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Abstract
Size varies. Small things are typically more frequent than large things. The
logarithm of frequency often declines linearly with the logarithm of size. That
power law relation forms one of the common patterns of nature. Why does the
complexity of nature reduce to such a simple pattern? Why do things as
different as tree size and enzyme rate follow similarly simple patterns? Here I
analyze such patterns by their invariant properties. For example, a common
pattern should not change when adding a constant value to all observations.
That shift is essentially the renumbering of the points on a ruler without
changing the metric information provided by the ruler. A ruler is shift invariant
only when its scale is properly calibrated to the pattern being measured. Stretch
invariance corresponds to the conservation of the total amount of something,
such as the total biomass and consequently the average size. Rotational
invariance corresponds to pattern that does not depend on the order in which
underlying processes occur, for example, a scale that additively combines the
component processes leading to observed values. I use tree size as an
example to illustrate how the key invariances shape pattern. A simple
interpretation of common pattern follows. That simple interpretation connects
the normal distribution to a wide variety of other common patterns through the
transformations of scale set by the fundamental invariances.
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Introduction
The size of trees follows a simple pattern. Small trees are more 
frequent than large trees. The logarithm of frequency declines lin-
early with the logarithm of size1. Log-log linearity defines a power 
law pattern. Power laws are among the most common patterns in 
nature2.

Power laws arise by aggregation over a multiplicative process, such 
as growth. Many processes in nature apply a recursive repetition of 
a simple multiplicative transformation, with some randomness2.

Aggregation over a random multiplicative process often erases all 
information except the average logarithm of the multiplications3,4. 
That average determines the slope of the power law line. In the case 
of tree size, we must also account for the fact that trees cannot grow 
to the sky. The upper bound on growth causes the frequencies of  
the largest trees to drop below the power law line.

That simple view of aggregation and the regularity of power laws 
contrasts with an alternative view. By the alternative view, the great 
regularity of a power law pattern suggests that there must be a very 
specific and particular underlying generative process. If the pattern 
of tree size is so regular, then some specific process of trees must 
have created that regularity.

To support the simple view of aggregation and regularity, I show 
that a normal distribution contains the same information as a power 
law size distribution. The distributions differ only in the scaling 
used to measure the distance of random variations in size from the 
most common size5.

The familiar regularity of pattern exhibited by the normal distri-
bution (or equivalently the lognormal distribution, see Appendix) 
arises solely from the aggregation of underlying stochastic proc-
esses. Aggregation and stochasticity alone are sufficient to explain 
the regularity6. There is no need to invoke a detailed generative 
process specific to trees. Given the observed power law of sizes, 
maybe all we can reasonably say is that growth is a stochastic 
multiplicative process and that trees do not grow to the sky.

The trees provide an example of deeper principles about pattern  
and process in biology. What exactly are those principles? How can 
we use those principles to gain insight into biological problems?

To start on those questions, the next section presents an example  
of tree size data. Those data follow a power law with an upper 
bound on size. I show that those data also match almost exactly  
to a normal distribution when scaled with respect to a natural  
metric of growth.

The normal distribution and the power law pattern express the  
same underlying relation between pattern and process. That  
underlying relation arises from a few simple invariance principles. 
I introduce those invariance principles and how those principles 
shape the common patterns of nature5.

Tree size
Figure 1A shows the distribution of tree size in a tropical forest1. 
Most of the trees lie along the green power law. The largest trees, 

Figure 1. (A) Tree size, z = d2, in which the squared diameter, d2, is proportional to the cross sectional area of the stem, and d ranges over 
approximately 11–2800mm. The green line shows great regularity of pattern as a power law over the range that covers almost all probability. 
The largest trees, beyond the green power law line, comprise only a small fraction of all trees, because of the logarithmic scaling of frequency. 
(B) The blue line is log q

z
 = log k − λTz, with Tz = log(1 + az) + γ z, and parameters λ = 1.06, a = 0.004, and γ = 7 × 10−7, with log k shifting 

curve height and total probability. (C) The fitted blue line in panel B is a classic normal distribution with variance 1/2λ when plotted as qz ∝ 
e−λTz versus ± zT , with respect to z as a positive parameter. In this plot, the metric is shifted so that the most common type associates with a 
value Tz = 0. Data approximated from Figure 4 in Farrior et al.1.

            Amendments from Version 2

The version modifies a couple of sentences in the main text noting 
an equivalence of the normal and lognormal distributions and 
pointing to the extended discussion of the lognormal distribution 
in the Appendix.
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beyond the line, comprise only a small fraction of all trees, because 
of the logarithmic scaling of frequency.

The blue curve in Figure 1B closely fits the observed pattern.  
That curve expresses the natural metric for variation in tree size, 
z, as 

	               T
z
 = log(1 + az) + γ z.                          (1)

This metric relates size to a logarithmic term for multiplicative 
growth plus a linear term for an upper bound on size. There is 
no additional information in the fitted curve beyond this natural  
metric.

The normal distribution in Figure 1C expresses exactly the same 
information about the distribution of tree sizes as the fitted curve 
in Figure 1B. The normal distribution follows from the expression 
of size variation in terms of the natural metric, Tz. I derive these 
conclusions in the following sections.

Natural metrics
The pattern of tree size can be understood by considering Tz as a 
natural metric for size. A natural metric expresses a shift and stretch 
invariant scale for an observed probability pattern5. Shift, by adding 
a constant to a natural metric, does not change observed pattern. 
Stretch, by multiplying the metric by a constant, does not change 
pattern.

Ideally, a natural metric also expresses the relation between under-
lying process and observed pattern. However, we can be right about 
the proper natural description of observed pattern but wrong about 
its underlying cause. It is important to distinguish description from 
causal interpretation.

The next section describes the natural metric for tree size with 
respect to the fundamental invariances of shift and stretch. I discuss 
the panels of Figure 1 as simple expressions of the natural metric. 
The following sections consider how to interpret natural metrics, 
the description of observed pattern, and the analysis of underly-
ing process. The presentation here extends the underlying abstract 
theory to the interpretation and intuitive understanding of empirical 
pattern. Technical details can be found in the cited articles.

The metric of tree size: affine invariance
The data1 in Figure 1 arose from measurements of trunk diameter, 
d. I sought a natural metric based on d that describes the data in a 
shift and stretch invariant manner5.

How does one find a shift and stretch invariant natural metric that 
matches an observed pattern? In practice, one uses the extensive 
underlying theory and prior experience in what often works3,4,7,8.  
I achieved an excellent fit to the observed tree size data in  
Figure 1B based on the metric, Tz, in equation 1. I summarize the 
steps by which I arrived at that metric.

The data form a probability distribution. Probability patterns have  
a generic form. Measurements, z, relate to the associated  

probability, q
z
. The natural metric, Tz, transforms measurements 

such that the probability pattern has the exponential form 

			    qz = ke−λTz,   		        (2)

in which λ adjusts the stretch of Tz, and k adjusts the total prob-
ability to be one.

Probability patterns in the exponential form are shift and stretch 
invariant with respect to the metric, Tz. In particular, the affine 
transformation of shift and stretch, Tz ↦ α + βTz, is exactly com-
pensated by adjustments of k and λ, leaving the probability pattern  
invariant.

Intuitively, we can think of affine invariance as defining a ruler that 
is linear in the metric, Tz. In a linear ruler, it does not matter where 
we put the zero point. The information in measurement depends 
only on the distance from where we set zero to where the observa-
tion falls along the ruler. That independence of the starting point is 
shift invariance.

Similarly, if we uniformly stretch or shrink the ruler, we still get 
the same information about the relative values of different measure-
ments. All we have to do is multiply all measurements by a single 
number to recover exactly the same distances along the original 
ruler. The metric Tz provides information that is stretch invariant.

To fit the data of Figure 1A, we have to find the matching affine 
invariant metric, Tz, for probability expressed in the exponential 
form of equation 2.

The metric of tree size: scale
Most natural metrics are simple combinations of linear, logarithmic, 
and exponential scaling4,8. For example, in the metric Tz = log z+γ z, 
the logarithmic term dominates when z is small, and the linear term 
dominates when z is large. The metric scales in a log-linear way. 
Change in scale with magnitude often occurs in natural metrics.

Roughly speaking, the linear, logarithmic, and exponential scales 
correspond to addition, multiplication, and exponentiation. Those 
arithmetic operations are the three primary ways by which quan-
tities combine. One can think of numbers combining additively,  
multiplicatively or exponentially at different magnitudes, depend-
ing on the way in which process changes with magnitude.

Small trees tend to grow multiplicatively, and large trees tend to 
scale linearly as they approach an upper size limit. Farrior et al.1 
used logarithmic scaling at small magnitudes and linear scaling 
at large magnitudes. However, they did not express a metric that 
smoothly changed the proportion of the two scalings with mag-
nitude. Instead, they switched from log to linear scaling at some 
transition point.

The observed data fit roughly to a pure log-linear metric, T
z
 = 

log z + γ z, with z = d as tree diameter. I obtained a better fit by  
modifying this metric in two ways to obtain the expression in  
equation 1.
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First, I used the square of the diameter, z = d2, which is proportional 
to the cross sectional area of the trunk at the point of measurement. 
Various intuitive reasons favor area rather than diameter as a meas-
ure of size and growth. However, I ultimately chose area because 
it fit the data.

Second, I replaced log z by log(1+az). On a pure log scale, log z 
explodes to negative infinity as z approaches zero. In application 
to positive data, such as size, it almost always makes sense to use 
log(1 + az). This expression becomes smaller in magnitude as z 
declines. The parameter a scales the rate of change with respect to 
the point of origin.

Size distributions often follow the metric, Tz = log(1+az)+γ z. Of 
course, not all distributions follow that pattern. But one can use it as 
a default. When observations depart from this default, the particular 
differences can be instructive.

Interpretation of natural metrics
The natural metric of a probability pattern transforms observed  
values on the scale z into probability values on the scale Tz. Through 
the natural metric, the particular pattern on the observed scale, z, 
becomes a universal probability pattern in the natural metric, Tz.

One can understand the intuitive basis of natural metrics by  
considering the properties of the universal probability scale. Prob-
ability patterns are often discussed with words such as information 
or entropy9. Those words have various technical and sometimes 
conflicting definitions. But all approaches share essential intuitive 
concepts.

Surprise expresses the intuition10. Rare events are more surprising 
than common events. Suppose a particular size, z, occurs in one 
percent of the population, and another size, z′, occurs in two percent 
of the population. We will be more surprised to see z than z′. How 
much more surprised?

Surprise is relative. We should be equally surprised by compar-
ing probabilities of 0.01 versus 0.02 and 0.0001 versus 0.0002. 
Each contrast compares one event against another that is twice as  
common.

What is a natural metric of probability that captures these intuitive 
notions of surprise? For probability, q

z
, the surprise is defined as 

  		            zS = −log qz.		        (3)

We compare events z and z′ by taking the difference 

log log log .z
z z z

z
z

′
′ ′

− = − =
q

q q
qS S

This natural metric, zS , leads to affine invariant comparisons 
of surprise values. In the affine transformation, S↦ α + βS,  
the shift α cancels in the difference zS  − z′S . The stretch β causes 
a constant change in length independently of location, so the  
metric retains the same information at all magnitudes of the scale.

The relation between the universal metric of probability, zS , and 
the natural metric for a particular observed scale, Tz, follows from 
the exponential form for probability5 in equation 2. From that expo-
nential form, we can write zS  = λTz − log k. Because zS  is shift 
invariant, we can ignore the constant log k term, yielding 

zS= λTz.

The natural metric, Tz, transforms an observed scale, z, into the 
universal metric of probability patterns, zS. The fitted curve in  
Figure 1B is a plot of zS = λTz versus log z.

To interpret a scale, it is useful to think about what happens along 
each increment of the scale. Define d zS  and dTz as small increments 
along the scales at the point associated with z. Then 

d zS = λdTz,

which means that the scales zS  and Tz change in the same way at 
all magnitudes of z, with λ as the constant of proportionality in the 
translation from one scale to the other.

How do small increments in the natural metric, dTz, relate to incre-
ments in the observed values, dz? If we assume that Tz increases 
with z, and define Tz′  = dTz/dz as the derivative (slope) of Tz with 
respect to z, then 

d zS = λT′
z 
dz.

Here T′z transforms increments along the observable scale, dz, into 
increments along the universal scale of probability pattern, d zS. All 
of the information that relates observation to probability pattern is 
summarized by the natural metric, Tz.

Generative process: generic vs particular
What underlying generative process leads to an observed pattern? 
We must separate two aspects. Generic aspects arise from general 
properties of aggregation, measurement and scale that apply to all 
problems. Particular aspects arise from the special attributes of each 
problem.

Confusing generic and particular aspects leads to the greatest mis-
understandings of pattern and process3,4. For example, the observed 
pattern in Figure 1 perfectly expresses generic properties. Aggrega-
tion leads to the normal distribution by the central limit theorem 
(Figure 1C). The natural metric of size, T

z
, relates the normal distri-

bution to power law and exponential scaling in Figure 1A,B, when 
probability is plotted with respect the logarithm of the observed 
values, z.

In the tree size data, simple generic properties account for all of 
the observed pattern. I do not mean that there is nothing particular 
about trees or that we cannot study how ecological processes influ-
ence tree size. I mean that we must not confuse the generic for the 
particular in our strategy of inference3,6,11.

This article focuses on generic aspects of pattern. The following 
sections discuss those generic aspects in more detail.
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The normal distribution and generic pattern
One often observes great regularity in probability patterns. Tree size 
follows a power law with an upper bound. Other measurements, 
such as height, weight, and enzymatic rate, also express regularity, 
but with different patterns.

A single underlying quantity captures the generic regularity in 
seemingly different patterns. That underlying quantity is the  
average distance of observations from the most common type6.  
The key is to get the correct measure of distance, which is the  
natural metric.

The normal distribution is a pure expression of the generic  
regularity in probability patterns. In the normal distribution, the 
variance is the average distance of fluctuations from the mean.

In the normal distribution, the natural metric is the squared devia-
tion from the mean, Tz = z2. Here, z is the observed deviation from 
the mean, and Tz is the natural metric for distance. The normal  
distribution follows from the standard expression of probability  
patterns in equation 2, repeated here with v = k, as 

			   qz = ve−λTz.	  	      (4)

The average of the squared deviations, Tz = z2, is the average dis-
tance of fluctuations from the most common type, which is the defi-
nition of the variance, σ 2. We can express the parameters in terms 
of the variance 

	 	 2 2

1 1
,

2 2
v λλ

σ π πσ
= = =

	                  
(5)

from which we derive the commonly written form for the normal 
distribution as 

	 	      
2 2/ 2

2

1
.

2

z
zq e σ

πσ
−=

	                  
(6)

The normal distribution is universally known but rarely understood. 
Interpreting the powerful generic aspect of probability patterns 
often reduces to correctly reading this equation.

The standard expression for the normal distribution in equation 6 
seems obscure. By understanding that equation 4 expresses the 
same information in a much more general and broadly applicable 
way, we learn to read the simple generic aspect of common pattern. 
The key arises from the relation between the natural metric, Tz, and 
the measurement scale, z, used to express the pattern.

Metrics of probability and measurement
This section discusses key aspects of the natural metric transfor-
mations, Tz, of the underlying measurements, z. The understanding 
of probability pattern arises from these key aspects of the natural 
metric.

Suppose that two observers measure the same pattern. One uses a 
ruler that follows the scale, z. Another has a logarithmic ruler that 
returns logarithmic values, log z, for the same underlying values. 
The two observers do not know that they are using different scales.

When the two observers plot their data, each will see a different 
probability pattern. The plot of q

z
 versus z differs from the plot of 

q
z
 versus log z.

Similarly, two observers may see different patterns of human size 
if they measure different things. Suppose one observer measures 
femur length, the other measures cross sectional area of the chest. 
The probability patterns of femur and chest size differ. But the dif-
ferent patterns reflect the same information about the underlying 
size variation in the population.

What is the best way to find the relation between different 
observed values and the common underlying information about 
variation? Often, the natural metric for each observed scale  
provides the universally comparable scale for probability pattern. 
That universally comparable scale can be used to express variation 
as a normal distribution.

When an observed probability pattern matches the normal distri-
bution, then the variance summarizes all of the information in the 
pattern6. We can write the variance, σ 2, which is the average of the 
squared distance for fluctuations from the mean, as 

σ 2 2

z
z=

in which the angle brackets denote the average value of z2, and 
the subscript z means that the average is taken with respect to the 
underlying scale, z.

The great generality of the normal distribution arises from a 
broader concept of the average distance of fluctuations from a  
central location 

   	          	 σ 2 ~2 2 .
z

z= → = TT                  (7)

The left shows the standard definition of the variance as the  
average squared distance from a central location. The right general-
izes that notion of average squared distance by using the average 
of the natural metric, Tz, in which the average is taken with respect 
to the square root of the natural metric, .zT  Here, Tz is shifted so 
that the most common type associates with Tz = 0, and the metric 
expresses fluctuations from the most common type5.

On the left, we average z2 with respect to z. On the right, we  
average Tz with respect to .zT  The general form on the right-hand 
side includes the left-hand side as the special case of Tz = z2.

The key conclusion is that common probability patterns expressed 
in their natural metric 

qz = ve−λTz

are normal distributions when plotting q
z
 versus ± .zT

The following sections present examples. Later sections show 
why the square root is a natural measurement scale for common  
probability patterns.

σ
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Natural metrics and generic forms
The tree size data match almost perfectly to the generic normal 
distribution (Figure 1C). I discuss that match in terms of universal 
properties of the normal distribution, given in the prior sections.

Tree size variation follows a simple log-linear natural metric, Tz. 
That metric and its associated probability pattern 

qz = ke−λTz

closely fit the data. Figure 1B shows the fit when plotting log q
z
  

versus log z. Figure 1C shows that the same observed  
variation closely fits a normal distribution when plotting qz versus 
± .zT

The generalized variance is the average squared fluctuation of tree 
size from the most common type, when squared fluctuations are 
expressed by the natural metric, and fluctuations are measured by 
the square root of the natural metric. By the generalized notion of 
the variance in equation 7, all of the information in the observed 
distribution of tree size is contained in the average distance of fluc-
tuations, measured in the natural metric.

The transformation of data into a normal distribution is sometimes 
considered a trivial step in the statistical analysis of significance 
levels. Here, in contrast, the natural metric and the associated 
expression in normal form provide an essential step in the general 
understanding of pattern and process.

Later sections discuss why the normal distribution arises as the sim-
ple expression of pattern in relation to natural metrics. Before turn-
ing to those concepts, I present another example.

Dimensional inversion and metric pairs
Natural metrics sometimes come in pairs4,7. For example, rates and 
frequencies follow dual metrics. Rates have dimensional units S/t, 
in which S is a generic size or number unit, and t is a time unit. A 
growth rate for trees may be given in terms of the change in size 
per year. A chemical reaction rate may be given as the number of 
molecules produced per unit time.

The inverse of a rate has units t/S. That inverse expresses the time 
to grow larger or smaller by a particular size unit, or the time to 
produce a particular number of molecules.

This section illustrates the common dual metrics for rates and times. 
The dual metrics yield different probability patterns that contain 
exactly the same underlying information. Each metric takes on the 
same common normal distribution form when stochastic fluctua-
tions are measured by the metric relative to its square root.

To illustrate the dual metrics, I use the measured rates of chemical 
reactions for individual enzyme molecules given by Iversen et al.12. 
The measurements produce a probability pattern for the distribution 
of reaction rates. The measurements are not sufficiently precise to 
determine exactly which natural metric fits the data.

I made an approximate fit to the data by using the natural metric in 
equation 1, which I previously used to fit tree size. My only purpose 
here is to illustrate typical aspects of rate and frequency patterns, 
rather than to over-analyze the limited data available in this par-
ticular study.

Figure 2A shows the fitted distribution of reaction rates. The rates 
are in molecules per second, r, with units S/t. The colors in the curve 
express the change in the scaling relations of the natural metric as 
magnitude increases. The natural metric from equation 1, repeated 
here with r = z, is 

                                       Tr = log(1 + ar) + γr.

When r is small, linear scaling of Tr dominates, as shown by the 
blue coloring. As r increases, logarithmic scaling dominates, as 
shown by the gold coloring. Figure 2C, covering a greater range of 
r values, shows that further increase in r leads to linear dominance 
of scale, as shown by the green color. The upper linearity expresses 
the bound on size or number. Trees do not grow to the sky. Reaction 
rates do not become infinitely fast. Figure 3 shows the tree size data 
colored by the linear-log-linear transitions.

The probability pattern for rates, S/t, has a natural dual pattern 
expressed by inverted units for time, t/S. We can invert units by the 
Laplace transform4,7. The inversion leads to an altered probability 
pattern based on the natural metric 

                                     λTτ = α log(τ − d) + τ/a,

with α = 1 − λ and d = γ λ. The parameters match the paired metric, 
Tr. The common value of λ shared by the paired distributions arises 
from the full expression for probability patterns in equation 2. The 
probability pattern for time, arising from Tτ, is a gamma distribution 
shifted by d.

The time per molecules pattern in Figure 2B matches the dual 
enzyme rate pattern of molecules per time in Figure 2A. The dual 
distributions express the identical information.

Dimensional inversion associates the various linear-log-linear 
scales between the two forms4,7. The linear, blue component at 
small magnitude in the upper panel matches the long blue tail at 
large magnitude in the lower panel. Put another way, slow rates, r, 
correspond to long waiting times, τ.

In the top, the gold logarithmic component for high rates matches 
the lower gold component for short waiting times. For very high 
rates, r, we have to look at Figure 2C. The upper green linear tail 
corresponds to the rapid decline in the probability of observing 
extremely high rates, associated with the natural upper bound on 
rates. The green upper bound on rates matches the green lower limit 
on times in Figure 2B. If extremely rapid rates of reaction, r, are 
very rare, then no reactions will produce molecules in very short 
time periods, τ. That limitation produces the green shift at small 
times in Figure 2B.
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Figure 2. A pair of common natural metrics related by dimensional inversion, with generic expression by the normal distribution.  
(A) The probability distribution based on the natural metric in equation 1, with Tr = log(1 + ar) + γr. This plot uses a linear abscissa, compared 
with the logarithmic abscissa of Figure 1A. The curve approximately fits the enzymatic rate data in Figure 2B of Iversen et al.12, in which r has 
units S/t measured as number of molecules per unit time (seconds). Here, r varies between 0 and 8. The approximately fitted parameters are 
a = 0.5, γ = 0.05, and λ = 1.6. (B) The Laplace transform of the upper panel yields a shifted gamma probability distribution that expresses the 
identical information with a natural metric Tτ = (1/λ − 1)log(τ − γλ) + τ/λa. The inverted measure τ has units t/S as time per molecule, varying 
in the plot between γλ and 4. (C) The same probability distribution as in panel A, on a double log scale over the range of r values 0.6 to 50.  
(D) Both the original distribution in A and the Laplace inverted distribution in B are normal distributions when expressed in relation to the 
square root of their respective natural metrics, with generalized variance σ̃2 in equation 7.

The dual natural metrics of rate, Tr, and time, Tτ, correspond to  
similar expressions of the normal distribution5 in Figure 2D. In  
general, different probability patterns expressed in different  
metrics, T, become normal distributions when fluctuations from the 
most common value are measured by ± T .

Aggregation and asymptotic invariance
Why do tree sizes and enzyme rates match a simple natural metric? 
Why do a few simple natural metrics match most of the commonly 
observed patterns? Part of the answer arises from the way in which 
aggregation leads to simple invariant pattern.

The top rows of Figure 4 illustrate aggregation and invariance. 
Each row begins on the left with two regular polygons, randomly 
rotated about their center. Columns to the right add more randomly 
rotated components. As the random rotations aggregate, the shape 
converges asymptotically to an invariant circular form.

Random rotation causes loss of information about the angle of ori-
entation. In the aggregate, the asymptotic form is rotationally invar-
iant. In other words, the circular shape remains invariant no matter 
how it is rotated. A circle expresses pure rotational invariance.

The bottom two rows illustrate aggregation and the invariant pat-
tern of the normal distribution. Each row begins on the left with a 
probability distribution. For each distribution, the horizontal axis 
represents observable values, and the vertical axis represents the 

relative probability of each observed value. I chose the shapes of the 
distributions to be highly irregular and to differ from each other.

The second column is the probability distribution for the sum of 
two randomly chosen values from the distribution in the left col-
umn. The third, fourth, and fifth columns are, respectively, the sum 
of four, eight, and 16 randomly chosen values. The greater the 
aggregation of randomly chosen values, the more perfectly the pat-
tern matches a normal distribution. Adding randomly chosen values 
often causes an aggregate sum to converge asymptotically to the 
invariant normal form.

Natural metrics and a universal scale
The invariant normal form expresses a universal scale. That univer-
sal scale clarifies the concept of natural metrics. To understand the 
universal scale, we begin with the fact that the same pattern can be 
described in different ways.

Consider enzyme catalysis. Fluctuations can be measured as the 
rate of molecules produced per unit time. Alternatively, fluctuations 
can be measured as the interval of time per molecule produced. 
Figure 2A, B show the dual expression of the same underlying  
information.

The dual measurement scales each have their own natural metric. 
A natural metric transforms a particular measurement scale into a 
universal scale that expresses the common underlying information. 
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Figure 3. The fitted probability distribution for the tree size data 
in Figure 1B. This distribution has the same natural metric as in 
Figure 2C, but with different parameters. The curve is colored to 
show the change in the scaling of the natural metric with increasing 
magnitude as linear (blue), logarithmic (gold), and linear (green). 

A metric is natural in the sense that it connects a particular scale of 
observation to a common universal scale.

The normal distribution purely expresses the universal scale. Sup-
pose we begin with different scales of measurement, such as the 
rate of molecules produced per unit time and the interval of time 
per molecule produced. Each scale has its own distinctive pattern of 
random fluctuations, as in Figure 2A, B. When we transform each 
scale to its natural, universal metric, Tz, the pattern of random fluc-
tuations follows the normal distribution (Figure 2D).

A normal distribution expresses information only about the average 
distance of fluctuations from the most commonly observed value. If 
we measure distance for different underlying measurements in their 
natural metrics, then that distance is the universal form of variance 
in equation 7 as 

                                               σ̃2 = 〈T〉
T

.

The generalized variance expresses the average deviation of the 
natural metric relative to the square root of the natural metric.

Why is the relation between a natural metric and its square root the 
universal measure of scale and also the expression of the normal 
distribution? The answer concerns how rotation and aggregation 
lose information and leave an invariant pattern (Figure 4).

The next section discusses rotational invariance and its relation 
to the universal scaling of the normal distribution. The following 
sections return to tree size and other commonly observed size dis-
tributions. The concepts of rotational invariance and the normal 
distribution clarify why the natural metric for tree size, given in 

equation 1 as Tz = log(1 + az) + γz, is a common natural metric for 
size patterns.

Rotational invariance
To understand the universal scale of the normal distribution, we 
begin with circles and rotational invariance (Figure 5). Simple 
geometric concepts provide the key to natural metrics, universal 
scales, and the structure of commonly observed patterns.

A circle expresses a rotationally invariant radial distance from a 
central location. In Euclidean geometry, squared distance is the sum 
of squared values along each dimension. Invariant radial distance 
in two dimensions, x

1
, and x

2
, may be written as R2 = x

1
2 + x

2
2. The 

points (x
1
, x

2
) at constant radial distance lie along the circle. The 

radial distance is rotationally invariant to the angle of orientation. 
The circular pattern is also invariant to interchange of the order of 
x

1
 and x

2
.

We can think of the rotationally invariant circle as a way to decom-
pose a given value into components. If we start with any observed 
value and equate that value with a radial distance, R2, then the 
observed value is equally consistent with all points (x

1
, x

2
) that sat-

isfy the circular constraint, R2 = x
1
2 + x

2
2.

We can break up a given value into n components, R2 = ∑x
i
2, which 

is the invariant radial distance of a sphere in n dimensions. 
Changing the order of the components does not change the radial 
distance. Rotational invariance implies order invariance of the 
component dimensions.

Figure 4 illustrates how aggregation leads to invariant distance. The 
top two rows aggregate randomly rotated shapes. Initially, the rows 
differ, because they begin with different shapes in different orienta-
tions. However, after adding many shapes, the aggregate patterns 
converge to the same circular form, because the order no longer 
matters in a large sample. The pattern of distance from the center 
becomes the same in every direction.

The lower two rows of Figure 4 show a similar aggregate tendency 
to an invariant measure of distance. On the left, the initial patterns 
differ. As more samples are added, all information is lost except the 
average distance of fluctuations from the center.

The rotational invariance of circles relates to the invariance of aver-
age distance in the normal distribution5. In both cases, the squared 
distance is the standard Pythagorean definition of Euclidean 
geometric distance as the sum of squares. To see the connection 
between the rotational invariance of circles and the average  
distance of fluctuations in the normal distribution, we begin with 
an observed value and consider how it might have arisen by the 
aggregation of underlying components.

Aggregation and natural metrics
Suppose we transform an observed value, z, into a natural metric 
value, Tz. What different aggregations would lead to the same value 
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Figure 4. Aggregation and asymptotic invariance. The top shows polygons randomly rotated about their center. Aggregation leads 
asymptotically to loss of all information about rotational orientation. A circle purely expresses that rotational invariance. The bottom shows 
the aggregate summing of observations from arbitrary probability distributions. Aggregates combine to produce normal distributions, purely 
expressing the loss of all information except the average distance (variance) from the most common observation. The normal distribution is 
invariant to the order in which observations are combined. Order invariance is similar to rotational invariance (Figure 5). Thus, the asymptotic 
circle and the asymptotic normal distribution express similar aspects of information loss and invariance.

of Tz? If we think of Tz = Rz
2 as a radial distance, we can evaluate 

the combinations of underlying values that lead invariantly to the 
same radial distance5.

Previously, we partitioned squared radial distance as 

                                            Rz
2 = ∑ x

i
2.

We can equate the explicitly squared radial distance to the implic-
itly squared natural metric, Rz

2 = Tz. Similarly, we can equate the 
explicitly squared component dimensions to the implicitly squared 
dimensions, x2 = y, or equivalently, x = y . Then Rz

2 = Tz can be 
written as 

T
z .

2

iy=∑

In two dimensions, the points (x
1
, x

2
) form a circle with radius 

R
z
. The points ±( ,1 2y y ) form an equivalent circle with radius  

Rz = .zT  

To partition a natural metric, Tz, of the observed value, z, we can 
write each component dimension, z

i
, in its natural metric, T(z

i
) = T

i
 

= y
i
, and thus 

Tz 

2
.iT=∑

This equation shows the different component observations of an 
aggregate that lead to the same rotationally invariant squared radial 
distance, Rz

2  = Tz, or equivalently, distance as Rz = .zT

For the natural metric, Tz, the square root scale, T , is the natural 
scale of distance, aggregation, and rotational invariance.

The normal distribution
The prior section emphasized that the natural metric Tz = Rz

2 has the 
square root zT = Rz as its natural scale of distance. This section 
relates the normal distribution to this association between natural 
metrics and radial distance. See Frank5 for additional details.
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Figure 5. Rotational invariance and natural metrics. A circle 
expresses a rotationally invariant radial distance from a central 
location. A natural metric can be thought of as a measure of radial 
distance. Different component observations that add to the same 
radial distance define a rotationally invariant circle.

We can write the standard form of probability distributions from 
equation 2 as 

                                          qz = ke−λTz = ke−λR
z
2                                                                        (8)

measured in relation to the incremental scale d zT = dRz. Using the 
expression for the generalized variance, σ̃ 2, in equation 7, we have 

                                1/2λ = σ̃ 2 = 〈T〉 T  = 〈R2〉R,

and = / .λ πk  If we shift Tz so that it is expressed as a deviation from 
its minimum value, then for many natural metrics, Tz, the probabil-
ity pattern in equation 8 is a normal distribution with respect to 
the incremental scale d zT = dRz. The distribution is centered at the 
minimum of Tz and has average distance of fluctuations from the 
central location as the generalized variance, σ̃ 2.

Different natural metrics can often be expressed in this normal 
form. Thus, the rotationally invariant normal form expresses a uni-
versal scale (Figure 2D).

Rotational invariance often implies invariance with respect to the 
order of observations in an aggregate. Order invariance connects 
the asymptotic rotational invariance of circles and natural metrics 
to the asymptotic form of the normal distribution in Figure 4. Thus, 
the normal distribution, expressed in natural metrics, provides a 
universal scale for understanding probability pattern.

Inductive: observed metric to universal scale
How does one find natural metrics? For tree size and chemical 
reaction rates, I began with the observed probability pattern. From 
those data, I found a natural metric that fit the observed pattern. In 
those cases, I chose the natural metric based on the fact that pat-
terns of size and reaction rate tend to follow a particular, commonly 
observed natural metric.

This inductive approach matches a natural metric to a particular 
problem. The natural metric can then be used to transform the 
observed pattern into the universal scale of the normal distribution. 
What do we learn by this inductive fit of a metric and subsequent 
transformation to the normal form?

We have a good sense of the normal distribution as the outcome 
of simple aggregation and its connection to rotational invariance 
(Figure 4). Thus, once we find the proper scaling through the natu-
ral metric, we can think of an observed probability pattern an an 
expression of the normal form on a different scale.

For example, we can think of tree size as following a normal 
distribution when we express size, z, in the natural metric  
Tz = log(1+az)+γz. The normal form follows by expressing Tz  
relative to the most common size as the squared distance of a  
random fluctuation in relation to the distance, .zT

By recognizing the universal normal form, we can see that differ-
ent measurements of the same underlying pattern express the same 
information. In Figure 2, the different probability patterns for rate 
and time have a common normal expression. Of course, many 
patterns that arise from unrelated processes also have the normal 
form.

The key is that the structure of commonly observed pattern arises 
from the generic processes of aggregation and rotational invariance, 
when evaluated with the proper natural metric, rather than from the 
special attributes of particular processes. That conclusion is simply 
the well known principle of statistical mechanics.

The principle of statistical mechanics is both well known and 
frequently ignored in the study of pattern. The reason is that the  
different scales on which observed patterns arise tend to obscure the 
underlying commonality. The point here is that one can understand 
natural metrics and universal scales in a rational way, and thus con-
nect abstract principles to real problems in ways that have often 
been missed.

Deductive: universal scale to predicted metric
The inductively fit metric expresses the essence of an observed pat-
tern. But the fit does not tell us about the generative process that led 
to that particular metric.

Ideally, one would deduce the appropriate natural metric for a prob-
lem by considering the generative process and the necessary invari-
ances that must be satisfied. For example, tree size must depend 
on growth processes, and the consequent probability pattern likely 
satisfies shift, stretch, and rotational invariance. However, three dif-
ficulties arise.

First, the relations between process, measurement and pattern can 
be obscure. For tree size, what is the proper scale on which to meas-
ure the consequences of growth, competition, and other processes? 
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We could use trunk diameter, d, or cross-sectional area, proportional 
to d2, or a fractal exponent of diameter, ds, or another size measure 
correlated with diameter.

The natural metric is often the scale that aggregates additively, lead-
ing to patterns that tend to be shift, stretch, and rotationally invari-
ant. However, what we measure may be a complex transformation 
of that underlying scale. Inductive fit gets around the problem  
by describing the pattern and its associated invariant scale,  
rather than trying to deduce the processes that caused the observed 
pattern.

Second, multiple processes may shape pattern. Different processes 
may dominate at different scales. For example, exponential growth 
may dominate among smaller trees, whereas a bound on maximum 
size may dominate among larger trees. In general, different proc-
esses may dominate at different magnitudes. Predicting the metric 
that fits observations requires proper combination of the different 
underlying processes.

Third, natural metrics express the patterns that arise by loss of 
information, subject to a few minimal constraints of invariance. 
Because aggregation dissipates information, many seemingly dis-
tinct processes will generate the same observable pattern. Common 
patterns are common exactly because they match so many distinc-
tive underlying processes3. The natural metrics of common patterns 
reflect only the similarities of the simple invariances. Most of the 
special attributes of different generative processes tend to disappear 
in the aggregate.

Deductive: tree size example
Tree size depends on growth, on limits to maximum size, and on a 
variety of other factors. Here, I give a simple introduction to natu-
ral metrics that arise from growth. I do not include bounds on size 
or other processes. I do not include difficulties of measurement. 
In spite of those limitations, this simplified analysis of growth and 
natural metrics provides insight into commonly observed probabil-
ity patterns.

I begin with the form 

                                                  q
z 
= ke−λTz,

which is a normal distribution when we measure increments on the 
square root scale, d zT . The normal distribution arises when we 
consider Tz values to be an aggregate sum of component values.

For tree size, the problem concerns how the aggregation of random 
growth increments leads to the observed size. We can split total 
growth into t increments. Each incremental unit multiplies current 
size by egi, in which gi is the growth rate in the ith increment. The 
average growth per increment is 

			 
1

1
.

t

i
i

g g
t =

= ∑

Total growth is the product of all the growth increments 

                                    ,ig gt we e e= =∏                               (9)

in which w = gt is the sum of the t incremental growth rates.

The variable w provides a natural base scale for growth, because 
it expresses the aggregate sum of growth components. The sum is 
invariant to the order of the components. Thus, the total of the incre-
mental growth rates can be thought of as a rotationally invariant 
radial distance.

Natural metrics arise from shift and stretch (affine) invariance to 
transformations of their base values4,7,8. Thus, a natural metric, 
T(w) ≡ T

w
, for the base scale, w, arises from affine invariance to a 

generator transformation, G(w), such that 

                                 T [G(w)] = α + bT(w)

for some constants α and b. If we consider 

                                         G(w) = δ + w

to be a shift of the growth rates, so that the shape of probability pat-
terns for size does not depend on adding a constant value to growth 
rates, then a natural metric for size with respect to growth is 

                                                 T
w
 = eβw,

in which β is a positive parameter. This metric remains affine 	
invariant to a shift of the base scale, w ↦ δ + w, because 

                                  T [G(w)] = eβ(δ+w) = bT(w)

for b = eβδ. The metric T
w
 is perhaps the most generic and important 

form of all natural metrics. Its application to growth is a special 
case of its underlying generality. I discussed this metric extensively 
in earlier articles4,8. Here, I confine myself to the problem of growth 
in relation to size. 

The natural metric T
w
 associates with the probability pattern 

                                         qw= ke−ϕTw = ke−ϕeβw

when measured with respect to the incremental scale, dT
w
. If we 

wish to express the probability pattern with respect to measure-
ments of growth rate, on the incremental scale dw, note that 

                                     dTw = βTwdw = βeβwdw,

yielding the probability pattern when measured with respect to the 
incremental base scale, dw, as 

                                               qw = keβw−ϕeβw,
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in which, as always, k adjusts so that the total probability is one.

Suppose we wish to transform from growth, w, to size, z, in which 
w(z) expresses growth as a function of size. If w increases with z, 
then we can write 

                                              dw = w′dz,

in which w′ is the derivative of w with respect to z. The generic 
probability pattern becomes 

                             q
z = ke−λTz = kelog w′+βw−ϕeβw

                                        (10)

with respect to the incremental measurement scale, dz.

In the tree size example, w is the aggregate growth rate. Let z
0
 + z be 

size, with z
0
 as initial size, and z as the increase in size by growth, 

thus 

                                           z
0 
+ z = z

0
ew,                                     (11)

implying that w as a function of z is 

                                    w = log(1 + az).                                       (12)

In this particular derivation, a = 1/z
0
. However, one should not inter-

pret parameters literally. Different generative processes will lead 
to the same form, with alternative assumptions about process and 
parameters. Ultimately, the invariant properties of the metric cap-
ture the essence of common pattern. This particular derivation is 
meant only to show one way in which a metric arises.

We can use equation 12 to write the probability pattern of 
equation 10 explicitly in terms of the increase in size by growth, z, as 

                                q
z = ke(β−1)log(1+az)−ϕ(1+az)β = ke−λTz

with respect to the incremental scale, dz, yielding 

                                   Tz = log(1 + az) + γ(1 + az)β                                     (13)

for β < 1, and dropping constants of proportionality. For certain 
parameter combinations, this probability pattern will be similar to 
the pattern for the size metric Tz = log(1+ az) + γz.

I presented this derivation to encourage future study. The proper 
way to relate general growth processes to invariant probability pat-
terns remains an open problem.

Conclusion
Probability patterns often follow a few simple scaling relations. 
Those scaling relations define natural metrics. A natural metric 
transforms measurements to a universal scale. On the universal 
scale, the average distance of random fluctuations from the most 
commonly observed value defines a generalized variance. When 
observed values arise by aggregation of random processes, that 
aggregation erases all information except the average fluctuation, 
the generalized variance.

Many different probability patterns become a normal distribution 
when expressed on the universal scale of natural metrics. The only 
information in each distribution is the generalized variance. Trans-
forming the natural metric distance back to the underlying observed 
values yields the standard description for probability pattern on the 
scale of the observed measurements.

The great regularity of observed patterns, such as power laws, often 
arises from the same aspects of aggregation and invariance that 
lead to the normal distribution. A power law pattern and a normal 
distribution may simply be different transformations of the same 
underlying pattern.

The transformations arise from measurement and from the invari-
ances that define scaling relations and natural metrics4,5,7,8. These 
key aspects of scale provide the framework in which to study the 
relations between pattern and process.
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Appendix: lognormal and power law distributions
The lognormal distribution often fits well to observed patterns. For 
example, many size distributions with power law attributes match 
reasonably well to the lognormal form. Conceptually, the lognor-
mal distribution is easily understood by simple analogy with the 
normal distribution and the central limit theorem. For these reasons, 
the lognormal distribution is frequently used in empirical study.

In this Appendix, I briefly introduce the lognormal distribution and 
its relation to power law distributions. I then explain the conceptual 
limitations of the lognormal distribution, and why I did not mention 
the lognormal distribution in main text. Finally, I show how pure 
power laws arise from metrics given in the text.

Approximate lognormal size distributions
In the last full section of this article, I described a simple model of 
growth and consequent size. I split total growth into t increments. 
Each incremental unit multiplies current size by egi, in which gi  
is the growth rate in the ith increment. The average growth per 
increment is

                                            
1

1
.

t

i
i

g g
t

=

= ∑

Total growth is the product of all the growth increments

                                             ,ig gt we e e= =∏

in which w = gt is the sum of the t incremental growth rates. Given 
the total growth over the increments, we can write final size relative 
to initial size from equation 11 as

                                 0

0

1 .wz z
y az e

z
+

= = + =

If growth in each increment, gi, is a random variable, then w is the 
sum of random growth variables. The sum of the growth variables 
will sometimes converge to an approximately normal distribution 
by the central limit theorem. The approximation to normality may 
be close or far off depending on particular aspects of the growth 
process.

The lognormal distribution is defined as the exponential of a normal 
distribution. Thus, if w is normally distributed, then size, y = ew, has 
a lognormal distribution of the form 

                                      qy = ke−λ(log y−μ)2−log y

on the incremental scale dy, in which λ = 1/2σ2  with σ2  as the  
variance of the normal distribution in y.

Lognormal distributions sometimes match reasonably well to power 
law patterns. As the variance in the underlying normal distribution 
becomes large, λ becomes small, and the lognormal distribution 
becomes approximately

                                    qy ≈ ke−log y = ky−1.

This limiting form approximates a power law, because the log-log 
plot of log qy versus log y is approximately a straight line with a 
slope of minus one.

Conceptual limitations of the lognormal
I did not mention the lognormal distribution in the text because of 
its conceptual limitations. The lognormal distribution is identical 
to the normal distribution. If a variable, w, is normally distributed, 
then the variable y = ew has a lognormal distribution. Conceptually, 
there is no difference between the normal and lognormal distribu-
tions. If a pattern is normal it is also lognormal, and vice versa. 
Nothing is gained or lost by using one form or the other. 

In this article, I showed how one can change a wide variety of 
different distributions into the normal distribution. My changes 
truly altered the patterns of the different distributions, showing  
their broad conceptual unity. For example, if one has a gamma dis-
tribution

                                       qz = ke−λ(log z+γ z) = ke−λTz,

then plotting qz versus zT±  leads to a normal distribution. Here, I 
have related the gamma pattern to the normal form, relating two 
distinct probability patterns to each other. A similar approach works 
for many different metrics, Tz.

The value in relating distributions in this way arises from two 
aspects. First, the common form of distributions in terms of met-
rics Tz follows from the two simple invariances of shift and stretch.  
Second, the relations between different distributions and the  
common normal form arises from the third invariance of rotation. 
Those three invariances together provide a unified framework for 
understanding commonly observed pattern. The lognormal does not 
add to that understanding, because it simply expresses the normal 
pattern in a slightly different way, therefore sitting outside of the 
conceptual framing that is the topic of this work.

Pure power laws
The metrics in equation 1 and equation 13 include pure power  
law forms as special cases. As γ → 0, the metrics become  
Tz → log(1 + az), and the distribution becomes

                                     qz = k(1 + az)−λ,

which is the classic Lomax or Pareto Type II distribution. That dis-
tribution is a power law for large values of z. As a becomes large, 
the distributions become a pure power law form

                                       qz = kz
−λ,

in which k adjusts to maintain a total probability of one.
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Appendix. I am grateful to Scott Page for pushing on this issue, which has significantly enhanced
the scope and reduced the chance of misunderstanding. 

 No competing interests were disclosed.Competing Interests:

Version 1

 26 October 2016Referee Report

doi:10.5256/f1000research.10181.r17202

 Scott E. Page
Department of Political Science, Center for the Study of Complex Systems, University of Michigan, Ann
Arbor, MI, USA

This is a provocative paper that should have high impact. It makes both a scholarly and educational
contribution. I expect it to be widely cited and taught. When indexed, it will appear on the syllabus of a
graduate class that I teach.
 
That said, I have one quibble with the paper. First some background.major 
The standard way to teach distributions goes as follows:

Normal Distributions arise from adding or averaging variation (as nicely explained here)
Log Normal Distributions arise from multiplying shocks
Power Law Distribution have multiple causes: self organized criticality, preferential attachment,
random walk return times, etc.

 
In this paper, Frank argues that we can connect some power law and log normal distributions to normal
distributions by using different unit of analysis.
 
Let’s take the standard story of why tree sizes have a log normal distribution. Trees grow by random rates
each year. If rates of growth are proportional, then a tree of size S that has growth rates r(t) will be size
 
S[1_r(1)] [1_r(2)] [1_r(3)] [1_r(4)].. [1_r(10)]
 
In 10 years. If I take the logarithm of that size, it will be additive in the shocks, and thus normally
distributed.
 
Frank makes an alternative argument, that there is a natural metric for size, T = d  and that this when
transformed produces a normal distribution. If d is normally distributed, then d  will be log normally
distributed. He then makes a similar argument for enzyme reactions.
 
(The tree model is more complicated as he includes a linear term and a log term but this captures the
main idea).
 

2
2
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main idea).
 
My quibble with the paper has to do with the difference between a or (log normal distribution 

) and .  exponential a power law distribution
 
Power law:  y ~ x
Exponential: y ~e
 
 
If you plot a log normal distribution on a log log plot, you get the sort of curvature that Frank shows in
many of his graphs. What he is calling power laws would be characterized by many as log normal or
exponential.
 
I realize that his more general point is  that the tree size is either log normal or a power law. However,not 
the paper would be much stronger and much clearer if he would make the following changes.

Clarify the difference between power law and log normal (including mention of the curve on the log
log plot)
Explain that many of the “long tails” in biology such as tree size have “long tails” that can be
explained using his method that separates the generic causes of the distribution from the
particular. He might even separate out the generic and particular in the tree growth so we see why
he cannot just use the log normal distribution.
Ideally, he would also show how his approach can produce a true power law.

I would be remiss to not add that the paper is a model of clarity of exposition and
argumentation. 

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard, however I have significant reservations, as outlined
above.

 No competing interests were disclosed.Competing Interests:

Author Response (  ) 30 Oct 2016F1000Research Advisory Board Member
, Department of Ecology & Evolutionary Biology, University of California, Irvine, USASteven Frank

I appreciate Scott Page’s generous summary and helpful comments. With regard to his specific
suggestions:
 
I agree with Page’s main point that I should relate my approach to the widely used lognormal
distribution and the common power law expressions. To address those issues, I have added an
Appendix to the revised version. I show how the lognormal distribution arises as an approximate
description of growth and size whenever one can reasonably consider the distribution of growth
rates as approximately normally distributed. Because total growth can be thought of as the sum of
sequential growth increments, total growth may often be approximately normally distributed as a
consequence of the various central limit theorem type arguments. However, sums of random
variables are often not normally distributed, so one must be cautious about the generality of
lognormal distributions for size.
 
In my original article, I did not mention the lognormal distribution. I find it useful to distinguish

practical applications from approaches aimed at broad conceptual understanding of the relations

-a
x
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practical applications from approaches aimed at broad conceptual understanding of the relations
between different distributions. In my opinion, the lognormal distribution provides a useful practical
tool, but has some limitations with regard to the conceptual aims of my article. I discuss these
points in a newly added section of the Appendix.
 
The new Appendix also includes a section that shows how my approach leads to a true power law
distribution.
 
Finally, Page discussed how one might separate the generic factors that shape probability
distributions from the specific factors that influence particular observable patterns. I agree that
separating the generic from the particular is a key aspect of predicting and explaining patterns. In
my article, the section on “Deductive: tree size example” attempts to show how one might evaluate
particular generative processes of tree growth and size within my broader framework of the
invariances that shape the generic form of probability distributions. I say at the end of that section:
“I presented this derivation to encourage future study. The proper way to relate general growth
processes to invariant probability patterns remains an open problem.” At present, I do not have
anything sufficiently compelling to add, although I certainly agree that this is a key issue. A related
article of mine, “Invariant death”, emphasizes the duality of the generic and particular aspects of
pattern, and adds some analysis on this topic (see ). https://f1000research.com/articles/5-2076/v1

 NoneCompeting Interests:

 25 October 2016Referee Report

doi:10.5256/f1000research.10181.r15871

 Neil McRoberts
Department of Plant Pathology, University of California, Davis, Davis, CA, USA

This paper continues Prof Frank’s investigation of the connections between observation and probability
patterns in the natural sciences, in this case dealing specifically with power law size distributions. The
paper is written in a tutorial style which is probably appropriate given the that the material covered is not
standard reading in the life sciences. For those who are completely unfamiliar with the general subject
area, I strongly advise reading reference [3] from the list in the current paper before or in conjunction with
it.

Students in the life sciences often have a difficult relationship with concepts of probability and statistics. It
should not be that way, of course, since biological systems are inherently stochastic, but it seems that as
biologists we often approach the existence of variance in our observations as a problem to be got round,
rather than as the very stuff of biology which it is our job to explain. Worse yet, many of us encounter the
idea of “transformation” to make data more normal as an entirely ad hoc, opaque, process that seems to
rely on rules of thumb learned by rote, with no explanation as to why a particular transformation would be
appropriate in some situations and not others. Frank’s paper offers an altogether more satisfying
perspective on the subject of transformation. In addition to a wealth of other insights, this paper lays out a
well-grounded theoretical basis for understanding which transformations to seek if one wishes to preserve
the information content of original, non-normal, observations but express it in terms of a corresponding
normal distribution; the paper focuses in particular on the case of tree size data that conform to a
power-law on their original scale of measurement. Of course, the paper is not intended as a tutorial on

data transformation (the fact that students could learn to think of transformation in a new, richer, sense
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data transformation (the fact that students could learn to think of transformation in a new, richer, sense
from reading this work is a by-product) but more an introduction to a different perspective on biological
observation and its relationship with the probability distributions to which the observations conform.

Three key ideas carry the paper along:
“A single underlying quantity captures the generic regularity in seemingly different patterns. That
underlying quantity is the average distance of observations from the most common type.”
A natural metric will exist, as some transformation of the original scale of measurement, such that
when considered in terms of the square root of the natural metric, average distance of observations
from the most common type will follow a normal distribution.
With the transformation to the natural metric properly chosen, the information content of the original
data distribution and the normal distribution for the data, when expressed in its natural metric, are
the same (the invariance property).

The general form ( ) = exp(- ( , )) in which  adjusts so that ( ) is a proper density function and ,p y K L y x K p y L(y x
) is any desired distance measure is, in the words of Jorma Rissanen, a simple device used already by

. In the present case it forms a density function for the distance between individual observationsGauss
and the most common type. In other cases (such as those which Rissanen had in mind) it may measure
the distance between model predictions and observed data. The simple device forms a link between the
work presented by Frank and the extensive literature on coding, model selection and statistical inference.
Exploring those links lies well beyond the scope of Frank’s paper, but their shared basis in information
theory and the notion of how much, and what, information can be obtained from Nature and then modeled
is an area of research that biologists have largely ignored.

The paper includes a number of other points during the exposition of its central ideas. These, together
with the complexity of the ideas themselves, and the fact that the notation used to lay out the numerous
(but necessary) equations is subject to somewhat arbitrary-seeming substitutions mean that the paper
needs close reading, in spite of the clarity of Frank’s writing. Although signposts are provided along the
way (often in the form of rhetorical questions) to let us know where we’re going next, the paper would
benefit from a more comprehensive section by section guide in the introduction, so that the whole journey
can be seen in a single view.

Returning to my initial point concerning the way that the process of making data “more normal” is often
learned by rote, the sections on deduction of appropriate natural metrics to express data should be
particularly useful from a pedagogic perspective; they show that (at least in theory) an approach based on
argument from principles is possible. Those who are unfamiliar with the ideas will still probably be left with
the unwelcome impression that it will take considerable experience to become proficient at recognizing
approaches that are likely to work, but one of the wider lessons of Frank’s publications in this general area
is that rather few approaches are likely to account for the majority of observations most of us will
encounter.
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 No competing interests were disclosed.Competing Interests:

Page 19 of 20

F1000Research 2016, 5:2074 Last updated: 28 NOV 2016

http://homepages.cwi.nl/~pdg/ftp/rissanengauss.pdf)
http://homepages.cwi.nl/~pdg/ftp/rissanengauss.pdf)
http://www.ncbi.nlm.nih.gov/pubmed/19538344
http://dx.doi.org/10.1111/j.1420-9101.2009.01775.x


F1000Research

Author Response (  ) 27 Oct 2016F1000Research Advisory Board Member
, Department of Ecology & Evolutionary Biology, University of California, Irvine, USASteven Frank

Neil McRoberts’ summary provides an excellent overview of the broader subject and the place of
my article within that wider context.
 
McRoberts mentions the duality between the understanding of probability patterns and the
complementary problems of inference. I originally came to this subject through that connection,
particularly through my study of Jaynes pioneering work (see references to my earlier work in my
article). However, I was not aware of several of the explicit connections mentioned by McRoberts,
which I appreciate learning about from his review.
 
McRoberts suggests that I provide “a more comprehensive section by section guide in the
introduction.” I often provide such a guide in my longer articles. In this case, I had that kind of guide
in my early drafts. However, the technical underlying nature of the work made the overview into
what seemed like more of an obstacle than an invitation to the article. So I dropped it, allowing me
to move the article very quickly into the example of tree size that I use throughout to help connect
the underlying abstractions to real-world problems. Perhaps it would be possible to write a helpful
introductory guide, but I have not yet found the right expression.
 
The main difficulty with the current structure is that some readers may mistakenly focus on the tree
size problem as the central message of the article. It is not. The main message is that we can
understand almost all common probability patterns by a few simple underlying invariances. That
understanding provides great insight into many aspects of commonly observed patterns, including
patterns such as tree size.
 
One advantage of the F1000Research format is that I can submit a revised version at any time. For
now, I will keep the current structure, while I continue to think about how to improve the
presentation. I welcome comments from readers. 

 I have no competing interests.Competing Interests:
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