by F&B? As a first stab at an 
answer to that question would something along the following lines offer budding invariance 
analysts a template to work from? 
 
Identify the Objects that are the subject of your interest (SAD’s in the current case). Use Occam’s R
azor and Methodological Individualism, when deciding where to look for constraints. (IOUORMI “I 
owe you, or me”). The combination of Occam’s Razor and Methodological Individualism should 
guide investigators to look for the simplest model built from processes operating at one level 
below the objects of interest in the organizational hierarchy of the systems of interest. 
 
In any case, I applaud the authors on showing that the diversity of known SAD data can be 
organized and explained by a unified principle, that has a clear theoretical and physical basis. 
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We are grateful for Neil McRoberts' careful reading and deep scholarship. We learned a lot. 
We agree with many points. Here, we confine our comments to a few issues that deserve 
further study. 
 
1. "My main concern is this. In seeking to establish an invariance principle as taking 
precedence in some epistemological sense, over the principle of maximum entropy, I think 
the authors make a mistake, and one that threatens the clarity of the preceding work by 
Frank and others on probability patterns. In essence the problem is that invariance and 
maximum entropy are not alternatives, the former is one of two approaches commonly 
used to solve/understand maximum entropy problems, the other being the method of 
Lagrangian multipliers. I would characterize the conceptual shift in this paper (from Frank’s 
previous work) not as a shift from maximum entropy to invariance, but as a shift in focus on 
solutions to the maxent problems from approaches grounded in Lagrangians to 
approaches derived from the concepts of invariances, particularly symmetry groups. Both 
approaches are firmly within the overall framework of maximum entropy." 
 
In the general form for probability density functions, q(z)=ke-λ T(z), we must distinguish two 
questions. 
 
First, how do we determine T(z)? That is the problem discussed by McRoberts in his 
comment quoted above. It is true that in our work we have, over time, moved from 
constraints and Lagrangians to symmetry groups in thinking about the form of T. 
 
Second, how does the overall exponential form of probability patterns arise? In our early 
work, we followed Jaynes in his maximum entropy approach to arrive at the exponential 
form. However, in our later work (e.g., ref 18), we realized that maximum entropy is itself a 
special form that arises within a more general understanding of invariance. From this more 
general perspective, "entropy" and "information" are simply expressions for basic 
invariances that one naturally assumes for probability patterns. There is no need for 
"entropy" as a concept or method, although there can be value in using notions of entropy 
in some applications and for developing intuitive understanding. 
 
For these reasons, we disagree with McRoberts' description of our work. We did intend to 
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say that we have shifted from maximum entropy to a more general invariance perspective. 
From that more general perspective, one sees maximum entropy as a special interpretation 
of broader invariance principles. 
 
2. "[I]t is very unlikely that we would have derived the correct form [for Hubbell's neutral 
theory] by maximum entropy without knowing the answer in advance. This limitation 
emphasizes that maximum entropy provides deep insight into process and pattern, but 
often we need an external theory to guide our choice among various possible maximum 
entropy formulations. I would argue that subsequent derivation based on invariances is no 
less opaque, and someone attempting the derivation would, similarly, need to know where 
they were going in order to get there." 
 
We clearly pointed out in the article the dependence of our specific formulation on 
Hubbell's prior work. However, we also emphasized in our section "The anatomy of pattern" 
that there is room for new work that would get us out of the current limitations to 
understanding. That section discusses how one might connect, at a fundamental level, 
mechanistic models that generate pattern to particular invariances. If one could learn the 
general approach for connecting mechanism to invariance, then one may achieve a 
significant advance in insight. One may also find a method for developing testable 
hypotheses to differentiate between different causal mechanisms. 
 
3. McRoberts argues that Harte's choice of an energy constraint and our choice of a scaling 
for growth processes are just two alternative ways to fit the data. We disagree. Similar 
probability patterns are very commonly observed across many disciplines for which an 
energy constraint does not make sense (see ref 24). 
 
Our choice for scaling arises from growth processes. Growth scaling is simply the process of 
multiplication, which is about as close to a truly fundamental concept as one can achieve. 
 
Although we did contrast our approach with Harte's work, we do not intend criticism of his 
approach. Instead, we see the important contributions to maximum entropy by Harte and 
others as the foundation on which we built our own novel approach. Great work naturally 
leads to further attempts to extend and to generalize, along with a continuing and lively 
conversation. For a topic as important as the interpretation of pattern, no one gets the last 
word. 
 
These few points which remain open for discussion highlight how much more there is to 
learn about the study of pattern. The thoughtful commentary provided by McRoberts is just 
the sort of thing that we need to challenge current understanding and help to push the field 
ahead. Thank you.  
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This contribution emphasizes how the concept of invariance connects patterns to processes 
leading to an original synthesis of previous approaches. In particular, this piece of work illustrates 
the application of the concept of invariance to deduce the most commonly observed species 
abundance distributions (SAD) in nature. The authors succeed in giving a general overview of the 
relation between invariance, process, and pattern. 
 
As an illustration, they present two key theoretical results. First, they derive the log series SAD 
from a simple maximum entropy argument. When species abundances fluctuate randomly on a 
log scale, this is, process values 'r' are random (where r is defined as log n), and these fluctuations 
are only subject to an ecological constraint limiting total abundance, then the log series 
distribution, initially introduced by R. A. Fisher, naturally arises. Second, they show that Hubbell's 
neutral model is the simple expression of three basic invariances, which correspond to a 
maximum entropy model constraining average species abundances, and the average and variance 
of the demographic processes influencing abundance.  
 
The first theoretical result is far from original as the same argument is clearly presented by Pueyo 
et al.(2007)1 in "The maximum entropy formalism and the idiosyncratic theory of biodiversity" 
where clearly, after a scale invariance argument is done, the log series again naturally arises from 
a maximum entropy derivation by only constraining on total abundance. However, the second 
result and the whole emphasis on the generality and the power of the invariance approach in 
ecology is a true novel contribution to the field.  
 
The authors state, in their conclusions, that "the invariance approach is the only way to relate 
process to pattern". The authors emphasize that, in order to uncover the plausible underlying 
mechanisms underlying an observed pattern, one needs first to pay special attention to the 
general invariant form of probability patterns. In the future, I would like to see the authors' 
invariance approach to apply, more generally to other patterns in ecology. 
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We thank David Alonso for his thoughtful comments about our article. We agree that trying 
to apply the invariance approach to additional ecological patterns remains an important 
challenge for future work.  
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