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Introduction

Natural selection favours traits that enhance fitness. But

how does one measure fitness? Several studies have

shown that it is not just average reproductive success that

matters. Variation in reproductive success also plays an

important role in determining long-term evolutionary

trends. To understand the basic notions of fitness and

evolutionary change by natural selection, one must

understand the particular consequences of different kinds

of variation.

The literature on variation splits into two groups. On

the one side, bits of folk wisdom dominate thinking. The

slogan that natural selection maximizes geometric mean

fitness is one example. Such folk wisdom is true in special

cases. But as a guiding principle, the simple geometric

mean slogan misleads as often as it helps.

On the other side, a technically demanding specialist

literature divides into numerous distinct ways of framing

the problem. Each technical expression emphasizes a

particular aspect of variation, refining unique examples

at the expense of providing a coherent view of the whole.

This article provides a tutorial on the different kinds of

variation and their evolutionary consequences. I empha-

size simple examples to develop understanding of

temporal, spatial, developmental and trait variation.

Each type of variation was originally studied as a separate

problem. In this tutorial, I follow Frank & Slatkin (1990),

who showed that these seemingly different types of

variation can be understood in a unified way. The unified

framework arises from two steps.
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Abstract

Many studies have analysed how variability in reproductive success affects

fitness. However, each study tends to focus on a particular problem, leaving

unclear the overall structure of variability in populations. This fractured

conceptual framework often causes particular applications to be incomplete or

improperly analysed. In this article, I present a concise introduction to the two

key aspects of the theory. First, all measures of fitness ultimately arise from the

relative comparison of the reproductive success of individuals or genotypes

with the average reproductive success in the population. That relative measure

creates a diminishing relation between reproductive success and fitness.

Diminishing returns reduce fitness in proportion to variability in reproductive

success. The relative measurement of success also induces a frequency

dependence that favours rare types. Second, variability in populations has a

hierarchical structure. Variable success in different traits of an individual

affects that individual’s variation in reproduction. Correlation between

different individuals’ reproduction affects variation in the aggregate success

of particular alleles across the population. One must consider the hierarchical

structure of variability in relation to different consequences of temporal,

spatial and developmental variability. Although a complete analysis of

variability has many separate parts, this simple framework allows one to see

the structure of the whole and to place particular problems in their proper

relation to the general theory. The biological understanding of relative success

and the hierarchical structure of variability in populations may also contribute

to a deeper economic theory of returns under uncertainty.

doi: 10.1111/j.1420-9101.2011.02378.x



First, it is relative reproduction that matters. Only

those traits associated with relatively greater success than

average increase over time. Relative measures of success

induce diminishing returns: a doubling of reproduction

provides less than a doubling of relative success (Gilles-

pie, 1977; Frank & Slatkin, 1990). With diminishing

returns, increasing variation in reproductive success

reduces fitness.

Second, the different types of variation can be

expressed as different levels within a unified hierarchy

(Frank & Slatkin, 1990). Variable success in different

traits of an individual affects that individual’s variation in

reproduction. Correlation between different individuals’

reproduction affects variation in the aggregate success of

particular alleles across the population. Temporal, spatial

and developmental variation affect the way in which

individual variations combine to determine the overall

variability in the number of copies produced by a

particular allele.

I also discuss the relation of economic theories of risk

and uncertainty to evolutionary theories of variability.

Relative success induces diminishing
returns

The success of genes and of traits must ultimately be

measured by their relative frequency in a population.

The calculation of relative frequency leads to surprising

consequences when there is variability (Gillespie, 1977;

Frank & Slatkin, 1990; Orr, 2007).

To illustrate the problem, consider two alternative

types in a population, A1 and A2. I will often refer to the

alternative types as alleles at a genetic locus. However,

the same analysis would apply to any heritable alterna-

tive types in a population that have the same essential

properties as alleles.

Some simple notation helps to express the argument.

Each definition uses subscripts to associate with the

alternative alleles, A1 and A2, respectively. Define q1 and

q2 as the allele frequencies, such that q1 + q2 ¼ 1. Let R1

and R2 measure reproductive success, the average num-

ber of descendant copies produced by each parental

allele. The average reproductive success in the popula-

tion is �R ¼ q1R1 þ q2R2. The success of individual

parental copies has a random component. Thus, all of

the measures of reproductive success fluctuate randomly.

Throughout, the unqualified words average and mean

refer to the arithmetic average.

The frequency of A1 after one round of reproduction is

q01 ¼ q1ðR1=�RÞ ¼ q1F1; ð1Þ

where F measures relative success. I use the word fitness

for relative success. This equation shows that fitness

ultimately determines the success of an allele. Repro-

ductive success, R, influences fitness. But the key

relationship between reproductive success and fitness is

mediated through the definition for fitness

F1 ¼ R1=�R ¼ R1

q1R1 þ q2R2

: ð2Þ

Figure 1 illustrates the two key properties of fitness.

First, fitness increases at a diminishing rate with a rise in

reproductive success (Gillespie, 1977; Frank & Slatkin,

1990). Put another way, the fact that fitness is a relative

measure means that linear changes in reproductive

success translate into nonlinear changes in fitness.

Second, the curvature of the relation between repro-

ductive success and fitness is frequency dependent

(Frank & Slatkin, 1990). A rare type has a nearly linear

relation between reproduction and fitness. A common

type has a very strongly diminishing relation between

reproduction and fitness. This means that rare and

common types are influenced differently by the conse-

quences of variability, because more strongly diminishing

returns cause variability in reproductive success to

impose a greater penalty on fitness.
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Fig. 1 The curvature of fitness vs. reproductive success depends on

allele frequency. The plots here illustrate eqn (2). The numbers

above each curve show q1, the frequency of the allele for which the

relationship is plotted. If q1 ¼ 0.1, the relationship follows the upper

curve for allele A1; the lower curve can then be interpreted as the

relationship for allele A2 with frequency q2 ¼ 0.9. The difference

between the upper and lower curves illustrates the frequency

dependence of the relation between fitness and reproductive success.

Note that there is little curvature when an allele is rare, which leads

to an advantage for rare types. Redrawn from Frank & Slatkin

(1990).

Box 1: Topics in the theory of natural selection

This article is the first in a series on natural selection.

Although the theory of natural selection is simple, it remains

endlessly contentious and difficult to apply. My goal is to

make more accessible the concepts that are so important, yet

either mostly unknown or widely misunderstood. I write in a

nontechnical style, showing the key equations and results

rather than providing full derivations or discussions of

mathematical problems. Boxes list technical issues and brief

summaries of the literature.
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Figure 2 shows that diminishing returns cause a loss of

fitness. In the figure, expected reproductive success, R, is

l. Deviations of ± d occur, with increases and decreases

at equal frequencies. The gain in relative fitness, F, for an

increase of d units of reproductive success is less than the

corresponding loss in fitness when reproductive success is

reduced by d. Expected fitness therefore declines as the

frequency and magnitude of deviations increase. Note

that the discount to fitness rises as the curvature between

fitness and reproductive success increases.

Reproduction multiplies and variation
reduces success

Suppose an individual has two offspring. Each of those

offspring has two offspring. The original individual has

four grandchildren. Compare that output to a second

individual that has three offspring, and each of those

offspring has one offspring. The second individual has

three grandchildren. In each case, the average reproduc-

tion per generation is two offspring. However, the

individual with less variable reproduction has greater

success than the individual with more variable repro-

duction.

The difference occurs because reproduction multiplies

over time. The value 2 · 2 ¼ 4 is greater than 3 · 1 ¼ 3,

even though the arithmetic averages are the same in

each case. In multiplicative series, variation reduces the

multiplicative product. Rather than measuring success by

the arithmetic average, such as (3 + 1)/2 ¼ 2, the proper

average in a multiplicative series is the number that,

when used to multiply in each generation, gives the total

output. In the reproductive series over two generations of

3 · 1 ¼ 3, we need a number that when multiplied by

itself gives three. This works out as
ffiffiffi
3
p
�

ffiffiffi
3
p
¼ 3, so the

multiplicative mean is
ffiffiffi
3
p
� 1:73. The multiplicative

mean is usually called the geometric mean.

Approximation for the geometric mean

A simple approximation of the geometric mean is often

useful. Suppose the arithmetic mean of a series is l, and

the variance of the series is r2. Then, the geometric mean

is approximately l ) r2/2l. This approximation shows

clearly how the variance reduces the geometric mean.

For example, in the series 3 · 1 ¼ 3, the mean is 2,

the variance is 1, the true geometric mean is 1.73, and

the approximation gives the geometric mean as 1.75. The

smaller the variance is in relation to the mean, the better

the approximation. In evolutionary models, one often

makes the assumption that average reproductive success

is close to one, l � 1, so that the approximation for the

geometric mean often appears as l ) r2/2.

The geometric mean principle

Reproduction multiplies. The greatest multiplicative

series has the highest geometric mean reproduction.

Thus, the type with greatest long-term fitness would

appear to be the type with the highest geometric mean

reproductive success. That conclusion is often called the

geometric mean principle.

The highest geometric mean is sometimes associated

with greatest evolutionary success. However, geometric

mean reproductive success by itself often misleads,

because it hides more than it helps. The problem of

evolutionary success and fitness turns out to be more

subtle and more interesting. The following sections

explain why.

Population regulation and relative
success

The total resources available to the population limit

reproductive success. That density-dependent competi-

tion causes the reproductive success of each type to be

influenced by the reproduction of other types. For that

reason, one cannot simply multiply the reproductive

successes of each type independently and then compare

the long-term geometric means. Instead, each bout

of density-dependent competition causes interactions

between the competing types. Those interactions depend

on frequency. Reproduction of a rare type has little

competitive effect on a common type. Reproduction of a

common type has a strong competitive effect on a rare

type (Fig. 1).

The fitness measure of relative success in eqn (2)

accounts for density-dependent interactions. The partic-

ular way in which density-dependent competition arises

has important consequences.

Expected change in frequency

We can circumscribe the main conceptual issues by

focusing on the expected (average) change in allele
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Fig. 2 Increasing variation in reproductive success reduces fitness.

Expected reproductive success is l. Fluctuations of ± d occur.

Positive fluctuations return a smaller gain in fitness than the loss

suffered from a negative fluctuation. Thus, equally frequent positive

and negative fluctuations return a net loss. Redrawn from Frank &

Slatkin (1990).
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frequency. Each process can be studied with respect to

whether it tends to increase or decrease the expected

frequency change.

Equation (1) gives the definition for the allele fre-

quency in the following generation, q01 ¼ q1F1. The

change in allele frequency is Dq1 ¼ q01 � q1 ¼ q1ðF1 � 1Þ.
Using the definition for fitness in eqn (2) allows us to

write the change in frequency as

Dq1 ¼ q1q2

R1 � R2

�R

� �
: ð3Þ

The reproductive successes fluctuate randomly.

Because those random fluctuations occur in both the

numerator and the denominator, there is no simple way

to express the exact change in frequency. If we assume

that the fluctuations in success are small relative to the

average success, and we normalize all of the successes so

that they are close to one, then we can write the

approximate expected change in frequency as

EðDq1Þ � q1q2 ðl1 � l2Þ þ covðR2; �RÞ � covðR1; �RÞ½ �f g;
ð4Þ

where l1 and l2 are the expected reproductive successes

for types 1 and 2, respectively. This equation, from Frank

& Slatkin (1990), is equivalent to an approximation given

by Gillespie (1977).

The expected change is the average tendency. Because

of the inherent fluctuations in success, the actual

change in frequency in any generation may be in the

opposite direction of the expected change. Over long

time periods, three different patterns of evolutionary

dynamics occur.

First, if the random fluctuations in the average repro-

ductive successes of the types are large relative to the

directional bias in eqn (4), then randomness dominates.

The type frequencies will bounce up and down in a

nearly neutral way. Eventually, one type will become

fixed, and the other will disappear from the population. If

we start at frequency q1, then the probability that type A1

fixes is q1, and the probability that type A2 fixes is

q2 ¼ 1 ) q1. True fixation only occurs in finite popula-

tions. In infinite populations, the related notion of quasi-

fixation arises as the frequency of a type becomes very

close to one. To keep things simple, I ignore important

technical distinctions between finite and infinite popu-

lations (Gillespie, 1994; Ewens, 2010).

Second, if the directional bias is much larger than the

fluctuations in the average reproductive successes of

the types, then the type frequencies change in an almost

deterministic way. If the direction of change remains the

same across the range of type frequencies, then the type

with the greater expected success will usually become

fixed in a relatively short period of time. If frequency

dependence provides a sufficient advantage to the rare

type, then the direction of change may shift with type

frequency in a way that tends to maintain both types in

the population.

Third, if random fluctuations are of roughly the same

magnitude as the directional bias, then frequency

changes combine both directional and random aspects.

In some cases, frequencies will fluctuate, and both types

will remain in the population for a very long time. In

other cases, frequencies may fluctuate for a significant

period of time, but eventually one type or the other will

become fixed. Fixation will be biased towards the type

favoured by the directional tendency set by eqn (4).

However, the other type may occasionally fix because of

the random fluctuations.

I emphasize the major processes that influence the

directional tendency in eqn (4). In particular, the

hierarchical structure of variability sets the directional

tendency, which in turn shapes the qualitative patterns

of dynamics. I make only brief comments on long-term

evolutionary dynamics, which require technical analysis

of mathematical models to evaluate fully (Gillespie,

1994; Ewens, 2010). As noted in the previous para-

graphs, long-term dynamics include issues such as the

probability that a particular genotype becomes fixed and

the maintenance of polymorphism.

Hierarchical structure of variability

Populations have a naturally nested hierarchical struc-

ture when considering genetics. Populations are com-

posed of genotypes, and genotypes are composed of

individuals. In a haploid model with two alternative

alleles, there are two genotypes in the population, and

numerous copies (individuals) of each allelic type. The

hierarchical structure of variability makes explicit the

variances and the correlations at different levels in

the hierarchy.

For example, the reproductive success R1 is the average

success taken over all copies of the allele A1. Similarly, R2

is the average over all copies of A2. To analyse the

variability in the aggregate success of allele A1, one must

consider the variability in the success of each copy of A1

and the correlations in success between different copies.

The analysis for A2 must consider the variability in the

success of each allelic copy and the correlations in success

between the alleles.

We can relate the variances of individual reproductive

success to the variances and covariances for the different

allelic types by writing

varðR1Þ ¼ q1r
2
1 ð5aÞ

varðR2Þ ¼ q2r
2
2 ð5bÞ

covðR1;R2Þ ¼ q12r1r2 ð5cÞ
where q1, q2 and q12 are the correlations in reproductive

success between randomly chosen pairs of A1, A2 or A1

and A2 individuals, respectively.
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Frank & Slatkin (1990) introduced this explicit parti-

tioning of variances and covariances for types into their

individual components. Any realistic analysis of variabil-

ity must make explicit the individual-level fluctuations

and the associations between individuals. Although this

explicit treatment of variability is fundamental, the

partitioning of variances and covariances in eqn (5) has

often been regarded as some sort of highly technical or

specialized analysis. This mistake has limited progress in

understanding fitness with respect to spatial and tempo-

ral fluctuations in success.

If we combine eqns (4) and (5) and keep things simple

by assuming that the correlation between types is zero,

q12 ¼ 0, we obtain

EðDq1Þ � q1q2 ðl1 � q1q1r
2
1Þ � ðl2 � q2q2r

2
2Þ

� �
; ð6Þ

which means that, on average, type A1 increases in

frequency when

l1 � q1q1r
2
1 > l2 � q2q2r

2
2: ð7Þ

The following sections show that different kinds of

variability can be understood by the hierarchical parti-

tioning of associations between traits within an individ-

ual and associations between different individuals.

Variability interacts with the processes of density-depen-

dent population regulation.

Temporal variability

Dempster (1955) introduced a model of temporal varia-

tion in which all alleles of the same type have the iden-

tical reproductive success within a generation, q1 ¼ q2¼ 1,

and there is no correlation between types, q12 ¼ 0. In

this haploid model, each individual has one allele, either

A1 or A2. The condition for the expected increase of type

1 from eqn (7) is

l1 � q1r
2
1 > l2 � q2r

2
2: ð8Þ

This equation illustrates the rare-type advantage

induced by density-dependent population regulation.

When the frequencies are equal, q1 ¼ q2 ¼ 1/2, then

the condition favours the type with the higher geometric

mean fitness, l1 � r2
1=2 vs. l2 � r2

2=2.

As the frequencies approach one boundary, q1 fi 0

and q2 fi 1, the condition to favour A1 becomes

l1 > l2 � r2
2. At the other boundary, the condition

favouring A1 becomes l1 � r2
1 > l2. Thus, the direc-

tional tendency often shifts with frequency.

In spite of the inherent rare-type advantage, polymor-

phism is not maintained in this haploid model (Gillespie,

1973; Hartl & Cook, 1973; Karlin & Lieberman, 1974).

The high variance in fluctuations eventually causes one

of the types to fix (or to become nearly fixed in an

infinite population). The type with the higher geometric

mean success has the advantage at the frequency

midpoint. That type fixes with higher probability. If the

geometric means for the two types are close to each

other, then frequencies may fluctuate for a long time,

and the bias towards fixing the favoured type is relatively

weak. If the geometric means for the two types are

significantly different, then fixation happens sooner and

with a stronger bias towards the favoured type.

Correlations and genotypic homoeostasis

In the previous section, I assumed that all individuals

carrying the same allele have the same reproductive

success in each generation. In that case, all of the variation

arises from the response of an allele to environmental

fluctuations, with no variation between individuals of the

same genotype. No variation means that individuals of the

same type are perfectly correlated, q1 ¼ q2 ¼ 1.

Alternatively, different individuals of the same type

may respond differently to environmental fluctuations.

There are many ways to express individual variation. For

example, individual responses may fluctuate about the

long-term arithmetic mean, l, and the pairwise correla-

tion between individuals in each generation may be q
(Frank & Slatkin, 1990). In that case, the variance in the

average reproductive success of A1 is q1r
2, with a similar

expression for A2.

Reduced correlation between individuals lowers the

variation in the average success of a type. That relation

arises from the fact that the variance of an average is

reduced by the number of uncorrelated observations in

the sample. We can express the effective sample size of

uncorrelated observations as n* ¼ 1/q, so that the vari-

ance of the mean, r2/n*, is qr2.

One can think of the pairwise correlations between

individuals of the same genotype as the genotypic homoeo-

stasis. If all individuals of a genotype respond in exactly

the same way to each environmental state, then the

correlation between pairs of individuals is perfect, q ¼ 1.

That perfect correlation increases the variance in the

average reproductive success of the genotype. One can

think of such strong correlation as strong homoeostasis or

canalization of development for the genotype. By

contrast, weak correlation between individuals of the

same genotype, with low values of q, corresponds to

greater developmental fluctuations and relatively weaker

genotypic homoeostasis.

Given the variances in the average reproductive

successes of the types as qr2, the condition for A1 to be

favoured is given in eqn (7). In a haploid model, the

long-term bias in fixation depends on the relative

geometric means derived when frequencies are equal,

q1 ¼ q2 ¼ 1/2, yielding the condition for A1 to be

favoured as

l1 � q1r
2
1=2 > l2 � q2r

2
2=2: ð9Þ

This expression shows that temporal fluctuations

favour reduced genotypic homoeostasis, with low values
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of q. A type with low average reproductive success, l, can

be favoured if it also has low genotypic homoeostasis, q,

reducing its variance in average reproductive success

sufficiently to give it a higher geometric mean fitness

than its competitor. Reduced genotypic homoeostasis is a

general expression of the widely discussed problem of bet

hedging (see Box 2).

Developmental variability

Gillespie (1974a) introduced a model in which the repro-

ductive success of each of the N haploid individuals in the

population depends on its interactions with the environ-

ment during development. The reproductive successes of

different individuals are independent because, by

Gillespie’s assumptions, different individuals experience

different conditions and develop in an uncorrelated way.

Nevertheless, the finite population size ensures that an

individual’s reproductive success correlates with the

average reproductive success of its genotype.

The correlation of two randomly chosen A1 alleles is

q1 ¼ 1/(Nq1), because there are Nq1 individuals of type

A1, and hence a chance 1/(Nq1) of choosing the same

individual twice. By the same reasoning, q2 ¼ 1/(Nq2).

The correlation between types is zero, because different

individuals experience different conditions. Substituting

these values into eqn (8), we find that A1 increases for

any allele frequency when

l1 � r2
1=N > l2 � r2

2=N:

Because this condition no longer depends on allele

frequencies, it is sufficient to describe long-term evolu-

tionary advantage without the need to consider

frequency dependence. An allele with a long-term

advantage is more likely to become fixed than a neutral

allele with the same initial gene frequency.

Gillespie (1974a) presented this model of individual

developmental variation as a separate problem from the

general analysis of fluctuations in reproductive success.

The analysis here, from Frank & Slatkin (1990), shows

that individual variation is just a special case of the

general model of temporal variation. One obtains the

case of individual variation by properly calculating

the correlations in reproductive success between indi-

viduals.

Spatial variability and local population
regulation

The classical Dempster (1955) model of temporal varia-

tion assumes that density-dependent regulation occurs in

one large population. In that model, density regulation

induces frequency dependence that favours the rare

genotype. I mentioned earlier that, in spite of the rare-

type advantage, one of the types eventually becomes

fixed, because the random fluctuations in frequency are

Box 2: Optimal phenotypes in response to
environmental variability

Individuals may be able to match their phenotype to partic-

ular environments. Phenotypic plasticity occurs when an

organism can sense the particular environmental state and

adjust its traits accordingly. If organisms do not adjust their

phenotypes in response to the particular environmental state,

then they may produce a stochastic response tuned to the

pattern of fluctuation. A stochastic response is sometimes

called bet hedging.

Bet hedging can increase the aggregate success of a

genotype or strategy. Suppose, for example, that the envi-

ronment is equally likely to be in one of two states. For each

state, there is a different optimal phenotypic response.

However, the organism cannot adjust its phenotype in

response to the particular state. If each individual of the

genotype has a random component to its phenotypic expres-

sion, then in each generation, some individuals will match the

environment with the best phenotype and some will not. The

mixture of phenotypic expressions reduces the variance of the

aggregate success of the genotype by reducing the correlation

between individuals of that genotype.

The concept of reduced correlation between individuals of a

genotype highlights an essential aspect of the bet hedging

problem. Frank & Slatkin (1990) emphasized the general

point about correlations between members of a genotype, as

shown in eqn (5). McNamara (1995) independently described

a similar interpretation, but referred to the process as kin

selection, a label that I would avoid in this case. Correlations

between relatives do matter, but not in the way that one

usually associates with the costs and benefits of social

behaviour in kin selection.

Bet hedging can also arise within an individual. For

example, the individual’s alternative traits may be expressed

stochastically in separate bouts of resource acquisition, in a

way that reduces the overall variance in success. Reduced

variance in resource acquisition typically provides increased

expected reproductive success, because success rises in a

diminishing way with resources.

To get started on the literature, here are a few recent

overviews for phenotypic plasticity (Stearns, 1989; Houston &

McNamara, 1992; Moran, 1992; Scheiner, 1993; Via et al.,

1995; Pigliucci, 2001; West-Eberhard, 2003; DeWitt & Schei-

ner, 2004) and bet hedging (Cooper & Kaplan, 1982; Seger &

Brockmann, 1987; Sasaki & Ellner, 1995; Grafen, 1999;

Wilbur & Rudolf, 2006; King & Masel, 2007; Donaldson-

Matasci et al., 2008). An interesting information theory

approach may provide a useful connection between these

subjects (Kussell & Leibler, 2005).

All of these cases analyse phenotypic adjustment or

phenotypic stochasticity. In these cases, one must also account

for the diminishing relation between reproductive success and

fitness (Fig. 1) and the ways in which the correlations

between individuals determine the mean and variance of

aggregate success for each type (eqn 5).
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too strong relative to the directional tendency of evolu-

tionary change. Fixation is biased towards the type with

the highest geometric mean.

In a different model, Levene (1953) showed that

spatial variation does maintain genetic polymorphism. In

the Levene model, there are many independent spatial

locations. Each location has its own independent density-

dependent competition for resources.

Gillespie (1974b, 1978) showed that one can think of

the Levene model of spatial variation as the sum of K

independent models of temporal variation. If there is

only one patch, K ¼ 1, then reproductive successes

fluctuate over time in that patch, and all competition

occurs in that single patch. This model is identical to the

classical Dempster model for temporal variation.

As K increases, each independent patch fluctuates with

the same rare-type advantage of the classical Dempster

model. The total fluctuation in each generation is the

average of the fluctuations over all patches. Because

the patches fluctuate independently, the variance of the

average fluctuation over the entire population is reduced

by 1/K. This reduction arises because the variance of the

mean for K independent observations is the variance of

each observation divided by K.

Gillespie (1974b, 1978) provided the full analysis for

this averaging over K patches. However, he did not

provide a simple interpretation or a simple expression for

how fluctuations lead to a particular level of polymor-

phism when the number of patches is large.

Frank & Slatkin (1990) noted that, as K becomes large,

the population-wide fluctuations in each generation

become small because of the averaging effect over the

many patches. Thus, we can treat eqn (6) as an essen-

tially deterministic process. The rare-type frequency

dependence now dominates. The equilibrium frequency

of types can be obtained by solving E(Dq1) ¼ 0, which

yields

q1

q2

¼ l1 � l2 þ q2r
2
2

l2 � l1 þ q1r
2
1

as given by Frank & Slatkin (1990). Here, each q is the

correlation between copies of an allelic type measured

within each patch. This result shows that naive compar-

ison of geometric mean success is not sufficient to

understand evolutionary outcome.

Trait variability within individuals

The theory above takes an individual’s average and

variance in reproductive success as given parameters.

However, the actual processes that lead to individual

means and variances arise from the way that individuals

acquire resources and produce offspring, including

acquisition of food, protection from predators and so

on. To analyse the full hierarchy of causes for variability,

we should begin with the question: How does the

allocation of an individual’s resources among alternative

traits influence that individual’s mean and variance in

reproductive success?

I use the example of traits for resource acquisition. The

same analysis applies to any trait that influences repro-

ductive success, such as defence against parasites.

One trait

Let us start with a single trait. The return of resources on

investment has a random component, d. The random

component of resource acquisition affects reproductive

success by an amount f(d). Then, a simple way to write

the reproductive success is

R ¼ 1þ f ðdÞ:
If we assume that the random fluctuations, d, have a

mean of zero and a variance of Vx, and that the

fluctuations are relatively small, then the average repro-

ductive success is approximately

l � 1þ f 00Vx=2;

where f 00 is the second derivative of f evaluated at zero

(Real, 1980; Stephens & Krebs, 1986). Typically, one

assumes that fluctuations in traits for resource acquisition

have a diminishing return shape as in Fig. 2, in which case

f 0 0 < 0. Thus, greater fluctuations, Vx, reduce expected

reproductive success. All else equal, resource acquisition

strategies with less variability yield higher average repro-

ductive success than those strategies with more variability.

The variance in an individual’s reproductive success is

approximately

r2 � varðf 0dÞ ¼ f 02Vx; ð10Þ
where f 0 is the first derivative of f evaluated at zero.

A full evaluation of fitness requires specifying the

means, variances and correlations between all individ-

uals in the population. The correlations must be

evaluated in relation to the heritable types we are

following over time. The earlier sections provided the

methods for studying evolutionary dynamics in relation

to fitness.

Here, to keep the focus on trait variability within

individuals, I give only the geometric mean reproductive

success for an individual. The geometric mean for each

individual accounts for the average and variance in

individual reproductive success but neither the correla-

tions between types nor the role of density dependence

in fitness. Assuming that the fluctuations in returns, Vx,

are relatively small, the geometric mean reproductive

success is approximately

G ¼ l� r2=2l � 1þ f 00 � f 02
� �

Vx=2: ð11Þ

Two traits

How should an individual invest in two different traits

that provide additive returns? Let reproductive success be
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R ¼ x 1þ f ðdÞ½ � þ y ð1� cÞ þ gð�Þ½ � ð12Þ
for investment amounts x + y ¼ 1, with x and y the

fractions of total resources invested in each trait. Here, c
is the discount in expected return for the second trait,

and � is the random fluctuation associated with the

second trait. The discount, c, and the fluctuation, �, are

small relative to the baseline return of one. The mean of �
is zero, and the variance is Vy. I assume that d and � are

uncorrelated. Box 3 lists some of the intermediate steps.

Here, I focus on the key result.

If we assume that the random component of each trait is

the same, Vx ¼ Vy, and f ” g, then the geometric mean is

l� r2=2l � Gþ Bðx; yÞ; ð13Þ
where G is the geometric mean given in eqn (11) for

allocating all resources to the first trait, x ¼ 1, and B(x,y) is

the benefit obtained when mixing allocation of resources

between the two traits such that x + y ¼ 1, with

Bðx; yÞ ¼ f 02 1� ðx2 þ y2Þ
	 


Vx=2� yc:

If we optimize B to obtain the best mixture of

allocations between the two traits, we obtain

x� ¼ 1

2
1þ c

r2

� �
ð14aÞ

y� ¼ 1

2
1� c

r2

� �
; ð14bÞ

where c is the discount in expected return for the second

trait given in eqn (12), and r2 is the variance in individual

reproductive success per trait given in eqn (10).

It pays to invest some resources in the trait with lower

expected return as long as c/r2 < 1. The lower expected

return is offset by the reduced variance obtained from

averaging the returns over two uncorrelated traits. In

both biology and financial investing, returns tend

to multiply over time. Thus, reduced fluctuations

enhance the multiplicative (geometric) average return.

In financial investing, the central role of the geo-

metric mean is well known in theory (Bernstein &

Wilkinson, 1997), but often ignored in practice (MacBeth,

1995).

An example

The concepts in the previous section are simple. The

variance of an average declines with additional uncor-

related components. Reduced variance provides a

benefit when success multiplies over time. The technical

expressions of those results may obscure the simplicity

of the concepts. This section provides a numerical

example.

Suppose an organism has two different behaviours by

which it can obtain calories. To keep the problem simple,

assume that there is a linear relation between calories

and reproduction, f 0 ¼ 1. For the first behaviour, the

return is on average l1 ¼ 1.0 calories, with a variance in

return of r2 ¼ 0.1. The second behaviour has a lower

average return of l2 ¼ 1.0 ) 0.02 ¼ 0.98 calories, with

the same variance of r2 ¼ 0.1.

If all investment is devoted to the first behaviour, then

the geometric mean success is l1 ) r2/2 ¼ 0.95. If all

investment is devoted to the second behaviour, then the

geometric mean success is l2 ) r2/2 ¼ 0.93.

In this case, I have assumed c ¼ 0.02 and r2 ¼ 0.1.

From eqn (14), the optimal allocation to the two traits is

x* ¼ 0.6 and y* ¼ 0.4. If the individual devotes a fraction

0.6 of its investment to the first behaviour and a fraction

0.4 of its investment to the second behaviour, then it

obtains an average return of

a ¼ 0:6l1 þ 0:4l2 ¼ 0:992:

The variance in return is obtained by noting that,

when one splits allocation between two uncorrelated

returns, R1 and R2, each with variance r2, the variance is

b ¼ varðxR1 þ yR2Þ ¼ ½x2 þ y2�r2:

Using the optimal split 0.6 vs. 0.4 for x and y, and the

value r2 ¼ 0.1 above, the variance is b ¼ 0.052. The

geometric mean is now approximately

a� b=2 ¼ 0:992� 0:052=2 ¼ 0:966:

This mixture of behaviours therefore returns a higher

geometric mean of 0.966 than when all investment is

devoted to the higher yielding first behaviour, which has

a geometric mean of 0.95, or when all investment is

devoted to the lower yielding behaviour, which has a

geometric mean of 0.93. This example illustrates the

benefit of diversification when success multiplies over

time.

Box 3: Trait variability with two traits

This box shows the details that lead from eqns (12–13).

Starting with eqn (12) for R, the average reproductive

success is approximately

l � 1� ycþ xf 00Vx=2þ yg00Vy=2:

The variance in success is approximately

r2 � varðxf 0dþ yg0�Þ
¼ x2f 02Vx þ y2g02Vy:

The geometric mean is approximately

l� r2=2l � 1� ycþ x f 00 � xf 02
� �

Vx=2þ y g00 � yg02
� �

Vy=2:

If we assume that the random component of the two

traits is the same, Vx ¼ Vy, and f ” g, then the geometric

mean is

l�r2=2l� 1�ycþ f 00Vx=2�ðx2þy2Þf 02Vx=2

¼ 1þ f 00 � f 02
� �

Vx=2þ f 02 1�ðx2þy2Þ
	 


Vx=2�yc:

The substitutions given in the text lead directly to

eqn (13).
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Note that reproductive returns are linear in this

example. The entire benefit of diversification arises from

the multiplicative nature of long-term success, which

discounts variance.

The limitation of using individual geometric mean
success

I used the individual’s geometric mean success in this

section. That assumption is valid only when we are

interested in an absolute measure of an individual’s long-

term success in the absence of competition and relative

comparison with others. However, it often does not make

sense to measure success independently of others. Evo-

lutionary success depends on the relative contribution to

the population by a heritable type. The earlier sections of

this article showed several different measures of success

that arise from the temporal and spatial structure of

competition and from the correlations in success between

different types of individuals.

Suppose, for example, that the correlation between

individual copies of an allele is low, q fi 0, as in the

model of developmental variation in which q ¼ 1/N and

population size, N, is large. Then, from eqn (9), we see

that natural selection favours the type with the highest

arithmetic average, l, independently of the individual

variance in reproductive success, r2. In that case, it does

not make sense to analyse the geometric mean of

individual reproductive success. Instead, success depends

almost entirely on the arithmetic mean return taken over

the two traits. If returns per trait are linear, f 0 0 ¼ 0, then

the arithmetic mean is

xl1 þ yl2 ¼ x þ yð1� cÞ:

In this case, individuals will be favoured to allocate all

resources to the higher yielding trait, labelled as trait one

in this example.

Economic theories of variability and risk

Economic theories of risk and uncertainty typically focus

on the absolute success of individuals or single agents.

Relative success in economics concerns market share

(Frank, 1990). However, there seems to be little economic

theory about risk and uncertainty in relation to market

share. Problems of market share lead to many issues

discussed in this article. For example, relative success

induces diminishing returns. The temporal and spatial scale

of competition determines the proper measure of success.

One must also consider the proper unit of analysis to

measure success and dynamics. If one is interested in the

absolute currency value accumulated by an individual

investor over a long period of time, then the individual’s

geometric mean success in return over successive inter-

vals is often a good measure. If one is interested in an

individual’s purchasing power, then one must track the

individual’s currency valuation relative to the currency

valuation among the population of individuals compet-

ing for the same goods.

If the individual has only a small fraction of the total

pool of goods, then the individual’s geometric mean

return provides a good measure of success. However, if

one is tracking a corporation or agent that controls a large

fraction of the total resource pool, then the correlation

between individual and total success may have a signif-

icant impact on outcome.

In some economic analyses, one is interested in

behaviours or strategies. For example, what is the

relative success of those following a particular financial

strategy in the investment markets? The answer depends

in part on whether all individuals following the same

strategy have highly correlated returns or uncorrelated

returns. A high correlation in returns between individ-

uals following a strategy increases the variance in the

aggregate success of that strategy. Higher variance usu-

ally leads to lower long-term success.

Box 4: Reviews and technical issues

Gillespie (1994) and Ewens (2010) provide excellent technical

overviews of genetic theory for variable environments. Recent

reviews (Hedrick, 2006; Proulx & Adler, 2010) and new

theory (Taylor, 2008) continue to appear.

Lande (2008) developed a comprehensive approach to the

theory of fluctuating selection. He emphasized an adaptive

topography method arising from the key insight that expected

fitness depends on average reproductive success minus the

covariance of reproductive success with population mean

success. That expression for fitness is the same as developed in

eqn (4), following from Gillespie (1977) and Frank & Slatkin

(1990).

Lande (2008) also summarized the complexities that arise in

diploid genetic systems under fluctuating selection. In general,

diploid and multilocus models require one to pay attention to

two issues (Frank & Slatkin, 1990). First, how do the fluctu-

ations contributed by different alleles combine within individ-

uals to determine the average and variance in individual

reproductive success? Second, how do multiple alleles per

individual induce correlations in reproductive success between

copies of alleles in different individuals? The specific results

that I gave in the text concern haploid models. Diploid and

multilocus models must account for these additional complex-

ities.

Rice (2008) introduced an exact expression for evolution-

ary change in stochastic models by expanding the scope and

interpretation of the Price Equation. Tuljapurkar et al. (2009)

review the theory of variable environments in relation to

demography and life-history evolution. For economics theory,

introductory microeconomics texts include overviews of the

theory of risk and uncertainty. For investments, see Marko-

witz (1991). Okasha (2011) provides an entry to the philo-

sophical literature on the theory of uncertainty in evolution

and economics.
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The frequency of the competing strategies also matters.

Relatively rare strategies have a low correlation with the

population average level of success, providing a rare-type

advantage. The consequences of the rare-type advantage

depend on whether competition occurs globally or locally

over a series of isolated markets. These problems of

relative success have received little attention in the study

of economic competition.

Conclusions

Nearly all aspects of success include a variable compo-

nent. To understand the consequences of that variability,

one must study the hierarchical structure of traits within

populations. Each individual has multiple traits. Each

genotype or strategy has multiple individuals. Fluctua-

tion in the success of particular traits has consequences

that depend on the correlations between traits and the

correlations between individuals. The aggregate variabil-

ity of competing types affects relative success in ways that

depend on density-dependent competition, which causes

diminishing returns and induces an intrinsic frequency

dependence that tends to favour rare types over common

types.

The extensive biological theory of variability has dealt

with particular aspects of the overall problem. But few

analyses have set out the entire range of fluctuations,

how those fluctuations are structured in populations, and

the particular nature of competition that shapes the

consequences of fluctuations. By considering the struc-

ture of the entire problem, one obtains a richer under-

standing of biological fitness and its consequences for

evolutionary dynamics.

Many of the biological problems of variability also arise

in economics. The theoretical literature in economics

made the first analyses of success when there is a variable

component of returns. But the biological literature has

advanced further in the analysis of variability, particu-

larly with respect to the importance of relative success

and the hierarchical structure of competing types or

strategies in populations.
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REVIEW

Natural selection. II. Developmental variability and evolutionary
rate*

S. A. FRANK

Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, USA

In evolutionary biology, environmentally induced modifi-

cations come under unfinished business… There have been

repeated assertions of both their importance and their

triviality, a lot of discussion with no consensus… Yet the

debate has continued over such concepts as genetic

assimilation, the Baldwin effect, organic selection, mor-

phoses, and somatic modifications. So much controversy

over the span of a century suggests that a problem of major

significance remains unsolved (West-Eberhard, 2003,

p. 498).

Introduction

A single genotype produces different phenotypes. Develop-

mental programs match the phenotype to different

environments. Intrinsic developmental fluctuations

spread the distribution of phenotypes. Extrinsic environ-

mental fluctuations perturb developmental trajectory.

These nonheritable types of phenotypic variation are

common.

Nonheritable phenotypic variation is not transmitted

through time. Thus, nonheritable variation would seem

to be irrelevant for evolutionary change, which instead

depends on the genetic component of variation. How-

ever, nonheritable phenotypic variation can, in principle,

affect evolutionary rate. At first glance, that contribution

of nonheritable phenotypic variation to evolutionary rate

appears to be a paradox.

Many different theories, commentaries, and contro-

versies turn on this paradox (Box 2). The literature has

followed a consistent pattern. Detailed theories relate

developmental variability to accelerated evolution.

Counterarguments ensue. Listings of complicated exam-

ples claim to support the theory. Refinements to the

theory develop.

In the end, few compelling examples relate nonheri-

table phenotypic variability to evolutionary rate. The

literature is hard to read. Enthusiasts extend the concepts

and keep the problem alive. Through the enthusiasts’

promotions, many have heard of the theory. But, in

practice, few consider the role of nonheritable pheno-

typic variability in their own analyses of evolutionary

rate. Almost everyone ignores the problem.

In this article, I emphasize simple theory that relates

nonheritable phenotypic variability to evolutionary rate.

Understanding the paradoxical relation between

nonheritable phenotypic variability and evolutionary

rate is an essential step in reasoning about many

evolutionary problems.
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Abstract

In classical evolutionary theory, genetic variation provides the source of

heritable phenotypic variation on which natural selection acts. Against this

classical view, several theories have emphasized that developmental variability

and learning enhance nonheritable phenotypic variation, which in turn can

accelerate evolutionary response. In this paper, I show how developmental

variability alters evolutionary dynamics by smoothing the landscape that

relates genotype to fitness. In a fitness landscape with multiple peaks and

valleys, developmental variability can smooth the landscape to provide a

directly increasing path of fitness to the highest peak. Developmental

variability also allows initial survival of a genotype in response to novel or

extreme environmental challenge, providing an opportunity for subsequent

adaptation. This initial survival advantage arises from the way in which

developmental variability smooths and broadens the fitness landscape.

Ultimately, the synergism between developmental processes and genetic

variation sets evolutionary rate.

doi: 10.1111/j.1420-9101.2011.02373.x



This article is primarily a concise tutorial to the basic

concepts (see Box 1). I briefly mention some of the history

(Box 2) and recent, more advanced literature (Box 3).

Smoothing the evolutionary path

The distribution of phenotypes for a given genotype is

called the reaction norm. All theories come down to the fact

that a broad reaction norm smooths the path of increasing

fitness. Once one grasps the smoothing process, many

apparently different theories become easy to understand.

The next section gives the mathematical expression for

the smoothing of fitness by the reaction norm. Figure 1

explains the mathematics with a simple example.

The reaction norm smooths fitness

We need to track three quantities. First, fitness, f(x),

varies according to the particular phenotype expressed, x.

Second, the phenotype expressed varies according to

the reaction norm. Read pðxj�xÞ as the probability of

expressing the phenotype x given a genotype with

average phenotype �x.

Third, we must calculate Fð�xÞ, the expected fitness for a

genotype with average phenotype �x. We obtain the

expected fitness by summing up the probability, p, of

expressing each phenotype multiplied by the fitness, f,

of each phenotype. That sum is

Fð�xÞ ¼
X

pðxj�xÞf ðxÞ; ð1Þ

taken over all the different phenotypes, x. We often

measure x as a continuous variable. The sum is then

equivalently written as

Fð�xÞ ¼
Z

pðxj�xÞf ðxÞdx: ð2Þ

This equation shows how one averages the fitness, f(x),

for each phenotypic value, x, over the reaction norm,

pðxj�xÞ, to obtain the expected fitness of a genotype, Fð�xÞ.
We label each genotype by its average phenotype, �x. The

expected fitness of a genotype, Fð�xÞ, is what matters for

evolutionary process (see Frank, 2011, for the role of

variability in fitness).

The averaging of expected fitness over the reaction

norm is the key to the entire subject. Averaging over the

reaction norm, p, flattens and smooths the fitness

function, f. This smoothing makes the curve for expected

fitness, F, have lower peaks and shallower valleys than

the original fitness curve, f. The smoothing of F changes

evolutionary dynamics. The whole problem comes down

to understanding how reaction norms smooth fitness,

and the consequences of a smoother relation between

genotype and fitness.

Box 1: Topics in the theory of natural selection

This article is part of a series on natural selection. Although

the theory of natural selection is simple, it remains

endlessly contentious and difficult to apply. My goal is to

make more accessible the concepts that are so important,

yet either mostly unknown or widely misunderstood. I

write in a nontechnical style, showing the key equations

and results rather than providing full derivations or

discussions of mathematical problems. Boxes list technical

issues and brief summaries of the literature.

Box 2: Historical overview

Schlichting & Pigliucci (1998) and West-Eberhard (2003)

thoroughly review the subject. Here, I highlight a few key

points in relation to this article. I treat learning and develop-

mental plasticity as roughly the same with regard to potential

consequences for evolutionary rate, although one could

certainly choose to focus on meaningful distinctions.

In my own reading during the 1980s, I had found the

relation between learning and evolutionary rate intriguing

but confusing. Baldwin’s (1896) idea that learning can

accelerate evolutionary rate seemed attractive. Mayr (1982),

in his monumental review of biological thought, also dis-

cussed various ways in which behavior or flexible develop-

mental programs might alter evolutionary dynamics. Those

ideas seemed potentially important, but it was not easy to

grasp the essence. The literature at that time was not helpful,

with a lot of jargon and sometimes almost mystical

commentary mixed in with intriguing and creative ideas.

It was clear that learning could slow evolutionary rate.

Different genotypes could, through learning, end with the

same phenotype. Reducing the phenotypic distinction

between different genotypes would generally slow evolution-

ary rate. The more intriguing problem concerns the origin of

evolutionary novelty or the response to novel or extreme

environmental challenge. Environmental novelty and accel-

eration of evolutionary response were the primary concern of

Baldwin (1896), Waddington (1942, 1953), and West-Eber-

hard (2003). My article also focuses on acceleration of

evolutionary response.

Hinton & Nowlan (1987) clarified the subject with their

simple conclusion that:

Learning alters the shape of the search space in which

evolution operates and thereby provides good evolution-

ary paths towards sets of co-adapted alleles. We demon-

strate that this effect allows learning organisms to evolve

much faster than their nonlearning equivalents, even

though the characteristics acquired by the phenotype are

not communicated to the genotype.

During the past few decades, the fundamental role of

smoothed fitness surfaces in biology has not always been

recognized as fully as it should be, in spite of several fine papers

along that line (see Box 3). Interestingly, certain computer

optimization algorithms take advantage of the increased search

speed provided by a process similar to smoothed fitness

landscapes (Kirkpatrick et al., 1983; Geyer & Thompson, 1995).
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Example of continuous smoothing

Figure 1 shows an example of smoothing with discrete

distributions. It will often be convenient to consider

smoothing of continuous variables. Figure 2 shows an

example. The following expressions describe the under-

lying mathematics.

In Fig. 2, the reaction norm follows a normal distribu-

tion. In symbols, we write

pðxj�xÞ �Nð�x; c2Þ;

which we read as the probability, p, of a phenotype, x, for

a reaction norm centered at �x, follows a normal distri-

bution with mean �x and variance c2.

For fitness, we write in symbols

f ðxÞ �Nð0; r2Þ;

which we read as the fitness, f, of a phenotype, x, has the

shape of a normal distribution with mean 0 and variance

r2. In this case, we assume the center of the fitness

distribution is at a phenotypic value of zero to give a fixed

point for comparison – any value to center fitness could

be used. The important issue is that fitness falls off from

its peak by the pattern of a normal distribution. The

width of the fitness function is set by the variance

parameter, r2.

We can now use eqn 2 to calculate the expected fitness

of a genotype with average phenotype �x, yielding

Fð�xÞ �Nð0; c2 þ r2Þ: ð3Þ

This equation shows that smoothing by the reaction norm,

p, flattens and widens the shape of the fitness function by

increasing the variance of the expression for F.

Evolutionary response to novel or extreme challenge

If a genotype expresses an average phenotype close to the

maximum fitness, then a narrow reaction norm has

higher fitness than a broad reaction norm. The lower

plots of Fð�xÞ in Fig. 2 illustrate contrasting widths of

reaction norms. Near the peak, the average phenotype

closely matches the optimum, and the narrower reaction

norm has higher fitness. This advantage occurs because a

narrow reaction norm expresses fewer phenotypes in the

tails, away from the optimum.

For genotypes with an average phenotype far from the

maximum fitness, a broad reaction norm has higher

fitness than a narrow reaction norm. Figure 3 illustrates

this advantage for broad reaction norms. In that figure,

both reaction norms are centered at �x. Only those

phenotypes above the fitness truncation point survive.

The broad reaction norm produces some individuals with

phenotypes above the truncation point, whereas the

narrow reaction norm has zero fitness.

If the environment poses a novel or extreme chal-

lenge, the broad reaction norm wins. By contrast, in a

stable environment for which the current average

phenotype is close to the fitness optimum, the narrow

reaction norm wins. Thus, extreme or novel environ-

mental challenges or intense competition favor a broad

reaction norm.

Box 3: Recent literature

Ancel (2000) analyzed smoothed fitness surfaces and the

consequences for evolutionary rate. She emphasized three

important points.

First, learning accelerates evolution only under certain

conditions. The examples in the text illustrate this point by

showing that learning mainly accelerates evolution through

discovery of viable phenotypes or in the smoothing of a

multipeakedfitness surface.Otherwise, the smoothingoffitness

surfaces may lower the maximum fitness that can be attained,

reducing the slope and the evolutionary rate to the peak.

Second, although learning may accelerate evolution, it is

not necessarily true that learning evolved because it acceler-

ates evolution. The evolutionary consequence of a trait is

distinct from whether or not the trait evolved because of its

potential to alter subsequent evolutionary dynamics. The

literature discusses this distinction under the topic of evolv-

ability. Evolvability has developed into a large subject of its

own (e.g. Wagner & Altenberg, 1996; Kirschner & Gerhart,

1998; Pigliucci, 2008; Rajon & Masel, 2011; Woods et al.,

2011). Holland’s (1975) distinction between exploration and

exploitation captures aspects of the later developments on

evolvability.

Third, Ancel noted historical precedents for the idea that

phenotypic variance may eliminate otherwise uncrossable

valleys in fitness landscapes (Wright, 1931; Lande, 1980;

Whitlock, 1997).

A large literature develops issues related to Ancel’s three

points and the broader problems of how reaction norms affect

fitness surfaces. I list a small sample (De Jong, 1990; Gavrilets

& Scheiner, 1993; Anderson, 1995; Frank, 1996; Turney,

1996; Mayley, 1997; Turney et al., 1997; Pigliucci, 2001; Rice,

2002; Hall, 2003; Price et al., 2003; Gavrilets, 2004; Mills &

Watson, 2006; Pigliucci et al., 2006; Crispo & Rausher, 2007;

Suzuki & Arita, 2007; Lande, 2009; Chevin & Lande, 2010;

Chevin et al., 2010; Gavrilets, 2010).

West-Eberhard (2003) discusses many empirical issues and

examples. Recent studies in evolutionary biology provide new

data or summaries of the literature (Aubret & Shine, 2009;

Bell & Robinson, 2011). Articles in microbiology and cancer

research have also developed the relation between nonheri-

table phenotypic variation and evolutionary process (Rubin,

1990; Booth, 2002; Sumner & Avery, 2002; Yomo et al., 2005;

Avery, 2006; Niepel et al., 2009; Spencer et al., 2009;

Altschuler & Wu, 2010; Kaneko, 2011).

In the text, I discuss the synergism between genetic and

developmental variation. I am not aware of literature related

to that issue. However, given the many papers on the general

topic, the synergism between genetics and development may

have come up previously.
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Haldane (1932) made a similar point when he said:

‘Intense competition favors variable response to the

environment rather than high average response. Were

this not so, I expect that the world would be much duller

than is actually the case’. Holland’s (1975) emphasis on

exploration versus exploitation is perhaps closer to the

problem here. Broad reaction norms are favored when

exploration of novel challenges dominates, whereas

narrow reaction norms are favored when exploitation

dominates. Fluctuating environments may also favor a

broad reaction norm to increase the chance of matching

whatever is favored at any time (Frank, 2011). Here,

I focus on constant challenges to extreme or novel

environments.

Smoothly increasing fitness path in a multipeak
fitness landscape

Much discussion in evolutionary theory concerns how

populations shift from a lower fitness peak to a higher

fitness peak (Coyne et al., 1997). For example, in the

fitness landscape, f(x), of Fig. 4b, a population starting on

a lower peak must evolve through a valley of lower

fitness in order to follow an increasing path to a higher

fitness peak. Natural selection typically follows a path of

increasing fitness, so a population may be trapped on a

lower peak.

Most evolutionary analyses use a fitness landscape that

relates phenotype, x, to fitness, f(x). However, the proper

measure should relate the average phenotype of a

genotype, �x, to the expected fitness, Fð�xÞ (here ignoring

variation in fitness, Frank, 2011).

A sufficiently broad reaction norm smooths a multi-

peak fitness landscape, f(x), into a smooth landscape,

Fð�xÞ, with a single peak (Fig. 4c). A broad reaction norm

will typically perform badly near a fitness peak, but allow

much more rapid evolutionary advance to a higher

fitness peak. Once again, we see that broad reaction

norms exploit current fitness opportunities relatively

poorly but gain by enhanced exploration and achieve-

ment of novel adaptations.

Dimensionality and discovery

The reaction norm may be generated randomly by

perturbations in development. If so, then exploration of

the fitness landscape by a broad reaction norm is a type

of random search. Figures 3 and 4 show that random

search can greatly increase the rate of adaptation,

particularly to novel environmental challenges.

Those previous examples showed the reaction norm

and fitness both varying across a single dimension. A

broad reaction norm spreads phenotypes along that

single dimension, increasing the chance that some

individuals will have high fitness.

Now consider the much more difficult search problem

that arises in higher dimensions (Gavrilets, 2004).

Suppose, for example, that adapting to a novel environ-

mental challenge requires multiple phenotypic changes

to work together in a harmonious way. Think of each

–3 –3 –2 –3 –2 –1 0 1 2 3

f(x)

(a) (b) (c)

p(x|x)

F(x)

Phenotype

Fig. 1 The reaction norm smooths the fitness landscape. This simple example illustrates the calculation of the expected fitness for each

genotype, following eqn 1. (a) The calculation of expected fitness, Fð�xÞ, for the smallest average phenotype, �x ¼ �3. For that average

phenotype, the reaction norm, pðxj�xÞ, shows the probabilities of expressing different phenotypes, x. In this case, the peak of the reaction norm

matches the average value, and each phenotype ± 1 occurs half as often as the peak value. To get the expected fitness for a reaction norm

centered at �x ¼ �3, one sums up the probability pðxj�xÞ for each phenotype, x, multiplied by the fitness for each phenotype, f(x). The arrows

illustrate the summation. (b) The expected fitness, Fð�xÞ, for each increase in �x, is calculated by the same summation process, shifting the

reaction norm to the right by one to get the proper value for each �x. (c) The full transformation is shown between the fitness for each

phenotypic value, f(x), and the expected fitness, Fð�xÞ, for each genotype with reaction norm pðxj�xÞ and average phenotype �x. The reaction norm

smooths the multipeaked fitness function, f(x), into the single-peaked fitness function Fð�xÞ. Evolutionary dynamics depend on genotypic

fitnesses, F. Thus, the reaction norm transforms fitness into a smooth function that allows a direct increasing path to the fitness peak from any

starting value for average phenotype.
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particular phenotypic change as a trait in its own

dimension, so that the search now occurs in multiple

dimensions. If the reaction norm simply generates

random phenotypes in each dimension, then there is

little chance of getting simultaneous matching pheno-

types in multiple dimensions.

To visualize the multidimensional problem, begin with

the one-dimensional fitness landscape in Fig. 4b. Now

consider two phenotypic dimensions. Assume that fitness

concentrates along one dimension, as in Fig. 5a. In that

plot, only a narrow band of phenotypes along the second

phenotypic dimension produces viable individuals. In the

first dimension, fitness rises and falls along the same

peaks and valleys as in Fig. 4b. Thus, both figures show

essentially the same fitness landscape, but in the second

case the nearly one-dimensional landscape is embedded

in a second dimension (fitnesses scale logarithmically in

Fig. 5).

In two dimensions, the reaction norm will smooth

phenotypes along both trait axes. When the reaction norm

varies mostly along the same dimension as the variation in

fitness, as in Fig. 5b, then we obtain the same smoothing as

in one dimension (dashed curve of Fig. 4c). When the

reaction norm varies in both directions, as in Fig. 5d, then

the smoothed surface has very low fitness even at its peak.

The low fitness occurs because the randomly generated

reaction norm produces phenotypes spread across two

dimensions. Most of those phenotypes fall off of the one

dimensional concentration of fit phenotypes.

In general, when the dimensionality of the reaction

norm exceeds the dimensionality of the fitness concen-

tration, then a random search process is inefficient. The

cost of exploration is so high that even the best average

phenotype for a genotype has fitness, Fð�xÞ, lower than

the lowest peak of the fitness landscape, f(x). Here, �x and

x represent multidimensional phenotypes. Figure 6 illus-

trates the cost of exploration in relation to the spread

across dimensions.

In summary, if the space of possible trait combinations

spreads over greater dimensions than the concentration

of fitness, then randomly generated variations will

produce mostly worthless variants. The search cost is

high, and average performance for a widely spread

reaction norm is low. The smoothed fitness surface may

have a steadily rising path to its fitness maximum from

many initial points, but the height of the fitness peak is so

low that a broad reaction norm will often be strongly

selected against.

The following sections describe two processes that may

offset the high cost of developmental variation. First, the

broad search space may be covered by genetic variants,

with developmental variation searching only the local

regions around each genotypic variant.

Phenotype

(a) (b)

f(x)

p(x|x)

F(x)

Fig. 2 Reaction norms and fitness for continuous phenotypes. Each

column shows how the reaction norm, pðxj�xÞ, smooths the fitness

function, f(x), to give the expected fitness, Fð�xÞ, for a genotype with

average phenotype �x. The smoothing follows eqn 2. These examples

use normal distributions that lead to eqn 3. (a) The solid and dashed

reaction norms follow Nð�x; 1=2Þ and Nð�x;5Þ, respectively. Fitness,

f(x), has the shape of a normal distribution with vanishingly small

variance, Nð0;r2 ! 0Þ. Thus, expected fitness, Fð�xÞ, is the same as

the reaction norm. (b) The same structure as in (a), except that f(x)

is much wider, following Nð0; 7Þ. Thus, Fð�xÞ now has curves

Nð0; 7:5Þ and Nð0;12Þ for solid and dashed curves, respectively. In

each plot, the baseline is set to 4.3% of the peak in that plot. The

baseline truncates phenotypes with low vigor, setting their fitnesses

to zero.

p(x|x)

Phenotype, x
x

Fitness
truncation

Fig. 3 Novel environmental challenge or intense competition favors

a broad reaction norm. In this example, both the broad and narrow

reaction norms are centered at �x. Phenotypes above the truncation

point survive. Phenotypes below the truncation point die. None of

the phenotypes for the narrow reaction norm are above the

truncation point, so all die. Some of the phenotypes of the broad

reaction norm survive. Those surviving phenotypes may evolve so

that their average phenotype, �x, moves toward the truncation point,

improving fitness over time. Improvement occurs if there is genetic

variation for the average phenotype, �x, of the reaction norm.
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Second, developmental variation may be biased in a

way that tends to match the environment. If a

developmental or learning process brings the pheno-

type close to the concentration of fitness in a high

dimensional space, then some additional random var-

iation can greatly increase the rate of adaptation. In

this case, the fitness surface is smoothed to provide a

steady path of increasing fitness, and the developmen-

tal bias that brings the center of the phenotypic

distribution close to the fitness concentration mitigates

the large cost of search in high dimensional phenotypic

spaces.

Synergism between phenotypic and
genetic variation

A broad reaction norm may enhance survival and

subsequent opportunity for improved fitness. But those

benefits arise only when a genotype is sufficiently close

to a fitness peak. Figure 7 illustrates the problem.

Figure 7a shows the fitness peak in a novel environ-

ment. The dots show the locations of alternative geno-

f(x)

F(x)

Phenotype

p(x|x)

(a)

(b)

(c)

Fig. 4 A broad reaction norm smooths a multipeak fitness landscape.

(a) The dashed curve shows the broader reaction norm, pðxj�xÞ. (b)

The fitness landscape for each particular phenotype, f(x), has

multiple peaks. (c) The broad reaction norm smooths the fitness

landscape to a single peak for the relation between the average

phenotype for a genotype, �x, and fitness, Fð�xÞ. In this example, the

narrow and broad reaction norms follow Nð0; c2Þ distributions with

variances of 0.04 and 0.16, respectively. Fitness is given by

f ðxÞ ¼
P1

i¼�1ð3j1 þ ij2 þ 1ÞNði; r2Þ, with r2 ¼ 0.0225. The value

of Fð�xÞ is calculated from eqn 2, yielding the expression for f(x) in

the prior sentence with the variance replaced by r2 + c2. The

baseline truncates small values.

Phenotype

lo
g[

F
(x

)]
(d)

(c)

(b)

(a)

Fig. 5 A broad reaction norm performs poorly when fitness is

concentrated in a lower dimension. (a) The bivariate analogy of the

fitness landscape in Fig. 4b, scaled logarithmically. The primary

dimension has variance r2
1 ¼ 0:0225 corresponding to standard

deviation r1 ¼ 0.15, as in Fig. 4b. The secondary (narrow) dimen-

sion has standard deviation r2 ¼ 0.1r1. (b) Fitness landscape

smoothed by a reaction norm concentrated in the same dimension as

fitness. The variance of the reaction norm in the primary dimension

is c2
1 ¼ 0:16, and standard deviation is c1 ¼ 0.4, as in the dashed

reaction norm of Fig. 4a. The standard deviation in the secondary

dimension is c2 ¼ 0.01c1. The smoothed fitness surface rises steadily

to a peak along its ridge in the primary dimension, tracing the same

path as the dashed curve in Fig. 4c. (c and d) Increasingly broad

reaction norms in the secondary dimension with standard deviations

of 0.1c1 and c1, respectively. The baseline truncates small fitness

values, which are considered inviable.

Developmental variability 2315

ª 2 0 1 1 T H E A U T H O R . J . E V O L . B I O L . 2 4 ( 2 0 1 1 ) 2 3 1 0 – 2 3 2 0

J O U R N A L O F E V O L U T I O N A R Y B I O L O G Y ª 2 0 1 1 E U R O P E A N S O C I E T Y F O R E V O L U T I O N A R Y B I O L O G Y



types, placed by their average phenotypes in two

dimensions. Neither genotype has positive fitness. Both

will die out. In that plot, the fitness peak is the direct

fitness landscape, unsmoothed by a reaction norm. In

Fig. 7b, the reaction norm is relatively narrow, smooth-

ing the fitness landscape. But that smoothing is not

enough to place either genotype on the nonzero fitness

surface. Both genotypes still die out.

The broader reaction norm in Fig. 7c smooths the

fitness surface more widely. That additional smoothing

allows the nearby genotype to survive. Subsequent small

genetic variations would allow natural selection to drive

the surviving population up the path of increasing fitness

to the fitness peak.

The distant (red) genotype cannot survive even with

the broad reaction norm of Fig. 7c. The contrast between

the nearby and distant genotypes emphasizes a key

point. A genotype must be sufficiently close to the

nonzero part of the smoothed fitness surface in order for

the developmental variation of the reaction norm to allow

survival – the touching of the fitness surface. If a genotype

touches the fitness surface, then it can seed a population

in which small genetic variations allow subsequent

adaptation by climbing the surface to the peak.

In a high dimensional space, any single genotype is

unlikely to be located sufficiently close to a fitness peak

after a significant change in the environment or in

response to an unpredictable challenge. Synergism

between genetic variation and the phenotypic variation

of reaction norms provides one solution to this search

problem.

Figure 8 illustrates synergism between genetic and

phenotypic variation. The dots represent different geno-

types. Each genotype has a different combination of

average phenotypic values in two dimensions. The array

of dots shows the genetic diversity in the population. The

0.001 0.01 0.1 1.
10

100

1000
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F
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Fig. 6 Decline in fitness with an increasingly broad reaction norm

away from the primary concentration of fitness. The dashed lines

show the fitness associated with the high, medium and low peaks of

the fitness landscape in Fig. 5a. The solid curve shows the highest

point of the fitness functions smoothed by the reaction norms of

Fig. 5b–d, with standard deviation of the reaction norm increasing in

the secondary dimension. The secondary dimension standard devi-

ation value shown in the plot gives the amount by which the

primary dimension standard deviation is multiplied in the second

dimension. The multipliers 0.01, 0.1, 1.0 correspond to the three

smoothed fitness surfaces in Fig. 5b–d. When the secondary

dimension is narrow, for example, reduced in width by a factor 0.01,

then the smoothed fitness peak is higher than the intermediate

fitness peak of the unsmoothed landscape, as in Fig. 4c. As width in

the secondary dimension increases, the cost of exploring in a

dimension away from the concentration of fitness causes the peak of

the smoothed fitness landscape to drop very low, illustrating the very

high cost of exploring in more dimensions than the concentration of

fitness.

Phenotype

(a) (d)(b) (c)

F
itn

es
s

Fig. 7 Fitness in two phenotypic dimensions after challenge by a novel or extreme environment. The peak corresponds to the favored

phenotype after environmental challenge. The black dot shows the average phenotype for a genotype near the new fitness peak. The red dot

shows the average phenotype for a genotype relatively far from the new peak. A sufficiently broad reaction norm allows the nearby genotype

to survive, providing an opportunity for natural selection to drive the population up the smoothly increasing path to the new fitness peak. By

contrast, the distant genotype cannot survive the environmental challenge. (a) The fitness landscape, f(x), showing the direct relation between

phenotype and fitness when not smoothed by a reaction norm. (b) A relatively narrow reaction norm smooths the fitness peak, Fð�xÞ, but not

sufficiently to allow the nearby genotype to survive. (c) A broader reaction norm allows the nearby genotype to survive, with subsequent

opportunity for natural selection to drive the population to the peak. (d) An increasingly broad reaction norm causes the smoothed fitness peak

to sink mostly below the fitness truncation level, so that the nearby genotype cannot survive. All plots show a bivariate normal fitness surface

with mean (1/2,1/2) and variance r2 + c2, with r2 ¼ 0.01 for the fitness landscape, and c2 for the reaction norm of 0, 0.01, 0.07, 0.11 for plots

left to right. The heights are the natural logarithm of fitness, with a truncation base of log (10). The nearby black dot is at (17/40,17/40), and

the far red dot is at (11/40,11/40).
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smoothed fitness surface has the same fitness peak and

reaction norm shape as in Fig. 7c. In Fig. 8, the location

of the fitness surface varies in the different plots,

illustrating different environmental challenges. No mat-

ter where the newly favored fitness surface arises upon

environmental challenge, the genetic diversity in the

population provides at least one genotype on the nonzero

part of the novel fitness surface. Those genotypes on the

surface can survive the novel challenge. Subsequent

small genetic variations around a surviving genotype

allow the population to evolve up the fitness surface to

the peak set by the novel environmental challenge.

Synergism between genetic and phenotypic variation

divides the adaptive search problem into three parts.

Genetic variation covers widely separated locations in

the phenotype space. Reaction norms cover the phe-

notype space around each genotype. Any genotype on

a nonzero part of a novel fitness surface can survive

and subsequently adapt by small genetic variations and

natural selection. See Box 4 for an example of the

synergism between genetic and nonheritable pheno-

typic variation.

Matching the environment by plasticity or
learning

To survive a novel environmental challenge, a pheno-

type must be near the nonzero part of the new fitness

landscape. A population may survive by having a variety

of genotypes that produce different phenotypes, increas-

ing the chance that at least one of the phenotypes will be

close to a new fitness peak. Alternatively, a single

genotype may be able to produce diverse phenotypes

by matching phenotypic expression to the particular

environment. The developmental flexibility to match

environments may arise by phenotypic plasticity or

learning.

Plasticity or learning may not be able to match exactly a

novel or extreme environmental challenge. But if

a developmental response to the environment can move

the phenotype sufficiently close to the nonzero part of the

new fitness landscape, then the genotype may survive

and subsequently adapt (Baldwin, 1896; Waddington,

1942; West-Eberhard, 2003). Developmental flexibility is

simply another process that alters the shape of the fitness

surface.

The adaptive search problem has three phases, similar

to the three aspects of search described in the prior

section. First, partially matching expression to the envi-

ronment brings the phenotype close to the new fitness

landscape. Second, random perturbations of phenotype

occur around the location set by the process of environ-

mental matching. Third, any genotype on a novel fitness

surface can survive and subsequently adapt by small

genetic variations and natural selection.

Figure 9 illustrates the three aspects of adaptive search.

Suppose a genotype expresses phenotypes centered at �x.

In the first aspect of adaptive search, a genotype can

adjust phenotypic expression to match the environment.

The possible range of phenotypes varies from �x � c to

�x þ c. The phenotype expressed by environmental

matching is the new average value, around which

random perturbations may occur. In the figure, the solid

peak shows the fitness landscape imposed by a novel or

extreme environmental challenge. The example geno-

type can come close to the new peak by modulating

expression to produce an average phenotype of �x þ c.

However, if no random variation occurs around �x þ c,

that phenotype falls outside the range of phenotypic

values that can survive.

In the second aspect of adaptive search, the genotype

may produce phenotypes randomly distributed around

the mean value of �x þ c. Those random fluctuations

smooth the fitness landscape, shown by the dashed

curve. The average phenotype �x þ c can now survive.

Matching the environment allowed expression of mean

phenotype �x þ c, and random fluctuations in phenotype

smoothed the nearby landscape sufficiently.

Phenotype

F
itn

es
s

(a) (d)(b) (c)

Fig. 8 Synergism between the reaction norm and genetic variation allows rapid adaptation to novel or extreme environments. In this case, a

population has multiple genotypes, each genotype located at one of the dots. The smoothed fitness surface is sufficiently broad that, for any

location of the fitness peak after environmental challenge, the fitness surface touches at least one of the genotypes. The genotypes that touch the

fitness surface survive, allowing the surviving population the potential subsequently to evolve up the fitness surface to the new peak. The dots are

located at all bivariate pairs from {(5 + 6i)/40,(5 + 6j)/40} for i,j ¼ 1,…,4. The fitness surface has variance r2 + c2 ¼ 0.08, as in Fig. 7c.
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Once the genotype achieves survival, the third phase

of adaptation may proceed. In this case, the mean

phenotype �x þ c has low fitness on the dashed fitness

surface. But the fitness surface has a smoothly increasing

path to the peak of maximum fitness. Genetic variations

in the genotype may shift the range of phenotypes that

can be produced, allowing natural selection to drive the

population up the fitness surface to the peak.

Conclusion

Evolutionary theory emphasizes genetic variation as the

source of evolutionary novelty. By the standard theory,

the usual sequence would be a novel environmental

challenge, genetic variation either already present or

arising de novo, and evolutionary response to the novel

environment by change in gene frequency.

In this classical evolutionary theory, genetics provides

the source of phenotypic variation on which natural

selection acts. By contrast, development may generate

the phenotypic novelty that initiates adaptation to

environmental challenge. The sequence would be novel

environmental challenge, initial survival by those indi-

viduals with a phenotypic norm of reaction that overlaps

the new fitness surface, and subsequent adaptation by

genetic variants from those phenotypes that survive the

initial challenge.

West-Eberhard (2003) traces the theoretical founda-

tions of this topic from the late 19th century. Since that

time, the idea that developmental processes may play a

key role in initiating adaptation has never been popular.

Evolutionary change is usually tied in thought to genetic

change. Nonheritable phenotypic variation by itself is

therefore usually believed not to accelerate evolutionary

rate.

The original theories of learning, developmental plas-

ticity, and reaction norms have always understood the

relations between genotype, phenotype, environment,

F
itn

es
s

x+cx–c x

Fig. 9 Plasticity or learning provides a partial match of phenotype to

novel or extreme environmental challenge. A genotype’s default

expression has average phenotypic value �x. An individual can

modify average trait expression in response to the environment. The

average expressed phenotype can be any value in the range �x � c.

The environmental challenge defines the fitness landscape that

relates phenotype to fitness, here shown as the solid peak. Pheno-

typic expression, modulated by a match to the environment, shifts

the phenotype to �x þ c. However, the fitness associated with a

phenotype of �x þ c is zero, because that value remains outside the

range of viable phenotypes. Suppose �x þ c is the average phenotype

expressed, and random perturbations of expression cause variability

in phenotype around that average value. The random component of

phenotype smooths the fitness landscape, leading to the dashed

fitness surface. The expressed average phenotype, �x þ c, now falls

within the smoothed fitness surface, allowing the genotype to

survive. Subsequent adaptation may allow improved fitness, by

altering the range of phenotypes that can be expressed so that a

match to the fitness peak may be achieved.

Box 4: Vertebrate immunity

Invading pathogens present a vast diversity of foreign molecules

that must be recognized. The vertebrate adaptive immune

system develops antibodies by synergism between phenotypic

and genetic variation, following the general three-part search

process described in the text (Frank, 2002; Murphy et al., 2007).

First, to generate genetic diversity, B cell lineages within

the body undergo programmed genetic recombination early in

life. That recombination yields genetically distinct cellular

clones. Each clone produces a distinct antibody.

Second, each antibody type from this initial diversity tends to

bind relatively weakly to a variety of foreign antigens. In this

regard, the original or ‘natural’ antibodies trade the cost of weak

binding for the benefit of a phenotypically diverse response – a

broad reaction norm. Upon challenge with a foreign antigen,

those B cells with matching antibodies are stimulated to expand

clonally. That clonal expansion can be thought of as survival

and reproduction of those genotypes that land on the fitness

surface imposed by the unpredictable invader.

Third, the weakly binding antibodies undergo a program-

med round of hypermutation to the antibody binding site and

selection favoring variants that bind more tightly to the

foreign antigen. This affinity maturation produces tightly

binding and highly adapted antibodies in response to the

novel challenge. Put another way, the initially stimulated

antibodies on the edge of the ‘fitness surface’ climb the surface

toward the fitness peak.

In the process of climbing the fitness peak by local genetic

variation and natural selection, the refined antibodies match

more closely to the environmental challenge. In particular,

the refined antibodies narrow their reaction norm by increas-

ing their binding affinity for close matches and reducing their

binding affinity for slightly mismatched binding.

In summary, the ability of the adaptive immune system to

respond to the huge diversity of potential challenges depends

on its synergism between genetic variability and the reaction

norm. The initial natural antibodies arise from genetically

diverse clones produced by recombination. That genetic

diversity by itself could not cover the huge space of possible

challenges. The broad reaction norm around each genetic

variant allows protection against novel challenge. Once partial

recognition is achieved through the natural antibodies, the

system refines the match locally by affinity maturation.
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and evolutionary change. However, the jargon from

those theories is thick: the Baldwin effect, genetic

assimilation, reaction norms, hopeful monsters, niche

construction, and environmentally induced evolution.

Each variant theory invoked special environmental

conditions, developmental processes, and interactions

with genetics. And each in its own way jousted with the

ghost of Lamarck. A casual observer could be forgiven for

steering clear of the whole mess. Wisdom suggested to

wait for clear empirical examples. Induction still domi-

nates mainstream thought in biology.

Many years ago, I read Hinton and Nowlan’s (1987)

article and Maynard Smith’s (1987) related essay on the

Baldwin effect. They focused on the essential theoretical

point. Learning smooths the fitness surface, changing

evolutionary dynamics in a way that greatly accelerates

adaptation to novel or extreme environmental chal-

lenges. When one views the whole confusing field in that

simple light, one sees that all the complexities of the

theories and mechanistic details of phenotypic variability

ultimately reduce to the same point. Developmental

variation smooths the fitness landscape. A smoothed

fitness landscape profoundly alters evolutionary dynam-

ics, particularly in response to novel or extreme envi-

ronmental challenge.
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REVIEW

Natural selection. III. Selection versus transmission and the levels
of selection*
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In evolutionary theory, a gene could be defined as any

hereditary information for which there is a … selection bias

equal to several or many times its rate of endogenous

change (Williams, 1966, p. 44).

Introduction

Natural selection increases inherited information about

environmental challenge. Against selection, imperfect

transmission reduces inherited information. Many prob-

lems in biology come down to understanding the relative

balance between selection and imperfect transmission.

A clear understanding of selection and transmission

requires greater precision with regard to abstract notions

such as inherited information. However, before heading off

in pursuit of abstract theory, it pays to have some simple

examples in mind. Those simple examples define the

challenges for deeper theory.

In this paper, I work through several examples that

turn on the relative strength of selection and imperfect

transmission: Haldane (1927) and Lande’s (1975) bal-

ance between selection and mutation, Eigen’s (1992)

error threshold and quasispecies, Van Valen’s (1975)

multilevel analysis of clade selection, Price’s (1972)

multilevel analysis of group selection, Szathmáry &

Demeter’s (1987) stochastic corrector model of early

cellular evolution, Levin & Bull’s (1994) short-sighted

model of parasite evolution, Frank’s (2010) timescale

model of microbial metabolism and Maynard Smith &

Szathmáry’s (1995) major transitions in evolution.

Others have pointed out similarities between some of

these examples (Maynard Smith & Szathmáry, 1995;

Michod & Herron, 2006; Okasha, 2006). However, the

broad unity with regard to selection and transmission is

sometimes lost. In addition, the key role of timescale,

although often noted, has not always been linked to

selection and transmission in a simple and general way.

Williams’ (1966) quote emphasizes timescale: the

opposition between selection bias and rate of endogenous

change. An entity can be shaped by natural selection

only to the extent that the informational gain by

natural selection is not overwhelmed by the relative

rate of informational decay by imperfect transmission.

The balance between selection and decay often turns

on the relative timescales over which those forces

operate.
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Abstract

George Williams defined an evolutionary unit as hereditary information for

which the selection bias between competing units dominates the informa-

tional decay caused by imperfect transmission. In this article, I extend

Williams’ approach to show that the ratio of selection bias to transmission bias

provides a unifying framework for diverse biological problems. Specific

examples include Haldane and Lande’s mutation–selection balance, Eigen’s

error threshold and quasispecies, Van Valen’s clade selection, Price’s multilevel

formulation of group selection, Szathmáry and Demeter’s evolutionary origin

of primitive cells, Levin and Bull’s short-sighted evolution of HIV virulence,

Frank’s timescale analysis of microbial metabolism and Maynard Smith and

Szathmáry’s major transitions in evolution. The insights from these diverse

applications lead to a deeper understanding of kin selection, group selection,

multilevel evolutionary analysis and the philosophical problems of evolution-

ary units and individuality.

doi: 10.1111/j.1420-9101.2011.02431.x



The decay of transmission fidelity

Many processes reduce the similarity between ancestor

and descendant. In classical genetics, mutation changes

the intrinsic quality of an allele during transmission.

Mixing of alleles reduces transmission fidelity because of

interactions with the changed combination of other

alleles. Internal selection changes the frequency of alleles

within individuals, altering the similarity between ances-

tor and descendant.

Internal selection may occur within a pool of allele

copies, in which certain alleles express traits that cause

their frequency to increase against their neighbours (Burt

& Trivers, 2008). For example, shortened mitochondrial

genomes in certain yeast replicate faster than full genomes.

The shortened genomes can rise in frequency within cells,

even though they reduce individual-level fitness. In

diploid Mendelian genetics, internal selection arises when

traits increase allelic transmission to offspring to greater

than the standard Mendelian probability of one-half.

Mutation or mixing of alleles may, in some cases, cause

unbiased change during transmission. Unbiased change

decays transmission fidelity but does not affect the

direction of evolution for the average value of traits.

Unbiased change can increase the variation in traits by

causing random fluctuations in the characters expressed

by descendants. Under stabilizing selection, the amount

of variation may be shaped by a balance between an

increase caused by fluctuations in transmission and a

decrease caused by selection removing fluctuations from

the favoured value (Lande, 1975).

Biased mutation or internal selection causes a direc-

tional change during transmission. When the directional

change during transmission opposes selection between

individuals or groups, the balance between selection and

transmission influences the average value of traits.

Selection versus transmission

Total evolutionary change can be partitioned into com-

ponents of selection and transmission:

Total change ¼ Dselectionþ Dtransmission;

in which the symbol D means the change caused by the process

of or the change in the quantity of depending on context. This

partition of total change into selection and transmission is

so important that it is worthwhile to express the partition

with symbols. The symbolic form allows us to look at

variations in the partition and the consequences for

understanding evolutionary process (Box 2).

Total change can be expressed by the change in the

average value of some trait. Let D�z be the change in the

average trait value. Do not be misled by the word average.

We can consider the average of the squared deviations of

a trait to measure the variance, or the average of the

product of different characters to measure correlations, or

the average frequency of an allele in the population, or

any other expression leading to some quantity: D�z is the

change in whatever quantity we choose. We write total

evolutionary change as �wD�z, where �w is average fitness.

Average fitness accounts for the total numbers of births

and deaths, allowing us to express selection and trans-

mission directly in proportion to total change (see Box 2).

Express the change caused by selection as DS and the

change caused by transmission as Ds. Then, the total

change in symbols is

�wD�z ¼ DSþ Ds: ð1Þ
Any evolutionary problem can be expressed in this way.

But whether it is useful to do so depends on the

particular problem and, to some extent, on one’s pref-

erence between alternative ways to partition total change

into various components.

Selective improvement often pushes traits in the

opposite direction from transmission decay. The balance

between these opposing forces occurs when the total

change is zero

�wD�z ¼ DSþ Ds ¼ 0; ð2Þ

which also means that at an equilibrium balance

DS ¼ �Ds: ð3Þ

This equation provides the ultimate expression of a

balance between selective improvement and transmis-

sion decay (Frank & Slatkin, 1990).

We can often write the change caused by selection as

DS ¼ szVz ; ð4Þ

where sz is the selective intensity on the character z and

Vz is the variance in the character z under selection (see

Box 2). If selection causes a decrease in the character, we

would instead write

DS ¼ �szVz ð5Þ

to express the negative contribution of selection to

the change in character. Using these expressions for the

change caused by selection in eqn (3), we obtain the

equilibrium variance under a balance between selection

and transmission as

Vz ¼
Ds
sz

����
����: ð6Þ

Box 1: Topics in the theory of natural selection

This article is part of a series on natural selection. Although

the theory of natural selection is simple, it remains

endlessly contentious and difficult to apply. My goal is to

make more accessible the concepts that are so important,

yet either mostly unknown or widely misunderstood. I

write in a nontechnical style, showing the key equations

and results rather than providing full derivations or

discussions of mathematical problems. Boxes list technical

issues and brief summaries of the literature.
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The absolute value is used because sz and Vz are always

positive, whereas Ds may be positive or negative depend-

ing on whether the transmission bias increases or

decreases the trait. The key point is that when the opposing

forces of selection and transmission are in balance, we

have this simple expression for the variance of a character.

A measure of selection versus
transmission

How exactly should we interpret Williams’ phrase

‘hereditary information for which there is a … selection

bias equal to several or many times its rate of endogenous

change’? We could evaluate the strength of selection bias

relative to transmission bias to obtain a simple measure

for the ratio, R, between the forces. In particular, when

the two terms oppose each other, we may write

R ¼ log �DS

Ds

� �
: ð7Þ

The negative sign appears because the opposing direc-

tions of change for DS and Ds mean that these terms have

opposite signs. The negative sign makes the ratio positive.

The logarithmic scaling imposes symmetry about zero.

The ratio is zero when the two forces are equal, as in the

balance condition of eqn (3). Increasingly positive values

arise from greater dominance of selection bias, whereas

increasingly negative values arise from greater domi-

nance of transmission bias. Later examples illustrate the

application of this ratio.

Multilevel selection

The individual typically comprises a group of alleles. In

some cases, selection may occur between alleles within

the individual. That selection within individuals creates a

transmission bias between ancestors and descendants,

because the sample of alleles transmitted to descendants

is changed by selection between alleles within the

ancestor. The total change can be expressed as selection

between individuals plus the transmission bias created by

selection within individuals. In this case, we can think of

selection and transmission as the combination of two

levels of selection (Price, 1972; Hamilton, 1975).

Now consider a population of individuals structured

into groups. The total change may be partitioned into

selection between groups and the transmission bias

between an ancestral group and the descendants derived

from that group (Box 3). Selection between individuals

within the group will often strongly influence transmis-

sion bias, because selection within the group changes the

composition of traits that are transmitted to descendants

of that group. The total change can be expressed

primarily as selection between groups and the transmis-

sion bias created by selection within groups. Once again,

we can think of selection and transmission as the

combination of two levels of selection.

Box 2: Price’s selection and transmission

The Price equation provides a useful separation between

selection and transmission (Price, 1970, 1972; Hamilton,

1975). Much literature and misunderstanding descend from

the Price equation. I will treat the topic fully in a later article.

Here, I briefly summarize the essential concepts. My previous

publications related to the Price equation provide further

background (Frank, 1995a, 1997b, 1998). Other key references

lead into the broader literature (Wade, 1985; Heisler & Damuth,

1987; Michod, 1997a; Grafen, 2002; Rice, 2004; Okasha, 2006;

Gardner, 2008).

I used the Price equation as the basis for eqn (1) in the text.

The Price equation may be written as

�wD�z ¼ Covðw; zÞ þ EðwDzÞ:

Comparing with eqn (1), the selection bias is DS ¼ Cov(w,z).

This simply says that the selection bias is the association

between fitness and character value, where association is

expressed by the covariance. The transmission bias is Ds ¼
E(wD z). This says that the transmission bias is the average

(expectation) of the change in character value, Dz, between

parent and offspring. The individual parent–offspring biases in

transmission are weighted by parental fitness, w. If, for

example, a parent reproduces little, then that parent’s trans-

mission bias contributes little to the average transmission bias

in the population.

The expression for selection in eqn (4) is derived as DS ¼
Cov(w,z) ¼ bwzVz, because the covariance of w and z is the

product of the regression coefficient, b, of w on z and the

variance of z. Define sz ¼ jbwzj, and apply a minus sign when

bwz < 0 to obtain eqn (5). See Frank (1997b) for the inter-

pretation of these terms in the Price equation.

In the mutation–selection balance models, either z ” q is

allele frequency or z is the squared deviation of a trait from the

optimum. In either case, z is always positive and the

association between fitness and character value is negative.

Thus, )sz ¼ bwz, and we can express fitness in terms of the

regression form

EðwjzÞ ¼ 1þ bwzz ¼ 1� szz: ð20Þ

Here, I set maximum fitness to one. Any proportional change

in maximum fitness is matched by the same proportional

change in the regression coefficient, so the expression can be

scaled arbitrarily. From this regression expression, the average

of szz must be less than one; otherwise average fitness drops

below zero and mutational decay dominates selection, causing

loss of heritable information or ‘mutational meltdown’ (Lynch

et al., 1993).

Note that the regression expression E(w|z) ¼ 1 ) bwzz does

not require a linear relation between character value and

fitness. Rather, bwz is simply the best least squares fit of fitness to

trait value given the actual pattern by which trait values

associate with fitness.
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Timescale

The balance between selection and transmission depends

on the rate of selection between groups relative to the

rate of endogenous change within groups. Timescale

influences the relative rates.

Consider, for example, an increasing number of rounds

of selection within groups for each round of selection

between groups. If there is some limit to the ultimate size

of groups, then the transmission bias caused by selection

within groups increasingly dominates the selection

between groups (Wilson & Colwell, 1981). Similarly, an

increase in the number of rounds of replication within a

lineage relative to the timescale of selection between

lineages causes relatively greater mutation and decay

during transmission compared with the selection bias.

For example, the male mutation rate appears to be

greater than the female mutation rate in several animal

species, probably because of the greater number of

replications per generation in the male germline (Nach-

man & Crowell, 2000).

It seems obvious that a relatively greater time for

selection bias or transmission decay enhances the relative

strength of a process. However, the simplicity of parti-

tioning total change into selection and transmission in

relation to timescale is not always developed clearly. By

going through the examples properly, we can recover the

simple conceptual unity that helps to explain a wide

variety of biological problems.

Balance between selection and mutation

Perhaps the most basic of all evolutionary theory

concerns the balance between selection and mutation

(Haldane, 1927). From eqn (1), let the trait �z � q be the

frequency of a deleterious allele. The equilibrium balance

between selection and mutation occurs when the rate at

which selection removes deleterious alleles equals the

rate at which mutation adds new deleterious alleles.

From eqn (3), the balance occurs when DS ¼ )Ds. From

eqn (6), we can also express that balance as

Vq ¼
Ds
sq

; ð8Þ

where Vq is the variance in allele frequency and sq is the

selective intensity on allele frequency. In this case,

mutation increases the frequency of the mutant allele,

so Ds is positive and we do not need to use absolute

values.

Classic results of population genetics

Suppose mutation changes a normal allele into a dele-

terious allele. Once an allele has become deleterious, it

cannot mutate back into a normal allele. Let the

mutation rate of normal alleles be l. Normal alleles

occur at frequency 1 ) q. Thus, the change in the

number of mutant alleles caused by transmission bias is

in proportion to Ds ¼ l(1 ) q).

Selection reduces the reproductive success of mutant

alleles by the selective intensity, sq ” s. The variance in

allele frequency is Vq ¼ q(1 ) q), the standard binomial

expression for variance when sampling a single allele.

Substituting these expressions into eqn (8), the balance

between selection and mutation occurs when the allele

frequency is

q ¼ l
s
: ð9Þ

This result applies to haploid genetic systems and at

least approximately to diploid systems with dominant

deleterious mutations under the commonly used

assumptions in population genetics. This expression

captures the essential opposition between selective

improvement and transmission decay that plays a key

role in many biological problems. For the following

Box 3: What are groups?

One must distinguish between two aspects. On the one hand,

the fundamental theory works perfectly for essentially any

conception of groups of alleles, individuals or other entities.

The groups do not require clear delineation, temporal

continuity or biologically meaningful interaction. Selection

within groups simply means the differential success between

entities in the group, no matter how that differential success

arises. Transmission bias simply means the fitness-weighted

change in character value between the entities in the group

and their descendants. No restriction is placed on how the

descendants themselves are arranged into groups.

On the other hand, most potential groupings have

no biological meaning. One naturally prefers groups

defined by direct interaction, temporal continuity, shared

interest and so on. Much literature debates alternative

conceptions of meaningful groups (Maynard Smith, 1976;

Wilson & Sober, 1989; Michod, 1997b; Gardner & Grafen,

2009). Difficulty occurs because the relative value of

alternative views varies with biological context, intellectual

goal and subjective bias about what is ultimately meaning-

ful. Such undecidable alternatives attract endless debate

and commentary.

Discussion of biologically meaningful alternatives can lead

to improved understanding as the weight of evidence accu-

mulates for certain views. However, that discussion has often

sought absolute conclusions, when in fact context and

subjective aspects necessarily play a role. In my view, one

needs to keep in mind both the fundamental truth of the

universal theory and the nuance of changing context and

meaning in application. With both perspectives in mind, one

never loses way.
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section, it will be useful to note that, from eqn (5), the

selection bias is DS ¼ )sVq ¼ )sq(1 ) q).

To complete the classic treatment, I now write the

case for a recessive mutation in diploid genetics. The

mutation bias remains Ds ¼ l(1 ) q). For recessive

alleles, the deleterious phenotype is only expressed

in the homozygote, which occurs at frequency q2

under random mating. Thus, selective intensity on each

copy of the deleterious allele increases with the

probability, q, that it will be mated with another

deleterious allele, so the selective intensity is sq ¼ sq.

Substituting these expressions into eqn (8) yields the

classic mutation–selection balance for recessive diploid

genetics as

q ¼
ffiffiffi
l
s

r
: ð10Þ

For the following section, it will be useful to note that the

selection bias against the deleterious allele is DS ¼
)sqVq ¼ )sq2(1 ) q).

Ratio of selection to transmission

The epigraph from Williams (1966) emphasizes the

relative strength of selection bias to transmission bias.

That comparison makes sense intuitively. However,

when we use the results in this section to measure the

relative strength of selection and transmission, the

comparison turns out to be complex. The problem is that

the relative strength of selection and transmission

changes as evolution occurs in response to those forces.

For the simple models of selection and mutation in this

section, Fig. 1 plots the relative strength of selection bias

to transmission bias, R, from eqn (7). For example,

Fig. 1a shows the first model with equilibrium q ¼ l/s in

eqn (9). In that case, DS ¼ )sq(1 ) q) and Ds ¼ l(1 ) q),

so the ratio is R ¼ logðsq=lÞ.
The top curve of Fig. 1a plots R for log (s/l) ¼ 5. The

plot scales the frequency of the mutant allele as log [q/

(1 ) q)]. That scaling puts the midpoint of zero at q ¼ 0.5,

with high-frequency and low-frequency scaling symmet-

rically and roughly logarithmically about the midpoint.

In the top curve of Fig. 1a, when the mutant frequency

is not too low, selection bias is many times the

transmission bias, R � 0. However, the mutant fre-

quency evolves in response to the relative strength of

selection and transmission. When selection is stronger,

the mutant frequency, q, declines. As q declines, the ratio

drops until R ¼ 0, at which point the selection bias

equals the transmission bias. Similarly, when q is very

small, the transmission bias is much greater than the

selection bias, R � 0, and the mutant frequency

increases until the point R ¼ 0.

The ratio of the selection bias to the transmission bias

does not have a constant value. As mutant frequency

changes, the relative dominance of the two forces shifts.

The system comes to rest only when selection and

transmission are in balance. Given the changing relation

between selection and transmission, how should we

interpret Williams’ dictum?

We could emphasize the example of the lower curve

in Fig. 1a. That curve never rises above zero, because

transmission bias is always greater than selection bias

for all frequencies. In that case, no hereditary

information accumulates. So we might say that hered-

itary information accumulates when selection bias is

stronger than transmission bias for at least some

conditions. But that is a rather weak statement,

changing Williams apparently beautiful clarity into a

muddle.

Let us hold the point for now. As we go through

various examples, we will see that the ratio of selection

bias to transmission bias changes in response to key

aspects of the particular problem under study. Rather

than trying to abstract away how each particular problem

shapes the changing ratio between selection and trans-

mission, it may be more useful to use that ratio to
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Fig. 1 The relative dominance of selection bias versus transmission

bias in the models of selection and mutation. Relative dominance

is measured by the ratio, R, of eqn (7). (a) The diploid dominant

or haploid model. (b) The diploid recessive model, in which DS ¼
)sq2(1 ) q) and R ¼ logðsq2=lÞ. All logarithms use base 10.
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understand each particular problem and the relations

between different problems.

Timescale

Timescale arises implicitly in these models, because

selection and transmission are both expressed per unit

time. In the simplest models, one usually considers a

single round of mutation per generation for each round

of selection per generation. However, multiple rounds

of mutation can occur for each round of selection. For

example, many replications typically occur in the male

germline of species that make large numbers of sperm.

Those multiple replications occur for each round of

selection. The multiple replications apparently increase

the mutation rate in relation to the strength of

selection (Nachman & Crowell, 2000). This change

in the relative magnitudes of selection and mutation

is important but not particularly profound. Later, we

will see more interesting ways in which timescale alters

the balance between selection bias and transmission

bias.

Variance under a balance between
mutation and stabilizing selection

Selection sometimes acts in a stabilizing way, pushing

the average phenotype towards an intermediate opti-

mum. Mutation opposes selection by spreading trait

values and increasing the average distance from the

optimum. The decrease in phenotypic variance caused

by selection is opposed by the increase in variance

caused by mutation.

Here, I assume that all phenotypic variance is caused

by simple genetics. This assumption allows me to focus

on the processes that balance selection and mutation. I

summarize the standard approach for this problem

(Lande, 1975; Turelli, 1984; Barton & Turelli, 1987),

following Frank & Slatkin (1990).

General expressions

Define the character of interest as c ¼ z2, and set the

optimum at zero, which is also the average value in this

symmetric model. Then, z2 is the squared distance from the

optimum, and the average of this squared distance is the

variance. Using c as the character of interest, at mutation–

selection balance, from eqns (6) and (8), we have

Vc ¼
Ds
sc
: ð11Þ

Suppose a mutation adds or subtracts c from the

phenotypic value, z. The two directions of change occur

with equal probability. Thus, each mutation changes

phenotype by ± c. The contribution of each mutation to

the change in squared deviation of phenotype, z2, is, on

average, c2. Mutations happen at a rate l, so the change

in the phenotypic variance caused by mutation is

Ds ¼ c2l:

The scaling c2 translates between genetic mutations

and phenotypic effects. We can use that same scaling to

translate between the phenotypic scale, c, and

the genetic scale, a, with the relation c ¼ c2a. Here, a is

the squared deviation on the genetic scale, and c is the

squared deviation on the phenotypic scale. The average

of squared deviations is the variance, so we have �c and �a
for the phenotypic and genetic variances, where the

overbar denotes the average.

The term Vc is the variance of the squared phenotypic

deviations, c. Because a variance is itself a squared value,

Vc summarizes the square of the squared deviations, thus

scaled to the fourth power. Therefore, the proper relation

to go from the phenotypic scale to the genetic scale is

Vc ¼ c4Va.

Substituting Vc ¼ c4Va and Ds ¼ c2l into eqn (11)

yields

Va ¼
l
s
; ð12Þ

where s ¼ c2sc. This expression for Va provides the most

general solution for variation under a balance between

mutation and stabilizing selection. However, Va is the

variance of squared deviations

Va ¼ a2 � �a2;

and thus scales with the fourth power of deviations.

Typically, we seek expressions for the variance under

stabilizing selection rather than expressions scaled to the

fourth power of deviations. We can, under two particular

cases, reduce the fourth power expression to an expres-

sion for variance under stabilizing selection.

Equilibrium variance

When selection is much stronger than mutation, s ? l,

the general balance result of eqn (12) is approximately

�a � l
s
; ð13Þ

where �a is the variance on the genetic scale. Note that

this result is essentially the same as the haploid

mutation–selection balance result in eqn (9) from the

previous section. Box 4 provides the derivation.

When selection is much weaker than mutation, s > l,

�a �
ffiffiffî
l
s

r
; ð14Þ

which matches the result for the diploid recessive model

in eqn (10). Here, l̂ ¼ l=2. With weak selection, most

alleles deviate from the optimum of zero. At nonzero

values, mutation is equally likely to move the allelic
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value closer or farther from the optimum. Thus, only

one-half of mutations are deleterious, and l̂ expresses

the deleterious mutation rate. Box 4 provides the

derivation.

Note that selection on phenotypes can be strong, yet

the selection bias against each mutational step can be

weak. Here, weak selection refers to the effect on each

mutational step. In particular, I defined s ¼ c2sc below

eqn (12). If the phenotypic effect, c, of each mutation

is small, then strong selection on the phenotypic scale,

sc, can be associated with weak selection on each

mutational step of size c when expressed on the genetic

scale, s.

Mutation overwhelms selection

If the decay in fitness by mutation exceeds the maximum

fitness that can be achieved, then mutation overwhelms

selection. Mutation dominates selection when the mag-

nitude of mutational effects is much greater than the

magnitude of selection, s > l, which corresponds to

results above for weak selection.

From eqn (20) of Box 2, we can write fitness as w ¼ 1 )
sa, using s ” sa for selective intensity on the genetic

character a. Thus, average fitness is �w ¼ 1 � s�a
and, using eqn (14) for �a, we obtain �w ¼ 1� s

ffiffiffiffiffiffiffi
l̂=s

p
¼

1 �
ffiffiffiffiffi
l̂s
p

. Mutational meltdown occurs when �w < 0,

which implies l̂s > 1.

This condition simply means that the amount of

deleterious mutation, l̂, scaled by the fitness conse-

quence per mutation, s, reduces fitness by an amount

that is greater than maximal fitness. The next section

considers when the mutation rate might be so high.

Error threshold and quasispecies

Eigen applied the fundamental tension between muta-

tion and selection to the evolution of nucleotide

sequences. In early evolution, the mutation rate was

likely to be high because enzymes that correct replication

errors did not yet exist. The initially high mutation rate

and lack of error correction lead to Eigen’s error thresh-

old paradox (Eigen, 1971, 1992; Eigen & Schuster, 1977;

Maynard Smith, 1979).

Suppose the initial replicating sequences had a length

of n nucleotides. If the mutation rate per nucleotide is l,

then the mutation rate per sequence is roughly nl. The

deleterious effect per mutation is s. Thus, the expected

deleterious effect of mutation during each replication of a

sequence of length n is nls. When the deleterious effect

per replication is greater than maximum fitness, here

scaled to be one, mutation overwhelms selection and no

selective increase in adaptation can be achieved. The

condition for remaining below this error threshold is

nls < 1, which means that sequence length is limited to

n <
1

ls
:

Eigen noted the paradox of the error threshold for early

evolution. Without error-correcting enzymes, the muta-

tion rate was high. A high mutation rate limited the max-

imum sequence length. A short sequence could not

contain enough information to encode error-correcting

enzymes.Without error-correctingenzymes, the sequence

remains too short to encode error correction. How did the

biochemical machinery of error correction evolve?

Eigen et al. (1988, 1989) discussed a second interesting

property of sequence evolution under mutation and

selection. A population of sequences exists as a mixture

of the most fit sequence and a variety of mutant

sequences. Eigen called the most fit sequence the master

sequence, and the population of sequences that are zero,

one, two or more mutational steps away from the master

sequence the quasispecies. The term quasispecies is meant to

differentiate a population of variants from a typological

notion of a species as a fixed, nonvarying entity.

The error threshold and the quasispecies are equivalent

to the standard evolutionary concepts of heritable vari-

ation maintained by a balance between mutation and

selection, as described in the previous section (Wilke,

2005). The epigraph from Williams captured the key idea

of the error threshold by expressing the notion of a gene

‘as any hereditary information for which there is a …
selection bias equal to several or many times its rate of

endogenous change’ (Williams, 1966, p. 44). The classical

mutation–selection theory of Haldane, extended to the

maintenance of variation under stabilizing selection,

expresses the concept of quasispecies. All of these

theories have to do with the fundamental partition of

total evolutionary change into a component of selection

and a component of transmission fidelity.

Box 4: Variance under mutation–selection
balance

To obtain the equilibrium genetic variance in eqn (13)

when selection is much stronger than mutation, s ? l,

note that c ¼ c2a. Thus, with strong selection, most alleles

will be at the optimum with c ¼ a ¼ 0, and a few alleles

will be one mutational step away from the optimum at c ¼
c2 and a ¼ 1 (Frank & Slatkin, 1990). Let the mutant

frequency be q, so that a ¼ 1 with probability q, therefore

a2 ¼ 1 with probability q. Thus, �a ¼ a2 ¼ q and �a2 ¼ q2.

With small q, we have q ? q2, therefore

Va ¼ a2 � �a2 � a2 ¼ �a, and thus eqn (12) leads to

eqn (13).

To obtain the equilibrium genetic variance in eqn (14)

when selection is much weaker than mutation, s > l, we

assume that the distribution of allelic values approximately

follows a Gaussian with a mean at zero (Kimura, 1965;

Lande, 1975; Frank & Slatkin, 1990). With a Gaussian, the

fourth moment is approximately three times the square of

the second moment (variance), and thus a2 � 3�a2 and

Va ¼ a2 � �a2 � 2�a2. Using this expression for Va in

eqn (12) yields eqn (14).
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Multilevel analysis of clade selection

Williams (1992) argued that the relative rates of selection

and transmission influence evolutionary change at all

taxonomic levels. Williams adopted the term clade selec-

tion from Stearns (1986). Van Valen’s (1975) analysis

provides the clearest way to understand the ideas and

potential importance.

Van Valen (1975) began by comparing the evolution-

ary history of sexual and asexual types. He set up the

problem by assuming that asexuals have a short-term

advantage in growth rate relative to sexuals and that

sexuals have a long-term advantage with regard to

avoiding extinction and forming new species (Fisher,

1930; Stebbins, 1950). With those assumptions, Van

Valen (1975, p. 87) suggests that one

Consider a large set of species, some obligatory apomicts

[asexuals] and some at least facultatively sexual. The

apomicts will have a greater probability of extinction of

lineages and the sexual species will have a greater proba-

bility of speciation by splitting of lineages. … However,

apomicts will sometimes originate from sexual species

because of their immediate advantage.

Van Valen recognized two levels of selection. Clades

with more sexual species will increase in species number

relative to clades with fewer sexual species. Thus, sex has

an advantage between clades. Within clades, asexuals

will arise repeatedly because of their short-term advan-

tage relative to their sexual ancestor. The selection

within clades that favours asexuals can be thought of as

a transmission bias: sexual species sometimes produce

asexual descendants, whereas asexual species rarely

produce sexual descendants.

Van Valen used the fact that one can express the two

levels of selection as selection between clades and a

transmission bias within clades to develop a simple model

for the equilibrium frequency of asexuals. That equilib-

rium frequency balances selection bias between clades

favouring sexuals, with rate s, against transmission bias

within clades favouring asexuals, with rate l, to obtain

the approximate equilibrium frequency of asexuals, q, as

q � l
s
:

This expression is the same as the standard model of

mutation–selection balance in genetics given in eqn (9).

In this model, Van Valen (1975) emphasizes that selec-

tion at any taxonomic level is always potentially bal-

anced against the rate of endogenous change at that

level, echoing the epigraph from Williams. Endogenous

change may arise in various ways, such as mutation by

change of state or selection between the lower-level

entities that comprise the higher level.

Van Valen also applied this approach to mammals. In

mammals, genera with larger body size survive longer

than genera with smaller body size, but the smaller-

bodied genera bud off new genera at a higher rate. The

net reproductive rate of small genera is higher, giving a

selective advantage to small-bodied genera over large-

bodied genera. Within genera, there is a bias towards

larger body size. The distribution of mammalian body size

is influenced by the balance between selection between

genera favouring smaller size and selection within genera

favouring larger size.

Various philosophical issues in the interpretation of

clades as units have been taken up by Van Valen (1988),

Williams (1992) and Okasha (2006). Here, I only applied

the fact that one can partition the patterns of change at

one level, such as clades, into components of selection

and transmission. The philosophical issues focus on

whether one can think of clades as natural units, for

some reasonable meaning of natural.

Multilevel analysis of kin and group
selection

Total evolutionary change includes a part caused by

selection and a part caused by the lack of fidelity in

transmission (eqn 1). In this section, I use that basic

partition of total change to study two levels of selection,

generalizingthemodelofcladeselectioninthepriorsection.

At the higher level, a group may be any sort of

collection. We may, for example, consider groups of

individuals or groups of alleles within an individual.

Selection concerns differential success among groups. At

the lower level, selection within groups causes a bias in

the transmission fidelity of group-level characteristics

(Lewontin, 1970; Price, 1972; Hamilton, 1975; Wilson &

Sober, 1989; Okasha, 2006).

The most interesting problems arise when selection

among groups opposes the transmission bias caused by

selection within groups. We may then consider a balance

between selection and transmission or, equivalently, a

balance between the two levels of selection, DS ¼ )Ds, as

in eqn (3).

I present three aspects of multilevel selection. First, I

write a very simple expression for the balance between

the two levels of selection. This expression of balance

provides the general basis for multilevel models of

selection and the analogy to the classical models of

selection and mutation.

Second, I apply the balance between different levels

of selection to the tension between competition and

cooperation. That simple model illustrates how easily we

can understand the basic processes of group-level coop-

eration within the broader framework of selection and

transmission. I also show the fundamental equivalence of

group selection and kin selection models in group-

structured populations.

Third, I discuss the roles of population regulation and

timescale. For population regulation, if limited space or

resources regulate group productivity, then all groups

may have roughly the same reproductive output. In

that case, little selection occurs among groups, and the

234 S. A. FRANK

ª 2 0 1 1 T H E A U T H O R . J . E V O L . B I O L . 2 5 ( 2 0 1 2 ) 2 2 7 – 2 4 3

J O U R N A L O F E V O L U T I O N A R Y B I O L O G Y ª 2 0 1 1 E U R O P E A N S O C I E T Y F O R E V O L U T I O N A R Y B I O L O G Y



within-group component of selection dominates (Wade,

1985; Frank, 1986, 1998; Taylor, 1992; Wilson et al.,

1992; Queller, 1994). For timescale, the number

of rounds of selection within groups relative to the rate

of selection among groups sets the relative scaling of

selection between the two levels. When the rate

of selection within groups overwhelms the rate of

selection among groups, the within-group component

of selection dominates evolutionary process (Williams,

1966).

The balance between levels of selection

The fundamental equation for balance is DS ¼ )Ds the

balance between selection bias and transmission bias. For

multilevel selection, we interpret DS as the selection

among groups and Ds as the transmission bias caused by

selection within groups. For problems in which selection

at the different levels pushes character values in opposing

directions, we may rewrite the expression as DSa ¼ )DSw,

the balance between selection among groups and selec-

tion within groups.

The change in a character caused by selection can be

expressed as DS ¼ sV, the product of the selective

intensity, s, and the variance in the character under

selection, V (see Box 2). Thus, we may write the balance

DSa ¼ )DSw as

saVa ¼ �swVw:

In a group-structured population, the total variance is the

sum of the variance among groups and the variance

within groups, which we express as Vt ¼ Va + Vw. Mak-

ing the substitution Vw ¼ Vt ) Va yields

saVa ¼ �swðVt � VaÞ:

It is convenient to express the pattern of variance by the

correlation coefficient r ¼ Va/Vt, where r measures the

correlation in character values between individuals

within a group. Dividing both sides by Vt yields

sar ¼ �swð1� rÞ: ð15Þ

To understand this expression, we need to consider the

interpretation of the correlation, r ¼ Va/Vt. The corre-

lation is the fraction of the total variance that is among

groups. Because variance provides a weighting on

selection, r can be thought of as the fraction of the

total weighting of selection that happens at the group

level, and 1 ) r can be thought of as the fraction of the

total weighting of selection that happens within

groups.

Thus, sar is the intensity of selection among groups, sa,

multiplied by the weighting of selection at the group

level, r. At a balance, the group-level component must be

equal and opposite to the intensity of selection within

groups, sw, multiplied by the weighting of selection

within groups, 1 ) r.

The correlation r is also a particular form of the

regression coefficient of relatedness from kin selection

theory, as hinted initially by Hamilton (1975, 1979)

following from the work of Price (1972) and later

analysed more formally (Grafen, 1984; Wade, 1985;

Frank, 1986, 1998; West et al., 2007). The equivalence of

r and Hamilton’s formal theory of kin selection estab-

lishes the exact equivalence of multilevel group selection

and kin selection.

The tension between competition and cooperation

We need an explicit expression for the relation between a

trait and fitness in order to evaluate the abstract expres-

sions from the previous section. In this section, I present

a simple model of competition and cooperation (Frank,

1994, 1995b).

In a group-structured population, we can express

fitness as the product of two components. The first

component is the individual’s relative share of total

group success. The second component is the total success

of the group. For the first component, we may write the

individual’s relative share of the group’s success as z/zg,

where z is the individual’s tendency to be competitive

against neighbouring group members for access to local

resources, and zg is the average competitive tendency in

the individual’s group. Selection within groups always

favours greater competitive tendency, because an indi-

vidual’s share of group success always rises with an

increase in z.

For the second component, total group success, sup-

pose that the more intensely individuals compete against

neighbours, the less efficient the group is in using its

resources productively. For example, a certain fraction of

local energy may go into outcompeting neighbours

rather than enhancing productivity. We may express

the negative effect of competitiveness on group produc-

tivity by writing the total group productivity as 1 ) zg, in

which the total productivity declines as the group

members’ average tendency to compete, zg, rises. Thus,

selection among groups always favours a less competitive

and more cooperative behavioural tendency, because

group success declines as average competitiveness, zg,

rises.

Putting the two pieces together, the fitness, w, of an

individual with competitive tendency, z, in a group with

average competitive tendency, zg, is

w ¼ z

zg

ð1� zgÞ: ð16Þ

To evaluate the balance between selection at the group

level and selection within groups, we need to relate the

expression for fitness to the particular selective tenden-

cies and variance components in eqn (15). The selective

intensity among groups is sa ¼ )1, because group fitness

is 1 ) zg, and selective intensity is the change (partial

derivative) in group fitness with change in the average
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trait value in the group. The selective intensity within

groups is sw ¼ (1 ) zg)/zg, which is the change in

individual fitness, w, with change in individual character

value, z.

Substituting these values for sa and sw into eqn (15)

yields a balance between group and individual selection

when

�r ¼ � 1� zg

zg

ð1� rÞ: ð17Þ

Skipping over the technical details, we may say roughly

that, in this case, selection acts in a stabilizing way,

causing individuals’ trait values to converge towards a

single value that is an evolutionarily stable strategy

(ESS). Thus, individual values, z, converge towards group

averages, zg, which in turn converge to a global value, z*.

Making the substitution zg ¼ z* and solving for z* give the

balance point (Frank, 1994, 1995b) as

z� ¼ 1� r: ð18Þ

This balance point expresses the key insights into

multilevel selection and kin selection. In terms of

multilevel selection, 1 ) r is the fraction of the total

variance that occurs within groups. The greater this

weighting of within-group selection, the higher the

balancing point of z*, the tendency of individuals to

compete with neighbours. As variance shifts towards the

group level, 1 ) r declines, z* decreases because compet-

itive restraint is more strongly favoured, and the balance

of selective forces increasingly favours cooperative

behaviour. In terms of kin selection, as the coefficient

of relatedness, r, increases, competitive restraint and

cooperative behaviour rise.

Population regulation and timescale

Several factors may influence the intensity of selection

within groups compared with the intensity of selection

among groups (Alexander & Borgia, 1978; Wade, 1985).

For example, if limited space or resources regulate group

productivity, then all groups may have roughly the same

reproductive output. In that case, little selection occurs

among groups, and the within-group component of

selection dominates (Wade, 1985; Frank, 1986, 1998;

Taylor, 1992; Wilson et al., 1992; Queller, 1994)

In the model from the prior section, group productivity

was 1 ) zg, and the change in group productivity with a

change in the group phenotype, zg, was sa ¼ )1. Suppose

instead that the relation between group phenotype and

group productivity is much weaker, because extrinsic

aspects of space and resources limit group productivity.

For example, if group productivity is 1 ) �zg, where � < 1,

then sa ¼ )�. Using that value of sa in eqn (17), we obtain

the solution

z� ¼ 1� r

1� rð1� �Þ

This solution is equivalent to eqn (18) when � ¼ 1. As

limits on group productivity become more stringent, �
declines towards zero, the balance tips more strongly in

favour of selection within groups, the level of compet-

itiveness, z*, increases and, equivalently, the level of

cooperation declines. There are, of course, many complex

ways in which individual traits may relate to group

productivity and to the intensity of selection within

groups. But all the different complexities tend to reduce

to the simple balancing of forces between selection

among groups versus bias in transmission fidelity of

group characteristics or, equivalently, selection among

groups versus selection within groups. If some additional

force weakens selection among groups, then selection

within groups increasingly dominates. Similarly, if some

additional force weakens selection within groups, then

selection among groups increasingly dominates.

Timescale provides another example. If the number of

rounds of selection within groups increases relative to the

pace of selection among groups, then selection within

groups increasingly dominates the balance of forces

(Frank, 1986, 1987). I discuss two particular cases

in later sections on parasite virulence and microbial

metabolism.

Ratio of selection at different levels

In multilevel selection, the relative strength of selective

bias to transmission bias from eqn (7) compares selection

among groups with selection within groups. Substituting

the expressions for DS and Ds derived from eqn (16) into

eqn (7) yields

R ¼ log
z

1� z

� �
þ log

r

1� r

� �
: ð19Þ

Figure 2 plots R versus the level of competitiveness, z, for

different levels of relatedness, r.

The level of competitiveness is in equilibrium balance,

z*, when the lines cross R ¼ 0. At that point, selection

bias among groups is equal and opposite to transmission

bias caused by selection within groups. Once again, we

see that selective bias is greater than transmission bias

only when the system is out of equilibrium.

Following the epigraph from Williams, one may wish

to think of groups as acquiring information, adaptation or

a degree of unitary function to the extent that selective

bias tends to dominate transmission bias. Because rela-

tive dominance depends on the phenotype, z, one

interpretation would be that significant group-level

function requires the relative dominance of selection

over transmission across a wide range of possible

phenotypes (Gardner & Grafen, 2009). The range of

phenotypes over which selection bias dominates trans-

mission bias increases with a rise in relatedness, r. Thus,

one may say that increasing relatedness shifts the locus of

information or adaptation towards the higher level.
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That interpretation of group-level unity or adaptation

goes beyond what the analysis by itself presents. The

analysis simply describes the way in which R shifts with

competitive intensity and relatedness. The interpretation

of group-level unity is a gloss that may aid or hinder

understanding in different contexts. Ultimately, one must

retain a clear view of the underlying analytical basis.

Stochastic corrector model of early
protocells

Protocells are simple membrane-bound groups of genes

that likely formed in early evolution (Maynard Smith &

Szathmáry, 1995). A model of protocell evolution pro-

vides insight into group selection, kin selection, parasite

virulence and the evolution of symbionts (Szathmáry &

Demeter, 1987; Frank, 1994, 1996c, 1997a).

In the protocell model, the selective bias between cells

opposes the transmission bias arising from selection

between genes within cells. Expanding on the epigraph

from Williams (1966), the degree to which adaptive

design occurs at the protocell level versus the internal

genic level depends on the selective bias between cells

relative to the rate of endogenous change within cells.

Each protocell can be thought of as a bag that starts

with k pieces of genetic material (chromosomes). The

chromosomes compete within the protocell for resources.

Success at acquiring resources influences the rate at

which chromosomes can replicate themselves within the

cell. More competitive chromosomes use up local

resources less efficiently and reduce the overall success

of the protocell and its group of chromosomes.

A protocell competes with other protocells for

resources from the environment. A protocell produces a

progeny cell after it has acquired sufficient resources and

its chromosomes have replicated. The fitness of the

protocell and its chromosomes depends on the rate of

progeny production. Sampling of chromosomes occurs

when progeny are formed: k chromosomes are chosen

randomly from the pool of copies in the cell. I refer to this

sampling process as segregation.

This protocell model is a particular expression of the

group selection model in the previous section. By

studying this particular example, we can see more clearly

how specific aspects of mutation, competition and selec-

tion within groups affect transmission bias.

Suppose that the fitness of a chromosome follows the

expression in eqn (16), repeated here

w ¼ z

zg

1� zg

� 	
;

where z is a chromosome’s tendency to be competitive

against neighbouring chromosomes for access to local

resources within the protocell, and zg is the average

competitive tendency of chromosomes in the protocell.

Following eqn (18) of the previous section, the balance

of selection between protocells and transmission bias

within protocells is z* ¼ 1 ) r, where r is the kin selection

coefficient of relatedness among the chromosomes with-

in a cell.

Virulence and symbiosis

The stochastic corrector model allows us to connect the

abstract expressions from the multilevel analysis of kin

and group selection to specific interpretations of para-

site virulence and the evolution of symbionts within

hosts (Frank, 1994, 1996c). For virulence, one can

think of each of the k chromosomes as a parasite, and

one can think of the protocell as the host. Competition

between the parasites may cause inefficient use of host

resources. Overexploitation of the host reduces host

fitness. Thus, competition between parasites within

hosts tends to increase virulence. The lower the

relatedness, r, among the parasites within a host,

the greater the competitiveness and virulence of the

parasites, z* ¼ 1 ) r.

We may also think of the k chromosomes as symbionts

living within a host. From the host’s point of view,

increasing r reduces the competitiveness between the

symbionts, aligning symbiont and host interests. In order

to increase r, hosts may be favoured to reduce the

number, k, of symbionts transmitted to offspring or

transmitted between hosts (Frank, 1996a). Hosts may

also be favoured to reduce the mixing of symbionts

between different hosts (Frank, 1996b).

Kin selection and group selection

This model allows us to evaluate the meaning of the kin

selection coefficient, r, within a particular scenario.
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Fig. 2 The relative dominance of selection bias among groups versus

transmission bias within groups in a multilevel selection model.

Relative dominance is measured by the ratio, R, of eqn (19).

Different levels of relatedness shift the balance between selection

bias among groups and transmission bias within groups. Here,

relatedness is measured by r̂ ¼ log½r=ð1 � rÞ�.
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Assume that transmission is purely vertical, because the

chromosomes do not mix between cells. In this model of

vertical transmission, three forces affect the evolution of

competitiveness, z* ¼ 1 ) r.

First, selection between protocells favours reduced

competitiveness of chromosomes within cells, leading to

greater efficiency at the cellular level. Against that

cellular level effect, the competition and selection

between chromosomes within cells cause a transmission

bias that favours increased competitiveness of chromo-

somes.

Second, mutations reduce the similarity among chro-

mosomes within hosts, thus reducing r. The force

imposed by mutation is controlled by two parameters,

the mutation rate, l, and the change in character value

caused by each mutation, d. Each mutational event

changes z by ± d, where the alternative directions of

change occur with equal probability. Thus, mutation by

itself causes no transmission bias.

Third, segregation samples from the local chromo-

somes when the protocell reproduces. Each new progeny

starts with k chromosomal copies. When the cell repro-

duces, replicates of the local chromosomes are chosen

stochastically according to the relative fitness within the

cell, z/zg. This sampling reduces the variance within hosts

and increases relatedness.

A stochastic computer simulation of this model

showed that relatedness, r, and equilibrium trait values,

z*, are held in balance by a delicate interaction between

mutation, selection and segregation (Frank, 1994). The

observed equilibrium trait values in the computer

simulation closely follow the prediction z* ¼ 1 ) r,

where r ¼ Va/Vt is calculated directly from the simula-

tion by measuring the within-cell and total variances of

trait values for the individual chromosomes in the

population. The specific parameters affect variances and

equilibrium trait values as expected: relatedness

declines and z* rises as the mutation rate, l, or

mutation step, d, increases. An increase in the number

of chromosomes per cell, k, causes an increase in

competitiveness, z, because more copies reduce the

variation among cells caused by sampling during

segregation.

Kin selection arises from patterns of variance, not
genealogy

The analysis in the previous section demonstrates that

genealogy does not provide a sufficient explanation for

the evolution of cooperative and competitive traits. The

genealogical closeness between chromosomes in a cell

increases as k declines. That genealogical aspect explains

some of the changes in competitiveness, z*. But, for a

fixed genealogical scheme and a fixed mutation rate, the

magnitude of the effect of each mutation, d, can strongly

influence the equilibrium value, z* (Frank, 1994). Larger

mutational effects raise the variance within groups

relative to the variance among groups, causing a decline

in r, an increase in the strength of selection within cells

and an increase in the equilibrium competitiveness, z*.

The theory of kin selection formulated by Hamilton

(1970) depends solely on the patterns of variance and

correlation, not on genealogy (Frank, 1998). Genealogy

is often closely associated with the patterns of variance

and correlation. The simple protocell model illustrates

how the association between genealogy and the patterns

of variance and correlation may break down. When the

association breaks down, the true causal processes of

variance and correlation explain the outcome. Since

Hamilton’s (1970) work, no fundamentally derived

theory of kin selection based on genealogy has existed.

However, it is often convenient to use the fact that

genealogy typically associates with the underlying causal

processes of variance and correlation. That convenience

has unfortunately confused many authors about the

distinction between a convenient association and

the fundamental theory and its history.

We may recover the association between genealogy

and causal process if mixing of chromosomes between

cells occurs. Such mixing often dominates mutation in

determining the patterns of variance within and among

groups. In that case, genealogy may become the main

force determining r and the equilibrium level of compet-

itiveness, z*.

In conclusion, the mutation rate and the size of

mutational effects primarily influence the patterns

of variance under some conditions, whereas the migra-

tion rate and genealogy primarily influence the patterns

of variance under other conditions. It is the patterns of

variance and correlation that determine outcome.

Reasons to favour kin selection over group selection

Kin selection and group selection follow the same

partition of variance within and among groups. A group

selection analysis tends to emphasize the variance among

groups and therefore the effect of selection at the group

level. A kin selection analysis tends to emphasize the

correlation between members of the same group, mea-

sured by the kin selection coefficient. The correlation

within groups and the relative amount of variation

among groups are simply alternative ways of expressing

the partitioning of variances (Frank, 1986).

In more complicated biological problems, it often

becomes difficult to express all of the selective forces in

terms of relative variances among groups. The problem is

that patterns of interaction may differ with respect to

different processes, such as mating, competition between

certain individuals such as males and competition

between other individuals such as females. In that sort

of realistic scenario, it is far easier to trace pathways of

causation through a series of partial correlations that can

be interpreted as an extended form of kin selection

analysis (Frank, 1986, 1998). In practice, it is rarely
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sensible to express such multiple pathways of causation

by expressions of relative amounts of variance among

groups, although such expressions may be possible

mathematically. For that reason, kin selection often

becomes a more natural form of analysis for realistic

biological problems, leading to a generalized path anal-

ysis framework.

The present article is about the separation between

selection and transmission rather than a general ap-

proach to pathways of causation. Frank (1997b, 1998)

summarized the path analysis approach, although some

readers may find those publications a bit technical. I will

return to the path analysis methods in a later article in

this series.

Short-sighted parasite evolution

Within-group competitiveness often evolves, even

though competitiveness reduces the equilibrium fitness

of all individuals. The models in the previous sections

provided examples. In those models, the favoured value

of competitiveness was given in eqn (18) by z* ¼ 1 ) r.

Competitiveness rises as relatedness between group

members, r, declines. The equilibrium fitness from

eqn (16) is w ¼ 1 ) z* ¼ r. Thus, reduced relatedness in

groups increases competitiveness and causes a decline in

fitness for all individuals and all groups.

I mentioned one interpretation of this simple model in

terms of parasite virulence. Parasites may compete for

resources within the host. Greater competitiveness may

lead to overexploitation of the host, harming the host and

ultimately damaging or destroying the resource on which

the parasites depend. In that regard, reduced relatedness of

parasites within hosts may lead to enhanced competition

and greater virulence, where ‘virulence’ means the degree

of harm the parasites cause the host.

Levin & Bull (1994) emphasized the key role of

evolutionary timescale. A long period of within-host

evolution, with many rounds of parasite competition and

selection, may favour the origin and spread of increasing

competitiveness between parasites, leading to greater

virulence. That evolution of increasing virulence occurs

during the time of an infection within a single host. Such

evolutionary increase of virulence can kill the host and,

in consequence, kill the parasites themselves. In that

regard, the newly evolved virulence is short-sighted,

because it provides a local advantage to the parasites in

the short run but leads to their extinction in the long run.

If the highly virulent forms that evolve within the host

rarely transmit to other hosts, then two distinct time-

scales exist. On the short timescale within hosts, high

virulence repeatedly evolves but does not contribute to

the long run evolution of the population. On the long

timescale in the population of parasites across hosts, the

less virulent forms transmit between hosts better than do

the highly virulent forms, causing a moderate to low level

of virulence among infective parasites entering a host.

By contrast, if the highly virulent forms that evolve

within hosts often transmit to other hosts, then the

shorter and longer timescales interact. The short-term

evolutionary increase of competitiveness within the host

contributes to a transmission bias on the longer time-

scale. The contribution of the short-term increase in

virulence within hosts to the longer timescale depends

on the fraction of parasites transmitted between hosts

that come from the later population within the host. The

next section provides an example.

Demography, timescale and microbial
metabolism

In this section, I consider groups that continuously

produce transmissible forms. The longer the time for

evolution within groups, the greater the transmission

bias towards characters favoured within groups. For

example, within-group selection often favours greater

competitiveness against neighbours. If many generations

of selection occur within groups, the greater short-term

pressure for competitiveness within groups ultimately

increases the competitiveness across all groups.

Microbial metabolism nicely illustrates aspects of

timescale (Frank, 2010). Extra energy devoted to

resource acquisition speeds metabolic rate and compet-

itive success against neighbours but reduces net effi-

ciency and yield. Thus, the local benefit for rapid

resource acquisition trades off against lower yield and

reduced competitive success of a group against other

groups (Pfeiffer et al., 2001).

Once again, we have a situation in which selection

within groups favours more competitive traits, whereas

selection between groups favours greater restraint and

higher group productivity. The balance between oppos-

ing forces ultimately depends on the relative selective

bias between groups compared with the transmission bias

caused by selection within groups.

An example

Suppose that individual microbial colonies occur in

separated patches. Each patch lasts for a while but

eventually disappears. During a patch’s lifespan, there is

a continual flow of resources available to the microbes.

The microbes compete for the resources within the patch.

Competition occurs by the rate of resource uptake.

Individuals that invest more energy in uptake outcom-

pete neighbours for resources, but their net conversion of

resource into reproduction is lower because they spend

more on uptake rather than productivity. Groups that

have highly competitive strains, devoting much energy

to competitive increases in resource uptake, have low net

productivity.

Colonies continuously send out migrants in proportion

to group productivity. Transmission bias occurs when the

average competitive trait of migrants differs from the
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average trait value among those microbes that founded

the colony. The local processes of competition, selection

and production of migrants continue until colony extinc-

tion. Colony formation and colony extinction set the

global birth–death process.

The overall scenario is roughly similar to a host–

parasite situation, in which resource patches are like

hosts, and parasites send out transmissible progeny

continuously from an infected host. Many variations

are possible. However, the basic set-up provides a useful

expression for the interactions between colony demog-

raphy and the different timescales of selection bias and

transmission bias.

I use the particular assumptions and results of Frank

(2010). The interpretation follows the same type of

selection–transmission balance of previous sections.

However, the earlier models were often designed explic-

itly to illustrate the partition between selective bias and

transmission bias. The value here arises from the more

realistic biology, which forces us to parse the components

of evolutionary change without the advantage of a toy

model designed to give us a simple partition.

No transmission bias

Figure 3 shows the net outcome of selective bias between

groups and transmission bias within groups. Each colony

forms by a small group of genetically identical cells.

When there is no mutation, as shown in the bottom

curve, no selection can occur within the colony because

there is no genetic variation. Thus, the bottom curve

reflects the pure effects of selective bias between groups

in the absence of transmission bias. The character, z, is

the fraction of energy devoted to resource acquisition

relative to the fraction 1 ) z devoted to reproduction. The

character value at which equilibrium occurs is z*.

To understand the consequences of a pure selective

bias between groups, recall from eqn (1) that the total

change in a character is

�wD�z ¼ DSþ Ds;

the sum of the change caused by selective bias, DS, and

transmission bias, Ds. Here, the biases are measured with

respect to microbial groups living in isolated patches.

The character value settles to equilibrium when

�wD�z ¼ DS þ Ds ¼ 0. If there is no genetic variation

among the initial microbes that start each colony, and no

mutation, then there can be no selection within groups

and no transmission bias, thus Ds ¼ 0. With no trans-

mission bias, the system comes to equilibrium when

DS ¼ 0. Put another way, group productivity, which

determines the selective bias between groups, DS, sets the

trade-off between rate and yield. In the lower curve of

Fig. 3 with no mutation, the value z* maximizes yield

and leads to DS ¼ sV ¼ 0.

In this particular model, one cannot write a simple

expression for the balance between rate and yield.

Roughly, the idea is that a fraction z of energy is put

into increasing the rate of resource acquisition, and a

fraction 1 ) z is put into reproduction or yield. If the

factors simply multiplied, then fitness would be w ¼
z(1 ) z). The change in fitness with the character z gives

the selective coefficient, s. The change in fitness with

character value is the derivative of w with respect to z,

which gives s ¼ 1 ) 2z ¼ 0, and so DS ¼ sV ¼ 0 implies

z* ¼ 1/2.

In the actual model, the length of colony survival

affects the balance between rate and yield. Short-lived

colonies are favoured to grow quickly (high rate and low

efficiency) to use up available resources before extinc-

tion, whereas long-lived colonies are favoured to grow

slowly and use resources efficiently. Thus, in the lower

curve of Fig. 3, longer colony survival causes the optimal

balance to shift towards lower rate and higher yield.

Balance between selection and transmission

When mutation generates variation within colonies, the

rate–yield trade-off balances selection between colonies

and the transmission bias from selection within colonies.

The upper two curves in Fig. 3 show the equilibrium

balance, z*. The top curve has a mutation rate ten times

greater than the middle curve.

As colony survival increases, the equilibrium moves

towards greater investment in resource acquisition.

Higher resource acquisition and metabolic rate arise from

the inevitable production of mutant neighbours within

colonies and the multiple rounds of internal selection
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Fig. 3 The trade-off between rate and yield in microbial metabolism.

The optimal trade-off, z*, is the fraction of available resources

invested in increasing the rate of acquiring new resources. The

remainder of resources, 1 ) z*, enhances reproduction. The colony

survives each time period at rate d; the expected survival time is 1/d.

Each colony begins with a single immigrant or small group of

genetically identical immigrants. The microbes use the local

resources to reproduce. Mutations occur in the trade-off, z, between

rate and yield. The lower curve represents no mutation in the

colony. The middle curve has mutation rate, l, and the upper curve

has a higher mutation rate of 10 l. The colony sends out migrants to

colonize new patches. The number of migrants per unit time for each

genetic type in a patch is proportional to the number of cells of that

genetic type. The details about rate processes are in Frank (2010).

Redrawn from fig. 2a of Frank (2010).
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within groups. With very long colony survival times,

both upper curves would converge to a high value of z* at

which nearly all resources are devoted to resource

acquisition and competition within colonies, with the

yield efficiency dropping to a very low level. At that

point, transmission bias from selection within groups

dominates selection bias between groups.

The equilibrium rate–yield trade-off reflects the fun-

damental balance between selection and transmission.

That balance provides a simple conceptual basis for

understanding how natural selection shapes characters.

However, in this relatively realistic model, one cannot

use the balance of eqn (3) directly to calculate the

predicted outcome. Instead, I had to use other mathe-

matical methods to obtain the solution (Frank, 2010).

The selection–transmission balance only provides a

framing in which to interpret the results.

In the earlier models in this article, it was easy to

calculate the ratio of selection to transmission,R. Here, the

calculation is difficult, and methods such as the Price

equation, kin selection and group selection are of no use in

calculating the outcome. After obtaining a solution by

other means, one can use those framings to interpret the

forces that shaped the outcome. This limitation to post hoc

explanations is typical of the grand theories when faced

with realistic scenarios. Across the range of different

problems presented in this article, the selection versus

transmission framing provides the most general concep-

tual view, following the spirit of the epigraph by Williams.

Conclusions

This article is about the relative contributions of

selective bias and transmission bias to overall evolu-

tionary change. For any problem, we first choose a

higher level of organization, such as a group, an

individual or a cell within a multicellular aggregation.

Selective bias arises from differing success among the

higher-level entities. Transmission bias arises from

changes in character values between higher-level enti-

ties and their descendants. Transmission biases may

occur by mutation, by random fluctuations and by

selection within the group.

The ratio of selective bias to transmission bias provides

a simple measure for the relative dominance of the

higher to the lower level of organization in overall

evolutionary change. When the two levels oppose each

other, the relative dominance of one level over the other

often sets the level at which functional coherence and

individuality emerge.

A key aspect of Maynard Smith & Szathmáry (1995)

The Major Transitions in Evolution was expressed by

Maynard Smith (1988, pp. 229–230):

One can recognize in the evolution of life several revolu-

tions in the way in which genetic information is organized.

In each of these revolutions, there has been a conflict

between selection at several levels. The achievement of

individuality at the higher level has required that the

disruptive effects of selection at the lower level be

suppressed.

Maynard Smith’s suppression of disruptive effects at

the lower level causes selective bias at the higher level to

dominate. The quote and the conceptual basis of the

major transitions therefore express Williams’ notion of

the ratio of selective bias to endogenous rate of change

(Michod, 1997a; Michod & Nedelcu, 2003).

There is a large philosophical literature on the

meaning of individuality and of units of selection in

relation to levels of selection (Sober & Wilson, 1994;

Okasha, 2006). One can certainly learn from studying

that philosophical literature. However, I have found it

more instructive to analyse a wide range of interesting

biological problems, to discover in practice what is

actually needed to understand those problems, and to

learn what general concepts link the different problems

within a common conceptual basis (cf. Michod, 1997b,

2006). Philosophical induction from numerous evolu-

tionary deductions.
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REVIEW

Natural selection. IV. The Price equation*

S. A. FRANK

Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, USA

The heart and soul of much mathematics consists of the fact

that the ‘same’ object can be presented to us in different

ways. Even if we are faced with the simple-seeming task of

‘giving’ a large number, there is no way of doing this

without also, at the same time, ‘giving’ a hefty amount of

extra structure that comes as a result of the way we pin

down—or the way we present—our large number. If we

write our number as 1729, we are, sotto voce, ordering a

preferred way of ‘computing it’ (add one thousand to seven

hundreds to two tens to nine). If we present it as 1 + 123,

we are recommending another mode of computation, and

if we pin it down—as Ramanujuan did—as the first number

expressible as a sum of two cubes in two different ways, we

are being less specific about how to compute our number,

but have underscored a characterizing property of it within

a subtle diophantine arena.…
This issue has been with us, of course, forever: the

general question of abstraction, as separating what we want

from what we are presented with. It is neatly packaged in

the Greek verb aphairein, as interpreted by Aristotle in the

later books of the Metaphysics to mean simply separation: if it

is whiteness we want to think about, we must somehow

separate it from white horse, white house, white hose and all

the other white things that it invariably must come along

with, in order for us to experience it at all

(Mazur, 2008, pp. 222–223).

Somewhere … between the specific that has no meaning

and the general that has no content there must be, for each

purpose and at each level of abstraction, an optimum

degree of generality

(Boulding, 1956, pp. 197–198).

Introduction

Evolutionary theory analyses the change in phenotype

over time. We may interpret phenotype broadly to include

organismal characters,variancesof characters, correlations

between characters, gene frequency, DNA sequence –

essentially anything we can measure.

How does a phenotype influence its own change in

frequency or the change in the frequencies of correlated

phenotypes? Can we separate that phenotypic influence
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Abstract

The Price equation partitions total evolutionary change into two components.

The first component provides an abstract expression of natural selection. The

second component subsumes all other evolutionary processes, including

changes during transmission. The natural selection component is often used in

applications. Those applications attract widespread interest for their simplicity

of expression and ease of interpretation. Those same applications attract

widespread criticism by dropping the second component of evolutionary

change and by leaving unspecified the detailed assumptions needed for a

complete study of dynamics. Controversies over approximation and dynamics

have nothing to do with the Price equation itself, which is simply a

mathematical equivalence relation for total evolutionary change expressed

in an alternative form. Disagreements about approach have to do with the

tension between the relative valuation of abstract versus concrete analyses.

The Price equation’s greatest value has been on the abstract side, particularly

the invariance relations that illuminate the understanding of natural selection.

Those abstract insights lay the foundation for applications in terms of kin

selection, information theory interpretations of natural selection and parti-

tions of causes by path analysis. I discuss recent critiques of the Price equation

by Nowak and van Veelen.

doi: 10.1111/j.1420-9101.2012.02498.x



from other evolutionary forces that also cause change?

The association of a phenotype with change in fre-

quency, separated from other forces that change pheno-

type, is one abstract way to describe natural selection.

The Price equation is that kind of abstract separation.

Do we really need such abstraction, which may seem

rather distant and vague? Instead of wasting time on

such things as the abstract essence of natural selection,

why not get down to business and analyse real problems?

For example, we may wish to know how the evolution-

ary forces of mutation and selection interact to determine

biological pattern. We could make a model with genes

that have phenotypic effects, selection that acts on those

phenotypes to change gene frequency, and mutation that

changes one gene into another. We could do some

calculations, make some predictions about, for example,

the frequency of deleterious mutations that cause dis-

ease, and compare those predictions to observations. All

clear and concrete, without need of any discussion of the

essence of things.

However, we may ask the following. Is there some

reorientation for the expression of natural selection that

may provide subtle perspective, from which we can

understand our subject more deeply and analyse our

problems with greater ease and greater insight? My

answer is, as I have mentioned, that the Price equation

provides that sort of reorientation. To argue the point,

I will have to keep at the distinction between the

concrete and the abstract, and the relative roles of those

two endpoints in mature theoretical understanding.

Several decades have passed since Price’s (1970,

1972a) original articles. During that span, published

claims, counter-claims and misunderstandings have

accumulated to the point that it seems worthwhile to

revisit the subject. On the one hand, the Price equation

has been applied to numerous practical problems and has

also been elevated by some to almost mythical status, as

if it were the ultimate path to enlightenment for those

devoted to evolutionary study (Box 2).

On the other hand, the opposition has been gaining

adherents who boast the sort of disparaging anecdotes

and slogans that accompany battle. In a recent book,

Nowak & Highfield (2011) counter

The Price equation did not, however, prove as useful as [Price

and Hamilton] had hoped. It turned out to be the mathe-

matical equivalent of a tautology. … If the Price equation is

used instead of an actual model, then the arguments hang in

the air like a tantalizing mirage. The meaning will always lie

just out of the reach of the inquisitive biologist. This mirage

can be seductive and misleading. The Price equation can fool

people into believing that they have built a mathematical

model of whatever system they are studying. But this is often

not the case. Although answers do indeed seem to pop out of

the equation, like rabbits from a magician’s hat, nothing is

achieved in reality.

Nowak & Highfield (2011) approvingly quote van

Veelen et al. (2012) with regard to calling the Price

equation a mathematical tautology. van Veelen et al. (2012)

emphasize the point by saying that the Price equation is

like soccer/football star Johan Cruyff’s quip about the

secret of success: ‘You always have to make sure that you

score one goal more than your opponent’. The statement

is always true, but provides no insight. Nowak &

Highfield (2011) and van Veelen et al. (2012) believe

their arguments demonstrate that the Price equation is

true in the same trivial sense, and they call that trivial

type of truth a mathematical tautology. Interestingly,

magazines, online articles and the scientific literature

have for several years been using the phrase mathematical

tautology for the Price equation, although Nowak &

Highfield (2011) and van Veelen et al. (2012) do not

provide citations to previous literature.

As far as I know, the first description of the Price

equation as a mathematical tautology was in the study of

Frank (1995). I used the phrase in the sense of the

epigraph from Mazur, a formal equivalence between

Box 1: Topics in the theory of natural selection

This article is part of a series on natural selection. Although

the theory of natural selection is simple, it remains

endlessly contentious and difficult to apply. My goal is to

make more accessible the concepts that are so important,

yet either mostly unknown or widely misunderstood.

I write in a nontechnical style, showing the key equations

and results rather than providing full derivations or

discussions of mathematical problems. Boxes list technical

issues and brief summaries of the literature.

Box 2: Price equation literature

A large literature introduces and reviews the Price equation.

I list some key references that can be used to get started

(Hamilton, 1975; Frank, 1995, 1997; Grafen, 2002; Page &

Nowak, 2002; Andersen, 2004; Rice, 2004; Okasha, 2006;

Gardner, 2008).

Diverse applications have been developed with the Price

equation. I list a few examples (Hamilton, 1970; Wade,

1985; Frank & Slatkin, 1990; Queller, 1992a,b; Michod,

1997a,b; Frank, 1998; Day & Gandon, 2006; Fox, 2006;

Grafen, 2007; Alizon, 2009).

Quantitative genetics theory often derives from the

covariance expression given by Robertson (1966), which

is a form of the covariance term of the Price equation. The

basic theory can be found in textbooks (Falconer & Mackay,

1996; Charlesworth & Charlesworth, 2010). Much of the

modern work can be traced through the widely cited article

by Lande & Arnold (1983).

Harman (2010) provides an interesting overview of

Price’s life and evokes an Olympian sense of the power

and magic of the Price equation. See the study of Schwartz

(2000) for an alternative biographical sketch.
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different expressions of the same object. Mathematics

and much of statistics are about formal equivalences

between different expressions of the same object. For

example, the Laplace transform changes a mathematical

expression into an alternative form with the same

information, and analysis of variance decomposes the

total variance into a sum of component variances. For

any mathematical or statistical equivalence, value

depends on enhanced analytical power that eases further

derivations and calculations and on the ways in which

previously hidden relations are revealed.

In the light of the contradictory points of view, the

main goal of this article is to sort out exactly what the

Price equation is, how we should think about it, and its

value and limitations in reasoning about evolution.

Subsequent articles will show the Price equation in

action, applied to kin selection, causal analysis in evolu-

tionary models and an information perspective of natural

selection and Fisher’s fundamental theorem.

Overview

The first section derives the Price equation in its full and

most abstract form. That derivation allows us to evaluate

the logical status of the equation in relation to various

claims of fundamental flaw. The equation survives

scrutiny. It is a mathematical relation that expresses the

total amount of evolutionary change in an alternative

and mathematically equivalent way. That equivalence

provides insight into aspects of natural selection and also

provides a guide that, in particular applications, often

leads to good approaches for analysis.

The second section contrasts two perspectives of

evolutionary analysis. In standard models of evolution-

ary change, one begins with the initial population state

and the rules of change. The rules of change include

the fitness of each phenotype and the change in

phenotype between ancestor and descendant. Given

the initial state and rules of change, one deduces the

state of the changed population. Alternatively, one may

have data on the initial population state, the changed

population state and the ancestor–descendant relations

that map entities from one population to the other.

Those data may be reduced to the evolutionary

distance between two populations, providing inductive

information about the underlying rules of change.

Natural populations have no intrinsic notion of fitness

or rules of change. Instead, they inductively accumu-

late information. The Price equation includes both the

standard deductive model of evolutionary change and

the inductive model by which information accumulates

in relation to the evolutionary distance between

populations.

The third and fourth sections discuss the Price equa-

tion’s abstract properties of invariance and recursion. The

invariance properties include the information theory

interpretation of natural selection. Recursion provides

the basis for analysing group selection and other models

of multilevel selection.

The fifth section relates the Price equation to various

expressions that have been used throughout the history

of evolutionary theory to analyse natural selection. The

most common form describes natural selection by the

covariance between phenotype and fitness or by the

covariance between genetic breeding value and fitness.

The covariance expression is one part of the Price

equation that, when used alone, describes the natural

selection component of total evolutionary change. The

essence of those covariance forms arose in the early

studies of population and quantitative genetics, had been

used extensively during much of the modern history of

animal breeding, and began to receive more mathemat-

ical development in the 1960s and 1970s. Recent critiques

of the Price equation focus on the same covariance

expression that has been widely used throughout the

history of population and quantitative genetics to analyse

natural selection and to approximate total evolutionary

change.

The sixth section returns to the full abstract form of the

equation. I compare a few variant expressions that have

been promoted as improvements on the original Price

equation. Variant forms are indeed helpful with regard to

particular abstract problems or particular applications.

However, most variants are simply minor rearrange-

ments of the mathematical equivalence for total evolu-

tionary change given by the original Price equation. The

recent extension by Kerr & Godfrey-Smith (2009) does

provide a slightly more general formulation by expand-

ing the fundamental set mapping that defines Price’s

approach. The set mapping basis for the Price equation

deserves more careful study and further mathematical

work.

The seventh section analyses various flaws that have

been ascribed to the Price equation. For example, the

Price equation in its most abstract form does not

contain enough information to follow evolutionary

dynamics through multiple rounds of natural selection.

By contrast, classical dynamic models of population

genetics are sufficient to follow change through time.

Much has been made of this distinction with regard to

dynamic sufficiency. The distinction arises from the fact

that classical dynamics in population genetics makes

more initial assumptions than the abstract Price equa-

tion. It must be true that all mathematical equivalences

for total evolutionary change have the same dynamic

status given the same initial assumptions. Each addi-

tional well-chosen assumption typically enhances the

specificity and reduces the scope and generality of the

analysis. The epigraph from Boulding emphasizes

that the degree of specificity versus generality is an

explicit choice of the analyst with respect to initial

assumptions.
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The Discussion considers the value and limitations of

the Price equation in relation to recent criticisms by

Nowak and van Veelen. The critics confuse the distinct

roles of general abstract theory and concrete dynamical

models for particular cases. The enduring power of the

Price equation arises from the discovery of essential

invariances in natural selection. For example, kin selec-

tion theory expresses biological problems in terms of

relatedness coefficients. Relatedness measures the asso-

ciation between social partners. The proper measure of

relatedness identifies distinct biological scenarios with the

same (invariant) evolutionary outcome. Invariance rela-

tions provide the deepest insights of scientific thought.

The Price equation

The mathematics given here applies not only to genetical

selection but to selection in general. It is intended mainly

for use in deriving general relations and constructing

theories, and to clarify understanding of selection phe-

nomena, rather than for numerical calculation (Price,

1972a, p. 485).

I have emphasized that the Price equation is a mathe-

matical equivalence. The equation focuses on separation

of total evolutionary change into a part attributed to

selection and a remainder term. That separation provides

an abstraction of the nature of selection. As Price wrote

sometime around 1970 but published posthumously in

Price (1995), ‘Despite the pervading importance of

selection in science and life, there has been no abstrac-

tion and generalization from genetical selection to obtain

a general selection theory and general selection mathe-

matics’.

It is useful first to consider the Price equation in this

most abstract form. I follow my earlier derivations

(Frank, 1995, 1997, 1998, 2009), which differ little from

the derivation given by Price (1972a) when interpreted

in the light of the study of Price (1995).

The abstract expression can best be thought of in terms

of mapping items between two sets (Frank, 1995; Price,

1995). In biology, we usually think of an ancestral

population at some time and a descendant population at

a later time. Although there is no need to have an

ancestor–descendant relation, I will for convenience refer

to the two sets as ancestor and descendant. What does

matter is the relations between the two sets, as follows.

Definitions

The full abstract power of the Price equation requires

adhering strictly to particular definitions. The definitions

arise from the general expression of the relations

between two sets.

Let qi be the frequency of the ith type in the ancestral

population. The index i may be used as a label for any

sort of property of things in the set, such as allele,

genotype, phenotype, group of individuals and so on. Let

q0i be the frequencies in the descendant population,

defined as the fraction of the descendant population that

is derived from members of the ancestral population that

have the label i. Thus, if i ¼ 2 specifies a particular

phenotype, then q02 is not the frequency of the phenotype

i ¼ 2 among the descendants. Rather, it is the fraction of

the descendants derived from entities with the pheno-

type i ¼ 2 in the ancestors. One can have partial

assignments, such that a descendant entity derives from

more than one ancestor, in which case each ancestor gets

a fractional assignment of the descendant. The key is that

the i indexing is always with respect to the properties of

the ancestors, and descendant frequencies have to do

with the fraction of descendants derived from particular

ancestors.

Given this particular mapping between sets, we can

specify a particular definition for fitness. Let

q0i ¼ qiðwi=�wÞ, where wi is the fitness of the ith type

and �w ¼
P

qiwi is average fitness. Here, wi=�w is propor-

tional to the fraction of the descendant population that

derives from type i entities in the ancestors.

Usually, we are interested in how some measurement

changes or evolves between sets or over time. Let the

measurement for each i be zi. The value z may be the

frequency of a gene, the squared deviation of some

phenotypic value in relation to the mean, the value

obtained by multiplying measurements of two different

phenotypes of the same entity and so on. In other words,

zi can be a measurement of any property of an entity with

label, i. The average property value is �z ¼
P

qizi, where

this is a population average.

The value z0i has a peculiar definition that parallels the

definition for q0i. In particular, z 0i is the average measure-

ment of the property associated with z among the

descendants derived from ancestors with index i. The

population average among descendants is �z0 ¼
P

q0iz
0
i .

The Price equation expresses the total change in the

average property value, D�z ¼ �z0 � �z, in terms of these

special definitions of set relations. This way of expressing

total evolutionary change and the part of total change

that can be separated out as selection is very different

from the usual ways of thinking about populations and

evolutionary change. The derivation itself is very easy,

but grasping the meaning and becoming adept at using

the equation is not so easy.

I will present the derivation in two stages. The first

stage makes the separation into a part ascribed to

selection and a part ascribed to property change that

covers everything beyond selection. The second stage

retains this separation, changing the notation into stan-

dard statistical expressions that provide the form of the

Price equation commonly found in the literature. I follow

with some examples to illustrate how particular set

relations are separated into selection and property

change components. The next section considers two

distinct interpretations of the Price equation in relation to

dynamics.
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Derivation: separation into selection and property
value change

We use Dqi ¼ q0i � qi for frequency change associated

with selection and Dzi ¼ z0i � zi for property value

change. Both expressions for change depend on the

special set relation definitions given above.

We are after an alternative expression for total change,

D�z. Thus,

D�z ¼ �z0 � �z

¼
X

q0iz
0
i �
X

qizi

¼
X

q0iðz0i � ziÞ þ
X

q0izi �
X

qizi

¼
X

q0iðDziÞ þ
X
ðDqiÞzi:

Switching the order of the terms on the right side of

the last line yields

D�z ¼
X
ðDqiÞzi þ

X
q0iðDziÞ; ð1Þ

a form emphasized by Frank (1997, eqn 1). The first term

separates the part of total change caused by changes in

frequency. We call this the part caused by selection,

because this is the part that arises directly from differential

contribution by ancestors to the descendant population

(Price, 1995). Because the set mappings define all of the

direct attributions of success for each i with respect to the

associated properties zi, it is reasonable to separate out this

direct component as the abstraction of selection. It is of

course possible to define other separations. I discuss one

particular alternative later. However, it is hard to think of

other separations that would describe selection in a better

way at the most abstract and general level of the

mappings between two sets. This first term has also been

called the partial evolutionary change caused by natural

selection (eqn 7).

The second term describes the part of total change

caused by changes in property values. Recall that

Dzi ¼ z0i � zi and that z¢i is the property value among

entities that descend from i. Many different processes may

cause descendant property values to differ from ancestral

values. In fact, the assignment of a descendant to an

ancestor can be entirely arbitrary, so that there is no reason

to assume that descendants should be like ancestors.

Usually, we will work with systems in which descendants

do resemble ancestors, but the degree of such associations

can be arranged arbitrarily. This term for change in

property value encompasses everything beyond selection.

The idea is that selection affects the relative contribution of

ancestors and thus the changes in frequencies of repre-

sentation, but what actually gets represented among the

descendants will be subject to a variety of processes that

may alter the value expressed by descendants.

The equation is exact and must apply to every

evolutionary system that can be expressed as two sets

with certain ancestor–descendant or mapping relations. It

is in that sense that I first used the phrase mathematical

tautology (Frank, 1995). The nature of separation and

abstraction is well described by the epigraph from Mazur

at the start of this article.

Derivation: statistical notation

Price (1972a) used statistical notation to write eqn 1. For

the first term, by following prior definitions, we have

Dqi ¼ q0i � qi

¼ qi

wi

�w
� qi

¼ qi

wi

�w
� 1

� �
;

so thatX
ðDqiÞzi ¼

X
qi

wi

�w
� 1

� �
zi ¼ Covðw; zÞ=�w;

using the standard definition for population covariance.

For the second term, we haveX
q0iðDziÞ ¼

X
qi

wi

�w
ðDziÞ ¼ EðwDzÞ=�w;

where E means expectation, or average over the full

population. Putting these statistical forms into eqn 1 and

moving �w to the left side for notational convenience

yields a commonly published form of the Price equation

�wD�z ¼ Covðw; zÞ þ EðwDzÞ: ð2Þ

Frank (1995) and Price (1995) present examples of set

mappings expressed in relation to the Price equation.

Dynamics: inductive and deductive
perspectives

The Price equation describes evolutionary change be-

tween two populations. Three factors express one itera-

tion of dynamical change: initial state, rules of change

and next state. In the Price equation, the phenotypes, zi,

and their frequencies, qi, describe the initial population

state. Fitnesses, wi, and property changes, Dzi, set the

rules of change. Derived phenotypes, z0i , and their

frequencies, q0i, express the next population state.

Models of evolutionary change essentially always

analyse forward or deductive dynamics. In that case,

one starts with initial conditions and rules of change and

calculates the next state. Most applications of the Price

equation use this traditional deductive analysis. Such

applications lead to predictions of evolutionary outcome

given assumptions about evolutionary process, expressed

by the fitness parameters and property changes.

Alternatively, one can take the state of the initial

population and the state of the changed population as

given. If one also has the mappings between initial and

changed populations that connect each entity, i, in the

initial population to entities in the changed population,

then one can calculate (induce) the underlying rules of
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change. At first glance, this inductive view of dynamics

may seem rather odd and not particularly useful. Why

start with knowledge of the evolutionary sequence of

population states and ancestor–descendant relations as

given, and inductively calculate fitnesses and property

changes? The inductive view takes the fitnesses, wi, to be

derived from the data rather than an intrinsic property of

each type.

The Price equation itself does not distinguish between

the deductive and inductive interpretations. One can

specify initial state and rules of change and then deduce

outcome. Or one can specify initial state and outcome

along with ancestor–descendant mappings and then

induce the underlying rules of change. It is useful to

understand the Price equation in its full mathematical

generality and to understand that any specific interpre-

tation arises from additional assumptions that one brings

to a particular problem. Much of the abstract power of

the Price equation comes from understanding that, by

itself, the equation is a minimal description of change

between populations.

The deductive interpretation of the Price equation is

clear. What value derives from the inductive perspective?

In observational studies of evolutionary change, we only

have data on population states. From those data, we use

the inductive perspective to make inferences about the

underlying rules of change. Note that inductive estimates

for evolutionary process derive from the amount of

change, or distance, between ancestor and descendant

populations. The Price equation includes that inductive,

or retrospective, view by expressing the distance between

populations in terms of D�z. I develop that distance

interpretation in the following sections.

Perhaps more importantly, natural selection itself is

inherently an inductive process by which information

accumulates in populations. Nature does not intrinsically

‘know’ of fitness parameters. Instead, frequency changes

and the mappings between ancestor and descendant are

inherent in a population’s response to the environment,

leading to a sequence of population states, each separated

by an evolutionary distance. That evolutionary distance

provides information that populations accumulate induc-

tively about the fitnesses of each phenotype (Frank,

2009). The Price equation includes both the deductive

and inductive perspectives. We may choose to interpret

the equation in either way depending on our goals of

analysis.

Abstract properties: invariance

The Price equation describes selection by the termP
ðDqiÞzi ¼ Covðw; zÞ=�w. Any instance of evolutionary

change that has the same value for this sum has the same

amount of total selection. Put another way, for any

particular value for total selection, there is an infinite

number of different combinations of frequency changes

and character measurements that will add up to the same

total value for selection. All of those different combina-

tions lead to the same value with respect to the amount

of selection. We may say that all of those different

combinations are invariant with respect to the total

quantity of selection. The deepest insights of science

come from understanding what does not matter, so that

one can also say exactly what does matter – what is

invariant (Feynman, 1967; Weyl, 1983).

The invariance of selection with respect to transfor-

mations of the fitnesses, w, and the phenotypes, z, that

have the same Cov(w,z) means that, to evaluate selec-

tion, it is sufficient to analyse this covariance. At first

glance, it may seem contradictory that the covariance,

commonly thought of as a linear measure of association,

can be a complete description for selection, including

nonlinear processes. Let us step through this issue, first

looking at why the covariance is a sufficient expression of

selection and then at the limitations of this covariance

expression in evolutionary analysis.

Covariance as a measure of distance: definitions

Much of the confusion with respect to covariance and

variance terms in selection equations arises from think-

ing only of the traditional statistical usage. In statistics,

covariance typically measures the linear association

between pairs of observations, and variance is a measure

of the squared spread of observations. Alternatively,

covariances and variances provide measures of distance,

which ultimately can be understood as measures of

information (Frank, 2009). This section introduces the

notation for the geometric interpretation of distance. The

next section gives the main geometric result, and the

following section presents some examples.

The identity
P
ðDqiÞzi ¼ Covðw; zÞ=�w provides the key

insight. It helps to write this identity in an alternative

form. Note from the prior definition q0i ¼ qiwi=�w that

Dqi ¼ q0i � qi ¼ qiðwi=�w � 1Þ ¼ qiai; ð3Þ

where ai ¼ wi=�w � 1 is Fisher’s average excess in fitness,

a commonly used expression in population and quanti-

tative genetics (Fisher, 1930, 1941; Crow & Kimura,

1970). A value of zero means that an entity has average

fitness, and therefore, fitness effects and selection do not

change the frequency of that entity. Using the average

excess in fitness, we can write the invariant expression

for selection asX
ðDqiÞzi ¼

X
qiaizi ¼ Covðw; zÞ=�w: ð4Þ

We can think of the state of the population as the

listing of character states, zi. Thus, we write the popula-

tion state as z ¼ (z1,z2,…). The subscripts run over every

different entity in the population, so the vector z is a

complete description of the entire population. Similarly,

for the frequency fluctuations, Dqi ¼ qiai, we can write

the listing of all fluctuations as a vector, Dq ¼
(Dq1, Dq2,…).
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It is often convenient to use the dot product notation

Dq � z ¼
X
ðDqiÞzi ¼ Covðw; zÞ=�w

in which the dot specifies the sum obtained by multiply-

ing each pair of items from two vectors. Before turning to

some geometric examples in the following section, we

need a definition for the length of a vector. Traditionally,

one uses the definition

kzk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiX

z2
i

q
;

in which the length is the square root of the sum of

squares, which is the standard measure of length in

Euclidean geometry.

Covariance as a measure of distance: examples

A simple identity relates a dot product to a measure of

distance and to covariance selection

Dq � z ¼ kDqk kzk cos / ¼ Covðw; zÞ=�w; ð5Þ
where / is the angle between the vectors Dq and z

(Fig. 1). If we standardize the character vector z ¼ z/||z||,

then the standardized vector has a length of one, ||z|| ¼ 1,

which simplifies the dot product expression of

selection to

Dq � �z ¼ kDqk cos /;

providing the geometric representation illustrated in

Fig. 1.

The covariance can be expressed as the product of a

regression coefficient and a variance term

Covðw; zÞ=�w ¼ bzwVarðwÞ=�w ¼ bwzVarðzÞ=�w; ð6Þ

where the notation bxy describes the regression coef-

ficient of x on y (Price, 1970). This identity shows

that the expression of selection in terms of a regres-

sion coefficient and a variance term is equivalent to

the geometric expression of selection in terms of

distance.

I emphasize these identities for two reasons. First, as

Mazur stated in the epigraph, ‘The heart and soul of

much mathematics consists of the fact that the ‘‘same’’

object can be presented to us in different ways’. If an

object is important, such as natural selection surely is,

then it pays to study that object from different perspec-

tives to gain deeper insight.

Second, the appearance of statistical functions, such

as the covariance and variance, in selection equations

sometimes leads to mistaken conclusions. In the selec-

tion equations, it is better to think of the covariance

and variance terms arising because they are identities

with geometric or other interpretations of selection,

rather than thinking of those terms as summary

statistics of probability distributions. The problem with

thinking of those terms as statistics of probability

distributions is that the variance and covariance are

not in general sufficient descriptions for probability

distributions. That lack of sufficiency for probability

may lead one to conclude that those terms are not

sufficient for a general expression of selection. How-

ever, those covariance and variance terms are suffi-

cient. That sufficiency can be understood by thinking of

those terms as identities for distance or measures of

information (Frank, 2009).

It is true that in certain particular applications of

quantitative genetics or stochastic sampling processes,

z

z

q

q

q
co

s 

q
co

s 

(a)

(b)

Fig. 1 Geometric expression of selection. The plots show the

equivalence of the dot product, the geometric expression and the

covariance, as given in eqn 5. For both plots, z ¼ (1,4) and

z ¼ z/||z|| ¼ (0.24, 0.97). The dashed line shows the perpendicular

between the pattern of frequency changes derived from fitnesses,

Dq, and the phenotypic pattern, z. The vertex of the two vectors

is at the origin (0,0). The distance from the origin to the

intersection of the perpendicular along z is the total amount of

selection, ||Dq|| cos /. (a) The vector of frequency changes that

summarize fitness is Dq ¼ ()0.4, 0.4). The angle between

the vector of frequency changes and the phenotypes is

/ ¼ arccos[(Dq Æ z)/||Dq||] which, in this example, is 1.03 radians

or 59s. In this case, the total selection is ||Dq|| cos / ¼ 0.29. (b) In

this plot, Dq ¼ (0.4, )0.4), yielding an angle / of 121s. The

perpendicular intersects the negative projection of the phenotype

vector, shown as a dashed line, associated with the negative

change by selection of ||Dq|| cos / ¼ )0.29.
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one does interpret the variances and covariances as

summary statistics of probability distributions, usually

the normal or Gaussian distribution. However, it is

important to distinguish those special applications from

the general selection equations.

Invariance and information

For the general selection expression in eqn 5, any

transformations that do not affect the net values

are invariant with respect to selection. For example,

transformations of the fitnesses and associated frequency

changes, Dq, are invariant if they leave unchanged the

distance expressed by Dq � z ¼ Covðw; zÞ=�w. Similarly,

changes in the pattern of phenotypes are invariant to the

extent that they leave Dq Æ z unchanged. These invariance

properties of selection, measured as distance, may not

appear very interesting at first glance. They seem to be

saying that the outcome is the outcome. However, the

history of science suggests that studying the invariant

properties of key expressions can lead to insight.

Few authors have developed an interest in the

invariant qualities of selection. Fisher (1930) initiated

discussion with his fundamental theorem of natural

selection, a special case of eqn 5 (Frank, 1997).

Although many authors commented on the fundamen-

tal theorem, most articles did not analyse the theorem

with respect to its essential mathematical insights about

selection. Ewens (1992) reviewed the few attempts to

understand the mathematical basis of the theorem and

its invariant quantities. Frank (2009) tied the theorem

to Fisher information (Frieden et al., 2001; Frieden,

2004), hinting at an information theory interpretation

that arises from the fundamental selection equation of

eqn 5.

In spite of the importance of selection in many fields of

science, the potential interpretation of eqn 5 with respect

to invariants of information theory has hardly been

developed. I briefly outline the potential connections

here (Frank, 2009). I develop this information perspec-

tive of selection in a later article, along with Fisher’s

fundamental theorem.

To start, define the partial change in phenotype caused

by natural selection as

Ds�z ¼ Dq � z ¼ Covðw; zÞ=�w: ð7Þ

The concept of a partial change caused by natural

selection arises from Fisher’s fundamental theorem

(Fisher, 1930; Price, 1972b; Ewens, 1989; Frank &

Slatkin, 1992). With this definition, we can use eqns 5

and 6 to write

Ds�z ¼ bzwVarðwÞ=�w ¼ �wbzwVarðw=�wÞ: ð8Þ

From eqn 3, we have the definition for the average

excess in fitness ai ¼ wi=�w � 1. Thus, we can expand the

expression for the variance in fitness as

Varðw=�wÞ ¼
X

qi

wi

�w
� 1

� �2

¼
X

qia
2
i :

From eqn 3, we also have the change in frequency in

terms of the average excess, Dqi ¼ qiai, and equivalently,

ai ¼ Dqi/qi, thus

Varðw=�wÞ ¼
X

qi

Dqi

qi

� �2

¼
X Dqiffiffiffiffi

qi
p
� �2

¼Dq̂ � Dq̂;

where Dq̂i ¼ Dqi=
ffiffiffiffi
qi
p

is a standardized fluctuation in

frequency and Dq̂ is the vector of standardized fluctua-

tions. These alternative forms simply express the variance

in fitness in different ways. The interesting result follows

from the fact that

Varðw=�wÞ ¼ Dq̂ � Dq̂ ¼ FðDq̂Þ

is the Fisher information, F, in the frequency fluctua-

tions, Dq̂. Fisher information is a fundamental quantity

in information theory, Bayesian analysis, likelihood

theory and the informational foundations of statistical

inference. Fisher information is a variant form of the

more familiar Shannon and Kullback–Leibler informa-

tion measures, in which the Fisherian form expresses

changes in information.

Once again, we have a simple identity. Although it is

true that Fisher information is just an algebraic rear-

rangement of the variance in fitness, some insight may

be gained by relating selection to information. The

variance form calls to mind a statistical description of

selection or a partial description of a probability distri-

bution. The Fisher information form suggests a relation

between natural selection and the way in which

populations accumulate information (Frank, 2009).

We may now write our fundamental expression for

selection as

Ds�z ¼ �wbzwFðDq̂Þ:

We may read this expression for selection as follows: the

change in mean character value caused by natural

selection, Ds�z, is equal to the total Fisher information in

the frequency fluctuations, F, multiplied the scaling b
that describes the amount of the potential information

that the population captures when expressed in units of

phenotypic change. In other words, the distance Ds�z
measures the informational gain by the population

caused by natural selection.

The invariances set by this expression may be viewed

in different ways. For example, the distance of evolu-

tionary change by selection, Ds�z, is invariant with respect

to many different combinations of frequency fluctua-

tions, Dq̂, and scalings between phenotype and fitness.

Similarly, any transformations of frequency fluctuations

that leave the measure of information, FðDq̂Þ, invariant
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do not alter the scaled change in phenotype caused by

natural selection. The full implications remain to be

explored.

Summary of selection identities

The various identities for the part of total evolutionary

change caused by selection include

Ds�z ¼ Covðw; zÞ=�w

¼ �wbzwVarðw=�wÞ
¼ Dq � z
¼ kDqkkzk cos /

¼ �wbzwðDq̂ � Dq̂Þ
¼ �wbzwFðDq̂Þ: ð9Þ

These forms show the equivalence of the statistical,

geometrical and informational expressions for natural

selection. These general abstract forms make no assump-

tions about the nature of phenotypes and the patterns of

frequency fluctuations caused by differential fitness. The

phenotypes may be squared deviations so that the

average is actually a variance, or the product of mea-

surements on different characters leading to measures of

association, or any other nonlinear combination of

measurements. Thus, there is nothing inherently linear

or restrictive about these expressions.

Selection versus evolution

The previous sections discussed the part of evolutionary

change caused by selection. The full Price equation

(eqn 2) gives a complete and exact expression of total

change, repeated here as

D�z ¼ Covðw; zÞ=�w þ EðwDzÞ=�w ð10Þ
or in terms of the dot product notation as

D�z ¼ Dq � zþ q0 � Dz: ð11Þ
The full change in the phenotype is the sum of the two

terms, which we may express in symbols as

D�z ¼ Ds�z þ DE�z:

Fisher (1930) called the term DE�z the change caused by

the environment (Frank & Slatkin, 1992). However, the

word environment often leads to confusion. The proper

interpretation is that DE�z encompasses everything not

included in the expression for selection. The term is

environmental only in the sense that it includes all those

forces external to the particular definition of the selective

forces for a particular problem.

The DE term is sometimes associated with changes in

transmission (Frank, 1995, 1997, 2012a; Okasha, 2006).

This interpretation arises because E(wDz) is the fitness-

weighted changes in character value between ancestor

and descendant. One may think of changes in character

values as changes during transmission.

It is important to realize that everything truly means

every possible force that might arise and that is not

accounted for by the particular expression for selection.

Lightning may strike. New food sources may appear. The

Price equation in its general and abstract form is a

mathematical identity–what I previously called a math-

ematical tautology (Frank, 1995).

In applications, one considers how to express DE�z, or

one searches for ways to formulate the problem so that

DE�z is zero or approximately zero. This article is not about

particular applications. Here, I simply note that when

one works with Fisher’s breeding value as z, near

equilibria (fixed points), one typically obtains Dz fi 0

and thus E(wDz) fi 0. In other cases, the search for a

good way to express a problem means finding a form of

character measurement that defines z such that charac-

ters tend to remain stable over time, so that Dz fi 0 and

thus E(wDz) fi 0. For applications that emphasize calcu-

lation of complex dynamics rather than a more abstract

conceptual analysis of a problem, methods other than the

Price equation often work better.

Abstract properties: recursion and group
selection

To iterate is human, to recurse, divine (Coplien, 1998).

Essentially, all modern discussions of multilevel selection

and group selection derive from Price (1972a), as

developed by Hamilton (1975). Price and Hamilton noted

that the Price equation can be expanded recursively to

represent nested levels of analysis, for example individ-

uals living in groups.

Start with the basic Price equation as given in eqn 10.

The left side is the total change in average phenotype, �z.

The second term on the right side includes the terms Dzi

in E(wDz) ¼
P

qiwiDzi.

Recall that in defining zi, we specified the meaning of the

index i to be any sort of labelling of set members, subject to

minimal consistency requirements. We may, for example,

label all members of a group by i and measure zi as some

property of the group. If the index i itself represents a set,

then we may consider the members of that set. For

example, zij may be the jth member of the ith set, or we may

say, the ith group. In the abstract mathematical expression,

there is no need to think of the ith group as having any

spatial or biological meaning. However, we may consider i

as a label for spatially defined groups if we wish to do so.

With i defining a group, we may analyse the selection

and evolution of that ith group. The term Dzi becomes the

average change in the z measure for the ith group,

composed of members with values zij. The terms z0ij are

the average property values of the descendants of the jth

entity in the ith group. The descendant entities that

derive from the ith group do not have to form any sort of

group or other meaningful structuring, just as the

original i labelling does not have to refer to group
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structuring in the ancestors. However, we may if we wish

consider descendants of i as retaining some sense of the

ancestral grouping.

Because zi represents an averaging over the entities

j in the ith group, we are assuming the notational

equivalence Dzi ¼ D�zi. From that point of view, for each

group i we may from eqn 10 express the change in the

group mean by thinking of each group as a separate set or

population, yielding for each i the expression

Dzi ¼ D�zi ¼ Covðwi; ziÞ=�wi þ EðwiDziÞ=�wi:

We may substitute this expression for each i into the

E(wDz) ¼
P

qiwiDzi term on the right side of eqn 10. That

substitution recursively expands each change in property

value, Dzi, to itself be composed of a selection term and

property value change term. For each group, i, we now

have expressions for selection within the group,

Covðwi; ziÞ=�wi, and average property value change within

the group, EðwiDziÞ=�wi. If we write out the full expression

for this last term, we obtain

EðwiDziÞ=�wi ¼
X

j

wijDzij=�wi:

In the term Dzij, each labelling, j, may itself be a subgroup

within the larger grouping represented by i. The recur-

sive nature of the Price equation allows another expan-

sion to the characters zijk for the kth entity in the jth

grouping that is nested in the ith group and so on. Once

again, the indexing for levels i, j and k do not have to

correspond to any particular structuring, but we may

choose to use a structuring if we wish.

One could analyse biological problems of group selec-

tion without using the Price equation. Because the Price

equation is a mathematical identity, there are always

other ways of expressing the same thing. However, in the

1970s, when group selection was a very confused subject,

the Price equation’s recursive nature and Hamilton’s

development provided the foundation for subsequent

understanding of the topic. All modern conceptual

insights about group selection derive from Price’s recur-

sive expansion of his abstract expression of selection.

History and alternative expressions
of selection

I have emphasized the general and abstract form of the

Price equation. That abstract form was first presented

rather cryptically by Price (1972a). In that article, Price

described the recursive expansion to analyse group selec-

tion. Apart from the recursive aspect, the more general

abstract properties were hardly mentioned in the study of

Price (1972a) and not developed by others until 1995.

While I was writing my history of Price’s contributions

to evolutionary genetics (Frank, 1995), I found Price’s

unpublished manuscript The nature of selection among

W. D. Hamilton’s papers. Price’s unpublished manuscript

gave a very general and abstract scheme for analysing

selection in terms of set relations. However, Price did not

explicitly connect the abstract set relation scheme to the

Price equation or to his earlier publications (Price, 1970,

1972a).

I had The nature of selection published posthumously as

Price (1995). In my own article, I explicitly developed the

general interpretation of the Price equation as the formal

abstract expression of the relation between two sets

(Frank, 1995).

Price (1970) wrote an earlier article in which he

presented a covariance selection equation that empha-

sized the connection to classical models of population

genetics and gene frequency change. That earlier covari-

ance form lacks the abstract set interpretation and

generally has narrower scope. Preceding Price, Robertson

(1966) and Li (1967) also presented selection equations

that are similar to Price’s (1970) covariance expression.

Robertson’s covariance form itself arises from classical

quantitative genetics and the breeder’s equation, ulti-

mately deriving from the foundations of quantitative

genetics established by Fisher (1918). Li’s form presents a

covariance type of expression for classical population

genetic models of gene frequency change.

One cannot understand the current literature without

a clear sense of this history. Almost all applications of the

Price equation to kin and group selection, and to other

problems of evolutionary analysis, derive from either the

classical expressions of quantitative genetics (Robertson,

1966) or classical expressions of population genetics (Li,

1967).

In the light of this history, criticisms can be confusing

with regard to the ways in which the Price equation is

commonly used. For example, in applications to kin or

group selection, the Price equation mainly serves to

package the notation for the Robertson form of quantita-

tive genetic analysis or the Li form of population genetic

analysis. The Price equation packaging brings no extra

assumptions. In some applications, critics may believe that

the particular analysis lacks enough assumptions to attain

a desired level of specificity. One can, of course, easily add

more assumptions, at the expense of reduced generality.

The following sections briefly describe some alternative

forms of the Price equation and the associated history.

That history helps to place criticisms of the Price equation

and its applications into clearer light.

Quantitative genetics and the breeder’s equation

Fisher (1918) established the modern theory of quanti-

tative genetics, following the early work of Galton,

Pearson, Weldon, Yule and others. The equations of

selection in quantitative genetics and animal breeding

arose from that foundation. Many modern applications of

the Price equation to particular problems follow this

tradition of quantitative genetics. A criticism of these

Price equation applications is a criticism of the central

approach of evolutionary quantitative genetics. Such
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criticisms may be valid for certain applications, but they

must be evaluated in the broader context of quantitative

genetics theory. This section shows the relation between

quantitative genetics and a commonly applied form of

the Price equation (Rice, 2004).

Evolutionary aspects of quantitative genetics devel-

oped from the breeder’s equation

R ¼ Sh2;

in which the response to selection, R, equals the selection

differential, S, multiplied by the heritability, h2. The

separation of selection and transmission is the key to the

breeder’s equation and to quantitative genetics theory.

The covariance term of the Price equation is equivalent

to the selection differential, S, when one interprets the

meaning of fitness and descendants in a particular way.

Suppose that we label each potential parent in the

ancestral population of size N with the index, i. The

initial weighting of each parent in the ancestral popula-

tion is qi ¼ 1/N. Assign to each potential parent a

weighting with respect to breeding contribution,

q0i ¼ qiwi, with fitnesses standardized so that �w ¼ 1

and the wi are relative fitnesses.

With this set-up, ancestors are the initial population of

potential parents, each weighted equally, and descen-

dants are the same population of parents, weighted by

their breeding contribution. The character value for each

individual remains unchanged between the ancestor and

descendant labellings. These assumptions lead to D�z� ¼
Covðw; zÞ, the change in the average character value

between the breeding population and the initial population.

That difference is defined as S, the selection differential.

To analyse the fraction of the selection differential

transmitted to offspring, classical quantitative genetics

follows Fisher (1918) to separate the character value as

z ¼ g + �, with a transmissible genetic component, g, and a

component that is not transmitted, which we may call the

environmental or unexplained component, �. Following

standardregressiontheoryforthissortofexpression,�� ¼ 0.

For a parent with z ¼ g + �, the average character

value contribution ascribed to the parent among its

descendants is z¢ ¼ g, following the idea that g represents

the component of the parental character that is trans-

mitted to offspring. If we assume that the only fluctua-

tions of average character value in offspring are caused

by the transmissible component that comes from parents,

then the genetic component measured by g is sufficient

to explain expected offspring character values. Thus,

Dz ¼ z¢)z ¼ )�, and E(wDz) ¼ )Cov(w,�).
Substituting into the full Price equation from eqn 2

and assuming �w ¼ 1 so that all fitnesses are normalized

D�z ¼ Covðw; zÞ þ EðwDzÞ
¼ Covðw; gÞ þ Covðw; �Þ � Covðw; �Þ
¼ Covðw; gÞ: ð12Þ

The expression D�z ¼ Covðw; gÞ was first emphasized by

Robertson (1966) and is sometimes called Robertson’s

secondary theorem of natural selection. Robertson’s

expression summarizes the foundational principles of

quantitative genetics, as conceived by Fisher (1918) and

developed over the past century (Falconer & Mackay,

1996; Lynch & Walsh, 1998; Hartl, 2006).

It is commonly noted that Robertson’s theorem is

related to the classic breeder’s equation. In particular,

R ¼ D�z ¼ Covðw; gÞ ¼ Covðw; zÞh2 ¼ Sh2;

where R is the response to selection, S ¼ Cov(w,z) is the

selection differential and h2 ¼ Var(g)/Var(z) is a form of

heritability, a measure of the transmissible genetic

component. Additional details and assumptions can be

found in several articles and texts (Crow & Nagylaki,

1976; Frank, 1997; Rice, 2004).

Population genetics and the covariance expression

Price (1970) expressed his original formulation in terms

of gene frequency change and classical population

genetics, rather than the abstract set relations that I have

emphasized. At that time, it seems likely that Price

already had the broader, more abstract theory in hand

and was presenting the population genetics form because

of its potential applications. The article begins

This is a preliminary communication describing applica-

tions to genetical selection of a new mathematical treat-

ment of selection in general.

Gene frequency change is the basic event in biological

evolution. The following equation… which gives frequency

change under selection from one generation to the next for

a single gene or for any linear function of any number of

genes at any number of loci, holds for any sort of

dominance or epistasis, for sexual or asexual reproduction,

for random or nonrandom mating, for diploid, haploid or

polyploid species, and even for imaginary species with

more than two sexes…

Using my notation, Price writes the basic covariance

form

DP ¼ Covðw; pÞ=�w ¼ bwpVarðpÞ=�w: ð13Þ

In a simple application, p could be interpreted as gene

frequency at a single diploid locus with two alleles. Then,

P ¼ �p is the gene frequency in the population, and bwp is

the regression of individual fitness on individual gene

frequency, in which the individual gene frequency is

either 0, 1/2 or 1 for an individual with 0, 1 or 2 copies of

the allele of interest. Li (1967) gave an identical gene

frequency expression in his eqn 4.

In more general applications, one can study a p-score

that summarizes the number of copies of various alleles

present in an individual or in whatever entities are being

tracked. In classical population genetics, the p-score

would be, in Price’s words above, ‘any linear function

of any number of genes at any number of loci’. Here,

linearity means that p is essentially a counting of presence

versus absence of various things within the ith entity.
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Such counting does not preclude nonlinear interactions

between alleles or those things being counted with

respect to phenotype, which is why Price said that the

expression holds for any form of dominance or epistasis.

Hamilton (1970) used Price’s gene frequency form in

his first clear derivations of the direct and the inclusive

fitness models of kin selection theory. Most early appli-

cations of the Price equation used this gene frequency

interpretation.

Price (1970) emphasized that the value of eqn 13 arises

from its benefits for qualitative reasoning rather than

calculation. The necessary assumptions can be seen from

the form given by Price, which is always exact, here

written in my notation

DP ¼ Covðw; pÞ=�w þ EðwDpÞ=�w;

where Dp is interpreted as the change in state between

parental gene frequency for the ith entity and the

average gene frequency for the part of descendants

derived from the ith entity.

In practice, Dp ¼ 0 usually means Mendelian segrega-

tion, no biased mutation and no sampling biases associ-

ated with drift. Most population genetics theory of traits

such as social behaviour typically make those assump-

tions, so that eqn 13 is sufficient with respect to analy-

sing change in gene frequency or in p-scores (Grafen,

1984). However, the direction of change in gene fre-

quency or p-score is not sufficient to predict the direction

of change in phenotype. To associate the direction of

change in p-score with the direction of change in

phenotype, one must make the assumption that pheno-

type changes monotonically with p-score. Such monoto-

nicity is a strong assumption, which is not always met.

For that reason, p-score models sometimes buy simplicity

at a rather high cost. In other applications, monotonicity

is a reasonable assumption, and the p-score models

provide a very simple and powerful approach to under-

standing the direction of evolutionary change.

The costs and benefits of the p-score model are not

particular to the Price equation. Any analysis based on

the same assumptions has the same limitations. The Price

equation provides a concise and elegant way to explore

the consequences when certain simplifying assumptions

can reasonably be applied to a particular problem.

Alternative forms or interpretations
of the full equation

The full Price equation partitions total evolutionary

change into components. Many alternative partitions

exist. A partition provides value if it improves conceptual

clarity or eases calculation.

Which partitions are better than others? Better is

always partly subjective. What may seem hard for me

may appear easy to you. Nonetheless, it would be a

mistake to suggest that all differences are purely

subjective. Some forms are surely better than others for

particular problems, even if better remains hard to

quantify. As Russell (1958, p. 14) said in another context,

‘All such conventions are equally legitimate, though not

all are equally convenient’.

Many partitions of evolutionary change include some

aspect of selection and some aspect of property or

transmission change. Most of those variants arise by

minor rearrangements or extensions of the basic Price

expression. A few examples follow.

Contextual analysis

Heisler & Damuth (1987) introduced the phrase contextual

analysis to the evolutionary literature. Contextual anal-

ysis is a form of path analysis, which partitions causes by

statistical regression models. Path analysis has been used

throughout the history of genetics (Li, 1975). It is a useful

approach whenever one wishes to partition variation

with respect to candidate causes. The widely used

method of Lande & Arnold (1983) to analyse selection

is a particular form of path analysis.

Okasha (2006) argued that contextual analysis is an

alternative to the Price equation. To develop a simple

example, let us work with just the selection part of the

Price equation

�wD�z ¼ Covðw; zÞ:
A path (contextual) analysis refines this expression by

partitioning the causes of fitness with a regression

equation. Suppose we express fitness as depending on

two predictors: the focal character that we are studying, z,

and another character, y. Then we can write fitness as

w ¼ bwzz þ bwyyþ �

in which the b terms are partial regressions of fitness on

each character, and � is the unexplained residual of

fitness. Substituting into the Price equation, we get the

sort of expression made popular by Lande & Arnold

(1983)

�wD�z ¼ bwzVarðzÞ þ bwyCovðy; zÞ:

If the partitioning of fitness into causes is done in a

useful way, this type of path analysis can provide

significant insight. I based my own studies of natural

selection and social evolution on this approach (Frank,

1997, 1998).

Authors such as Okasha (2006) consider the partition-

ing of fitness into distinct causes as an alternative to the

Price equation. If one thinks of the character z in

Cov(w,z) as a complete causal explanation for fitness,

then a partition into separate causes y and z does indeed

lead to a different causal understanding of fitness. In that

regard, the Price equation and path analysis lead to

different causal perspectives.

One can find articles that use the Price equation and

interpret z as a lone cause of fitness (see Okasha, 2006).

Thus, if one equates those specific applications with the
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general notion of the Price equation, then one can say that

path or contextual analysis provides a significantly different

perspective from the Price equation. To me, that seems

like a socially constructed notion of logic and mathemat-

ics. If someone has applied an abstract truth in a specific

way, and one can find an alternative method for the

same specific application that seems more appealing,

then one can say that the alternative method is superior

to the general abstract truth.

The abstract Price equation does not compel one to

interpret z strictly as a single-cause explanation. Rather,

in the general expression, z should always be interpreted

as an abstract placeholder. Path (contextual) analysis

follows as a natural extension of the Price equation, in

which one makes specific models of fitness expressed by

regression. It does not make sense to discuss the Price

equation and path analysis as alternatives.

Alternative partitions of selection and transmission

In the standard form of the Price equation, the fitness

term, w, appears in both components

�wD�z ¼ Covðw; zÞ þ EðwDzÞ:
Frank (1997, 1998) derived an alternative expression

D�z ¼
X

q0iz
0
i �
X

qizi

¼
X

qiðwi=�wÞz0i �
X

qizi

¼
X

qiðwi=�wÞz0i �
X

qiz
0
i þ
X

qiz
0
i �
X

qizi

¼
X

qiðwi=�w � 1Þz0i þ
X

qiðz0i � ziÞ
¼ Covðw; z0Þ=�w þ EðDzÞ: ð14Þ

This form sometimes provides an easier method to

calculate effects. For example, the second term now

expresses the average change in phenotype between

parent and offspring without weighting by fitness effects.

A biased mutational process would be easy to calculate

with this expression – one only needs to know about the

mutation process to calculate the outcome. The new

covariance term can be partitioned into meaningful

components with minor assumptions (Frank, 1997,

p. 1721), yielding

Covðw; z0Þ ¼ Covðw; zÞbz0z ;

where bz¢z is usually interpreted as the offspring–parent

regression, which is a type of heritability. Thus, we may

combine selection with the heritability component of

transmission into the covariance term, with the second

term containing only a fitness-independent measure of

change during transmission.

Okasha (2006) strongly favoured the alternative par-

tition for the Price equation in eqn 14, because it

separates all fitness effects in the first term from a pure

transmission interpretation of the second term. In my

view, there are costs and benefits for the standard Price

equation expression compared with eqn 14. One gains by

having both and using the particular form that fits a

particular problem.

For example, the term E(Dz) is useful when one has to

calculate the effects of a biased mutational process that

operates independently of fitness. Alternatively, suppose

most individuals have unbiased transmission, such that

Dz ¼ 0, whereas very sick individuals do not reproduce

but, if they were to reproduce, would have a very biased

transmission process. Then E(Dz) differs significantly

from zero, because the sick, nonreproducing individuals

appear in this term equally with the reproducing popu-

lation. However, the actual transmission bias that occurs

in the population would be zero, E(wDz) ¼ 0, because all

reproducing individuals have nonbiased transmission.

Both the standard Price form and the alternative in

eqn 14 can be useful. Different scenarios favour different

ways of expressing problems. I cannot understand why

one would adopt an a priori position that unduly limits

one’s perspective.

Extended set mapping expression

The Price equation’s power arises from its abstraction of

selection in terms of mapping relations between sets

(Frank, 1995; Price, 1995). Although the Price equation

is widely cited in the literature, almost no work has

developed the set mapping formalism beyond the

description given in the initial publications. I know of

only one article.

Kerr & Godfrey-Smith (2009) noted that, in the

original Price formulation, every descendant must derive

from one or more ancestors. There is no natural way for

novel entities to appear. In applications, new entities

could arise by immigration from outside the system or, in

a cultural interpretation, by de novo generation of an

idea or behaviour.

Kerr & Godfrey-Smith (2009) present an extended

expression to handle unconnected descendants. Their

formulation depends on making explicit the connection

number between each individual ancestor and each

individual descendant, rather than using the fitnesses of

types. Some descendants may have zero connections.

With an explicit description of connections, an

extended Price equation follows. The two core compo-

nents of covariance for selection and expected change for

transmission occur, plus a new factor to account for

novel descendants unconnected to ancestors.

The notation in Kerr & Godfrey-Smith (2009) is

complex, so I do not repeat it here. Instead, I show a

simplified version. Suppose that a fraction p of the

descendants are unconnected to ancestors. Then, we can

write the average trait value among descendants as

�z 0 ¼ p
X

ajz
�
j þ ð1� pÞ

X
q0iz
0
i ;

where z�j is the phenotype for the jth member of the

descendant population that is unconnected to ancestors

and aj is the frequency of each unconnected type, with
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P
aj ¼ 1. Given those definitions, we can proceed with

the usual Price equation expression

D�z ¼ �z0 � �z

¼ p
X

ajz
�
j þ ð1� pÞ

X
q0iz
0
i � ðpþ 1� pÞ

X
qizi

¼ ð1� pÞ
X

q0iz
0
i �
X

qizi

� �
þ p

X
ajz
�
j �

X
qizi

� �
:

Note that the term weighted by 1)p leads to the standard

form of the Price equation, so we can write

D�z ¼ ð1� pÞ Covðw; zÞ þ EðwDzÞð Þ=�w

þ p
X

ajz
�
j �

X
qizi

� �
¼ ð1� pÞ Covðw; zÞ þ EðwDzÞð Þ=�w þ p �z� � �zð Þ:

In the component weighted by p, no connections exist

between the descendant z�j and a member of the ancestral

population. Thus, we have no basis to relate those terms

to fitness, transmission or property change. Kerr &

Godfrey-Smith (2009) use an alternative notation that

associates all entities with their number of connections,

including those with zero. The outcome is an extended

set mapping theory for evolutionary change. The main

concepts and the value of the approach are best

explained by the application presented in the next

section.

Gains and losses in descendants and ancestors

Fox & Kerr (2012) analyse changes in ecosystem function

by modifying the method of Kerr & Godfrey-Smith

(2009). They measure ecosystem function by summing

the functional contribution of each species present in an

ecosystem. To compare ecosystems, they consider an

initial site and a second site. When comparing ecosys-

tems, the notion of ancestors and descendants may not

make sense. Instead, one appeals to the more general set

mapping relations of the Price equation.

Assume that there is an initial site with total function

T ¼
P

zi, where zi is the function of the ith species. At the

initial site, there are s different species; thus, we may also

express the total as T ¼ s�z, where �z is the average

function per species. At a second site, total function is

T 0 ¼
P

z0j , with s¢ different species in the summation and

T 0 ¼ s0�z0. Let the number of species in common between

the sites be sc. Thus, the initial site has S ¼ s ) sc unique

species, and the second site has S¢ ¼ s¢ ) sc unique species.

Fox & Kerr (2012) write the change in total ecosystem

function as

DT ¼ T 0 � T ¼ s0�z0 � s�z

¼ ðs0 � scÞ�z0 � ðs� scÞ�z þ sc �z0 � �zð Þ
¼ S0�z0 � S�z þ scðD�zÞ:

The term S0�z 0 represents the change in function that

caused the gain of an average species, in which S¢ is the

number of newly added species, and �z0 is the average

function per species. Fox & Kerr (2012) suggest that a

randomly added species would be expected to function as

an average species, and so interpret this term as the

contribution of random species gain. The term S�z is

interpreted similarly as random species loss with respect

to the S unique species in the first ecosystem not present

in the second ecosystem.

Fox & Kerr (2012) partition the term scðD�zÞ into three

components of species function: deviation from the

average for species gained at the second site; deviation

from the average for species lost from the first site; and

the changes in function for those species in common

between sites.

The point here concerns the approach rather than the

theory of ecosystem function. To analyse changes

between two sets, one often benefits by an explicit

decomposition of the relations between the two sets. The

original Price equation is one sort of decomposition,

based on tracing the ways in which descendants derive

from and change with respect to ancestors. Fox & Kerr

(2012) extend the decomposition of change by set

mapping to include specific components that make sense

in the context of changes in ecosystem function.

More work on the mathematics of set mapping and

decomposition would be very valuable. The Price equa-

tion and the extensions by Kerr, Godfrey-Smith and

Fox show the potential for thinking carefully about the

abstract components of change between sets and how to

apply that abstract understanding to particular problems.

Other examples

No clear guidelines determine what constitutes an exten-

sion to the Price equation. From a broad perspective, many

different partitions of total change have similarities,

because they separate something like selection from other

forces that alter the similarity between populations.

For example, the stochastic effects of sampling and drift

create a distribution of descendant phenotypes around

the ancestral mean. In the classical Price formulation,

there is only the single realization of the actual descen-

dants. A stochastic version analyses a collection of

possible descendant sets over some probability distribu-

tion and a mapping from the ancestor set to each possible

realization of the descendant set.

In other cases, partitions will split components more

finely or add new components not in Price’s formulation.

I do not have space to review every partition of total

change and consider how each may be related to Price’s

formulation. I list a few examples here.

Grafen (1999) and Rice (2008) developed stochastic

approaches. Grafen (2007) based a long-term project on

interpretations and extensions of the Price equation. Page &

Nowak (2002) related the Price equation to various other

evolutionary analyses, providing some minor extensions.

Wolf et al. (1998), Bijma & Wade (2008), and many

others developed extended partitions by splitting causes

with regression or similar methods such as path analysis.
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Various forms of the Price equation have been applied in

economic theory (Andersen, 2004).

Difficulties with various critiques
of the Price equation

A reliable way to make people believe in falsehoods is

frequent repetition, because familiarity is not easily distin-

guished from truth (Kahneman, 2011, p. 62).

One must distinguish the full, exact Price equation from

various derived forms used in applications. The derived

forms always make additional assumptions or express

approximate relations (Frank, 1997). Each assumption

increases specificity and reduces generality in relation to

particular goals.

Critiques of the Price equation rarely distinguish the

costs and benefits of particular assumptions in relation to

particular goals. I use van Veelen’s recent series of papers

as a proxy for those critiques. That series repeats some of

the common misunderstandings and adds some new ones.

Nowak recently repeated van Veelen’s critique as the basis

for his commentary on the Price equation (van Veelen,

2005; Nowak et al., 2010; van Veelen et al., 2010; Nowak &

Highfield, 2011; van Veelen, 2011; van Veelen et al.,

2012).

Dynamic sufficiency

The Price equation describes the change in some mea-

surement, expressed as D�z. Change is calculated with

respect to particular mapping relations between ancestor

and descendant populations. We can think of the

mappings and the beginning value of �z as the initial

conditions or inputs and D�z as the output.

The output, �z0 ¼ �z þ D�z, does not provide enough

information to iterate the calculation of change to get

another value of D�z starting with �z0. We would also need

the mapping relations between the new descendant

population and its subsequent descendants. That infor-

mation is not part of the initial input. Thus, we cannot

study the dynamics of change over time without addi-

tional information.

This limitation with regard to repeated iteration is

called a lack of dynamic sufficiency (Lewontin, 1974).

Confusion about the nature of dynamic sufficiency in

relation to the Price equation has been common in the

literature. In Frank (1995, pp. 378–379), I wrote

It is not true, however, that dynamic sufficiency is a

property that can be ascribed to the Price Equation—this

equation is simply a mathematical tautology for the

relationship among certain quantities of populations.

Instead, dynamic sufficiency is a property of the assump-

tions and information provided in a particular problem, or

added by additional assumptions contained within numer-

ical techniques such as diffusion analysis or applied

quantitative genetics. … What problems can the Price

equation solve that cannot be solved by other methods?

The answer is, of course, none, because the Price Equation

is derived from, and is no more than, a set of notational

conventions. It is a mathematical tautology.

I showed how the Price equation helps to define the

necessary conditions for dynamic sufficiency. Once

again, the Price equation proves valuable for clarifying

the abstract structure of evolutionary analysis.

Compare my statement with that of van Veelen et al.

(2012)

Dynamic insufficiency is regularly mentioned as a draw-

back of the Price equation (see for example Frank, 1995;

Rice, 2004). We think that this is not an entirely accurate

description of the problem. We would like to argue that the

perception of dynamic insufficiency is a symptom of the

fundamental problem with the Price equation, and not just

a drawback of an otherwise fine way to describe evolution.

To begin with, it is important to realize that the Price

equation itself, by its very nature, cannot be dynamically

sufficient or insufficient. The Price equation is just an

identity. If we are given a list of numbers that represent a

transition from one generation to the next, then we can fill

in those numbers in both the right and the left hand side of

the Price equation. The fact that it is an identity guarantees

that the numbers that appear on both sides of the equality

sign are the same. There is nothing dynamically sufficient

or insufficient about that (this point is also made by

Gardner et al., 2007, p. 209). A model, on the other hand,

can be dynamically sufficient or insufficient.

This quote from van Veelen et al. (2012) demonstrates

an interesting approach to scholarship. They first

cite Frank as stating that dynamic insufficiency is a

drawback of the Price equation. They then disagree with

that point of view and present as their own interpretation

an argument that is nearly identical in concept and

phrasing to my own statement in the very paper that

they cited as the foundation for their disagreement.

In this case, I think it is important to clarify the

concepts and history, because influential and widely

cited authors, such as Nowak, are using van Veelen’s

articles as the basis for their own critiques of the Price

equation and approaches to fundamental issues of

evolutionary analysis.

With regard to dynamics, any analysis achieves the same

dynamic status given the same underlying assumptions.

The Price equation, when used with the same underlying

assumptions as population genetics, has the same attri-

butes of dynamic sufficiency as population genetics.

Interpretation of covariance

van Veelen et al. (2012) claim that

Maybe the most unfortunate thing about the Price equa-

tion is that the term on the right hand side is denoted as a

covariance, even though it is not. The equation thereby

turns into something that can easily set us off in the wrong

direction, because it now resembles equations as they

feature in other sciences, where probabilistic models are

used that do use actual covariances.
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One can see the covariance expression in the standard

form of the Price equation given in eqn 2. In the Price

equation, the covariance is measured with respect to the

total population; in other words, it expresses the associ-

ation over all members of the population. In many

statistical applications, one only has data on a subset of

the full population, that subset forming a sample. It is

important to distinguish between population measures

and sample measures, because they refer to different

things.

Price (1972a, p. 485) made clear that his equation is

about total change in entire populations, so the covari-

ance is interpreted as a population measure

[W]e will be concerned with population functions and

make no use of sample functions, hence we will not

observe notational conventions for distinguishing popula-

tion and sample variables and functions.

In addition to population and sample measures, covari-

ance also arises in mathematical models of process.

Suppose, for example, that I develop a model in which

random processes influence fitness and random processes

influence phenotype. If the random fluctuations in

fitness and the random fluctuations in phenotype are

associated, the random variables of fitness and phenotype

would covary. All of these different interpretations of

covariance are legitimate; they simply reflect different

situations.

Discussion

In Frank (1995), I wrote: ‘What problems can the Price

equation solve that cannot be solved by other methods?

The answer is, of course, none, because the Price

Equation is derived from, and is no more than, a set of

notational conventions. It is a mathematical tautology’.

Nowak & Highfield (2011) and van Veelen et al. (2012)

emphasize the same point in their critique of the Price

equation, although they present the argument as a novel

insight without attribution. Given that the Price equation

is a set of notational conventions, it cannot uniquely

specify any predictions or insights. A particular set of

assumptions leads to the same predictions, no matter

what notational conventions one uses. The Price equa-

tion is a tool that sometimes helps in analysis or in seeing

general connections between apparently disparate ideas.

For many problems, the Price equation provides no

value, because it is the wrong tool for the job.

If the Price equation is just an equivalence, or

tautology, then why am I enthusiastic about it? Math-

ematics is, in its essence, about equivalences, as

expressed beautifully in the epigraph from Mazur. Not

all equivalences are interesting or useful, but some are,

just as not all mathematical expressions are interesting or

useful, but some are.

That leads us to the question of how we might know

whether the Price equation is truly useful or a mere

identity? It is not always easy to say exactly what makes an

abstract mathematical equivalence interesting or useful.

However, given the controversy over the Price equation,

we should try. Because there is no single answer, or even a

truly unique and unambiguous question, the problem

remains open. I list a few potential factors.

‘[A] good notation has a subtlety and suggestiveness

which at times make it seem almost like a live teacher’

(Russell, 1922, pp. 17–18). Much of creativity and

understanding comes from seeing previously hidden

associations. The tools and forms of expression that we

use play a strong role in suggesting connections and are

inseparable from cognition (Kahneman, 2011). Equiva-

lences and alternative notations are important.

The various forms of the covariance component from

the Price equation given in eqn 9 show the equivalence

of the statistical, geometrical and informational expres-

sions for natural selection. The recursive form of the full

Price equation provides the foundation for all modern

studies of group selection and multilevel analysis. The

Price equation helped in discovering those various

connections, although there are many other ways in

which to derive the same relations.

Hardy (1967) also emphasized the importance of seeing

new connections between apparently disparate ideas:

We may say, roughly, that a mathematical idea is ‘signif-

icant’ if it can be connected, in a natural and illuminating

way, with a large complex of other mathematical ideas.

Thus a serious mathematical theorem, a theorem which

connects significant ideas, is likely to lead to important

advances in mathematics itself and even in other sciences.

What sort of connections? One type concerns the

invariances discovered or illuminated by the Price equa-

tion. I discussed some of those invariances in an earlier

section, particularly the information theory interpreta-

tion of natural selection through the measure of Fisher

information (Frank, 2009). Fisher’s fundamental theo-

rem of natural selection is a similar sort of invariance

(Frank, 2012b). Kin selection theory derives much of its

power by identifying an invariant informational quantity

sufficient to unify a wide variety of seemingly disparate

processes (Frank, 1998, Chapter 6). The interpretation of

kin selection as an informational invariance has not been

fully developed and remains an open problem.

Invariances provide the foundation of scientific

understanding: ‘It is only slightly overstating the case

to say that physics is the study of symmetry’ (Anderson,

1972). Invariance and symmetry mean the same thing

(Weyl, 1983). Feynman (1967) emphasized that invari-

ance is The Character of Physical Law. The commonly

observed patterns of probability can be unified by the

study of invariance and its association with measure-

ment (Frank & Smith, 2010, 2011). There has been little

effort in biology to pursue similar understanding of

invariance and measurement (Frank, 2011; Houle et al.,

2011).
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Price argued for the great value of abstraction, in the

sense of the epigraph from Mazur. In Price (1995)

[D]espite the pervading importance of selection in science

and life, there has been no abstraction and generalization

from genetical selection to obtain a general selection theory

and general selection mathematics. Instead, particular

selection problems are treated in ways appropriate to

particular fields of science. Thus one might say that

‘selection theory’ is a theory waiting to be born—much as

communication theory was 50 years ago. Probably the

main lack that has been holding back any development of a

general selection theory is lack of a clear concept of the

general nature or meaning of ‘selection’.

This article has been about the Price equation in

relation to its abstract properties and its connections to

various topics, such as information or fundamental

invariances. Some readers may feel that those aspects

of abstraction and invariance are nice, but far from

daily work in biology. What of the many applications

of the Price equation to kin or group selection? Do

those applications hold up? How much value has been

added?

Because the Price equation is a tool, one can always

arrive at the same result by other methods. How well the

Price equation works depends partly on the goal and

partly on the fit of the tool to the problem. There is

inevitably a strongly subjective aspect to deciding about

how well a tool works. Nonetheless, hammers truly are

good for nails and bad for screws. For valuing tools, there

is a certain component that should be open to agreement.

For example, the Robertson (1966) form of the Price

equation is widely regarded as the foundational method

for analysing models of evolutionary quantitative genetics.

However, not all problems in quantitative genetics are

best studied with the Robertson–Price equation. And not

all problems in social evolution benefit from a Price

equation approach.

The Price equation or descendant methods have led to

many useful models for kin selection (Frank, 1998). The

most powerful follow a path analysis decomposition of

causes or use a simple maximization method to analyse

easily what would otherwise have been difficult. I will

return to those applications in subsequent articles.
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Abstract

The equations of evolutionary change by natural selection are commonly

expressed in statistical terms. Fisher’s fundamental theorem emphasizes the

variance in fitness. Quantitative genetics expresses selection with covari-

ances and regressions. Population genetic equations depend on genetic vari-

ances. How can we read those statistical expressions with respect to the

meaning of natural selection? One possibility is to relate the statistical

expressions to the amount of information that populations accumulate by

selection. However, the connection between selection and information the-

ory has never been compelling. Here, I show the correct relations between

statistical expressions for selection and information theory expressions for

selection. Those relations link selection to the fundamental concepts of

entropy and information in the theories of physics, statistics and communi-

cation. We can now read the equations of selection in terms of their natural

meaning. Selection causes populations to accumulate information about the

environment.

There are difficulties in applying information theory

in genetics. They arise principally, not in the transmis-

sion of information, but in its meaning (Maynard

Smith, 2000, p. 181).

Introduction

I show that natural selection can be described by the

same measure of information that provides the concep-

tual foundations of physics, statistics and communica-

tion. Briefly, the argument runs as follows. The

classical models of selection express evolutionary rates

in proportion to the variance in fitness. The variance in

fitness is equivalent to a symmetric form of the Kull-

back–Leibler information that the population acquires

about the environment through the changes in gene

frequency caused by selection.

Kullback–Leibler information is closely related to

Fisher information, likelihood and Bayesian updating

from statistics, as well as Shannon information and the

measures of entropy that arise as the fundamental

quantities of communication theory and physics. Thus,

the common variances and covariances of evolutionary

models are equivalent to the fundamental measures of

information that arise in many different fields of study.

In Fisher’s fundamental theorem of natural selection,

the rate of increase in fitness caused by natural selec-

tion is equal to the genetic variance in fitness. Equiva-

lently, the rate of increase in fitness is proportional to

the amount of information that the population acquires

about the environment (Frank, 2009).

In my view, information is a primary quantity with

intuitive meaning in the study of selection, whereas

the genetic variance just happens to be an algebraic

equivalence for the measure of information. The history

of evolutionary theory has it backwards, using statistical

expressions of variances and covariances in place of the

equivalent and more meaningful expressions of infor-

mation. To read the fundamental equations of evolu-

tionary change, one must learn to interpret the

standard expressions of variances and covariances as

expressions of information.
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Box 1: Topics in the theory of natural selection

This article is part of a series on natural selection.

Although the theory of natural selection is simple, it

remains endlessly contentious and difficult to apply. My

goal is to make more accessible the concepts that are so

important, yet either mostly unknown or widely misun-

derstood. I write in a nontechnical style, showing the key

equations and results rather than providing full deriva-

tions or discussions of mathematical problems. Boxes list

technical issues and brief summaries of the literature.

Overview

The first section reviews the classic statistical expressions

for selection. Evolutionary change caused by selection is

the covariance between fitness and character value.

That covariance equals the regression of character value

on fitness multiplied by the variance in fitness.

The second section expresses selection in terms of

the classic equations from information theory (Box 2).

I show that the change in the mean logarithm of fitness

is the Jeffreys information divergence. That divergence

measures the accumulation of information by natural

selection between the initial population and the

population after it has been updated by selection. The

relations between the statistical and information

perspectives follow by connecting the classic statistical

expressions of selection to the new information descrip-

tion for selection.

The third section analyses the Jeffreys divergence as

the measure of information in the fundamental equa-

tions of selection. The Jeffreys divergence is the sum of

two expressions for relative entropy. Relative entropy,

known as the Kullback–Leibler divergence, measures

the gain in information with regard to an abstract and

universal notion of encoding, independently of the

meaning of that information. A universal, abstract mea-

sure of information in terms of encoding allows a gen-

eral theory of information to provide the foundation

for the deepest concepts in communication, physics and

statistics.

The fourth section concerns the meaning of informa-

tion. Although encoding provides a useful measure with

regard to information theory, we must also interpret the

meaning of that information in terms of selection. Mean-

ing arises by the relation of encoded information to

whatever scale we use to interpret a particular problem.

For selection, we interpret meaning with regard to char-

acters. Characters may be gene frequencies or measure-

ments made on individuals. Characters lead to a general

notion of the scale for meaning with respect to the scale

of encoded information.

Box 2: Information, entropy and complexity

Cover & Thomas (1991) give an excellent introduction to

information theory and its applications. Jaynes (2003) is a

fascinating analysis of the connections between information,

entropy, probability, Bayesian analysis and statistical infer-

ence. Kullback (1959) is a broad synthesis of information

theory in relation to classical statistics. Fisher’s (1922, 1925)

original papers on the theoretical foundations of statistics set

the basis for all future work on information and statistics,

with the 1925 paper showing the key role of Fisher

information.

Entropy arose in the study of thermodynamics (Clausius,

1867; Boltzmann, 1872; Gibbs, 1902). Ben-Naim (2008a)

gives a simple introduction. Hill (1987) provides a classical

text. Information theory arose in Fisher’s work and sepa-

rately in the study of communication through the analyses

of Hartley (1928) and Shannon (1948a, b). The underlying

concepts of entropy and information are very close. Some

think the concepts are identical, but controversy remains

(Jaynes, 2003; Ben-Naim, 2008b).

Jeffreys (1946) divergence first appeared in an attempt to

derive prior distributions for use in Bayesian analysis rather

than as the sort of divergence used in this article. Kullback

& Leibler (1951) and Kullback (1959) presented both the

asymmetric divergence D, given in eqn 10, which is now

known as the Kullback–Leibler divergence, and the symmet-

ric form, J, given in eqn 12, which is now known as the

Jeffreys divergence. They noted Jeffreys’ previous usage of J

in the context of Bayesian priors and then developed the

importance of the divergence interpretation for statistical

theory, particularly the asymmetric form, D.

I do not discuss Kolmogorov complexity in this article.

However, it is an important concept that may ultimately

prove as interesting for biological applications as the classic

analyses of entropy and information. Kolmogorov com-

plexity measures the information content of an object

(individual) by the shortest binary computer program that

fully describes the object (Cover & Thomas, 1991; Li &

Vitányi, 2008). At the population level, the average Kol-

mogorov complexity often has a close association with the

formal theories of entropy and information, but it is not

exactly the same.

With respect to selection, fitness is, in essence, the match of

characters to environmental challenge. That match depends

on the algorithmic relation between the information content

of an organism and the interpretation of that information

through the development of phenotype. Development is not

exactly like running a computer program encoded in the

genes, but the analogy is not so far off. I suspect that, some-

day, Kolmogorov complexity or related measures will help to

understand biochemical, developmental and evolutionary

processes. A few authors have taken the first steps (Gell-Mann

& Lloyd, 1996; Adami & Cerf, 2000; Adami, 2002).
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The fifth section explicitly connects the abstract scale

of encoded information to the meaningful scale of

information in problems of selection. The analysis leads

to the relation between the Jeffreys divergence, the

most general expression for selection, and Fisher infor-

mation as the limiting form of the Jeffreys divergence

when changes in magnitude are small. Fisher informa-

tion is the sensitivity of changes in abstract encoded

information relative to the distance that one moves

along a scale of meaning. Encoded information is

equivalent to the log-likelihood ratio, which is why

Fisher information provides the conceptual foundations

for the theory of statistics.

The sixth section uses Fisher information to derive

various elegant expressions for selection. For example,

suppose that changes in the average value of a char-

acter sufficiently describe the changes caused by

selection. Then, mean log fitness increases by the

Fisher information in an observation about the aver-

age character value multiplied by the squared change

in the average character value. This expression con-

nects the scale of encoded information, which is

mean log fitness, to the scale of meaning, which in

this case is the average value of a character in the

population.

The seventh section relates the parametric description

of characters to a more general nonparametric expres-

sion. In the previous example, the change caused by

selection was described fully by a change in a parame-

ter, the mean. In the general case, no parametric sum-

mary statistics fully capture the change in populations.

Instead, one must use the full range of different types

in the population, providing a nonparametric descrip-

tion of the change in the distribution of frequencies

caused by selection. The full nonparametric expression

shows the universal applicability of the equations selec-

tion and information.

The eighth section distinguishes changes by selection

from total evolutionary change. Numerous extrinsic

and unpredictable forces beyond selection can change

the characteristics of populations and their fit to the

environment. I show the full expression for evolution-

ary change, placing selection in the broader evolution-

ary context. No general conclusion about total

evolutionary change is possible, because the complete

range of forces that can perturb populations remains

unpredictable. However, we can express an elegant

equilibrium condition. At equilibrium, the gain in

information by selection must be exactly balanced by

the decay in information caused by other evolutionary

forces.

The discussion reviews the main argument. Classic

equations for selection describe the change by statistical

expressions of covariances, variances and regressions.

In terms of encoded information, the change caused by

selection is the Jeffreys divergence. A generalized notion

of Fisher information connects encoded information to

the scale of meaning. By equating the statistical descrip-

tion with the information description, we learn how to

read the fundamental equations of selection in terms of

information.

Classic equations of natural selection

Equations of natural selection are often expressed in

the statistical language of population variances, covari-

ances and regressions. In this section, I show how these

statistical expressions arise from the simplest models of

selection. Later sections connect these classic equations

to the amount of information that a population accu-

mulates by selection.

Textbooks on population genetics and quantitative

genetics present the classic equations of selection (Crow

& Kimura, 1970; Falconer & Mackay, 1996; Roff, 1997;

Futuyma, 1998; Lynch & Walsh, 1998; Charlesworth &

Charlesworth, 2010; Ewens, 2010). Lande developed

the statistical nature of selection equations (Lande,

1979; Lande & Arnold, 1983; Frank, 1997c).

Selection

A simple model starts with n different types of individu-

als. The frequency of each type is qi. Each type has wi

offspring, where w expresses fitness. In the simplest

case, each type is a clone producing wi copies of itself

in each round of reproduction.

The frequency of each type after selection is

q0i ¼ qi

wi

�w

� �
; (1)

where �w ¼
P

qiwi is average fitness. The summation

is over all of the n different types indexed by

the i subscripts. See Box 3 for the proper interpretation

of q0i.
This equation is called a haploid model in classical

population genetics, because it expresses the dynamics

of different alleles at a haploid genetic locus. Recently,

economists, mathematicians and game theorists have

called this expression the replicator equation, because it

expresses in the simplest way the dynamics of replica-

tion (Taylor & Jonker, 1978; Hofbauer & Sigmund,

1998, 2003).

It is often convenient to rewrite eqn 1 as the change

in the frequency of each type, Dqi ¼ q0i � qi. Subtracting

qi from both sides of eqn 1 yields

Dqi ¼ qi

wi

�w
� 1

� �
: (2)

Box 3 describes a universal interpretation of these

equations for selection that transcends the narrow

haploid and replicator models.
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Box 3: Interpretation of q′ and z′

Classical population genetics and replicator equation analyses

interpret q0i in eqn 1 as the frequency of type i in the descen-

dant population. However, selection theory in its most

abstract and general form requires a set mapping interpreta-

tion, in which q0i is the frequency of descendants derived from

type i in the ancestral population. The set mapping interpre-

tation arises from the Price equation (Price, 1972a; Frank,

1995, 1997c, 1998).

Similarly, z0i , developed in eqn 26 and mentioned earlier,

is the average value of the property associated with z among

the descendants derived from ancestors with index i, rather

than the usual interpretation of the character value of i

types in the descendant population. Here, I elaborate briefly

on these interpretations of q0 and z0 by adapting the presen-

tation in Frank (2012b).

Let qi be the frequency of the ith type in the ancestral pop-

ulation. The index i may be used as a label for any sort of

property of things in the set, such as allele, genotype, pheno-

type, group of individuals and so on. Let q0i be the frequencies

in the descendant population, defined as the fraction of the

descendant population that is derived from members of the

ancestral population that have the label i. Thus, if i = 2 speci-

fies a particular phenotype, then q02 is not the frequency of the

phenotype i = 2 among the descendants. Rather, it is the frac-

tion of the descendants derived from entities with the pheno-

type i = 2 in the ancestors. One can have partial assignments,

such that a descendant entity derives from more than one

ancestor, in which case each ancestor gets a fractional assign-

ment of the descendant. The key is that the i indexing is

always with respect to the properties of the ancestors, and

descendant frequencies have to do with the fraction of

descendants derived from particular ancestors.

Given this particular mapping between sets, we can spec-

ify a particular definition for fitness. Let q0i ¼ qiðwi=�wÞ,

where wi is the fitness of the ith type and �w ¼
P

qiwi is

average fitness. Here, wi=�w is proportional to the fraction of

the descendant population that derives from type i entities

in the ancestors.

Usually, we are interested in how some measurement

changes or evolves between sets or over time. Let the mea-

surement for each i be zi. The value z may be the frequency

of a gene, the squared deviation of some phenotypic value

in relation to the mean, the value obtained by multiplying

measurements of two different phenotypes of the same

entity and so on. In other words, zi can be a measurement

of any property of an entity with label, i. The average prop-

erty value is �z ¼
P

qizi, where this is a population average.

The value z0i has a peculiar definition that parallels the

definition for q0i. In particular, z0i is the average measurement

of the property associated with z among the descendants

derived from ancestors with index i. The population average

among descendants is �z 0 ¼
P

q0izi
0.

The Price equation (eqn 26) expresses the total change

in the average property value, D�z ¼ �z 0 � �z, in terms of

these special definitions of set relations. This way of

expressing total evolutionary change and the part of total

change that can be separated out as selection is very dif-

ferent from the usual ways of thinking about populations

and evolutionary change. The set mapping interpretation

allows one to generalize equations of selection theory and

total evolutionary change to a much wider array of prob-

lems than would be possible under the common interpre-

tations of the terms. By following the set mapping

approach, our evaluation of selection and information can

be presented in a much simpler and more general way.

Note that the classic interpretations of the haploid and

replicator models are special cases of the generalized set

mapping expressions.

Characters

Equation 2 describes the change in frequency. How

does selection change the value of characters? Suppose

that each type, i, has an associated character value, zi.

The average character value in the initial population is

�z ¼
P

qizi. The average character value in the descen-

dant population is �z 0 ¼
P

q0iz
0
i , where z0i is the character

value in the descendants (Box 3). For now, assume

that descendants have the same character value as their

parents, z0i ¼ zi. Then, �z 0 ¼
P

q0izi, and the change in the

average value of the character caused by selection is

�z 0 � �z ¼ Ds�z ¼
X

q0izi �
X

qizi ¼
X

q0i � qi

� �
zi;

where Ds means the change caused by selection (Price,

1972b; Ewens, 1989; Frank & Slatkin, 1992). We may

simplify this expression by using Dqi ¼ q0i � qi for

frequency changes

Ds�z ¼
X

Dqizi: (3)

This equation expresses the fundamental concept of

selection (Frank, 2012b). Frequencies change according

to differences in fitness, as given by eqn 2. Thus, eqn 3

is the change in character value caused by differences

in fitness, holding constant the character values, zi.

Later, we will also include the changes in character

values during transmission from parent to offspring,

Dzi ¼ z0i � zi.

Variance, covariance and regression

Many of the classic equations of selection are expressed

in terms of variances, covariances and regressions. I show

the relation between the expression for frequency

changes in eqn 3 and the common statistical expressions

for selection.

Combining eqns 2 and 3 leads to

Ds�z ¼
X

Dqizi ¼
X

qi

wi

�w
� 1

� �
zi:
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On the right-hand side, move the �w term outside

Ds�z ¼
X

qi

wi

�w
� 1

� �
zi ¼

X
qi wi � �wð Þzi=�w: (4)

The definition of the population covariance allows us

to rewrite this equation. Given a population of paired

values ðxi; yiÞ, where each particular pair subscripted by

i occurs at frequency qi, and writing �x as the mean

value in the population of the x values, the population

covariance has the general form

X
qiðxi � �xÞyi ¼ Covðx; yÞ:

Note that the right-hand expression in eqn 4 has

the form of the covariance definition, so we can

write

Ds�z ¼
X

qi wi � �wð Þzi=�w ¼ Covðw; zÞ=�w; (5)

following Price (1970). The standard definition of a

regression coefficient of y on x is the covariance of y

and x divided by the variance of x. Thus, the regression

of fitness, w, on character, z, is
bwz ¼

Covðw; zÞ
Vz

(6)

where Vz denotes the variance of z. This expression

implies Covðw; zÞ ¼ bwzVz . We can also reverse the order

of the regression, Covðw; zÞ ¼ bzwVw. Thus, eqn 5 is

equivalently

Ds�z ¼ bwzVz=�w ¼ bzwVw=�w: (7)

Because z can be the value of any character, we can

use fitness, w, in place of z, yielding

Ds �w ¼ Vw=�w; (8)

where the regression has disappeared because the

regression of a variable on itself is one, thus bww ¼ 1.

This expression shows that the change in mean fitness

is the variance in fitness, normalized by the initial

mean value.

All of these expressions assume that character values

do not change between parent and offspring, Dzi ¼ 0.

As I mentioned, I will take up changes during transmis-

sion in a later section.

Selection expressed as change in
information

This section derives a new result that connects the

change in fitness caused by natural selection to the

amount of information accumulated by the population.

In particular, I express the change caused by selection

in terms of a classical measure of information from for-

mal information theory. Those readers unfamiliar with

information theory will find some new expressions in

this section, presented without explanation. The follow-

ing sections explain the meaning of the expressions

from information theory and the connection to natural

selection. (See Boxes 4–6 for prior work on selection

and information.)

Change in log fitness

Fitness captures the notion of a match between a type

and the environment. We may therefore expect that

fitness is, in some way, an expression of the informa-

tion in the population about the environment. Those

types with high fitness increase in frequency, increasing

the fitness (information) contained in the population.

From eqn 1, we can write the fitness of a type, wi, in

terms of current frequencies, qi, and updated frequencies

after selection, q0i, as

wi ¼ �w
q0i
qi

� �
:

Fitness depends on the ratio of frequencies, q0i=qi.

Entities that depend on ratios have a natural logarithmic

scaling (Hand, 2004). Therefore, we should use the loga-

rithmic scale when analysing fitness (Wagner, 2010).

It is traditional to describe the logarithm of fitness as the

Malthusian expression, mi ¼ logðwiÞ, yielding

mi ¼ logðwiÞ ¼ logð�wÞ þ log
q0i
qi

� �
:

Using z ≡ m as our character in the selection expres-

sion of eqn 4, we have the increase in mean log fitness

by natural selection as

Ds �m ¼
X

Dqilog
q0i
qi

� �
: (9)

An information measure for the change in fitness

Perhaps the most important measure of information in

communication, statistics and physics is the Kullback–
Leibler divergence

Dðq0kqÞ ¼
X

q0ilog
q0i
qi

� �
: (10)

This divergence has directionality from the initial

population, q, to the updated population after selec-

tion, q0 (Box 2). Using this definition for D in the

expression for the change in fitness given in eqn 9,

we obtain

Ds �m ¼ Dðq0kqÞ þ Dðqkq0Þ: (11)

This expression is the sum of Kullback–Leibler diver-

gences taken in each direction between the initial

population, q, and the updated population after selec-

tion, q0. In information theory, this sum is known as

the Jeffreys divergence
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Box 4: Selection and information

No one seems to have provided a full development of the

relations between selection and information. In many

respects, R.A. Fisher created the key concepts. However,

before I start listing aspects of the problem and related cita-

tions, I cannot resist quoting from Li & Vitányi (2008, p. 96)

about the difficulties of attribution. In discussing the name

‘Kolmogorov complexity’ for the discipline of the algorithmic

analysis of complexity, they note that Solomonoff published

the key idea before Kolmogorov, although Kolmogorov later

discovered the idea independently and developed it more

deeply and thoroughly. Ultimately, Kolmogorov got almost

all the credit, perhaps because he was much more famous

than Solomonoff. Li & Vitányi summarize as follows.

Associating Kolmogorov’s name with the area may

be viewed as an example in the sociology of sci-

ence of the Matthew effect, first noted in the Gos-

pel according to Matthew, 25: 29–30, ‘For to every

one who has more will be given, and he will have

in abundance; but from him who has not, even

what he has will be taken away’.

Fisher (1930) discussed the relation of his fundamental

theorem of natural selection to the second law of thermody-

namics, a universal law about changes in entropy. However,

Fisher never came around to an information perspective in

this discussion and, perhaps for that reason, was restrained

in his enthusiasm for the analogy. Alternatively, Fisher’s

restraint may have had to do with the high dimensionality

of the evolutionary problem (Edwards, 2000). However, one

of Fisher’s great contributions in his book was his use of the

average effect to reduce the dimensionality required for

analysing selection. Although Fisher never developed an

information analysis of selection, one must remember that

the modern field of information theory only began with

Shannon’s work on communication (Shannon, 1948a,b).

The use of Fisher information outside of statistical problems

developed later.

The analogy between selection and information is obvious

and has been mentioned often. However, brief mention of

the analogy does not, by itself, provide any real insight

about the connections between information and selection or

new ways in which to understand selection.

Edwards (2000) noted that, in the continuous-time limit,

the fundamental equations of selection can be expressed in

terms of Fisher information. However, he concluded that

the analogy between selection and Fisher information pro-

vides little insight. By contrast, Frieden et al. (2001) argued

that selection expressed in terms of Fisher information is

indeed significant. Although I believe Frieden et al. were on

the right track, their particular analysis and presentation did

not add much. Fisher information is always information

about an underlying scale. Frieden et al. concluded that nat-

ural selection provides a measure of Fisher information

about time, which I think is the wrong scale on which to

interpret meaning. The present article extends the start

made in Frank (2009).

Jðq0; qÞ ¼ Dðq0kqÞ þ Dðqkq0Þ: (12)

Thus, we have the simple expression for the change

in mean log fitness caused by natural selection as

Ds �m ¼ J (13)

where J is shorthand for Jðq0; qÞ. Equating this expres-

sion with eqn 7, using m ≡ z, we have

J ¼ bwmVm=�w ¼ bmwVw=�w; (14)

Thus, the variance in fitness is proportional to the

information divergence, J. The regression terms divided

by �w give the constants of proportionality that adjust for

the different scales of measurement for fitness, w or

m=log(w). This expression shows the relation between

the information accumulated by natural selection, J, and

the traditional statistical expressions of natural selection

in terms of variances and regression coefficients.

The encoding of information

Before continuing to discuss the relation between selec-

tion and information, we need some additional back-

ground about the nature of information. I first describe

an example in which an observation provides informa-

tion. I then discuss how to quantify the amount of infor-

mation. Finally, I analyse the amount of information in a

comparison, which provides the basis for comparing the

information in a population before and after selection.

Statistics and information

In statistical problems, the divergence, D, measures the

amount of information in an observation with respect

to discriminating between two distributions (Kullback,

1959; Cover & Thomas, 1991). Suppose the true under-

lying probability distribution is q0. However, we do not

know whether we are sampling from q0 or an alterna-

tive distribution q. The different distributions may

be associated with different values of a parameter, h0

and h. The parameter may, for example, be the mean

or the variance.

When we take a sample from the true underlying

distribution, q0, how much information do we obtain

about whether the sampled distribution is q0 or q? In

the parametric case, how much information do we

obtain about whether the parameter of the distribution

from which we sampled is h0 or h?
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Box 5: Entropy, information and stochastic evolutionary models

The most interesting development of the theory arises from

stochastic models of evolutionary change framed in terms of

entropy and statistical mechanics. Iwasa (1988) derived a

general expression for ‘free fitness’ by analogy with free

energy and entropy. Iwasa showed the analogy between the

continual increase in free fitness in evolutionary models and

the second law of thermodynamics, by which entropy con-

tinually increases. He also calculated the distributions in

population characteristics as they change under various sto-

chastic models of evolutionary change.

These kinds of stochastic evolutionary models require cer-

tain assumptions in order to achieve continual increase in

entropy or free fitness. There is certainly no universal law

about the increase in fitness in evolution, whereas restricted

notions of selection may have universal properties. I have

drawn a sharp distinction between selection and evolution

in my own analyses. The evolutionary literature does not

always make that distinction so clearly.

de Vladar & Barton (2011a) reviewed the significant

advances in the use of entropy and statistical mechanics to

study evolutionary dynamics, including their own contribu-

tions to the subject (Barton & de Vladar, 2009; de Vladar &

Barton, 2011b). This work on stochastic evolutionary models

may eventually converge with general studies of entropy,

information and dynamics. For example, there has been

recent discussion about a maximum entropy production

(MEP) principle for dynamics (Dewar, 2005; Kleidon, 2010;

Volk & Pauluis, 2010). In the MEP theory, the most likely

dynamical path is associated with the greatest production of

entropy. Further, the probability distribution over dynamical

paths may be a function of the relative entropy production

associated with the different paths.

One may be able to use the distribution of entropy

changes over paths to calculate the stochastic evolution of

populations. Under some conditions, one may be able to

specify the expected probability distribution over types when

the population achieves certain kinds of equilibrium. How-

ever, a full understanding of MEP and its limitations has yet

to be achieved. There may be some relation between

dynamics analysed in terms of Fisher information (Frieden,

2004) and MEP. However, I do not understand the similari-

ties and differences of those approaches.

For each observation, with value associated with the

index i, the relative likelihood of obtaining that obser-

vation from the true distribution, q0, versus the alterna-

tive distribution, q, is the ratio q0i=qi. The log of the

likelihood ratio is logðq0i=qiÞ. Because the true distri-

bution is q0, the actual probability of observing i is q0i.
Thus, averaging the log-likelihood ratio over the proba-

bility of each observed i value gives the average

log-likelihood ratio, which is

Dðq0kqÞ ¼
X

q0ilog
q0i
qi

� �
:

The divergence D is simply the average log-likelihood

ratio, which means an average of the relative weight of

evidence in favour of q0 as the true distribution

compared with q. The greater the ratio of likelihoods,

the greater the divergence between distributions and

the greater the information in each observed value to

discriminate between the distributions.

The scale of information

Clearly, D gives a measure of information provided by

an observed value. But what sort of scale, or units, does

that measure have? If, for example, D ¼ 2, then what

does the value ‘two’ mean?

The Shannon measure of information is commonly

used. That measure is related to entropy, which means

randomness. The more random something is, the less

information we have about it. For example, if a flipped

coin comes up on either side with equal probability, we

say that it is completely random. We also say that we

have no information about which side is likely to come

up. The Shannon measure captures this duality between

increasing randomness and decreasing information or,

equivalently, between decreasing randomness and

increasing information.

The Shannon measure is

HðqÞ ¼ �
X

qi logðqiÞ: (15)

We can use any base for the logarithm. It is some-

times convenient to use base 2, in which case H is the

average number of bits required to encode a message.

This bit-encoding interpretation arises from the fact that

�log2ðqiÞ ¼ log2ð1=qiÞ

expresses the number of bits required to encode a prob-

ability. For example, if qi is 1/32, then �log2ð1=32Þ ¼
log2ð32Þ ¼ 5 bits. A bit is the number of digits in base

two required to express a number. The number 32 in

base 2 is 10000, a bit-string with 5 digits. Each digit is a

bit that takes on a value of either 0 or 1.

To encode a probability 1/32 requires five bits. By

contrast, to encode a probability of 1/2 requires only

log2ð2Þ ¼ 1 bit. It takes four bits more to encode 1/32

compared with 1/2. The key idea is that a rarer event,

with lower probability, q, provides greater surprise

when the event actually occurs. A greater surprise

means a greater distinction from what was expected, a

lower ability to predict, more randomness and less

information. Thus, more bits means more randomness

and less information, providing a scale for measuring

information in terms of bits.
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Box 6: Bayesian interpretations of selection

Bayesian updating combines prior information with new

information to improve prediction. The Bayesian process

makes an obvious analogy with selection. The initial popula-

tion encodes predictions about the fit of characters to the

environment. Selection through differential fitness provides

new information. The updated population combines the

prior information in the initial population with the new

information from selection to improve the fit of the new

population to the environment. I am sure this Bayesian

analogy has been noted many times. But it has never devel-

oped into a coherent framework that has contributed signifi-

cantly to understanding selection.

Part of the problem is that the analogy, as currently

developed, provides little more than a match of labels

between the theory of selection and Bayesian theory. As

Harper (2010) shows, if one begins with the replicator

equation (eqn 1), then one can label the set fqig as the

initial (prior) population, fwi=�wg as the new information

through differential fitness and fq0ig as the updated (pos-

terior) population. Shalizi (2009) presents a similar view.

The analogy provides a useful correspondence between

the structure of the theories but, by itself, does not pro-

vide any truly significant insight into selection. It may be

possible to develop the analogy in useful ways, a chal-

lenge that remains open.

Another Bayesian line of study analyses how individuals

adjust their characters in response to information obtained

directly from the environment. Those studies include learn-

ing, phenotypic plasticity, and various aspects of conditional

development. By one view, learning and other processes

that accumulate information follow Popper’s (1972) dictum

that all new knowledge must ultimately derive from trial

and error, in effect, from selection.

Vast literatures discuss information theoretic and Bayes-

ian interpretations of learning, which are beyond our

scope. In an explicitly selectionist view, Fernando et al.

(2012) analyse theories of neural development in relation

to Bayesian updating – part of the wider field of develop-

mental selection (Frank, 1996, 1997a,b). Closer to the stan-

dard evolutionary interpretation of selection, Donaldson-

Matasci et al. (2010) provide an interesting discussion of

information directly acquired from the environment in

relation to fitness. Frank (1998, section 6.3) used a Bayes-

ian analysis to combine selectively acquired information by

the population as a prior state with new information

acquired directly from the environment (learning).

The number of bits associated with each probability

concerns only that particular probability. How should

we measure the randomness and information over a set

of different possible outcomes? For a distribution, q,

with different probabilities qi for each outcome, i, we

must combine the randomness (bits) associated with

each probability, �log2ðqiÞ, and the chance that the

event i occurs, qi.

In particular, the randomness associated with each

event is the product of how often the event happens

multiplied by the randomness of that event,

�qilog2ðqiÞ. The total over all events is the sum given

in the definition for H(q) in eqn 15, which measures

the total randomness over a set of events.

To understand the notion of total randomness over a

set, we can think of each i as a symbol to be communi-

cated or an event that may occur. A message, or a set

of events, has frequencies qi. In such a set, each

�log2ðqiÞ is the number of bits required to encode each

i, and the event i occurs with frequency qi, so

�qi log2ðqiÞ is the relative cost in terms of bits required

to encode event i. If the message, or set, is highly ran-

dom, it takes more bits to encode the message. High

randomness corresponds to a high average level of sur-

prise per event, which means that we have relatively

little information.

Note that information is the opposite of randomness

and entropy. The measurement of information can be

expressed as the negative entropy, �H.

The information in a comparison

The problem with �H as a measure of information is

that, by itself, it does not give a sense of comparison or

information gain. In the statistical example, we com-

pared two distributions and the information gained to

discriminate between those distributions provided by an

observation. In terms of selection, we will be concerned

with the information gain by a population before and

after evolutionary change, requiring a comparison

between the initial and updated probability distributions

that describe the population before and after selection.

In a comparison, one way to measure a gain in infor-

mation is by the reduction in the number of bits required

to encode, or to predict, the distribution of outcomes in

one population relative to another. A reduced number of

bits corresponds to reduced randomness, and reduced

randomness corresponds to improved prediction and

more information. Thus, we can measure information

gain by the reduction in the number of bits.

To make comparisons, we need an expanded defini-

tion of entropy

Hðr; pÞ ¼ �
X

rilog2ðpiÞ; (16)

where H(r,p) is the entropy in the probability distribu-

tion r when encoded by the associated probabilities p.

This expression may be interpreted by thinking of the

different i values as symbols in an alphabet, the ri as
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the frequency of the symbols in a message and the pi as

the frequencies used to determine the encoding of the

symbols i. Then, H(r,p) is the average number of bits

required to encode a message r in a code based on p.

To compare populations, suppose an updated popula-

tion has probabilities of types (events) q0i, and entropy

Hðq0; q0Þ ¼ Hðq0Þ. By contrast, the entropy of the new

population, when using the encoding of the old

population, q, before new information was acquired, is

Hðq0; qÞ, which is the randomness in the new popula-

tion when encoded by the old frequencies.

In the updated population, the change in information

obtained from the updated encoding is the average

number of bits to encode q0 based on the new frequen-

cies, Hðq0; q0Þ, minus the average number of bits to

encode q0 based on the old frequencies, Hðq0; qÞ, which is

� Hðq0; q0Þ � Hðq0; qÞð Þ ¼
X

q0ilog2ðq0iÞ �
X

q0ilog2ðqiÞ

¼
X

q0ilog2

q0i
qi

� �

¼ Dðq0kqÞ; ð17Þ

where the initial minus sign is used to express negative

entropy, which is information. The term log2ðq0i=qiÞ is

the number of extra bits to encode q0i given a prior

assumption that event i happens with probability qi.

The expression D measures the average number of

extra bits needed when encoding the new population

by the old frequencies rather than with the new,

updated frequencies. Thus, D is the average gain in

information in a population update when measured in

terms of number of bits. A value of D ¼ 2 means that

an efficiency gain of two bits has been achieved by the

extra information provided. Alternatively, we may say

that the new information enhances predictability, such

that the remaining randomness, or unpredictability, has

been reduced by two bits.

Selection and the meaning of information

The encoding interpretation of information is well

known and widely accepted (Kullback, 1959; Cover &

Thomas, 1991). By contrast, a formal interpretation of

natural selection in terms of information has never

been developed in a simple, clear and widely agreed

manner. Here, I give my interpretation of natural selec-

tion and information.

Why J rather than D ?

To analyse the meaning of information with regard to

natural selection, we must begin with the fundamental

expression of selection in terms of information diver-

gence given in eqn 13 as Ds �m ¼ J. That expression

states that the change in mean log fitness is the Jeffreys

divergence, J. Recall the definition of J from eqn 12 as

Jðq0; qÞ ¼ Dðq0kqÞ þ Dðqkq0Þ:

In most statistical and physical applications, measures

of divergence and information typically use D (Cover &

Thomas, 1991). For example, Bayesian updating can

often be expressed in terms of a prior distribution, q, an

updated distribution based on new data, q0, and the

divergence of the updated distribution from the prior,

Dðq0kqÞ. In the Bayesian expression, D describes the

gain in information measured in terms of bits and

interpreted with regard to the efficiency of encoding

information or, equivalently, the reduced randomness

and increased predictability of outcomes.

The measure D is asymmetric, because Dðq0kqÞ 6¼
Dðqkq0Þ. By contrast, J is symmetric, because it is the

sum of the divergence in each direction. The symmetry

in the selection equation arises because, from eqn 9,

we have

Ds �m ¼
X

Dqilog
q0i
qi

� �

¼
X

Dqi logðq0iÞ � logðqiÞ
� 	

¼
X

Dqi DlogðqiÞ½ �: ð18Þ

If we switch q0i and qi, then Dqi changes sign and

DlogðqiÞ also changes sign. The two sign changes cancel.

Thus, we obtain the same information gain when selec-

tion moves a population as q! q0 or in the reverse

direction as q0 ! q.

Fitness in terms of encoded information

The information expression for fitness in eqn 18 is in

terms of logðq0i=qiÞ. Thus, the information gain contin-

ues to be about efficiency of encoding or, equivalently,

the reduced randomness and increased predictability of

outcomes. We could, for example, think of an increase

in mean log fitness as an increase in the population’s

prediction of, or match to, the state of nature – the fit

of the population to the environmental challenge.

This interpretation of fitness in terms of encoding is

universal, in the sense that the particular environmen-

tal challenges and the particular meaning of the gain in

fitness with respect to particular characters do not enter

into the expressions. The universal expression of fitness

and selection in terms of probabilities and encoding

yields the match between changes in mean log fitness

and changes in the classical expressions of information.

Encoding versus meaning

The great power and universality of the classic theory

of information arises because it does not depend on

meaning. Information is formulated strictly in terms of

encoding, bits, randomness and predictability, indepen-

dently of what is being encoded or predicted. Fitness
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obtains the same universality, because fitness uses the

same expressions of relative frequency as the classic

information measures. That universality for fitness

makes sense, because fitness is a general expression for

the way in which populations accumulate information,

independent of the characters and environmental chal-

lenges that distinguish particular cases.

Although it is certainly beneficial to have a universal

expression of fitness in terms of information, we pay for

that universality by the limited scope of fitness expressed

only in terms of encoding. Information is about predict-

ability, and predictability is always predictability about

something. Natural selection must, in some way, be about

the increased information with respect to the environ-

mental challenges that shape success. How can we bring

this particular meaning of the information about envi-

ronmental challenges into the formulation of fitness?

There is perhaps no universal way to express meaning

with respect to information. That may be why the

encoding interpretation has been so valuable. The foll-

owing sections explore two related ways in which to

bring meaning into the information interpretation of fit-

ness. The next section develops the notion of Fisher

information. Later sections present the idea of a coordi-

nate system for information and evolutionary change – a

connection between the Price equation and information.

Natural selection and Fisher information

Shannon information is not really information as

such, but rather the capacity to transmit information,

whereas Fisher information is truly a measure of

informativeness about something specific, the value of

a parameter. Shannon’s refers to the medium, Fisher’s

to the message (Edwards, 2000, p. 6).

We have been working on the scale of encoded infor-

mation. That scale depends only on probability distribu-

tions, without any explicit connection to what sort of

events or meaning attach to the probabilities. Units of

encoded information can be measured in terms of bits.

The following extends Frank (2009).

One way to interpret meaning is to change the scale.

Suppose we could relate bits of encoded information to

a new scale on which we interpret meaning. To relate

the change in information to the change in meaning,

we could evaluate

Dinformation ¼ Dinformation

Dmeaning

� �
Dmeaning: (19)

The relation is trivial when expressed in this way.

However, we can see that the ratio of change in infor-

mation to change in meaning provides the translation

between the two scales.

To make this expression for the relations between

the scales useful, we must connect each of the terms to

our prior discussion of information and to a new way

of describing meaning. That connection leads us to

expressions of natural selection in terms of the fit

of characters to the environment, rather than the

efficiency of encoding information in terms of bits.

Up to this point, I have been writing qi or q0i for the

probability of event i, whatever sort of event or charac-

teristic i may be. The probability distribution is the set of

qi values over the range of possible characters, each pos-

sible character associated with a label i. In this formula-

tion, one can think of the probability distributions as

interpreted nonparametrically, in the sense that we work

directly with the actual distribution of probabilities with-

out reference to any underlying parameters or causes.

Now suppose we associate a set of values, h, with

each probability distribution (Amari & Nagaoka, 2000).

We could think of h as a parameter, for example the

mean of the distribution. Or we could think of h as the

predictions about the environment associated with a

probability distribution. The predictions might be

expressed as characters. The quality of the predictions

could be associated with fitness.

For now, we take h in the general sense of some

values associated with a distribution. To express the

association, we expand our notation for probabilities to

write qijh, the probability of event i given the associated

value h. An updated population may have a new

associated value, h0, such as a new mean or a new

prediction about the environment, so we write q0ijh0.
The change in probability is now expressed as

Dqijh ¼ q0ijh0 � qijh:

To express the scaling of probability changes relative

to changes on the new h scale, we can divide both sides

by the change on the h scale, yielding

Dqijh
Dh
¼ q0ijh0 � qijh

h0 � h
:

This expression gives us a way to match changes on

the scale of meaning, h, to changes on the scale of

probability and encoded information, q.

We can now follow eqn 19 to express the change in

information as the change on the scale of meaning multi-

plied by the change of information scaled relative to the

change in meaning. To develop this expression, we must

continue to match our previous work on information

and selection to the new notation in relation to meaning.

The log-likelihood ratio, logðq0i=qiÞ, can be written as

logðq0iÞ � logðqiÞ, which may be abbreviated as DlogðqiÞ,
as in eqn 18. This difference of logarithms expresses the

change in the number of bits required to encode the

probabilities associated with i (as described below

eqn 17). If we now express probabilities in relation to

h, as q|h, and divide by Dh, we obtain the change in the

number of bits in relation to the change on our scale of

meaning
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logðq0ijh0Þ � logðqijhÞ
h0 � h

¼ DlogðqijhÞ
Dh

:

We can now put the pieces together by relating these

new expressions with the expression in eqn 18 for the

change in mean log fitness, yielding a form equivalent

to the intuitive description in eqn 19 as

Ds �m ¼
JðhÞ
Dh2

Dh2; (20)

in which I write Dh2 ¼ ðDhÞ2 for the square of the change

in the parameter, and the term J(h) is the Jeffreys

divergence, which is now a function of the scale of

meaning, h, and is written as

JðhÞ ¼
X

Dqijhð Þ DlogðqijhÞ½ �: (21)

These expressions simply repeat our prior derivation

of Ds �m ¼ J, but with explicit consideration of h.

As the changes become small, Dh?0, the Jeffreys

divergence, J(h), divided by the squared change in

scale, Dh2, converges to the important quantity in

statistical theory known as Fisher information, F(h),

which we write as

JðhÞ
Dh2
! FðhÞ;

as shown in Appendix A. Thus, for small changes on

the scale of meaning, Dh?0, we may write the change

in average log fitness as

Ds �m ¼ FðhÞDh2: (22)

This derivation provides a more general way to arrive

at my earlier statement that changes in mean fitness

are proportional to Fisher information (Frank, 2009).

Fisher information is the information in an observation

about a parameter, or a set of parameters. In our case,

h represents the parameters, which is our scale of

meaning.

One can also think of Fisher information as the Jeff-

reys divergence between populations, J(h), relative to

the squared divergence on the scale of meaning, Dh2.

Thus, Fisher information is the sensitivity of change in

the encoded information in populations, J(h), relative

to change on the parametric scale of meaning. The

greater the sensitivity, the more information in an

observation with respect to the divergence between

populations on the underlying parametric scale. See

Appendix B for ways in which Fisher information has

been used in previous models of selection.

Parametric coordinates for selection and
information

The change in mean log fitness measures the amount

of information that the population accumulates by

selection. Because fitness describes changes in relative

frequencies, fitness concerns encoding of information,

which can be measured in numbers of bits.

The previous section showed how to convert from

bits to an alternative scaling of information in terms of

h. We may interpret the parameters h as a scale that

has meaning with respect to the fit of the population’s

characteristics to the environment. This section further

analyses the notion of parametric coordinates for selec-

tion and information, followed by an example.

Parametric coordinates and Fisher information

From eqn 20, the key result for the change in mean log

fitness in terms of a parametric scale can be rewritten as

Ds �m

Dh2
¼ JðhÞ

Dh2
! FðhÞ: (23)

Change in mean log fitness is the amount of informa-

tion gained by selection. The ratio Ds �m=Dh2 is the

change in information per unit change in squared dis-

tance on the parametric scale. Because we consider the

parametric scale as the scale of meaning, this ratio is

the change in information relative to the change in

squared distance on the scale of meaning (Amari &

Nagaoka, 2000). The arrow on the right-hand side states

that the relative change in information per unit of

squared parametric distance is the Fisher information in

an observation about the parameter, h.

The interpretation of ‘observation’ with respect to

natural selection is interesting. Each interaction of an

individual with the environment leads to a realized fit-

ness. That realized individual fitness is an observation,

by the population, of the fit between certain character-

istics and the environment. For a particular type, i, the

average information in each observed individual fitness

is logðq0i=qiÞ ¼ DlogðqijhÞ. Thus, the ratio DlogðqijhÞ=Dh is

the change, or sensitivity, of information in an observa-

tion relative to a change in h. To get the average over

all types, i, we weight this information per type by qijh.

To analyse selection, we need the change in frequen-

cies, or sensitivity of those changes, relative to changes

in h, which is Dqijh=Dh. Combining these terms yields

JðhÞ=Dh2 ! FðhÞ.

Change in the mean or variance of a character

A few examples clarify the abstract expressions for infor-

mation. To keep things simple, I assume small changes

so that we can use the Fisher information simplification

in eqn 23. With larger changes, we could make exact

calculations using J(h) instead of Fisher information.

Change in the mean of a normal distribution under
directional selection
Suppose the character values in a population, zi, follow

a normal distribution with mean, l, and variance, v.
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An observation from that population provides informa-

tion about the mean of the population. It is well known

that an observation from a normal population provides

Fisher information about the mean of F(l)=1/v. The

more variable the population, the larger v and the less

information in an observation about the average value.

Put another way, the precision in measurement is

proportional to 1/v. More variable populations yield less

precise measurements and thus less information per

observation about the average value.

We interpret natural selection as obtaining informa-

tion through the observed fitnesses associated with

character values. Suppose that the population retains a

normal shape and a fixed variance before and after

selection and changes only in its mean value. Then, the

change in the mean, Dl, is sufficient to describe the

effects of selection. From eqn 22, the increase in infor-

mation by natural selection is

Ds �m ¼ FðlÞDl2 ¼ Dl2

v
:

This expression provides the relation between the

change in information, Ds �m, which is a universal

abstract quantity about encoding, and the scaling of the

character that gives meaning for this particular case,

Dl2=v.

Change in the variance of a normal distribution under
stabilizing selection
The previous example described directional selection on

the average trait value, holding the variance constant.

This section considers stabilizing selection. In this case,

the population begins with its centre at the optimum.

Selection reduces the variance, but leaves the mean

unchanged. For a normal distribution, the Fisher infor-

mation in an observation about the variance, v, is

1=2v2. Thus,

Ds �m ¼ FðvÞDv2 ¼ Dv2

2v2
;

which is the gain in information when stabilizing selec-

tion reduces the variance of a normally distributed

character.

Change in the mean of an exponential distribution
Suppose the character follows an exponential distribu-

tion before and after selection. An observation from an

exponential population provides Fisher information of

1/v about the mean, l. The variance of an exponential

distribution is v ¼ l2. The change in information by

selection is

Ds �m ¼ FðlÞDl2 ¼ Dl2

v
;

which matches the case of the normal distribution.

However, the variance of the exponential distribution

changes with the mean. By contrast, the normal

distribution has a separate parameter for the variance,

which we held constant by assumption.

Change in allele frequency
Suppose q1 ¼ p is the frequency of a particular allele

and q0 ¼ 1� p is the frequency of the alternative allele.

The distribution of allele frequencies is binomial with a

single observation. The mean allelic value is l = p, and

the variance is v = p(1�p) The Fisher information in an

observation about the mean of a binomial population is

1/v. The change in information by selection is

Ds �m ¼ FðlÞDl2 ¼ Dl2

v
:

Using p for gene frequency to match the familiar

notation of population genetics

Ds �m ¼ FðpÞDp2 ¼ Dp2

pð1� pÞ ;

which holds when Dl=Dp is small. For larger changes,

we can obtain an exact expression by using the Jeffreys

divergence rather than the Fisher information, as in

eqn 23.

Character coordinates and selection

The previous section assumed that the parameters, h,

summarize all differences in the frequency distributions

before and after selection. We can think of h as defining

the coordinate system for evolutionary change. The

reduction of frequencies to a parametric description,

such as the mean of the distribution, typically requires

character values to be associated with the i values. By

convention, we use zi for character values. Thus, if

changes in the mean are sufficient to describe the

changes in the probability distribution of characters in

the population before and after selection, then

l ¼ �z ¼
P

qizi is a reduction of the full distribution of

character values to a single parametric dimension.

Parametric character coordinates

Let us review the use of parametric coordinates before

discussing nonparametric coordinates. In a parametric

example, suppose that frequencies before and after

selection are normally distributed, with parameters (l,v)

for the mean and the variance. Selection moves the

population from the initial location, defined by the

parameters (l,v), to the location after selection, ðl0; v0Þ.
The two parametric dimensions provide a complete

description of change by selection. If we hold one

parameter constant, such as the variance, and only

allow the mean to change, then change in the single

parametric dimension from l to l0 fully describes the

population before and after selection.

Parametric expressions describe the total change in

information by
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Ds �m ¼
DJ

Dh2
Dh2 ! FðhÞDh2:

For example, let the parameter be the mean, h = l.

The term JðlÞ=Dl2 ! FðlÞ reduces the change in the

average information per observation to the single

dimension of l. If we multiply the information per

observation by the distance moved in the parametric

dimension, Dl2, we obtain the total change in infor-

mation. Thus, the calculation for the change in infor-

mation is made along the single parametric dimension

of l.

The parametric dimension of l can be thought of as

the coordinate system in which we evaluate the change

by selection. Each change in position along the coordi-

nate of l corresponds to changes by selection, because

l is a sufficient description for the full frequency distri-

bution of character values. In general, when we can

reduce the description of frequency distributions to a

sufficient set of parameters, h, those parameters form

the coordinates in which we evaluate the changes by

selection.

Nonparametric character coordinates

We can think of our fundamental expression for selection

Ds�z ¼
X

Dqizi

as a nonparametric expression. Each term includes the

actual frequencies in the population. The calculation is

made over the full dimensionality of the frequency

distribution.

The character values, fzig ¼ z1; z2; . . ., form a non-

parametric coordinate system. For the population fre-

quencies, fqig, the point fqizig locates the population

before selection and the point fq0izig locates the popula-

tion after selection. The movement of the population

caused by selection is given by fDqizig.
The expression for the total change in information

caused by selection is

Ds �m ¼ J ¼
X

DqiD logðqiÞ ¼
X

Dqi log
q0i
qi

� �
:

Each frequency change, Dqi, associates with the char-

acter zi ¼ D logðqiÞ, the change in information for the

ith type. This is a nonparametric expression, because

the calculation is made over the full frequency

distribution.

Character coordinates and information

The character values provide the coordinates of meaning

in an analysis of selection. We can derive the relations

between information and the coordinates of meaning by

using the results of eqns 7 and 8. From those equations,

we obtain the relation between the change given the

coordinates of meaning, Ds�z, and the change given the

coordinates of information, Ds �m, as

Ds�z ¼
bzw

bmw

� �
Ds �m: (24)

The term bzw is the regression coefficient of the char-

acter values, z, on the fitnesses, w. The term bmw is the

regression coefficient of the log fitnesses, m, on the fit-

nesses, w. These regressions provide an exact expression

for changing the coordinates from information, Ds �m, to

characters, Ds�z. When the magnitudes of the changes

are small, w?m+1, thus

Ds�z ! bzmDs �m: (25)

To repeat, it is important to recognize a regression

coefficient as an exact expression for the change in

scale associated with a change in coordinates. The

regression is sufficient when evaluating the conse-

quences for a change in coordinates with respect to a

change in mean value.

The underlying values, zi, may themselves be nonlin-

ear functions of other values (Frank, 2012b). For exam-

ple, zi could be the product of different character values

measured on each individual, or the square of some

underlying character. What matters is that we average

over the zi values to get Ds�z.

Character coordinates and total
evolutionary change

The previous analyses have focused on the selection

part of total evolutionary change. I defined selection as

the change caused by frequency differences

Ds�z ¼
X

Dqizi:

The subscript s emphasizes that this expression is the

partial change caused by selection (Price, 1972b; Ewens,

1989; Frank & Slatkin, 1992).

Total change in characters

The partial change arises by holding constant the char-

acter values, such that Dzi ¼ z0i � zi ¼ 0. This assump-

tion fixes the coordinates, zi, and evaluates the

meaning of changing frequencies in the context of that

fixed set of coordinates.

If the coordinates that give meaning also change,

Dzi 6¼ 0, then we must account for that change in

coordinates with respect to the total evolutionary

change. In particular, the total change is the sum of the

change, Ds, caused by selection through varying fre-

quencies, q, holding constant the coordinates, z, plus

the change in coordinates, Dc, holding constant the

new frequencies in the updated population, q0. We

write the total change as

ª 2 0 1 2 T H E A U T H O R . J . E V O L . B I O L . 2 5 ( 2 0 1 2 ) 2 3 7 7 – 2 3 9 6

J O U R N A L O F E V O L U T I O N A R Y B I O L O G Y ª 2 0 1 2 E U R O P E A N S O C I E T Y F O R E V O L U T I O N A R Y B I O L O G Y

Selection and information 2389



D�z ¼ Ds�z þ Dc�z ¼
X

Dqizi þ
X

q0iDzi: (26)

This expression is a form of the Price equation.

I devoted the prior article to a full discussion of this equa-

tion (Frank, 2012b). Here, I focus only on those aspects

that concern information. In particular, I emphasize the

interpretation of z as a coordinate system that gives

meaning to the information basis of natural selection.

Total change in information

The total evolutionary change in eqn 26 can be used to

evaluate information. Let z = m, where the log fitness,

m, provides a measure of the information accumulated

by a population. Thus,

D�m ¼ Ds �mþ Dc �m: (27)

From eqn 13, the selection component of change is

Ds �m ¼ J. In general, no simplified reduction or particu-

lar interpretation is possible for the change in coordi-

nates, Dc �m. That change in coordinates arises from any

environmental or extrinsic factors that may change,

altering the fit of the characters to the environment.

The changes in the frequencies themselves can be an

‘environmental’ change that alters fitnesses (Price,

1972b; Ewens, 1989; Frank & Slatkin, 1992). Thus, no

general expression for total evolutionary change in

fitness is possible other than

D�m ¼ J þ Dc �m:

One can, of course, analyse particular models such as

mutation–selection balance. Mutation decays informa-

tion through changes in fitness that are, on average,

negative, causing a loss of information through the

term Dc �m ¼
P

q0iDmi. The particular loss of information

through Dc �m depends on the specific assumptions. By

contrast, the gain in information through selection is

always Ds �m ¼ J.

Equilibrium balance between information
gain and loss

Many processes lead to an equilibrium balance between

gain of information by selection and decay of informa-

tion by an opposing force (Frank, 2012a). Mutation–
selection balance is one example. Frequency-dependent

selection is another, in which the gain in information

by selection is balanced by the decay of information

(fitness) caused by frequency changes. For example, in

the evolution of sex ratios, making more daughters

may be favoured by selection. But as the number

of daughters increases by selection, the advantage of

making extra daughters decays.

Although we cannot, in general, specify the change

in the coordinate term, Dc �m, we can express the equi-

librium condition, D�m ¼ 0. Under a balance between

information gain by selection and information decay by

change in coordinates,

J ¼ �Dc �m:

It is sometimes possible to analyse particular prob-

lems by using that universal expression for the balance

of forces (Frank & Slatkin, 1990; Frank, 1995).

Evolution of the coordinate system

In the previous sections, I have fixed the particular

dimensions that define the coordinate system. Although

the coordinates may change, Dzi, each dimension i

remained. From a broader perspective, the evolution of

the various dimensions in the coordinate system itself is

perhaps among the most interesting evolutionary prob-

lems. One aspect concerns the origin of new characters

(West-Eberhard, 2003). More generally, one may con-

sider the evolution of the optimal set of characters with

respect to the capture of information.

There is an interesting literature in engineering about

optimal design of sensors with respect to capturing

information. That literature sometimes uses Fisher

information as the optimality criterion with respect to

design (Borguet & Léonard, 2008). Application of that

design perspective with regard to information may pro-

vide insight into biological problems. For example, mul-

tiple cellular receptors may respond to the same sort of

information, such as the concentration of a hormone.

But those receptors may be tuned differently with

regard to sensitivity to signals. A related idea concerns

the common trade-off between informativeness and

simplicity in classification (Kemp & Regier, 2012).

A second aspect of coordinates concerns the paramet-

ric reduction of the full nonparametric distribution of

characters. Reducing the full distribution to the mean is

an extreme reduction and probably not justified in gen-

eral. However, there often may be some suitable reduc-

tion of dimensionality to a sufficient set of parameters

with respect to the acquisition of information (Carter

et al., 2009; Goh et al., 2011). That sufficient set defines

the coordinates of information and meaning followed

by an evolving population. It may be that an improved

parametric representation of information in the envi-

ronment by a set of characters enhances fitness. Thus,

it may be the parametric representation itself that is

under the strongest selection or, at least, a particularly

interesting form of selection.

Discussion

The fundamental equations of selection are often writ-

ten in the statistical terms of variances, covariances and

regressions. I have argued that one obtains a deeper

understanding of selection if one learns to read the

fundamental equations in terms of information. Here,

I review my argument by listing the key steps derived
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in previous sections. I start with the classic statistical

equations of selection. I then show the connection of

those statistical expressions of selection to expressions

for the information that populations accumulate about

the fit of characters to the environment.

Statistical expressions of selection

To understand where the classic statistical expressions

of selection come from and what they mean, let us start

with the basic equation for evolutionary change by

natural selection

Ds�z ¼
X

Dqizi

given in eqn 3. Here, Ds�z is the change caused by selec-

tion in the average value of a character, �z. This expres-

sion applies generally to selection of any value. For

example, z could be gene frequency, leading to popula-

tion genetics expressions, or z could be a quantitative

trait such as weight, or z could be a nonlinear function

of several characters. The Dqi terms are the changes

caused by selection in the frequency of the ith charac-

ter value, zi. Total selection is the total change in

frequencies, with each change caused by selection, Dqi,

weighted by its associated character value, zi.

I showed that one can rewrite the association

between the change caused by selection and the char-

acter value as X
Dqizi ¼ Covðw; zÞ=�w; (28)

a form known as the Price equation and also related to

Robertson’s secondary theorem of natural selection

(Frank, 2012b). This form provides the foundation for

quantitative genetics theory and also arises in standard

models of population genetics. The definition of covari-

ance allows us to rewrite the covariance as the product

of a regression coefficient and a variance term

Ds�z ¼ Covðw; zÞ=�w ¼ bzwVw=�w; (29)

where bzw is the regression of character value, z, on fit-

ness, w, and Vw is the variance in fitness. These sorts of

regression and variance terms arise repeatedly in the

fundamental equations of selection.

One can easily understand why selection depends on

an association between fitness, w, and character value,

z. Those character values associated with higher fitness

will increase, whereas those character values associated

with lower fitness will decrease. But why should the

expression for selection be exactly the covariance, or

the regression multiplied by the variance, which cap-

ture only the linear component of association? The rea-

son is that Ds�z describes selection by a change in

average values. To calculate a change in the average,

we need only the linear component of association

between character and fitness.

These statistical expressions of selection in terms of

covariances, variances and regressions have been very

useful throughout the history of evolutionary theory.

However, these expressions give no sense of what

selection means. To say that selection is the covariance

of fitness and character value is simply to express an

algebraic relation. That algebraic relation is very useful,

but it does not give a sense of what selection is actually

doing with regard to adaptation or how selection relates

to processes in other fields of study. The statistical

expressions do not tell us how to read the fundamental

equations of selection with regard to the meaning of

the underlying process.

Selection in terms of information

In this article, I argued that selection causes populations

to accumulate information about the fit of characters to

the environment. I gave a precise definition of ‘infor-

mation’. That definition of information with respect to

selection matches exactly the classic usage of informa-

tion and entropy from the fundamental theories of

physics, statistics and communication. By showing the

exact relations between selection and information, I

tied the theory of natural selection to the broader con-

ceptual framing of problems at the foundation of many

key scientific disciplines.

I will not repeat the whole argument here. Instead, I list

a few steps to emphasize the essential points. To under-

stand the information associated with selection and fitness,

we must analyse fitness on a logarithmic scale

mi ¼ logðwiÞ ¼ logð�wÞ þ log
q0i
qi

� �
:

The logarithmic scale compares relative magnitudes.

We need relative magnitudes because there is no mean-

ing in the number of babies or the number of copies

produced with regard to whether a type, i, is increasing

or decreasing in the population. We need to know the

relative success. The logarithmic scale is the natural

scale of relative magnitudes.

Using log fitness, m, as the character value of interest

in eqn 28, we obtain

Ds �m ¼
X

Dqimi ¼
X

Dqi log
q0i
qi

� �
:

We recognize the fundamental expression for the

change in information given by the Kullback–Leibler

divergence, or relative entropy, as

Dðq0kqÞ ¼
X

q0i log
q0i
qi

� �
:

Using this definition for change in information, D,

we can express the change in mean log fitness caused

by selection as

Ds �m ¼ Dðq0kqÞ þ Dðqkq0Þ:
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This sum of the changes in information in each direc-

tion is known as the Jeffreys divergence, J. Thus, we

can write the fundamental expression for the accumu-

lation in information by natural selection as

Ds �m ¼ J:

Because z in eqn 29 is just a placeholder for any

character, we can use m in place of z in that equation,

yielding

Ds �m ¼ bmwVw=�w:

Thus, the information accumulated by natural selec-

tion is equivalently expressed in terms of the regression

coefficient and variance

J ¼ bmwVw=�w: (30)

The value of J is the gain in information. The variance

in fitness, Vw, is therefore a measure of the separation

between the initial population and the population after

selection, when the separation between populations is

expressed on a scale of information. The regression

divided by the mean fitness, bmw=�m, is a scaling factor

that translates the measure of information in Vw to the

scale of log fitness, m. That scaling change is required

because log fitness is the proper measure of information

in expressions of selection.

Equation 30 shows the equivalence between the

expression of information gain and the expression of it

in terms of statistical quantities. There is nothing in the

mathematics to favour either an information interpreta-

tion or a statistical interpretation.

I have argued that, when reading the fundamental

equations of selection for meaning, we should prefer

the information interpretation. The information per-

spective makes sense intuitively. Selection is the process

by which populations accumulate information about

the environment.
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Appendix A: Fisher information as the
limiting form of the Jeffreys divergence

A large family of divergence measures converges to

Fisher information in the limit of small changes (Amari

& Nagaoka, 2000; Amari & Cichocki, 2010; Cichocki &

Amari, 2010; Cichocki et al., 2011). In this appendix,

I show that the limit of the Jeffreys divergence is the

Fisher information multiplied by a scaling factor for

parametric distance.

I also show that the chi-square divergence becomes

the Fisher information metric in the limit of small

changes. The different forms of divergence can be con-

fusing if one does not realize that all of the different

divergence measures in the Fisher family are equivalent

in the limit, but differ when changes are not small.

My main point is that the Jeffreys divergence holds

the unique position as the only correct divergence mea-

sure for models of selection. It is the only measure that

is correct both for large changes and, in the limit, for
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small changes. As far as I know, my derivation in this

article of the Jeffreys divergence in relation to selection

has not been shown previously. The clear relation of

the Jeffreys divergence to changes in information is

essential to make the proper connection between selec-

tion and information.

Limiting form of Jeffreys divergence

I show JðhÞ ! FðhÞDh2 as the distance in the parametric

coordinates Dh2 ! 0. Notationally, Dh2 � ðDhÞ2. Using

the standard differential notation for small differences,

we write Dh2 ! dh2. Thus, I show JðhÞ ! FðhÞdh2.

I use the vector h as parametric coordinates for prob-

ability distributions, following standard analysis in

information geometry (Amari & Nagaoka, 2000). For

simplicity, I usually treat the parametric vector as a sin-

gle dimension. The extension to multiple dimensions is

standard.

The Jeffreys divergence in parametric form, from

eqn 21, is

JðhÞ ¼
X

Dqijhð Þ D logðqijhÞ½ �:

As the changes become small, Dqijh ¼ q0ijh0 � qijh! 0

and Dh ¼ h0 � h! 0, we write

Dqijh!dqijh

¼ dqijh
dh

� �
dh

¼ _qidh;

where _qi is the derivative of qijh with respect to h. Next,

D logðqijhÞ !d logðqijhÞ

¼ d logðqijhÞ
dh

� �
dh

¼
_qi

qi

� �
dh;

where, to make the notation more concise, I use

qi � qijh. Thus,

JðhÞ !
X _q2

i

qi

� �
dh2:

Below, I show that
P

_q2
i =qi is Fisher information,

F(h). Thus, JðhÞ ! FðhÞdh2.

Pearson’s chi-square divergence

We have from the previous expression

JðhÞ !
X _q2

i

qi

� �
dh2 ¼

Xdq2
i

qi

: (31)

Pearson’s chi-square divergence, or chi-square test

statistic, is usually described as follows. Given an

expected probability distribution, fqig, and an observed

probability distribution, fq0ig, the chi-square statistic is

the sum of observed minus expected squared over

expected. Writing the observed minus expected squared

as Dq2
i ¼ ðq0i � qiÞ2, we have

v2ðhÞ ¼
XDq2

i

qi

:

As the changes become small,

v2ðhÞ !
X dq2

i

qi

¼
X _q2

i

qi

� �
dh2;

demonstrating that the Jeffreys and chi-square diver-

gences have the same limiting form. The next section

shows that the limiting form is related to the Fisher

information metric.

When changes are large, only the Jeffreys divergence

gives the correct expression for changes by selection in

mean log fitness, Ds �m. The chi-square divergence is the

change in mean fitness on a linear scale

Ds �w ¼
X

Dqiwi ¼
XDq2

i

qi

:

As I discussed in the text, the correct scale for analy-

sing the changes in fitness is logarithmic, because fit-

ness is a relative measure, and logarithmic scaling is the

correct scale for relative measures (Wagner, 2010). In

addition, the relations between selection and informa-

tion are only clear on the logarithmic scale, because it

is only on that scale that one can see the connections

to the classic theories of entropy and information. In

the limit of small changes, the logarithmic scale

becomes linear, and thus, Ds �m! Ds �w.

Alternative expressions for Fisher information

One can think of Fisher information as the change in a

probability distribution with respect to a change in a

parameter that specifies the distribution. The more rap-

idly a distribution changes with respect to a parameter,

the more information each observation provides about

the value of the parameter. For example, if the distribu-

tion changes very slowly, then small differences in the

distribution of observed values may translate into big

differences in parameter values. Thus, approximately

similar distributions of observations map to widely dif-

ferent parameter values, so each observation provides

relatively little information about the parameter. If, by

contrast, the distribution changes rapidly with respect

to a parameter, then the distribution of observations is

very different for small changes in the parameter, and

each observation provides much information about the

likely value of the parameter.
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Mathematically, Fisher information is the negative

value of the expected curvature of the log-likelihood

function

FðhÞ ¼ �
X

qi

d2 logðqijhÞ
dh2

� �
:

Doing the differentiation, and noting (Amari & Naga-

oka, 2000) that

X d2qijh
dh2

¼ d

dh

X dqijh
dh
¼ 0;

because the sum of changes in frequencies must be zero

over a distribution, we obtain

FðhÞ ¼
X _q2

i

qi

:

A large number of different divergence measures

converge to Fisher information in the limit. Thus,

knowing only that the limiting form of a divergence is

Fisher information only weakly constrains the associ-

ated form of divergence. For example, from the expres-

sion above for the chi-square divergence

v2ðhÞ !
X dq2

i

qi

¼
X _q2

i

qi

� �
dh2;

it might be tempting, in a particular application in which

Fisher information arises, to think of the chi-square

divergence as somehow the natural measure of change,

because the chi-square form for large changes most clo-

sely resembles the limiting Fisher information form for

small changes. In the case of selection, that conclusion

would not be correct. The Jeffreys divergence is in fact

the natural measure of change, because the logarithmic

scale is the natural scale for changes in fitness and for

changes in information.

Appendix B: Historical aspects

Kimura (1958) noted that the change in fitness in

certain models of selection is

Ds �m ¼
X _q2

i

qi

: (32)

Kimura used the standard notion of change with

respect to time in his study of continuous dynamics

with respect to small changes. Thus, the parameter is

h≡t for time, and _q ¼ dq=dt.

Ewens (1992) and Edwards (2000) provide compre-

hensive syntheses of the literature on the various uses

of Kimura’s expression,
P

_q2
i =qi. The main use con-

cerned information geometry expressions of selection

dynamics on a Riemannian manifold. Neither Ewens

nor Edwards found that discussion of information

geometry particularly useful. Edwards did note that the

Kimura’s expression is in fact just an expression for

Fisher information. But Edwards did not think that

association was useful.

I agree with the criticisms by Ewens and Edwards

within the context of how the literature had been

framed. From Kimura (1958) through the various

developments in the literature, the emphasis had

always been on dynamics with respect to time. I agree

with Edwards that one cannot say anything very inter-

esting about the temporal dynamics of evolutionary

change from the simple expression in eqn 32 for selec-

tion. That expression is the partial change caused by

selection (Price, 1972b; Ewens, 1989; Frank & Slatkin,

1992), not the total evolutionary change. The partial

change gives a clear sense of what selection is doing at

any moment, but provides no insight by itself about

evolutionary dynamics.

My presentation in this article is also based on Fisher

information and, more generally, on the Jeffreys diver-

gence. Two aspects of my presentation go beyond the

past work and, in my view, provide a compelling case

for framing our understanding of selection in these

terms.

First, I connected selection to information theory

through the general result Ds �m ¼ J, the Jeffreys diver-

gence. This result does not depend on the limit of small

changes, but instead is a general description of the

nature of selection. This result establishes the proper

measure for the amount of information accumulated by

selection.

Second, I related the change in information to vari-

ous underlying parametric and nonparametric scales.

Those scales provide the meaning with respect to the

abstract scale for encoded information that forms the

basis for classical information theory. As Edwards

(2000) emphasized, Fisher information is information

about meaning with respect to underlying parameters

(Frank, 2009). Earlier work implicitly used time as the

parameter, which is not a meaningful way of express-

ing the accumulation of information. One does not

think of selection as providing information about time.

In addition to making the parametric basis for selection

and information explicit, my use of the Jeffreys

divergence clarified the relation of selection to classical

information theory.

Finally, I achieved greater generality than past work

by respecting the fundamental distinction between

selection and evolution. Past work often tried to make

general statements about evolutionary dynamics, which

is not possible. It is possible to make strong and com-

pletely general statements about the partial change

caused by selection. Such statements clarify the relations

between selection and information. One can achieve

that depth and generality only by working within the

fundamental limitations imposed by the distinction

between selection and total evolutionary change.

I mentioned that Ewens (1992) and Edwards (2000)

concluded that past work based on the Kimura’s result
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did not contribute significantly to understanding selec-

tion. Ewens (1992) did develop his own extension to

that theory, in which he showed an optimization prin-

ciple in relation to Fisher’s fundamental theorem.

Frank (2009) developed a similar idea but with a differ-

ent approach that emphasized information and the

Fisher information metric. Those studies derive from a

partitioning of the causes of fitness, which is the topic

of a future article in this series.
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Abstract

Three steps aid in the analysis of selection. First, describe phenotypes by

their component causes. Components include genes, maternal effects, sym-

bionts and any other predictors of phenotype that are of interest. Second,

describe fitness by its component causes, such as an individual’s phenotype,

its neighbours’ phenotypes, resource availability and so on. Third, put the

predictors of phenotype and fitness into an exact equation for evolutionary

change, providing a complete expression of selection and other evolutionary

processes. The complete expression separates the distinct causal roles of the

various hypothesized components of phenotypes and fitness. Traditionally,

those components are given by the covariance, variance and regression

terms of evolutionary models. I show how to interpret those statistical

expressions with respect to information theory. The resulting interpretation

allows one to read the fundamental equations of selection and evolution as

sentences that express how various causes lead to the accumulation of infor-

mation by selection and the decay of information by other evolutionary

processes. The interpretation in terms of information leads to a deeper

understanding of selection and heritability, and a clearer sense of how to

formulate causal hypotheses about evolutionary process. Kin selection

appears as a particular type of causal analysis that partitions social effects

into meaningful components.

The path method … is not so much concerned with

prediction as [it is with] the proposal of a plausible

interpretation of the relationships between the vari-

ables. In other words, path analysis is concerned with

erecting a causal structure compatible with the

observed data (Li, 1975, p. 3).

Introduction

Populations accumulate information by natural selec-

tion. The amount of information may be expressed by

classical information theory (Frank, 2012b). That purely

informational expression describes phenotypes and

fitness abstractly, without consideration of the explicit

causes that determine phenotypic traits and their asso-

ciation with fitness. Here, I partition phenotypes and

fitness into their component causes.

For phenotypes, we must track the influence of genes,

symbionts, maternal effects and other potential causes.

The components of phenotype lead to explicit models of

character expression and heritability. For fitness, we

must track how different characters and external forces

combine to determine success. An individual’s fitness

may, for example, depend on a combination of its own

phenotype and the phenotypes of its neighbours.

I put those explicit causal components of phenotype

and fitness into the fundamental expressions of selec-

tion and evolutionary change. I recover an expanded

concept of heritability, a precise understanding of Fish-

er’s fundamental theorem and a general form of the

equations of selection for multiple characters. With

those tools, the following article clarifies kin selection

and other social processes (Frank, 2013).
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I presented much of this material in Frank (1997b,

1998). Here, I pursue four goals. First, I express the

key partitions of phenotypes and fitness with respect

to my new information theory interpretation of selec-

tion (Frank, 2012b). Second, the information expres-

sions translate the traditional regression and variance

terms of selection into more meaningful descriptions

of cause and consequence. Third, the partitions of

phenotype and fitness provide the basis for replacing

outdated concepts of kin selection with a solid concep-

tual foundation (in Frank, 2013). Fourth, I emphasize

simplicity, presenting the mathematical material at the

most basic level consistent with the concepts. The

original publications contain more detail (Frank,

1997b, 1998).

Mathematically, little is required beyond simple

forms of statistical regression and the location of points

in coordinate systems. Although I use only basic math-

ematics, the article is nonetheless challenging. I cover a

wide array of problems at a very general level, with

emphasis on the connections between seemingly differ-

ent topics. That sustained abstraction and synthesis

provide both significant rewards and demanding chal-

lenges.

It may seem that the basic problems of selection

and kin interactions were solved long ago. Why do

we need to revisit those topics? In fact, our under-

standing of natural selection and kin selection has

continued to advance over the past few decades.

Those advances have developed while the old formu-

lations have remained. The core of the subject has

become cluttered with incompatible expressions from

different eras, derived in different contexts. One

can no longer go forward without first resetting the

foundations.

Selection

I briefly review the general equations for selection and

evolution. Recent articles in this series provide full

details (Frank, 2012a, b).

The Price equation

Consider an initial population. Let �z be the average in

the population of some value (phenotype). A second

population has average value �z0. Total change between

the populations is D�z ¼ �z0 � �z. Split the total change

into two components

D�z ¼ Ds�z þ Dc�z: (1)

The first term, Ds, is the part of the total change

caused by selection. The second term, Dc, is the remain-

ing part of total change by all other causes.

To evaluate these terms, we write the average value

as �z ¼
P

qizi. The index i divides the population in any

way that we choose. We may use i to label by different

individuals, by different groups, by genotype or by any

other partition of the population. The frequency of a

type i in the population is qi. The phenotype associated

with i is zi. The average value in the second population

is �z0 ¼
P

q0iz
0
i .

We define selection as changes in frequency, holding

constant phenotype

Ds�z ¼
X

q0izi �
X

qizi:

Here, the populations differ in their frequencies,

Dqi ¼ q0i � qi, but we have held the phenotype values

constant at zi in both populations. Using Dqi for

frequency change, we write

Ds�z ¼
X

Dqizi: (2)

To obtain the total change, we need the changes in

phenotype holding constant the frequencies

Dc�z ¼
X

q0iz
0
i �

X
q0izi:

Here, the populations differ in their phenotype,

Dzi ¼ z0i � zi, but we have fixed the frequency at q0i.
We use the final frequencies in the second population,

q0, because they provide the proper reference for final

phenotype after change (Box 2). Using Dzi for pheno-

typic changes, we write

Dc�z ¼
X

q0iDzi:

The total change from eqn 1 can now be written (Box

2) as a form of the Price equation

D�z ¼
X

Dqizi þ
X

q0iDzi: (3)

Box1: Topics in the theory of natural selection

This article is part of a series on natural selection. Although

the theory of natural selection is simple, it remains endlessly

contentious and difficult to apply. My goal is to make more

accessible the concepts that are so important, yet either

mostly unknown or widely misunderstood. I write in a non-

technical style, showing the key equations and results rather

than providing full derivations or discussions of mathemati-

cal problems. Boxes list technical issues and brief summaries

of the literature.
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Box 2: Price equation: difference of a product

The Price equation simply expands a difference into multiple

terms. Consider, for example, the difference of the product

of x and y, which we write as DðxyÞ ¼ x0y0 � xy. We can

expand the difference of the product as

DðxyÞ ¼ ðx þ DxÞðyþ DyÞ � xy

which yields

DðxyÞ ¼ ðDxÞyþ xðDyÞ þ DxDy:

This expression shows that the difference of a product is

the difference of the first term holding the second term con-

stant, plus the difference of the second term holding the first

term constant, plus the product of the two differences.

We can simplify the difference expansion by combining a

pair of terms on the right-hand side. Noting that

x0 ¼ x þ Dx, we can combine the last two terms into one,

yielding

DðxyÞ ¼ ðDxÞyþ x0ðDyÞ:

The derivation of the Price equation follows the rule for

the difference of a product

D�z ¼ D
X

qizi

¼
X

DðqiziÞ

¼
X
ðDqiÞzi þ

X
q0iðDziÞ:

The value of the Price equation arises from identifyingP
ðDqiÞzi as the part of total change caused by selection.

Selection acts on phenotype at a fixed point in time, so it

makes sense to consider selection as the partial difference in

frequency holding phenotype constant. When we use log fit-

ness for the phenotype, m ≡ z, we get an exact correspon-

dence between the selection term and the increase in

information expressed by classical information theory (eqn 8).

That correspondence supports interpreting
P
ðDqiÞzi as

selection.

Classical expressions of covariance, regression and
variance

The definition of fitness is

q0i ¼ qi

wi

�w
; (4)

where wi is the fitness of type i, and �w is average fit-

ness. The change in frequency is

Dqi ¼ qi

wi

�w
� 1

� �
:

Thus, the change caused by selection can be written as

a covariance between fitness and phenotypeX
Dqizi ¼

X
qi

wi

�w
� 1

� �
zi ¼ Covðw; zÞ=�w: (5)

We can rewrite a covariance as a product of a regres-

sion coefficient and a variance term

Ds�z ¼ Covðw; zÞ=�w ¼ bzwVw=�w; (6)

where bzw is the regression of phenotype, z, on fitness,

w and Vw is the variance in fitness. Selection equations

are often expressed with these covariance, regression

and variance terms. Classical population genetics

expressions for change in gene frequency also have this

form, in which we let �z ¼ p be the frequency of a gene

in a population.

Information

Frank (2012b) showed that selection can be expressed

in terms of information theory. I briefly review the key

points in this section.

Fitness and the gain in encoded information

Fitness, w, describes relative changes in frequency.

Logarithms provide the natural scaling for relative

changes. Using the expression for fitness in eqn 4, we

write log fitness as

mi ¼ logðwiÞ ¼ logð�wÞ þ log
q0i
qi

� �
:

Using z ≡ m in the expression for selection (eqn 2), we

have

Ds �m ¼
X

Dqimi ¼
X

Dqi log
q0i
qi

� �
:

The classic information theory expression for the

change in encoded information between two popula-

tions with frequencies q0 and q is

Dðq0kqÞ ¼
X

q0i log
q0i
qi

� �
: (7)

With that definition, we have

Ds �m ¼ Dðq0kqÞ þ Dðqkq0Þ;

in which the right-hand side is known as the Jeffreys

information divergence, J. Thus, we can write the fun-

damental expression for the accumulation of informa-

tion by natural selection as

Ds �m ¼ J: (8)

Because z in eqn 6 is just a placeholder for any character,

we can use m in place of z in that equation, yielding
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Ds �m ¼ bmwVw=�w:

Thus, the information accumulated by natural selec-

tion, J, is equivalently expressed in terms of the regres-

sion coefficient and the variance,

J ¼ bmwVw=�w: (9)

Variance, regression and information

The variance in fitness, Vw, is proportional to the infor-

mation gain by natural selection, J (eqn 9). It is easy to

understand why selection may be expressed in terms of

information. Selection is, in essence, a process by which

populations gain information about the environment.

But, why should the variance arise as an alternative

description of selection?

The usual view is that selection acts on differences

within the population. The greater the differences, the

larger the variance and the greater the opportunity for

selection. But, why exactly is the variance the correct

measure of differences within the population, rather

than some other measure of variation?

Consider the definition of fitness (eqn 4) given earlier

wi

�w
¼ q0i

qi

;

in which the relative fitness is the ratio of frequencies

between the new and old population. Relative fitness is,

in essence, a measure of the separation between the new

population and the old population, a comparison of q0

vs. q. Because the frequencies in each population must

add to one, each separation between a pair q0i and qi must

be balanced by opposite separations in other pairs.

Thus, the variation in the q0i=qi ratios measures the

total separation of the new population from the old

population. In particular, the variance in those ratios –
the variance in fitness – is like a distance between the

new population and the old population. That distance-

like measure has units in terms of the information gain

(Frank, 2012b). The variance in fitness expresses an

informational distance, the amount of information

gained by selection.

Information gain is measured on the logarithmic

scale of frequency changes (eqn 7). The regression

coefficient, bmw, transforms fitness from the linear scale,

w, to the log scale, m, yielding the key expression given

earlier for the change in log fitness (information)

caused by selection

Ds �m ¼ J ¼ bmwVw=�w:

It is common to think of a regression coefficient as a

linear prediction estimated from data. That interpretation

misleads with regard to understanding the fundamental

equations of selection. Instead, the regression coeffi-

cient describes the consequence for the change in aver-

age value when transforming from one scale to

another scale (Boxes 3 and 4). The proper way to read

bmw is a change in scale from w to m when evaluating

the averages �w and �m.

Phenotype as a change in the scaling of information

Selection causes populations to accumulate informa-

tion. The measure of information is related to log fit-

ness. In the analysis of selection, we often focus on

phenotypes rather than fitness. Here, I show that, with

respect to selection, one can think of the phenotypic

scale simply as an alternative scale on which to mea-

sure information.

Begin with the expression given earlier for the

change in log fitness

Ds �m ¼ bmwVw=�w:

The regression coefficient, bmw, changes scale from fit-

ness, w, to log fitness, m. If we divide by bmw, we obtain

Ds �m

bmw

¼ Vw=�w:

The factor 1=bmw reverses the scale change, transform-

ing from the logarithmic scale, m, to the linear scale, w.

The change in phenotype from eqn 6 can be written

as

Ds�z ¼ bzwVw=�w:

The regression bzw changes scale from fitness, w, to

phenotype, z, and 1=bzw reverses the direction of the

change in scale. Thus

Ds�z

bzw

¼ Vw=�w ¼
Ds �m

bmw

:

Because the information accumulated by natural selec-

tion is Ds �m ¼ J, we have

Ds�z ¼
bzw

bmw

� �
J:

This expression describes the change in phenotype by

selection in relation to the information gain, J, rescaled

by the transformation from the scale of information, m,

to the scale of phenotype, z. We may describe the scal-

ing between the gain in information, J, and change in

phenotype caused by selection, Ds�z, as

az ¼
bzw

bmw

: (10)

Thus we can write the relation between the change in

phenotype and the gain in information as

Ds�z ¼ azJ: (11)
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Causes of phenotype

This section partitions the causes of phenotype into

components. The next section connects the causes of

phenotype to the capture and transmission of informa-

tion. The following section partitions fitness into com-

ponents, dividing the gain in information by selection

into different causes. Boxes 3–6 provide background

on regression. Box 7 provides citations to the litera-

ture.

Overview

Heritability describes the expected similarity in pheno-

type between different individuals (Falconer & Mackay,

1996). For example, we may define the predictors of

phenotype as the set of alleles in an individual, and the

heritability as the part of similarity between ancestors

and descendants ascribed to those alleles. Because sex

and recombination break up particular combinations of

alleles, adding up the effects of each individual allelic

predictor often provides a good estimate of the similar-

ity between different relatives caused by genetics.

Alternatively, we may expand the set of predictors

to include certain nonlinear combinations of alleles.

For example, we may have a predictor for the pres-

ence of allele A, another for the presence of allele B,

and a third for the presence of both alleles. Certain

expanded predictor sets may give a more accurate

description of similarity between closely related ances-

tor–descendant pairs that are likely to share the allelic

combinations, but may give a less accurate description

when the allelic pairs tend to be broken up during

transmission.

Here, I am primarily interested in the information

that a population accumulates by selection, and how

different processes may reduce or alter the transmission

of accumulated information. My expressions include

the classic genetic measures as special cases. But, I do

not emphasize the connection to traditional genetics –
the genetic interpretations are discussed in every basic

textbook of genetics (Falconer & Mackay, 1996).

Instead, I focus on general equations for selection and

the transmission of information. In my expressions, any

predictors can be used including, but not limited to, all

of the traditional genetic forms.

Why bother with such abstractions? Because many

extensions to basic genetic theory have been developed

to cope with nongenetic effects or to analyse selection

independently of genetics (Lynch & Walsh, 1998). The

Box 3: Regression

Simple regression is based on the equation for a line

z ¼ aþ by;

in which z is the outcome of interest, y is a variable

that is used to predict z, the term b is the slope of the

line relating z to y and a is the intercept, which is the

value of z when y = 0. The simple regression model is

usually written as

zi ¼ aþ bzyyi þ di;

in which the i subscripts denote values associated

with different observations, and di is the residual as

described below. In some applications, it is conve-

nient to make the intercept a disappear, which we

achieve by yi ¼ xi � a=bzy, which gives

zi ¼ bzxxi þ di:

This expression is equivalent to the previous one. The

only change is that x differs from y by a constant value. The

second expression uses bzx in place of bzy. Those terms have

the same value, but I use the term with x to emphasize that

the relation is now between z and x. In any regression

model, we can make a similar substitution in which we

change y by a constant factor to get an x value that makes

the intercept disappear.

From the perspective of regression analysis, bzxx provides

a prediction of z given x. The difference between the actual

value and the predicted value is the residual (error),

di ¼ zi � bzxx. Two changes in notation provide a cleaner

expression. Write the regression coefficient as b ¼ bzx, and

drop the i subscript, yielding

z ¼ bx þ d;

where the variables implicitly range over i.
Regression has a natural asymmetry. In prediction, the

value of z is the predicted value given the predictor, x. In a

causal interpretation, in the sense of path analysis (Box 5),

the effect z depends on the cause, x. One must keep this

asymmetry in mind to interpret regression equations cor-

rectly. Proper notation helps. We may write

z j x ¼ bx þ d;

which emphasizes that the outcome, z, depends on

the given fixed value of x. We read z | x as ‘z given x’.

If we take the average of both sides

Eðz j xÞ ¼ bx;

where E(z | x) is the expectation of z given x, in

which ‘expectation’ means the average value. On the

right side, d disappears because the regression coeffi-

cient, b, is chosen so that the average value of the

residual is zero, �d ¼ 0.
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literature tends to deal with each particular problem as

a novel challenge that requires special theory. For

example, maternal effects, kin selection, cultural evolu-

tion and institutional evolution in economics all have

their distinct literatures and ways of framing problems.

Yet all of those problems are just examples of a general

theory of selection and transmission. In any particular

application, the key is to express the causes of pheno-

types (characteristics) and the causes of fitness (success)

by a model, or hypothesis, of how various predictors

combine to determine outcome. A general theory

expressed in terms of any choice of predictors defines

the unifying conceptual framework ( Frank, 1997b,

1998).

Fisher’s average effect

We can separate phenotype into components by

zi ¼
X

j

bjxij þ di:

Each type, i, has n different associated xi values,

xi1; xi2; . . .; xin. From the perspective of multiple regres-

sion, the x’s are predictors, or independent variables,

with respect to the phenotype, z. Each bj is a partial

regression coefficient of z on xj. Roughly speaking, a

partial regression coefficient, bj, describes the average

change in phenotype, z, for a change in the associated

predictor variable, xj.

Box 4: Change in scale

In the regression model (Box 3) with subscripts used explic-

itly for labelling types

Eðzi j xiÞ ¼ bxi:

If we consider subscripts for two different types, k and i,

we can write Eðzk j xkÞ ¼ bxk and Eðzi j xiÞ ¼ bxi. Subtracting

these two equations from each other gives

Eðzk � zi j xk � xiÞ ¼ bðxk � xiÞ:

Using D to denote a change between the k and i values

EðDz jDxÞ ¼ bðDxÞ;

which we can write equivalently as

b ¼ bzx ¼
EðDz jDxÞ

Dx
;

which we read as: ‘the regression of z on x is the expected

change in z for a given change in x divided by the change in

x’. From this expression, we see that a regression coefficient is

the expected change in scale for one variable in relation to

another variable. One can also think of the regression coeffi-

cient as a sort of generalization of differentiation. For situa-

tions in which we can consider z and x as continuous variables

with an underlying functional relationship, z(x), it will often

be the case that as the changes become small, Dz ? 0 and

Dx ? 0 with x confined to a small range of values, then the

regression coefficient approaches the derivative, bzx ! dz=dx.

Finally, the variables x and d are uncorrelated, so that

Cov(x,d) = 0. Regression uses all of the available information

in x about z. Thus, any left over deviations, d, cannot con-

tain information about z, which is reflected in the lack of

correlation between those variables.

When we have multiple predictors, or causes,

xj ¼ x1; x2; . . .; xn, then the regression equation is

z ¼
X

j

bjxj þ d;

where each bj is the partial regression of z on xj, holding

constant the other predictor values. Suppose, for example,

that we have two predictors, x1 and x2. For notational con-

venience, let x � x1 and y � x2, so that the regression

equation is

z ¼ bxx þ byyþ d:

If, as above, we take the difference between two x values,

holding y constant, we obtain

bx ¼ bzx�y ¼
EðDzjDx; yÞ

Dx
;

which we read as: ‘the regression of z on x, holding y

constant, is the expected change in z for a given change

in x and a fixed value of y, divided by the change in x’.

This expression gives the expected change in scale

between z and x for a given value of y. If z, x and y are

continuous variables with an underlying functional rela-

tionship, z(x,y), then for small changes confined to a small

range of predictor values for x and y, it will often be the

case that the regression approaches the partial derivative

bzx�y ! @z=@x.

These properties of regression follow from least squares.

The squared distance between predicted and observed val-

ues is the sum of squares,
P

d2
i . Minimizing that distance

gives the least value for the sum of squares – the least

squares. All properties here follow from that minimization.

Further aspects of regression depend on other assump-

tions. For example, many tests of statistical significance

assume that the residuals have a normal distribution. Cer-

tain interpretations require that the observations be line-

arly related to the predictors. I do not use those further

aspects and therefore do not require any assumptions

about linearity or the distribution of observations and

residuals.
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We often focus on the general relation of a pheno-

type, z, to its components, xj, rather than on the partic-

ular phenotype, zi, of a particular type, i, in relation to

its particular components, xij. Thus, we may express the

general relation between a phenotype and its compo-

nents as
z ¼

X
j

bjxj þ d;

in which one understands that the particular values of

z, xj and d vary for the different types, i, whereas the

average effect of a predictor, bj, is a property of the

population.

The regression expression applies to any predictors,

xj. We could use temperature, neighbours’ behaviour,

another phenotype, epistatic interactions given as the

product of allelic values, symbiont characters or an

individual’s own genes. Fisher first presented this

regression for phenotype in terms of alleles. Suppose

each xj is the presence or absence of an allelic type.

Then each bj describes the average contribution to pheno-

type for adding or subtracting the associated allelic type,

and bj is called the average effect (Fisher, 1930; Crow &

Kimura, 1970; Falconer & Mackay, 1996).

Predicted phenotype is

g ¼
X

j

bjxj: (12)

In genetic contexts, g is often called the breeding value

(Falconer & Mackay, 1996). Using g, we can partition

phenotype into a predicted component and a residual

component

z ¼ gþ d; (13)

where d = z � g is the difference between the actual

value and the predicted value. If we take the average of

both sides, we get �z ¼ �g, because �d ¼ 0.

Box 5: Causes and predictors

Since path analysis depends on structure, and structure

in turn depends on the cause-and-effect relationship

among the variables, we shall first say a few words

about the way these terms will be used … There are a

number of formal definitions as to what constitutes a

cause and what an effect. For instance, one may think

that a cause must be doing something to lead to some-

thing else (effect). While this is clearly one type of

cause-and-effect relationship, we shall not limit our-

selves to that type only. Nor shall we enter into philo-

sophical discussions about the nature of cause-and-

effect. We shall simply use the words ‘cause’ and

‘effect’ as statistical terms similar to independent and

dependent variables, or [predictor variables and

response variables] (Li, 1975, p. 3).

I analyse causes of phenotypes and causes of fitness. Here,

I briefly comment on the word ‘cause’. The above quote and

the epigraph come from Li’s book on Path Analysis. Li’s point

concerns the distinction between three levels of analysis.

First, true causality describes the relations between actual

forces and actual effects. Whether such things can ever be

studied or known directly remains a philosophical problem

beyond our scope.

Second, at the other extreme, multiple regression analysis

from classical statistical theory concerns only correlations

and variances. The standard theory explicitly disavows cau-

sal interpretation – correlation is not causation. Regression

arises by minimizing the distance between predicted out-

comes and actual outcomes – an attempt at optimal predic-

tion. One thinks of the variables used to predict outcome

simply as predictors that, in the past, would have helped

one to make a better guess about what actually happened.

The predictors may have direct effects themselves or be cor-

related with some other unseen causal factor. However,

those notions of direct and unseen cause are irrelevant to

the method.

Third, path analysis takes an intermediate approach. One

chooses the predictors for a model as a hypothesis about

cause. Rather than aim for optimal prediction, one aims for a

set of variables that consistently describe the observed pat-

terns of variation. The quality of the causal interpretation is

primarily evaluated by the consistency of the hypothesized

pathways in capturing the observed variance in outcome.

Consistency roughly means relative stability in the magnitude

of a pathway’s effect under different circumstances. Although

that interpretation potentially offers some insight into cause

and effect, the analytical method remains multiple regression.

One simply emphasizes the quality of a model as a potential

causal interpretation rather than as an attempt at optimal pre-

diction.

Consider a model in which we use genes as predictors of

phenotype. In a breeding programme to improve yield, we

want to predict offspring phenotype to make the best choice

of breeding design. Causality is irrelevant, we aim only for a

good outcome. By contrast, in a theoretical analysis of adap-

tation by natural selection, we want to understand the cau-

sal processes. How do the genes that affect phenotype

combine to determine morphology or behaviour? How does

selection influence the underlying genes and the resulting

phenotypic design in relation to performance? We are after

an understanding of the process. The quality of prediction

will, of course, be the primary way to interpret the causal

model. But a good prediction arising from the wrong under-

lying causal model is what we most want to avoid. Predic-

tion becomes a method for evaluation rather than the goal.

This article analyses natural selection in relation to causal

interpretations. For that reason, I think of my models of

multiple regression as models of path analysis. In a different

context, the same models could be thought of strictly as

analyses of regression and prediction.
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The components of heritability

The part of phenotype not transmitted
Typically, we only follow the transmission of the pre-

dictors. For example, we may follow transmission of

genes plus any other variables we choose. Those effects

that we include explicitly end up as part of the pre-

dicted phenotype, g, and as candidates for the transmit-

ted phenotype. All effects on phenotype not explicitly

included as predictors end up in the residual, d. The

split between the predicted phenotype and the residual

is arbitrary. If we add a new predictor, any additional

effect of that predictor moves from the residual, d, to

the predicted phenotype, g. Usually, we wish to give

the best description of the causes of phenotype that we

can. Thus, our choice of predictors defines our hypoth-

esis about the causes of phenotype, in the sense of path

analysis discussed in Box 5.

The part of phenotype associated with the particular

set of predictors, g, defines one component of herita-

bility. Aspects of phenotype not associated with the

particular predictors in our model appear as a nontrans-

mitted component of phenotype, d, reducing the simi-

larity of phenotype between ancestors and descendants

associated with the predictors.

Change in transmitted components of phenotype
A second component of heritability arises from the sta-

bility of the effects associated with the predictors. If a

predictor has effect bx in the original population and

effect b0x0 in the second population, then the transmis-

sion of that predictor is associated with a change in

Box 6: Nonlinearity

Regression and path analysis are sometimes thought to be lim-

ited to linear and additive effects. However, that is misleading.

Consider z = bx + d. Here, b is the linear relation between

x and z. However, it may be that x ¼ y2, in which the true

underlying cause is y. Thus, we are actually regressing on a

nonlinear function of a causal variable, y. Or, it may be that

we start with z ¼ b1x1 þ b2x2 þ b3x3 þ d. This appears to be

an additive model. However, the underlying cause may be

x1 ¼ y1, and x2 ¼ y2 and x3 ¼ y1 � y2. Thus, our model

expresses nonlinearity and nonadditivity in the causes, y.

In general, any nonlinear relation can be expressed by

an additive sum of terms, in which the individual terms

may be nonlinear. Thus, regression can fully account for

any nonlinearity by an additive sum of terms. In practice,

limitations arise because we may not know the correct

nonlinear relation, and so cannot express the proper sum

of nonlinear terms. However, that is not a limitation of

regression, but rather a limitation that arises from our igno-

rance. Another method of analysis does not solve the prob-

lem of our ignorance. The point is that one must

distinguish limitations arising from method from limitations

arising from ignorance. Confusing those different limitations

is a common mistake.

Box 7: Brief history of evolutionary partitions

Fisher (1918, 1930) partitioned phenotype into its various

genetic causes. Quantitative genetics extended the partition-

ing of phenotype by genetic and nongenetic causes

(Falconer & Mackay, 1996; Lynch & Walsh, 1998). Models

of cultural evolution use culturally transmissible attributes

as predictors of phenotype (Dawkins, 1976; Cavalli-Sforza &

Feldman, 1981; Boyd & Richerson, 1985).

Quantitative genetic models may also consider partitions

of fitness into component causes. Recent work on partitions

of fitness was stimulated by Lande & Arnold (1983). Many

subsequent studies expanded that approach, including vari-

ous explicit descriptions based on path analysis (Heisler &

Damuth, 1987; Crespi & Bookstein, 1989; Crespi, 1990;

Kingsolver & Schemske, 1991; Scheiner et al., 2000). I uni-

fied the different lines of study on partitions of phenotype

and partitions of fitness (Frank, 1997b, 1998), motivated ini-

tially by Queller’s quantitative genetic models of kin selec-

tion (Queller, 1992a, b).

In the text, I mentioned that rB � C > 0 can sometimes

be interpreted in terms of group selection. For example,

if neighbours’ phenotype, y, is an average character value

in a local group, then r can be defined as the regression of

individual character value on group character value. That

group regression can be considered in a path analysis

model, which is roughly the way in which Heisler &

Damuth (1987) analysed group selection. In their article,

they emphasized ‘contextual analysis’ similarly to the way

in which I have emphasized ‘path analysis’. Frank (1995b)

and Taylor & Frank (1996) also calculated r by regressing

group value on individual value in several models, follow-

ing a long tradition that blurred the mathematical distinc-

tion between kin and group selection (Hamilton, 1975;

Frank, 1986).

Some of the multivariate analyses of fitness attempt

to predict evolutionary dynamics, and therefore must

make explicit assumptions about the distribution of pheno-

types and the nature of heritability. I do not discuss

dynamics; my models do not require any of those extra

assumptions.
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phenotype DðbxÞ ¼ b0x0 � bx. Box 2 shows that we can

express this change as

DðbxÞ ¼ ðDbÞx þ b0ðDxÞ:

Summing over the j different predictors and using

the definition of g from eqn 12 yields

Dg ¼
X
ðDbjÞxj þ

X
b0jðDxjÞ: (14)

On the right side, the first term describes the change in

the predicted value of a type that arises from the changes

in the average effects of the predictors, Dbj, holding con-

stant the predictor values, xj. For example, the average

effect of an allele on phenotype may be frequency

dependent. Thus, the average effect will change over

time as the frequency of the allele changes in the popula-

tion. The second term describes the change in the trans-

mitted predictor values, Dxj, evaluated in the context of

the average effects from the second population, b0j. For

example, an allele may mutate into another form, thus

weighting the average effect by a different amount.

The smaller the Db and Dx values, the less the pheno-

type changes with respect to the transmitted predictors,

and the higher the heritability associated with those

predictors. Equivalently, the more stable the predictors

and their average effects, the greater the fidelity at

which those particular predictors transmit the informa-

tion accumulated by selection to the new population.

The change in the predictors, Dx, includes mutation as

well as any other process that alters predictor values

(Frank, 1995a, 1997b, 1998; Price, 1995). For example,

predictors in a descendant may derive from multiple

ancestors. We can think of the mixing of predictors by

considering the change in predictor values when derived

from different sources. In some cases, we may wish to

alter the assignment of descendants to ancestors. For

example, a behaviour may influence the frequency of

nondescendant types. To associate the behavioural phe-

notype with the change in frequency, we could assign

those nondescendants to the ancestral behaviour respon-

sible for their presence (Hamilton, 1970). In general, we

can make such assignments in any way that we choose.

The key is that assigning different descendants to an

ancestor may alter the change in predictor values

between a descendant and its assigned ancestor. Such

changes may alter the fidelity at which information is

transmitted (Frank, 1998). I will take up that topic in the

next article (Frank, 2013).

The part transmitted and the change during
transmission
The full, exact expression from eqn 3 for the total evo-

lutionary change is

D�z ¼
X

Dqizi þ
X

q0iDzi:

We can partition phenotype as z = g+d, the split

between the part explained by the predictors of pheno-

type, g, and the part that is not explained by the set of

predictors in our model for phenotype, d. From eqn 13,

D�z ¼ D�g because �d ¼ 0, thus

D�z ¼ D�g ¼
X

Dqigi þ
X

q0iDgi:

With gi ¼ zi � di, we get

D�z ¼
X

Dqizi �
X

Dqidi þ
X

q0iDgi: (15)

We can express each of these terms with a particular

notation that emphasizes its interpretation

D�z ¼ Ds�z � Dn�z þ Dt�z: (16)

On the right side, the terms are the change caused by

selection, the change caused by the part of phenotype

that is not associated with a transmitted predictor, and

the change in the effects of the predictors during trans-

mission.

Heritability and information

This section focuses on the amount of information

that populations accumulate by selection, and the

various processes that degrade or alter the transmis-

sion of that information. Some of the forms given

here include the classic genetic measures of heritabil-

ity as special cases. However, I do not emphasize

those connections. Rather, I focus on general expres-

sions given in terms of the full Price equation for

total evolutionary change and based on predictors

that may be chosen in any way. Different problems

and goals will lead one to choose different sets of

predictors or underlying causal schemes for pheno-

types. The results here apply to any choice of predic-

tors and causal scheme.

We start with eqn 15, the partition of phenotypic

change into components

D�z ¼
X

Dqizi �
X

Dqidi þ
X

q0iDgi:

The first term on the right side is the selection compo-

nent, Ds�z. From eqn 11, Ds�z ¼ azJ, where az changes

scale between phenotype, z, and the gain in informa-

tion by selection, J. Thus,

D�z ¼ azJ �
X

Dqidi þ
X

q0iDgi:

Here, selection happens in the initial (parental) popula-

tion, causing a gain in information, J. On the pheno-

typic scale, that gain in information is azJ. The

remaining terms include processes that cause loss of

information during transmission or cause other changes

to phenotype.
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The part of phenotype not transmitted

Start by assuming that the predictors and their effects

do not change during transmission, Dgi ¼ 0. That

assumption reduces total change to

Dh�z ¼ azJ �
X

Dqidi

where Dh ¼ Ds � Dn denotes the heritable component of

selection, which is the total selection, Ds, minus the part

of selective change that is not associated with predictors,

Dn. The part not associated with predictors is not explicitly

transmitted within the given model of phenotype.

The second term,
P

Dqidi, has the general form (eqn

11) of the change in informationX
Dqizi ¼ azJ;

which holds for any choice of z. Thus, letting z ≡ d, we

obtain
P

Dqidi ¼ adJ. Putting this into the original

expression yields

Dh�z ¼ azJ � adJ ¼ ðaz � adÞJ:

The scale change terms, a, have the important additiv-

ity property that, in general, aa þ ab ¼ aaþb. Thus,

az � ad ¼ az�d ¼ ag;

because g = z � d. The expression for the change in

phenotype, ignoring the change during transmission in

the predictors and their effects, is

Dh�z ¼ agJ: (17)

This expression is the information gain by selection, J,

scaled by ag, which relates the predicted phenotype, g,

to the information accumulated by selection. Because

g = z � d, we see that the amount of information trans-

mitted is degraded by d, the fraction of the phenotype, z,

that is not explained by the predictors.

Change in transmitted components of phenotype

When we add back the remaining term to eqn 17, we

obtain the full expression for phenotypic change as

D�z ¼ agJ þ
X

q0iDgi:

The last term is the change in the transmitted compo-

nents of phenotype. From eqn 14, those components

include changes in the predictors and changes in the

effects of the predictors. A predictor’s effect is its associ-

ated multiple regression coefficient. Multiple regression

coefficients often change with context. On the one

hand, the true underlying causal effect may change. On

the other hand, our model of causality may not be

exactly right, in which case shifting context will cause

the assigned role of different predictors to change, even

though the underlying causal effects of those predictors

may not have changed.

Various approaches may be taken to evaluate the

accuracy of the causal model, such as the stability of

the predictor effects under changing context (Li, 1975).

Typically, a better causal model has predictors with

greater stability, shifting the components of total

change more strongly to the agJ information term. That

increase in the information term is usually advanta-

geous with respect to interpretation, because it is often

hard to evaluate the meaning of changes in predictors

and their effects in the second term.

Suppose, for example, that a significant component

of phenotype is not explained by a stable set of predic-

tors. Is the information accumulated by selection in the

initial population lost during transmission because it is

not associated with any transmissible component? Or,

is that information transmitted by other predictors that

are not included in our model? If the information does

transmit by predictors not in our model, that informa-

tion contributes to the second term with changing

values of the predictors and their effects. Such changes

are hard to interpret, because many different processes

can potentially alter the predictors and their effects.

These fundamental equations of selection and evolu-

tion are, in a way, rather arbitrary, because they

depend so strongly on the particular set of predictors

that one chooses. What can we conclude? First, the

equations are always true, and so give us a clear sense

of the essential nature of selection, information and

evolution. Second, a key part of understanding any

problem concerns choosing the right set of predictors.

Third, simple genetic models provide a good starting

point in many cases, but rarely define a complete set of

predictors and an accurate expression of causality. If

one is able to model the causal scheme well, the analy-

sis will often be simple and natural. I have emphasized

a path analysis interpretation for the regression expres-

sions, because path analysis emphasizes the choice of a

good causal model.

Fisher’s fundamental theorem

If we hold the predictors and their effects constant,

then using eqn 17, the change in mean log fitness is

Dh �m ¼ agJ

for m = g + d. This expression for change in fitness,

holding constant the predictors and their average

effects, provides a generalization of Fisher’s fundamen-

tal theorem of natural selection. Fisher used the pres-

ence or absence of allelic types as predictors, and the

associated value of predicted fitness, g, as the genic

value of fitness. With those definitions, the expression

here is equivalent to Fisher’s theorem. To translate back

to the particular notation that Fisher used, one would

translate the definitions for ag and J into Fisher’s forms.

Frank (1997b) provides the tools for the translation,

following Price (1972) and Ewens (1989). The point
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here is that Fisher’s theorem holds for any choice of

predictors, as emphasized in Frank (1997b).

Causes of fitness

The expression Ds�z ¼ azJ associates the accumulation

of information by selection, J, with the selective com-

ponent of phenotypic change. But that expression does

not tell us why the association occurs. The phenotype

may directly influence fitness. Alternatively, the pheno-

type may have no direct effect on fitness, but instead

may be associated with some other process that influ-

ences fitness. A significant part of evolutionary analysis

concerns evaluating the causes of fitness (Box 7).

We may analyse the causes of fitness in the same

way that we analysed the causes of phenotype. We

write our model, or hypothesis, for the causes of fitness

as the regression equation

w ¼ /þ pz þ
X

akyk þ �: (18)

Here, / is the baseline fitness when all other terms are

zero; p is the average direct effect of the phenotype z on

fitness, holding constant the other predictors of fitness;

and ak is the average effect of the other predictors of fit-

ness, yk. We may use any number of other predictors,

and those predictors may be defined in any way, includ-

ing factors in the model for phenotype. For example, pre-

dictors yk can be alleles, nonlinear interactions between

combinations of alleles, symbionts, maternal effects, cul-

tural or environmental attributes, other phenotypes,

phenotypes of neighbours and so on. The residual, �, is

the difference between the predicted value of fitness for

a given set of predictors and the actual fitness.

A simple example

To study the role of different predictors of fitness, it is

useful to reduce the model to just the direct effect, z,

and one indirect effect, y, yielding

w ¼ /þ pz þ ayþ �:

In this partial regression equation, it is helpful to write

out the regression coefficients in full notation to

emphasize their interpretation. The partial regression

coefficient p ¼ bwz�y is the average effect of z on w

holding y constant, and a ¼ bwy�z is the average effect

of y on w holding z constant, thus

w ¼ /þ bwz�yz þ bwy�zyþ �: (19)

Condition for the increase of a phenotype by
selection

Using the standard covariance form for selection based

on eqn 6, the partial change in z caused by selection is

�wDs�z ¼ Covðw; zÞ;

which simply states that z increases by selection when

it is positively associated with fitness. However, we

now have the complication shown in eqn 19 that fit-

ness also depends on another predictor, y. If we expand

the covariance using the full expression for fitness in

eqn 19, we obtain

�wDs�z ¼ bwz�yVz þ bwy�zCovðy; zÞ:

If we replace the covariance term by the product of a

regression coefficient and a variance, byzVz , we have

Ds�z ¼ ðbwz�y þ bwy�zbyzÞVz=�w: (20)

The condition for the increase of z by selection is

Ds�z > 0. The same condition using the terms on the

right side is

byzbwy�z þ bwz�y > 0: (21)

Let us use an abbreviated notation for the three terms

byz ¼ r

bwy�z ¼ B

bwz�y ¼ �C:

The first term, byz ¼ r, describes the association

between the phenotype, z, and the other predictor, y.

An increase in z by the amount Dz corresponds to an

average increase of y by the amount (see Box 4)

Dy ¼ rDz:

The second term, bwy�z ¼ B, describes the direct effect of

the other predictor, y, on fitness, holding constant the

focal phenotype, z. The third term, bwz�y ¼ �C, describes

the direct effect of the phenotype, z, on fitness, w, hold-

ing constant the effect of the other predictor, y.

Using the abbreviated notation, the condition for the

increase in z by selection is

rB� C > 0:

The following sections interpret this condition in terms

of three different biological scenarios.

Interactions between two species

I trace the effects of phenotype z in species A and phe-

notype y in species B on the fitness of types from spe-

cies A (Frank, 1994, 1995c, 1997a). One may think of

species B as an ecological partner that can influence

the fitness of types from species A. Here, fitness always

refers to effects on species A.

Unknown cause of association
I follow the path diagram in Fig. 1a. Increases in the

phenotype, z, by an amount Dz, reduce fitness by �CDz.

Increases in the phenotype y directly benefit fitness by

BDy. The z and y phenotypes are associated by r,
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although no specific cause is known. It may be that

similar phenotypes tend to settle in the same area, or

that a common environment of temperature and nutri-

ents causes a phenotypic association. In any case, as z

increases, the associated value of y changes on average

by Dy = rDz and, equivalently, BDy = rBDz.

Tracing the pathways in Fig. 1a, an increase in the

direct phenotype by Dz causes a change in fitness pro-

portional to (rB � C)Dz, which is greater than zero

when rB � C > 0. Thus, selection may favour an

increase in z even though z directly decreases fitness,

because the benefit from species B’s phenotype, y, in

proportion to rB, may outweigh the direct cost, �C.

Direct cause of association
Alternatively, suppose that the phenotype z directly

enhances the vigour of its partners from species B. That

direct effect of z on species B causes an increase in the

benefit, y, that species B provides back to those with

phenotype z. Fig. 1b shows this direct cause of y by z.

The condition for z to be positively associated with fit-

ness and to increase by selection remains rB � C > 0.

However, the interpretation differs. In this case, z

directly influences its neighbours’ phenotype, y, rather

than being associated with y by some unknown cause.

Body temperature

Suppose z is body temperature, which imposes a direct

effect �Cz on fitness. That direct cost may arise because

body temperature raises the rate at which energy is

used. Let y be speed of response to a challenge, such as

a predator attack. Faster response provides a direct bene-

fit, By. An unknown cause may associate temperature, z,

and response rate, y, by an amount r (Fig. 1a). For

example, sunshine may directly raise temperature and

simultaneously increase response to attack by providing

better visual opportunities. Alternatively, temperature, z,

may directly raise response rate, y, by increasing the

responsiveness of muscles (Fig. 1b). In either case,

selection favours an increase in body temperature if

rB � C > 0.

Social evolution and group selection

The phenotype z may be a costly altruistic behaviour that

helps neighbouring individuals (Hamilton, 1970; Quel-

ler, 1992a, b; Frank, 1998). The direct effect on fitness is

�Cz. Neighbours have phenotype y that provides a bene-

fit, By, back to the original individual. An association, r,

between z and y may arise in a variety of ways.

Some unknown cause may associate z and y (Fig. 1a).

For example, shared cultural, environmental or genetic

variation may cause related behaviour. Or a shared

symbiont may cause an association. In general, any

association in the predictors of phenotype will cause an

association of phenotypic values.

In other cases, the altruistic phenotype, z, may directly

enhance neighbours’ beneficial behaviour, y, in propor-

tion to r (Fig. 1b). For example, the level of y in the

neighbours may depend on the probability of the neigh-

bours’ survival. If an increase in z raises neighbours’ sur-

vival in proportion to r, that increase in survival

enhances the expression of the neighbours’ behaviour,

y, which has a beneficial effect on fitness of By.

Whether r arises from unknown causes (Fig. 1a) or

from the direct effect of z on y (Fig. 1b), we can

trace the effect of an increase in z on fitness. The

condition for an increase in z to raise fitness is

rB � C > 0.

In some cases, we may interpret the condition

rB � C > 0 in terms of group selection (Hamilton,

1975). For example, z may measure individual restraint

in the harvesting of nonrenewable resources (Frank,

1995b). Greater restraint reduces the direct benefit to

the individual, because it means less resource har-

vested, with an effect on fitness of �Cz. Neighbours’

phenotype, y, may be the average restraint among indi-

viduals in a local group with regard to harvesting

nonrenewable resources.

Greater group restraint provides a benefit to all mem-

bers of the group, including our focal individual, by

providing greater local productivity through mainte-

nance of nonrenewable resources. The benefit of group

restraint on individual fitness is By. The association

between an individual’s phenotype, z, and the group

phenotype, y, is r. Thus, when rB � C > 0, individual

restraint evolves and provides a joint benefit to all

group members. Here, the two predictors of fitness are

individual behaviour, z, and average group behaviour, y.

This type of group selection is just a special case of

partitioning the causes of fitness, in which one of the

predictors is a group attribute (Box 7).

Causal structure

All of these examples share a common causal structure.

We are interested in the change in a phenotype, z,

z

y

w

B

r

z

y

w

Br

(a) (b)

Fig. 1 Path diagrams for the effects of phenotype, z, and

secondary predictor, y, on fitness, w. (a) An unknown cause

associates y and z. The arrow connecting those factors points both

ways, indicating no particular directionality in the hypothesized

causal scheme. (b) The phenotype, z, directly affects the other

predictor, y, which in turn affects fitness. The arrow pointing from

z to y indicates the hypothesized direction of causality.
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caused by selection. Fitness depends on two predictors:

the phenotype of interest, z, and another predictor, y.

In all cases, the condition for the increase in z by selec-

tion is rB � C > 0. This condition is just the partition of

the causes of fitness into two components. The direct

effect on fitness of z is �C, and the direct effect of y is B.

We multiply y by r to change the scale of the effect

from y to z, because the net effect must be the relation

between z and fitness, w.

We can see the logical relations and the units for the

various scales by writing out the full notation

rB� C ¼ byzbwy�z þ bwz�y: (22)

Box 3 shows that a regression coefficient, bxy, has units

Dx/Dy. Taking the terms of the above equation in order

from left to right, the units are

byzbwy�z þ bwz�y �
Dy

Dz

Dw

Dy
þ Dw

Dz
� Dw

Dz
: (23)

The ratio Dw/Dz is the change in fitness, w, per unit

change in the phenotype, z. That ratio is the slope of

fitness on phenotype. When the slope is positive, selec-

tion favours the increase of the phenotype. In any anal-

ysis of this sort, the term

r ¼ byz ¼
Dy

Dz
(24)

rescales changes of the secondary predictor, Dy, with

respect to changes in the primary scale, Dz.

The key point is that rB � C > 0 simply partitions fit-

ness into the direct effect of a phenotype plus the indi-

rect effect through a secondary predictor. The true

causal structure will, of course, frequently depend on

multiple secondary causes, as in eqn 18. Multiple

causes lead to an expanded expression for the increase

of z caused by selection, Ds�z, as

X
riBi � C > 0;

in which each ri is the regression of yi on z, and each

Bi is the partial regression of w on yi holding constant

the other factors. One may also need to consider cas-

cading causes or hidden factors in the sense of path

analysis (Li, 1975). The simple expression rB � C > 0

should be thought of as a convenient example to illus-

trate the logic of partitioning the causes of fitness, or as

the expression of simplified models that isolate two

opposing processes.

In this section, I have analysed the partitioning of fit-

ness. I have not discussed the partition of phenotype

into components, z = g + d, where g is the sum of the

predictors of phenotype. The amount of information

accumulated by selection that can be transmitted

depends on the slope of fitness, w, relative to the trans-

missible predictors of phenotype, g. If we think of g in

terms of the genetic predictors of phenotype, then r can

be interpreted as a genetic relatedness coefficient, and

rB � C > 0 calls to mind Hamilton’s rule from the the-

ory of kin selection (Hamilton, 1970). The next article

takes up the relations between kin selection and the

general analysis of the causes of fitness and the causes

of phenotype (Frank, 2013). A full evolutionary analy-

sis also requires attention to other causes of change,

Dt�z, in eqn 16 (Frank, 1997b, 1998).

It is important to relate the causes of fitness to infor-

mation, which is the ultimate scale for selection. Box 8

connects the partitions of fitness in this section to the

expressions of information given earlier in this article.

Discussion

I first partitioned phenotype with respect to a set of

hypothesized causes. I then partitioned fitness with

respect to a different set of hypothesized causes. Finally,

I placed those partitions of phenotype and fitness into a

general expression for selection and evolutionary

change. Those steps allowed me to express heritability,

selection and evolutionary change in terms of causal

components.

I also translated the standard expressions of selection

and evolution, given in terms of regressions, covari-

ances and variances, into expressions for the change in

information. In my view, selection is best interpreted as

the accumulation of information by populations (Frank,

2012a). Other evolutionary processes often cause a

decay in the transmission of information. The informa-

tion expressions allow one to read the equations of

selection and evolution as if they were sentences. Those

sentences express the fundamental relations between

the causes of phenotypes and fitness and the conse-

quences for the change in information by evolutionary

processes.

I showed that the commonly used regressions coeffi-

cients in models of selection and evolution can be

understood as coefficients for the change in scale with

respect to the ultimate scale of information (Box 4).

For example, the change in a phenotype caused by

selection can be understood as a rescaling of the change

in information accumulated by selection. Certain

measures of heritability, often expressed as regression

coefficients, are the change in the scaling of informa-

tion from one phenotype to another. For example, a

parent–offspring regression may describe the change in

scale between parent and offspring phenotype with

respect to the underlying information content in those

phenotypes.

My extended development in terms of causal com-

ponents and information may, at first, seem like a lot

of technical complication. We are, after all, simply

modelling selection, heritability and other widely

studied evolutionary processes. Many models of those

processes seem more direct and concise. My goal is to

go beyond common calculations or common applica-
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tions. The more abstract and exact models here

provide a conceptual guide for understanding how

selection actually works, how populations accumulate

information, and how that information is transmitted

or lost.

I have also traded the certainty of the standard mod-

els of genetics for the uncertainty that arises when we

freely choose our predictors as causal hypotheses. In

my view, the apparent certainty of genetics is often

misleading. We know that many factors influence phe-

notypes in addition to the narrowly defined allelic types

of genes. Traditionally, a specific extended model deals

with each additional factor: cytoplasmic inheritance,

nonlinear genetic interactions, maternal effects, social

interactions and so on. By describing each of those

aspects as a special situation, one ends up with a cata-

logue of special models.

The models here show how to think in general about a

variety of causal structures. Those models are only as

good as the particular hypothesized system of causality

that we choose. But that is also true for genetic models

and for every other model, whether or not we admit it

openly. Here, I have traded the false sense that there are

a few standard models for the more realistic view that

one has to bring a good hypothesis to an analysis to get a

good understanding of phenotypes and selection.

Hamilton (1970) made clear the central role of causal

analysis in kin selection theory

Considerations of genetical kinship can give a statistical

reassociation of the [fitness] effects with the individuals

that cause them.

The seemingly endless debates about kin selection

arise from failure to recognize that the theory is

ultimately a way of framing causal hypotheses (Frank,

1997b, 1998). The following article develops kin selec-

tion as a method of causal modelling.
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Abstract

Kin selection theory is a kind of causal analysis. The initial form of kin

selection ascribed cause to costs, benefits and genetic relatedness. The theory

then slowly developed a deeper and more sophisticated approach to parti-

tioning the causes of social evolution. Controversy followed because causal

analysis inevitably attracts opposing views. It is always possible to separate

total effects into different component causes. Alternative causal schemes

emphasize different aspects of a problem, reflecting the distinct goals, inter-

ests and biases of different perspectives. For example, group selection is a

particular causal scheme with certain advantages and significant limitations.

Ultimately, to use kin selection theory to analyse natural patterns and to

understand the history of debates over different approaches, one must

follow the underlying history of causal analysis. This article describes the

history of kin selection theory, with emphasis on how the causal perspective

improved through the study of key patterns of natural history, such as

dispersal and sex ratio, and through a unified approach to demographic and

social processes. Independent historical developments in the multivariate

analysis of quantitative traits merged with the causal analysis of social

evolution by kin selection.

As is often the case, once a topic has become in vogue,

its name ceases to have meaning …
(Lazar & Birnbaum, 2012).

Introduction

Ideas are embedded in their history and language. Hamil-

ton’s (1970) theories of inclusive fitness and kin selection

are good examples. As understanding deepened, the ori-

ginal ideas transformed into broader concepts of selection

and evolutionary process. With that generalization, the

initial language that remains associated with the topic

has become distorted. The confused language and

haphazard use of incorrect historical context have led to

significant misunderstanding and meaningless argument.

Current understanding transcends the initial interpre-

tation of ‘kin selection,’ which attaches to some notion

of similarity by descent from a recent common ances-

tor. The other candidate phrases, such as ‘inclusive fit-

ness’ or ‘group selection,’ also have problems. We are

left with a topic that derives from those antecedent

notions and clearly has useful application to those bio-

logical puzzles. At the same time, the modern under-

standing of altruism connects to the analysis of

selection on multiple characters, to interactions

between different species and to the broadest general-

izations of the theory of natural selection.

A good scholarly history of kin selection and its

descendants has yet to be written. Here, I give a rough

historical outline in the form of a nonmathematical

narrative (see Box 2). I describe the history from my

personal perspective. Because I worked actively on the

subject over several decades, I perceive the history by

the ways in which my own understanding changed

over time. Box 3 highlights other perspectives and key

citations.
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Early history

According to Darwin (1859), natural selection favours

traits that enhance individual reproduction. Puzzles

arise when traits reduce individual reproduction

while providing aid to others. In this context, Fisher

(1930) discussed the problem of warning colouration

in mimicry:

[D]istastefulness … is obviously capable of giving pro-

tection to the species as a whole, through its effect

upon the instinctive or acquired responses of preda-

tors, yet since any individual tasted would seem

almost bound to perish, it is difficult to perceive how

individual increments of the distasteful quality,

beyond the average level of the species, could confer

any individual advantage.

Fisher then gave one possible solution:

[W]ith gregarious larvae, the effect will certainly be to

give the increased protection especially to one particu-

lar group of larvae, probably brothers and sisters of

the individual attacked. The selective potency of the

avoidance of brothers will of course be only half as

great as if the individual itself were protected; against

this is to be set the fact that it applies to the whole of

a possibly numerous brood. … The ideal of heroism

has been developed among such peoples considerably

beyond the optimum of personal advantage, and its

evolution is only to be explained, in terms of known

causes, by the advantage which it confers, by repute

and prestige, upon the kindred of the hero.

Haldane (1955) restated Fisher’s argument. Williams

& Williams (1957) presented a specific and limited ana-

lysis, which they applied to altruism in social insects.

Some rather vague models considered more diffuse

forms of genetic similarity created by population struc-

turing of groups (Haldane, 1932; Wright, 1945). These

analyses hinted at a more general concept. However,

none of them expressed the deeper principle in a clear

and convincing way.

Hamilton’s rule

Hamilton (1963, 1964a,b) initiated modern approaches

by expressing a rule for the increase in an altruistic

behaviour

rB� C > 0: (1)

Here, C is the cost to an actor for performing the altru-

istic behaviour, B is the benefit gained by a recipient of

the altruistic act and r measures the relatedness

between actor and recipient. The idea is that the actor

pays a personal cost in reduced reproduction for help-

ing another individual, the recipient gains increased

reproduction from the altruistic act and the relatedness

translates the recipient’s enhanced reproduction back to

the actor’s valuation of that extra reproduction. When

the benefit back to the actor, rB, is greater than the

actor’s direct cost, C, then the behaviour is favoured by

natural selection.

Hamilton figured out how to measure r by analysing

population genetic models. With the methods Hamilton

Box 1: Topics in the theory of natural selection

This article is part of a series on natural selection.

Although the theory of natural selection is simple,

it remains endlessly contentious and difficult to apply. My

goal is to make more accessible the concepts that are so

important, yet either mostly unknown or widely misun-

derstood. I write in a nontechnical style, showing the key

equations and results rather than providing full deriva-

tions or discussions of mathematical problems. Boxes list

technical issues and brief summaries of the literature.

Box 2: Scope

Quoting from Fawcett & Higginson (2012): Most

research in biology is empirical, yet empirical studies

rely fundamentally on theoretical work for generat-

ing testable predictions and interpreting observations.

Despite this interdependence, many empirical studies

build largely on other empirical studies with little

direct reference to relevant theory, suggesting a fail-

ure of communication that may hinder scientific pro-

gress. … The density of equations in an article has a

significant negative impact on citation rates, with

papers receiving 28% fewer citations overall for each

additional equation per page in the main text. Long,

equation-dense papers tend to be more frequently

cited by other theoretical papers, but this increase is

outweighed by a sharp drop in citations from non-

theoretical papers.

This article contains no equations beyond a few summary

expressions. I do not write for other theoreticians. I do not

attempt to be comprehensive. Rather, I try to evoke some

lines of thought that I believe will be helpful to scientists

who want to know about the theory.

A rough idea about the theory aids empirical study. It also

helps to cope with the onslaught of theoretical articles.

Those theoretical articles often claim to shift the proper

framing of fundamental issues. The literature never seems to

come to a consensus.

Here, I attempt to translate a few of the key points into

nonmathematical summaries. Such translation necessarily

loses essential components of understanding. Yet it seems

worthwhile to express the main issues in way that can be

understood by a wider audience. Refer to my earlier work

for mathematical aspects of the theory and for citations to

the technical literature (Frank, 1997a,b, 1998, 2012a,b,c,

2013).
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used in those early papers, he was only able to give a

rough description for the proper measure for related-

ness. His initial expression in terms of the genetic corre-

lation between actor and recipient was in the right

direction and was later refined by Hamilton (1970).

Hamilton also defined a new and more general

notion of fitness, which he called ‘inclusive fitness’.

Instead of counting the number of offspring by an

individual, inclusive fitness makes a more extensive cal-

culation of how phenotypes influence the transmission

of genes from one generation to the next. In the inclu-

sive fitness interpretation, eqn 1 describes the changes

in direct and indirect reproduction associated with each

change in behaviour. Thus, the inclusive fitness of a

particular behavioural act is the indirect reproductive

gain through the recipient, B, multiplied by the related-

ness, r, minus the loss in direct reproduction, C. The

relatedness, r, measures the genetic discount of substi-

tuting the reproduction of the recipient in place of the

reproduction of the actor.

All of the direct and indirect fitness changes are

assigned to the actor. This assignment of the different

pathways of genetic transmission to the actor associates

all fitness changes with the behaviour that caused those

changes. Hamilton viewed this inclusive assignment of

all genetic consequences to the original causal behav-

iour as the key to his approach. The proper way of

doing the calculation was the major theoretical advance.

Hamilton (1970) emphasized this causal perspective:

Considerations of genetical kinship can give a statisti-

cal reassociation of the [fitness] effects with the indi-

viduals that cause them.

Hamilton’s 1970 paper also greatly advanced the

analysis by using Price’s equation (Price, 1970). With

this method, Hamilton established the correct measure

for genetic similarity, r, between actor and recipient.

That measure turned out to be the regression coeffi-

cient of the recipient’s genotype in relation to the

actor’s genotype. That regression is the value needed

to establish a proper measure of inclusive fitness.

Hamilton noted that the regression was the exact

measure only in his particular models. He argued that

the regression measure would extend, at least approxi-

mately, to a wide variety of other assumptions.

Roughly speaking, r translates the actor’s deviation in

gene frequency from the population average to the

recipient’s deviation in gene frequency from the

population average. Thus, recipient’s reproduction has

consequence for gene frequency change that is r multi-

plied by what the same fitness increment in the actor

would cause to gene frequency change (Grafen, 1985;

Frank, 1998, p. 49).

Comparison of different approaches

Already by 1975, different lines of thought on altruism

had developed. Hamilton (1975, pp. 336–337) gave his

opinion:

Box 3: Literature

For each topic related to kin selection theory, I list a small

sample of key articles and reviews. This limited space does

not allow comprehensive coverage or commentary on the

particular articles, but should provide an entry into the

extensive literature and the range of opinions.

Several reviews follow Hamilton’s perspective (Alexander,

1974; Dawkins, 1979; Michod, 1982; Grafen, 1985; Leh-

mann & Keller, 2006; Wenseleers, 2006; Dugatkin, 2007;

Bourke, 2011; Gardner et al., 2011). An associated literature

emphasizes the problem of sociality and sterile castes in

insects, with additional commentary on general aspects of

the theory (Wilson, 1971; West-Eberhard, 1975; Trivers &

Hare, 1976; Andersson, 1984; Brockmann, 1984; Alexander

et al., 1991; Bourke & Franks, 1995; Queller & Strassmann,

1998; Foster et al., 2006).

Kin selection theory has been applied to a wide range of

biological problems. Here, I can list only a few general over-

views. Those overviews give a sense of the scope but do not

include many significant applications (Trivers, 1985; May-

nard Smith & Szathm�ary, 1995; Crespi, 2001; Michod &

Roze, 2001; West et al., 2007; Burt & Trivers, 2008; West,

2009; Davies et al., 2012).

The strongest criticisms arose from population genetics.

The main issues concern how the specifics of genetics can

vary from case to case and alter the outcome of selection,

and how the full analysis of dynamics may provide an

essential, deeper perspective on evolutionary process (Uye-

noyama et al., 1981; Uyenoyama & Feldman, 1982; Karlin &

Matessi, 1983; Kerr et al., 2004; Nowak et al., 2010).

Kin selection theory has a long association with debates

about units and levels of selection. I give a very short listing,

because that topic is beyond my scope (Lewontin, 1970;

Dawkins, 1982; Keller, 1999; Okasha, 2006). The related

topic concerning group selection does fall within my scope

(Wade, 1978; Uyenoyama & Feldman, 1980; Wilson, 1983;

Grafen, 1984; Nunney, 1985; Wade, 1985; Heisler & Da-

muth, 1987; Queller, 1992a; Dugatkin & Reeve, 1994; Soltis

et al., 1995; Sober & Wilson, 1998; Henrich, 2004; Traulsen

& Nowak, 2006; West et al., 2008; Leigh, 2010).

The merging of kin selection theory with quantitative

genetics and multivariate analyses of selection follows vari-

ous lines of development (Cheverud, 1984; Queller,

1992b; Wolf et al., 1998, 1999; Bijma & Wade, 2008;

McGlothlin et al., 2010; Wolf & Moore, 2010). Advanced

aspects of the theory and new directions of theoretical

development continue to appear (Rousset, 2004; Grafen,

2006; Taylor et al., 2006; Gardner et al., 2007; Fletcher &

Doebeli, 2009).
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The usefulness of the ‘inclusive fitness’ approach to

social behaviour (i.e. an approach using criteria like

[rB � C > 0]) is that it is more general than the

‘group selection’, ‘kin selection’ or ‘reciprocal altru-

ism’ approaches and so provides an overview even

where regression coefficients [r] and fitness effects

[B and C] are not easy to estimate or specify.

For Hamilton, his rule was a way to clarify biological

understanding and to develop qualitative hypotheses

about the causes of adaptation. Hamilton did not think

of his rule as replacing the way in which one did calcu-

lations for models of population genetics. Indeed, he

always considered the classical population genetics the-

ory as the primary truth. He then evaluated his own

methods in light of how well they could capture, in a

simple way, the complexities of the underlying genetic

models. Following that historical line of thought, the

subject subsequently split into two lineages.

On the biological side, Hamilton’s perspective com-

pletely changed the way people approach a great vari-

ety of key problems, ranging from social insects to

parasite virulence to bacterial competition to the evolu-

tionary history of ‘individuals’ to the historical ten-

dency for an increase in biological complexity. Almost

everyone agrees that this was a revolutionary change

in biological thought and that it derived from Hamil-

ton’s work.

At the same time, heated debates arose about theo-

retical interpretations and mathematical details. We see

in Hamilton’s (1975) quote the different competing

phrases and associated theoretical perspectives. The

ongoing debates have grown ever more fierce rather

than settling out to a common perspective.

In essence, I think there is almost no disagreement

about how evolutionary process shapes biological char-

acters. No matter the perspective, when faced with the

same biological problem, all of the different approaches

usually arrive at roughly the same predictions about

how evolution shapes characteristics. Yet, in spite of

that agreement, the arguments persist about whether

one should call the underlying process ‘group selection’

or ‘kin selection’ or ‘inclusive fitness’ or ‘population

genetics’ or whatever else is being promoted.

Clearly, we need to understand more than just the

predicted outcomes: we must also understand the

underlying causal processes. So something is at stake

here. But what exactly? The best way to understand

that question is through the historical development of

the subject. So, let us continue with Hamilton’s (1975)

article and subsequent work.

Almost everything that one would reasonably want

to say about group selection in relation to inclusive fit-

ness or kin selection is in the following quotes from

Hamilton (1975). I quote in full because there has been

much controversy and misunderstanding about these

issues. It helps to read Hamilton’s perspective, given

long before the current participants in the debates fully

developed their views on the subject.

As against ‘group selection’ it [inclusive fitness] pro-

vides a useful conceptual tool where no grouping is

apparent – for example, it can deal with an ungrouped

viscous population where, owing to restricted migra-

tion, an individual’s normal neighbours and interac-

tants tend to be his genetical kindred.

In other words, inclusive fitness is more general.

Group selection is just a case in which the positive

association, r, arises from clearly defined aspects of

groups. In cases for which groups are not easily delin-

eated, the same underlying inclusive fitness approach

still holds. Continuing

Because of the way it was first explained, the

approach using inclusive fitness has often been identi-

fied with ‘kin selection’ and presented strictly as an

alternative to ‘group selection’ as a way of establishing

altruistic social behaviour by natural selection (May-

nard Smith, 1964; Lewontin, 1970). However the

foregoing discussion shows that kinship should be

considered just one way of getting positive regression

[r] of genotype in the recipient, and that it is this

positive regression that is vitally necessary for altru-

ism. Thus, the inclusive-fitness concept is more

general than ‘kin selection’.

Hamilton preferred to reserve ‘kin selection’ for cases

in which the positive regression, r, comes from interac-

tions between individuals that we would commonly

describe by terms of kinship, such as cousins. I will

later argue against Hamilton’s use of ‘inclusive fitness’

as the ultimate causal view. I will end up using ‘kin

selection’ as the label for a wide variety of processes,

because of the lack of a better alternative. However, in

1975, Hamilton’s view made sense. For now, it is useful

to read what Hamilton said to understand his perspec-

tive on the different framings for causal process.

Continuing

Haldane’s [(1932)] suggestion about tribe-splitting can

be seen in one light as a way of increasing intergroup

variance and in another as a way of getting positive

regression in the population as a whole by having the

groups which happen to have most altruists divide

most frequently. In this case, the altruists are helping

true relatives. But in the assortative-settling model, it

obviously makes no difference if altruists settle with

altruists because they are related (perhaps never hav-

ing parted from them) or because they recognize fel-

low altruists as such, or settle together because of

some pleiotropic effect of the gene on habitat prefer-

ence. If we insist that group selection is different from

kin selection the term should be restricted to situations

of assortation definitely not involving kin. But it seems

on the whole preferable to retain a more flexible use
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of terms; to use group selection where groups are

clearly in evidence and to qualify with mention of

‘kin’ …, ‘relatedness’ or ‘low migration’ (which is

often the cause of relatedness in groups), or else

‘assortation’, as appropriate. The term ‘kin selection’

appeals most where pedigrees tend to be

unbounded and interwoven, as is so often the case

with humans.

The point is that the different labels serve only to

help identify the cause of association, r. The underlying

evolutionary process should be understood with respect

to rB � C > 0, even when it is difficult in practice to

calculate directly the different terms in Hamilton’s

inequality. Hamilton favoured analysing complex bio-

logical problems with population genetic models, then

interpreting those models in terms of the simple causal

framework captured by the r, B and C components of

his rule.

Using Hamilton’s theory to solve
problems

Limitation of Hamilton’s theory in practical
applications

Hamilton (1972) used his rule to develop various quali-

tative hypotheses about social insect evolution. When

Hamilton analyzed kin interactions in quantitative

models of sex ratios (Hamilton, 1967) and dispersal

(Hamilton & May, 1977), he first made his mathemati-

cal calculations with genetic or game theory models,

then made post hoc interpretations of the quantitative

results in terms of interactions between kin. Hamilton

never used inclusive fitness theory or Hamilton’s rule

to solve for the quantitative phenotype favoured by

selection. Hamilton (1975, p. 337) noted that

Although correlation between interactants is necessary

if altruism is to receive positive selection, it may well

be that trying to find regression coefficients is not the

best analytical approach to a particular model. Indeed,

the problem of formulating them exactly for sexual

models proves difficult (Chapter 2). One recent model

that makes more frequent group extinction the pen-

alty for selfishness (or lack of altruism) has achieved

rigorous and striking conclusions without reference to

regression or relatedness (Eshel, 1972). But reassur-

ingly, the conclusions of both this and another similar

model (Levins, 1970) are of the general kind that con-

sideration of regression leads us to expect. The regres-

sion is due to relatedness in these cases, but classified

by approach these were the first working models of

group selection.

In 1979, I took Hamilton’s graduate seminar at the

University of Michigan. I inherited Hamilton’s interest

in fig wasp sex ratios and the idea that one could

develop models of kin interactions and sex ratios using

the Price equation. At that time, Hamilton was losing

interest in working on such problems, and I was left

with the last seeds of his insight on this subject. As I

pursued my empirical studies of fig wasp sex ratios,

I also tried to learn how one could develop more realis-

tic models of sex ratios with complex kin interactions.

Using kin selection theory to analyse models of kin
interactions

At first, I had Hamilton’s doubts about using kin selec-

tion theory directly to solve problems. Instead, the

method in those days was to solve the problem with

population genetics, and then try to interpret the

resulting predictions in terms of kin interactions. The

biological interactions from my empirical studies led to

horrendously complex population genetic analyses

(Frank, 1983b). With great effort, I could solve some of

the problems. I repeatedly found that the post hoc inter-

pretations in terms of kin selection were simple and

easy to understand. For example, the value to a mother

of an extra son is devalued by the mother’s genetic

relatedness to the competitors of her sons (Frank,

1985b, 1986b,c).

This underlying simplicity in the exact results of

population genetics led me to try Hamilton’s suggestion

about using the Price equation to model sex ratios.

Eventually, I found a simple Price equation method to

obtain the same results as the complex genetic

approach, when analysing commonly used assump-

tions. The Price equation method also gave results that

were much more general than the population genetic

methods. In a Price equation analysis, it was easy to

follow the causal processes during the derivation, and it

was easy to interpret the final results in terms of the

biology. The method was like reading sentences from a

book in which the biological processes of competition,

cooperation and kin interactions were written in the

clearest and most direct manner.

The generality of my solutions, derived directly in

terms of kin interactions, improved through a series of

papers on sex ratios and dispersal (Frank, 1985a,b,

1986a,b,c, 1987). At first, it did not make sense to twist

the results for those biological applications into a form

that looked like Hamilton’s rule, rB � C > 0. The results

did not appear in terms of simple costs and benefits. Con-

sequently, I gave little thought to Hamilton’s rule, and

instead thought only of how kin interactions shaped the

evolution of interesting biological characters.

Solving problems: dispersal example

A model of dispersal illustrates how the application of

kin selection theory changed through the 1970s and

1980s. In the 1970s, Hamilton (1978, 1979) became

interested in wing polymorphisms among insects. For
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example, some of the parasitic wasps that live in figs

have two male morphs. A wingless male stays within its

natal fig to compete for nearby mates. A winged male

leaves to search for mates in other figs. Hamilton guessed

that the dispersers must often die before finding another

fig containing potential mates. With such an extreme

cost of dispersal, why would an individual develop to

disperse rather than stay and try to mate locally?

Hamilton & May (1977) realized that competition

between kin may explain dispersal even when the cost

is very high. A male that stays and outcompetes broth-

ers replaces the brother’s sperm with his genetically

similar sperm, causing little gain in the net success of

their shared genotype. By contrast, any success of a

male disperser against nonrelated males provides full

benefit to the fitness gain of his genotype.

Although Hamilton & May (1977) recognized the kin

selection processes involved, they did not use kin selec-

tion theory as a method to analyse the problem.

Instead, they formulated a simple ecological model and

then solved for the evolutionarily stable strategy (ESS).

After obtaining the result, they then gave a post hoc

interpretation in terms of kin interactions.

In 1986, I solved this problem in a much simpler and

more general way by using kin selection theory as a

method of analysis (Frank, 1986a). This history of the

kin selection approach sets the context for the modern

understanding of the theory. The following is a slightly

modified summary from Frank (1998, Section 7.2).

Hamilton & May’s ESS model

Hamilton & May (1977) assumed that a habitat has a

large number of discrete sites. In each year, the parents

die after producing offspring. Each offspring has a trait

that determines the probability, d, that it disperses from

its natal patch. Those that stay at home, with probabil-

ity 1 � d, compete for one of N available breeding sites.

Dispersers die with probability c, and with probability

1 � c they find a patch in which to compete for breed-

ing. All sites are occupied in the simple model discussed

here. Hamilton & May analysed the case in which one

breeding site (N = 1) is available in each patch. In an

asexual model, Hamilton & May found the ESS dis-

persal fraction, d, to be

d� ¼ 1

1þ c
; (2)

in which c, the cost of dispersal, varies from just above

zero on up to nearly one. Interestingly, even if the cost of

dispersal is high and the chance of surviving the dispersal

phase is low, nearly half of the offspring still disperse.

In a second model, Hamilton & May analysed dis-

persal in a sexual species. Sexual reproduction raised

analytical difficulties, because some inbreeding is likely

if mating takes place within the local patch. Their

method of analysis did not easily handle inbreeding, so

they assumed that all males disperse before mating, and

a fraction d of females disperse. With that set-up, they

found that the ESS dispersal fraction for females is

d� ¼ 1� 2c

1� 2c2
; (3)

in which the dispersal rate is zero when c � 1/2. Ham-

ilton & May understood the role of kin selection. The

dispersal rate is lower in the sexual compared with the

asexual model because the genetic relatedness of com-

petitors within the natal patch was less in the sexual

model. Less kin competition reduces the benefit of dis-

persing to avoid competition with kin, and so lowers

the dispersal rate favoured by selection. Beyond that

intuitive post hoc interpretation, kin selection theory

played no role in the analysis.

Motro’s population genetic analysis

Motro (1982a,b, 1983) analysed a fully dynamic popu-

lation genetic model for the same problem. His complex

analysis, spread over three articles, covered the same

biological assumptions as Hamilton & May, with a few

minor extensions. The length and complexity of

Motro’s work arose from the detailed population

genetic analysis, as opposed Hamilton & May’s rela-

tively simple ESS methods.

Motro found that, in an asexual model, his result

agreed with Hamilton & May’s expression given in

eqn 2. Motro obtained two additional results. First, in a

sexual model in which the mother controls the dis-

persal trait of offspring, the same result arises as for the

asexual model, as in eqn 2. By contrast, when Motro

tried to match the assumptions of Hamilton & May for

offspring control of phenotype, he obtained

d� ¼ 1� 4c

1� 4c2
; (4)

which differs from Hamilton & May’s result in eqn 3.

Motro drew two conclusions. First, in sexual models,

the equilibrium depends on whether offspring pheno-

type is controlled by the mother or by the offspring.

Second, under offspring control, explicit population

genetic models failed to confirm Hamilton & May’s

result. Motro attributed the mismatch to a failure of the

simplified ESS method when compared with his exact

and rigorous population genetic techniques.

Analysis by kin selection

I analysed this dispersal problem by kin selection to

understand the different results of Hamilton & May and

Motro (Frank, 1986a). Box 4 shows the expression for

fitness and some technical details.

Following Maynard Smith (1982), the standard ESS

approach is to find a local maximum of fitness with
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respect to phenotype. When the amount of genetic

variation for the phenotype is small, that local maxi-

mum is an ESS. At the time, it was generally thought

that this ESS maximization method would not work

with kin interactions, and so was not used to analyse

problems of kin selection (Box 4).

I compared my Price equation analysis for the change

in fitness with the terms obtained by an ESS maximiza-

tion approach. The potentially difficult term in the ESS

analysis is the slope (derivative) of average group phe-

notype with respect to individual phenotype. That slope

from the ESS analysis always matched a regression

coefficient in the Price equation. Under common

assumptions, that regression coefficient is exactly the

coefficient of relatedness of an individual to its neigh-

bours. Thus, one can often replace the slope of group

phenotype with respect to individual phenotype by the

coefficient of relatedness from kin selection theory,

r (Box 4).

All of that may sound a bit complicated, but in prac-

tice it is quite easy. Take the derivative of fitness with

respect to the individual phenotype; set to r the slope

of average group phenotype with respect to individual

phenotype; and solve for a local maximum to obtain

d� ¼ r � c

r � c2
; (5)

which is the result reported in Frank (1986a) and dis-

cussed in more detail in Frank (1998, Section 7.2).

Kin selection simplifies and generalizes prior
results

Motro and Hamilton & May assumed that only one

female could breed in each patch. They made that

assumption because their methods did not allow them

to analyse the more complicated situation in which

multiple females bred in each patch. To compare eqn 5

to the prior models, let us first follow that earlier

assumption of one breeding female per patch.

If the organism is asexual, then in each patch the

candidates for dispersal – the offspring of the single

asexual mother – are related by a coefficient of one,

r = 1, and eqn 5 reduces to Hamilton & May’s result in

eqn 2. If the organism is sexual, and offspring pheno-

type is controlled by the mother, then r = 1, and we

again have eqn 2. The reason r = 1 with maternal con-

trol is that it is the relatedness of the individual that

controls phenotype to the average phenotype of its

patch that matters. With only one breeding female, the

mother’s phenotype and the average phenotype in the

patch are the same, and r = 1.

If, by contrast, offspring control their own pheno-

type, then relatedness among competitors is r = 1/2,

because competitors on a patch are outbred full sib-

lings. With r = 1/2 in eqn 5, we recover the second

result of Hamilton & May in eqn 3.

Hamilton & May assumed that the mother mated only

once, so that siblings are related by r = 1/2. By contrast,

Box 4: Fitness expression for dispersal

In the dispersal model, fitness w depends on the dispersal

phenotypes at the three different scales: a focal individual, d;

the average dispersal probability in the focal individual’s

patch, dp; and the population average, �d, yielding

wðd; dp; �dÞ ¼ ð1� dÞ pðdpÞ þ dð1� cÞ pð�dÞ: ð11Þ

When an individual remains at home, with probability

1 � d, its expected success, p(dp), depends on the average

dispersal fraction in its patch, dp. When an individual dis-

perses, with probability d, its probability of landing in a new

patch is 1 � c, and its expected success in the new patch,

pð�dÞ, depends on the average dispersal probability in the

population, �d. The expected success expressions, p(dp) and

pð�dÞ, can be written as

pðaÞ ¼ 1

1� aþ �dð1� cÞ
;

in which one can use either a ≡ dp or a � �d. The denomina-

tor is proportional to the number of competitors for breeding

in a patch, and so the reciprocal is proportional to the

expected success per individual in that patch.

When analysing the fitness maximum with respect to phe-

notype, one takes the derivative of w in eqn 11 with respect

to d. That differentiation leads to terms in which one has the

derivative of dp with respect d. Such a term would require

specifying how the average phenotype of neighbours in a

natal patch, dp, changes with respect to the phenotype of a

focal individual, d. With kin interactions, that relationship

could be complex, because the focal individual’s phenotype, d,

would be correlated with the average phenotype of its neigh-

bours, dp, through the genetic similarity among neighbours.

The lack of clarity about the slope of neighbour (or group)

phenotype with respect to the focal individual’s phenotype

initially led to the abandonment of the simple maximization

method for ESS analysis when genetic relatives interacted.

In 1986, when I first analysed this dispersal problem, I pub-

lished a Price equation method of analysis. I also began to

see that the simple ESS maximization method worked when

one simply replaced the derivative of neighbour phenotype

on actor phenotype by the coefficient of relatedness. One

could see the equivalence by matching up terms in a Price

equation analysis with what one obtained by differentiating

fitness with respect to phenotype and expanding out the

terms. However, in the 1980s, I was not certain about how

to justify using the simple maximization approach, so I pub-

lished only Price equation analyses. Later, in 1996, with the

help of Peter Taylor’s deep understanding and elegant analy-

sis, we published the general maximization method (Taylor

& Frank, 1996).
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Motro implicitly assumed that the mother mated several

times and that offspring in a patch were only half sibs, so

in his model r = 1/4. Using that value of r in the general

solution of eqn 5 yields Motro’s result in eqn 4. Thus,

the single kin selection model of eqn 5 explains the par-

ent–offspring conflict and the difference between Mo-

tro’s analysis and Hamilton & May’s model.

With the kin selection model, we are not limited to

one breeding site per patch, or to an outbreeding sys-

tem. Rather, we can treat r as a parameter and express

the ESS dispersal fraction in terms of the coefficient of

relatedness. Higher relatedness increases dispersal. The

reason is that a genotype competing with close relatives

gains little by winning locally against its relatives. Even

a small chance of successful migration and competition

against nonrelatives can be favoured.

Discussion of the new kin selection methods of
analysis

In retrospect, the kin selection analysis of dispersal

seems simple and obvious. Yet, at the time, Hamilton

had not been able to use kin selection theory to analyse

the problems of sex ratio and dispersal that interested

him. In the theoretical analysis of phenotypes, kin

selection was only a post hoc method of interpreting

results obtained by other means. The understanding of

process was sufficiently confused that Motro could

write three articles criticizing the Hamilton & May

model, arguing that only a formal population genetic

analysis could give the correct results. In fact, Motro

simply made different assumptions about whether the

dispersal phenotype was controlled by the parent or the

offspring and about whether females mated once or

many times. Those distinctions become obvious from

the simpler and more general perspective of the kin

selection analysis of phenotype.

The solution in eqn 5 did not have any obvious con-

nection to Hamilton’s rule. Similar kin selection analy-

ses of sex ratio models also did not connect in any clear

way to Hamilton’s rule (Frank, 1985a,b, 1986a,b,c,

1987). At that time, I had concluded that Hamilton’s

rule was not useful for solving realistic problems. In

application, nothing like Hamilton’s rule appeared.

It turned out that I was wrong about the generality of

Hamilton’s rule, but it would take another 10 years

after 1986 to find the hidden connections. Meanwhile,

throughout the 1980s and early 1990s, debate about

Hamilton’s rule continued.

Problems with Hamilton’s rule before
1996

Hamilton’s rule became a widely used standard. The

simplicity of rB � C > 0 allowed empiricists to think

through how particular natural histories might influ-

ence the evolution of phenotypes and to formulate test-

able hypotheses – the essential attribute for a successful

theory. Most biologists continue to abide by some

notion along the lines of Hamilton’s rule, based on its

perceived success in explaining empirical patterns (cita-

tions in Box 3).

Yet, many theoreticians vigorously attacked the sim-

plicity of Hamilton’s rule. It appeared easy to set up

scenarios in which the rule failed. Those theoreticians

who favoured the rule replied with ever more sophisti-

cated theoretical analyses. Anyone with primarily bio-

logical interests, or lacking in years of specialized

mathematical training, gave up following the details.

Clearly, the broader notions of kin selection uniquely

explained diverse aspects of natural history. Hamilton’s

rule seemed to capture the right idea, if not every pos-

sible assumption that one could conceive.

In this section, I discuss some of the criticisms of

Hamilton’s rule. I focus primarily on issues that arose

before 1996. In that year, my own understanding chan-

ged with the publication of Taylor & Frank (1996).

With the help of Peter Taylor’s elegant insights, I came

to see the proper generalization of Hamilton’s rule. That

generalization united the simplicity of the original rule

with a new and broader scope. With the broader scope,

what previously seemed like a long list of exceptions to

the rule could be seen as part of an expanded way of

framing problems of social evolution. Later sections dis-

cuss the changes in understanding from 1996. This sec-

tion sets the necessary background by focusing on

issues before that time.

Extra terms in Hamilton’s rule

Hamilton’s rule is not sufficient if the direction of change

favoured by selection depends on some term in addition

to rB and C. Queller (1985) cited several earlier examples

in which an extra term is required. He then showed the

general way in which such terms arise. Suppose that the

phenotype, x, is the level of an altruistic behaviour that

is costly to an individual, but beneficial to its neighbours.

Among all the neighbours that interact within a local

patch, the average level of the altruistic phenotype is xp.

Social interactions, through the effects of these behav-

iours, increment fitness by

w ¼ Bxp � Cx;

in which C is the cost to the individual for the behav-

iour, x, and B is the benefit received by the individual

from neighbours that, on average, behave as xp. Putting

that expression into the Price equation, one finds that

the altruistic behaviour increases when rB � C > 0,

which illustrates Hamilton’s rule. Here, r is the slope

(regression) of xp with respect to x, which measures

how strongly an individual’s behaviour is associated

with the behaviour of its neighbours.

Following a variety of earlier studies, Queller (1985)

pointed out that fitness might depend on synergistic
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interactions between an individual and its neighbours

with regard to altruistic behaviours. If the benefit only

accrues when both the focal individual and its neigh-

bour act in concert, then we need to consider a multi-

plicative term, y = xxp. One can think of this term as

describing the phenotype of pairs of individuals, in

which the phenotypic value of the pair depends on

how each individual in the pair behaves. For example,

to achieve a task, it may be that both individuals have

to contribute cooperatively to that task, otherwise no

gain is achieved. In many cases, one can think of the

term y as the average partnership phenotype of a focal

individual paired with a randomly chosen partner from

the group. If we include this synergistic effect to the

increment for fitness we have

w ¼ Bxp � Cx þ Dy; (6)

in which D is the fitness contribution of the partnership

phenotype. Putting this expression in the Price equation

yields the condition for the altruistic behaviour to increase

as rB � C + qD > 0. The term q is the slope of y with

respect to x, which measures the association between the

individual’s tendency to be altruistic and the tendency of

that individual’s partnerships to behave in concert when

faced with a task that requires joint action.

This analysis suggests that Hamilton’s rule fails when

there are multiplicative interactions between pheno-

types, because factors beyond additive costs and bene-

fits arise (Queller, 1985). To anticipate later discussion,

note that we may think of y in eqn 6 as any character-

istic other than the focal individual’s value for the par-

ticular behaviour under study, x, and the average of

that particular behaviour in neighbours, xp. If q is the

slope of y on x and q 6¼ 0, then the analysis will yield a

condition for the increase of the altruistic character x as

rB � C + qD > 0. It does not take much imagination to

think of many different attributes, y, that could be asso-

ciated with x and therefore cause Hamilton’s rule to

fail, if one chose to think of the subject in this way.

Before developing that notion, let us continue with

some additional issues.

Ecological context and density dependence

Hamilton (1964a,b) emphasized that limited migration

would tend to keep genetically related individuals near

each other. Such population viscosity could favour

altruism through the increased relatedness of neigh-

bours. A popular series of papers in the 1990s raised a

problem with Hamilton’s view of population viscosity

(Taylor, 1992a,b; Wilson et al., 1992; Queller, 1994;

Frank, 1998, Section 7.1).

In a viscous population, neighbours may be related

and therefore candidates for altruism. However, those

same neighbours may also be the primary competitors

of a potential altruist. Two potentially offsetting effects

may occur. First, altruism may increase the vigour and

success of a neighbour, which provides a benefit to the

actor in proportion to the relatedness between actor

and recipient. Second, the more vigorous neighbour

may take more of the local resources, which imposes a

cost on the original altruistic actor. In some cases, the

two factors may cancel each other. If so, altruism can-

not evolve in viscous populations, even though neigh-

bours may be closely related.

An early analysis by Alexander
The problem was expressed beautifully in a much earlier

article that is rarely cited in this context (Alexander,

1974, pp. 353, 376)

Hamilton’s development of the concept of inclusive

fitness began with the argument that the reproductive

success of an individual organism cannot be measured

by alone considering the effects on the number and

quality of direct descendants. Also involved are effects

on the reproduction of genetic relatives. But, since

both of these effects can only be measured in a com-

parative sense, there are always other individuals

involved, and they are the reproductive competitors

of the individuals and genetic elements being consid-

ered. In Hamilton’s equations, they [the competitors]

are the population at large, an average of the rest of

the species. Hamilton’s arguments thus seem only to

consider the detriments of altruism in terms of energy

expenditure and risk-taking in the act itself, and to

omit or at least not specify the problem of subsequent

detriment to the altruist (or its descendants) owing to

the presence of the recipient (or its descendants). But

all of the members of the species, or population, will

not compete equally directly with any given individ-

ual. Nearby individuals are more direct competitors.

This would not affect Hamilton’s calculations unless

nearby individuals also have a greater likelihood of

being closer genetic relatives. That such a correlation

generally exists is obvious, and is acknowledged by

Hamilton (1972). I believe this factor modifies every

consideration of whether or not, and how, nepotism

will actually evolve. … The significance of this prob-

lem can scarcely be exemplified better than by a point

made earlier – that if degrees of relatedness and inten-

sity of competition among individuals diminish

together in certain, not unlikely fashions with dis-

tance from any given individual in a population, then

nepotism cannot evolve.

Dispersal and sex ratio
Earlier, I discussed a model of dispersal by Hamilton &

May (1977). In that model, selection favoured dispersal

to reduce competition against neighbouring relatives

and increase competition against distant, unrelated

individuals. That process of uncoupling the scales of

relatedness and competition can be understood in light

of Alexander’s analysis.
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Another line of thought independently developed the

relative scales of altruism, competition and relatedness.

Clark (1978) argued that ‘Competition between female

kin for local limiting resources may explain a male-biased

secondary sex ratio …’ To a mother, the benefit of mak-

ing an extra daughter is offset by the competitive effect

that extra daughter may have on the mother’s other

daughters. By contrast, sons may disperse before compet-

ing and therefore not reduce the fitness of other sons.

The development of sex ratio theory in the 1980s

accounted for the interactions between dispersal, relat-

edness, the scale of competition and the scale of

resource limitation (reviewed in Frank, 1998). That

theory made clear that altruism and kin interactions

could only be understood in the full ecological and

demographic context of the behaviours under study. As

Alexander (1974) emphasized, the scales of altruism

and relatedness must be evaluated in relation to the

scale of competition.

Ecology and demography in relation to Hamilton’s rule
The terms r, B and C of Hamilton’s rule depend on the

ecological and demographic context. Any consideration

of natural history makes that clear. Yet, the subject is

full of ‘discoveries’ that Hamilton’s rule fails because

those terms are not constants, and that ecology and

demography matter. The tension arises because simple

population genetic models tend to take costs and bene-

fits as fixed parameters rather than ecologically derived

variables that depend on context.

Similarly, relatedness turns out to be part of a much

broader problem of how to measure costs and benefits

in common units. The traditional view of relatedness

translates gene frequency deviations in an actor with

respect to gene frequency deviations in a recipient,

putting all terms on the common scale of consequences

for gene frequency change. That makes sense. How-

ever, much confusion arose because terms that

appeared to be equivalent to relatedness often popped

up in analyses, yet had a variety of meanings. As we

continue on through the history and the generalization

of Hamilton’s rule, we will see that Hamilton’s rule can

only be understood within a broader approach of parti-

tioning the causes of fitness into meaningful compo-

nents. Before turning to that generalization, I continue

with the criticisms of Hamilton’s rule that dominated

discussion in the 1980s.

Further problems: dynamics

It is better to be vaguely right than exactly wrong

(Read, 1909).

The basic principles of kin selection theory and its

descendant ideas always hold. Those principles are:

costs and benefits of phenotypes matter; statistical asso-

ciations between actors and recipients of behaviours

matter; and heritability traced from the expression of

phenotypes to representation among descendants mat-

ters. To most biologists, kin selection theory is under-

stood as a concise summary of those basic principles.

The story differs in the theoretical literature. Once

one loses sight of the biology, all that is left concerns

mathematical aspects of the theory. Can a particular

approach be used to make an exact calculation about

predicted outcome? If another approach is simpler but

limited in the scope over which it is exactly right,

should it be discarded entirely?

These questions primarily concern mathematical

rather than biological issues. Why should you care

about those questions if you are interested in the biol-

ogy? You should care because the theoretical literature

has not done you the favour of sorting out the parts

that matter to you vs. the parts that do not. Instead,

each theoretical article seemingly replies to another

theoretical article. The real conceptual progress that

does matter remains buried under the weight of much

that does not really matter to someone interested in

biological problems.

Ultimately, sorting all of this out can only be done at

the technical level. There is no way to argue that cer-

tain technical details do not matter without showing,

technically, why they do not matter. I expressed my

views about the technical issues in my book (Frank,

1998). Written 15 years ago, that book still gives a good

overview of the issues. Here, I continue to avoid tech-

nical discussion, and simply evoke my perspective on

the main points.

Statics vs. dynamics

Often in the writings of economists the words

‘dynamic’ and ‘static’ are used as nothing more than

synonyms for good and bad, realistic and unrealistic,

simple and complex. We damn another man’s theory

by terming it static, and advertise our own by calling

it dynamic. Examples of this are too plentiful to

require citation (Samuelson, 1983).

It would be helpful to calculate exactly how selection

influences phenotypes. What is the predicted sex ratio

under certain patterns of mating and competition?

When will individuals band together to form coopera-

tive groups? When will groups split apart or fail

because of internal conflict? The generalizations of

Hamilton’s rule and the broader theories of kin selec-

tion only provide exact calculations under certain

assumptions (Frank, 1998).

Roughly, the theory becomes exact when the varia-

tion in fitness is small. However, significant amounts of

variation are nearly universal in biology. To use kin

selection as an analytical tool, when can we assume

that there is little variation? Lack of variation primarily

arises when a population approaches an equilibrium.
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Near an equilibrium, little further change occurs, and

the population comes nearly to rest – the condition of

stasis. Analysis near an equilibrium is sometimes called

‘statics’. As an exact analytical tool, kin selection theory

is primarily a tool for statics.

The problems of statics are widely known. Real bio-

logical systems are unlikely to be near an equilibrium.

Thus, exact analysis must consider dynamics – the full

processes of change. Worse, many problems have

different points at which the system could come to rest

– alternative equilibria. If one only analyses what hap-

pens near an equilibrium, as in statics, one has no idea

which of the alternative equilibria the system will end

up near. Only a full dynamical analysis of change can

indicate which of the equilibria one would expect the

system to evolve towards.

Given all of the benefits of dynamics and the limita-

tions of statics, why would anyone ever consider a the-

ory based on statics? Because, to make a dynamic

analysis, one has to make a lot of exact and very spe-

cific assumptions, otherwise one cannot do the analysis.

For example, one usually has to specify exactly how

the genetics of a phenotype is controlled in order to

make a complete model of population genetics. The

problem is that we do not know the proper assump-

tions to fill out the required list for a dynamic analysis.

So, in making all of the necessary detailed assumptions

for a dynamic analysis, one is left with an exact calcula-

tion that applies exactly to nothing.

By contrast, the static analysis requires few assump-

tions. In kin selection arguments, usually one needs to

specify how phenotypes and various environmental fac-

tors influence fitness. One obtains a static analysis that

translates the biological assumptions about fitness into

a prediction about how natural selection influences the

evolution of phenotypes. Clearly, this is a vague sort of

analysis, but it is not exactly wrong, as is the full

dynamical analysis. Put another way, a static analysis

does not suffer the pretense of exactness. Instead, a sta-

tic analysis accepts the limitations and calculates the

qualitative predictions about what one expects to see in

various natural settings.

Comparative statics

Now, an observer fresh from Mars might excusably

think that the human mind, inspired by experience,

would start analysis with the relatively concrete and

then, as more subtle relations reveal themselves, pro-

ceed to the relatively abstract, that is to say, to start

from dynamic relations and then proceed to the work-

ing out of the static ones. But this has not been so in any

field of scientific endeavor whatsoever: always static theory

has historically preceded dynamic theory and the

reasons for this seem to be as obvious as they are

sound – static theory is much simpler to work out; its

propositions are easier to prove; and it seems closer to

(logical) essentials (Schumpeter, 1954).

A static analysis summarizes the major forces that

potentially influence phenotype. However, that sort of

simplified theory cannot predict the actual phenotypic

value that one expects to observe. Instead, one should

think of statics in terms of comparison. The dispersal

model discussed earlier provides a good example. In that

model, the predicted dispersal probability from a static

kin selection analysis was given in eqn 5, repeated here

d� ¼ r � c

r � c2
;

in which r is the relatedness between competitors on a

patch, c is the cost of dispersing, and d* is the predicted

equilibrium dispersal rate. Certainly, no one believes that

this model will predict the actual dispersal rate in real

cases. Too many factors are left out. Instead, the whole

idea of the analysis is to isolate a few key processes.

The relatedness term, r, raises another problem. In an

actual population, the relatedness in a patch would depend

on the dispersal rate. The theory given above does not tell

us how to analyse this dependence between relatedness

and dispersal. To simplify the analysis, we could set relat-

edness, r, as a given parameter. The model then predicts

that as the relatedness among competitors on a patch

increases, the observed dispersal rate increases. That sort of

prediction is the method of comparative statics.

Comparative statics begins with the assumption that

a dynamic analysis following the joint dependence

between dispersal and relatedness would, ideally, be

preferable. However, one cannot easily achieve that

ideal, because dynamical analysis requires specific

assumptions about a variety of processes for which we

do not have information. Instead, one admits that one

does not know enough to predict dynamics, and so the

analysis should emphasize statics. A static analysis is

based on fewer, simpler assumptions.

The comparative static analysis isolates key causal

processes in a direct way. For example, the dispersal

model makes an interesting comparative prediction: as

the relatedness in a patch increases, the predicted dis-

persal rate increases. The ideal empirical test identifies

natural or laboratory settings in which relatedness

changes and one can measure the associated change in

the amount of dispersal. The goal is to measure the

change in the putative cause and the change in the

outcome. If the direction of change in the outcome

repeatedly tends to follow the predicted direction of

change, then one is on to something.

A practical method for solving problems
and recovery of Hamilton’s rule

Hamilton did not use kin selection theory to analyse

models of phenotypes. He did pass on to his students
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unpublished notes about how the Price equation might

be used to study sex ratios. I obtained those notes in

1979 while attending Hamilton’s graduate seminar.

I modified Hamilton’s Price equation method to solve a

wide variety of problems with kin interactions, includ-

ing the dispersal model that I presented earlier. Hamil-

ton’s class notes are posted as Supporting Information

for this article in the files Appendix S1 and Appen-

dix S2.

The Price equation method was a bit tedious. Eventu-

ally, I found the match between the standard ESS anal-

ysis of phenotypes and the Price equation analysis of

kin interactions. Earlier, I briefly mentioned the

enhanced ESS approach for kin interactions. This sec-

tion describes that enhanced approach in more detail

and considers the broader consequences for under-

standing the theory.

First steps

The Price equation is a general expression for the

change in average phenotype. To calculate the change

in phenotype, one needs to specify the relation

between phenotype and fitness. For example, Box 4

shows the relation between dispersal and fitness. When

one puts that expression for fitness into the Price equa-

tion, one obtains a variety of terms. Each term

describes the contribution of a component of fitness to

the overall change in phenotype (Frank, 1986a).

In a typical problem with kin interactions, different

components of fitness oppose each other. Some favour

the increase in the phenotype, others favour the

decrease in the phenotype. For example, dispersal

imposes a direct cost on an individual, because the

increased risk during dispersal increases the chance of

death before reproduction. By contrast, dispersal bene-

fits the reproduction of neighbours by reducing the

competition experienced by those neighbours. Together,

the various terms in the Price equation analysis define

the different components of fitness.

I found that I could avoid using the Price equation

by directly calculating the value of the phenotype that

maximized fitness. The maximization approach came

from analyses of ESS phenotypes (Maynard Smith,

1982). The idea is simply that, at equilibrium with

regard to selection, the favoured phenotype must have

fitness at least as great as any slightly different pheno-

type. If that were not the case, then the nearby pheno-

types with higher fitness would increase, and the

previous candidate phenotype was in fact not an equi-

librium with respect to nearby alternatives.

To find a local maximum, one uses the standard cal-

culus approach. Write a function that relates pheno-

types to fitness. Take the derivative (change) of fitness

with respect to phenotype. That derivative describes

whether fitness increases or decreases with respect to a

change in phenotype. One assumes that all members of

the population have the same phenotype, and then

analyses the fitness change for a small fraction of the

population that has a slightly deviant phenotype. In

other words, little variation exists.

A local maximum can only occur when the fitness

neither increases nor decreases for the deviant pheno-

type. If the derivative were increasing, then larger phe-

notypes would be favoured. If the derivative were

decreasing, then smaller phenotypes would be

favoured. When the derivative is zero, then a balance

in forces has been achieved, and no change is favoured.

When at a balance, one checks larger phenotypic devia-

tions to make certain that fitness would indeed

decrease if the phenotypic value changed. If so, then

the balance point, where the derivative is zero, is a

local maximum and an ESS. Maximization is just a

mathematical trick for finding an equilibrium. An equi-

librium is a point at which stasis occurs, leading to a

static analysis.

When applying the maximization method, one ends

up with terms that are the change in partner pheno-

type with respect to the change in the focal individual’s

phenotype. As I mentioned earlier, that kind of term

was initially thought to be difficult to interpret when

kin interactions occur. When partners are genetically

related, then the association between partner pheno-

type and focal individual phenotype depends on the

degree of genetic similarity. Early analysts recognized

that relatedness matters (Hamilton, 1967; Hamilton &

May, 1977), but abandoned the method because it was

not clear exactly how genetic similarity would translate

into the relation between partner phenotype and focal

individual phenotype that arises in the calculus method

of differentiation.

I matched the Price equation terms to the ESS maximi-

zation method. I could see that the difficult term for the

change in partner phenotype with respect to individual

phenotype was like the regression term that Hamilton

(1970) had come to use as the coefficient of relatedness

in his theory. That equivalence meant that one could

use the much simpler maximization trick and the power

of calculus to analyse fitness and find ESS phenotypes.

One just had to replace the change in partner phenotype

with respect to focal individual phenotype by the coeffi-

cient of relatedness between them.

Before 1995, I only published Price equation analy-

ses. That method, although a bit tedious, easily gave

solutions to many problems of dispersal, sex ratio and

tragedy of the commons models for sociality. I pub-

lished a series of articles between 1985 and 1994 on

those topics, as summarized in Frank (1998). I did not

publish the maximization method without use of the

Price equation, because the Price equation had a prior

history in the literature and seemed like a more defen-

sible approach. However, in Frank (1995), I analysed a

more complex problem, for which avoiding the Price

equation and using only the calculus method provided
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important advantages in understanding the evolution of

phenotypes in social interactions. Thus, I needed to

develop the calculus approach into a publishable form.

Generalized Hamilton’s rule as a marginal value
expression

To develop the calculus method, I approached Peter

Taylor in 1995. Taylor found a way to connect the cal-

culus method to Hamilton’s rule. I had abandoned

Hamilton’s rule, because nothing like Hamilton’s rule

had appeared in my numerous studies of different

phenotypes. Suddenly, all of my prior analyses could be

understood more deeply by their connection to the

generalized Hamilton’s rule that came from our work

(Taylor & Frank, 1996).

The calculus method automatically separates out the

various causes of fitness into the three aspects of Hamil-

ton’s rule. First, all of the focal individual’s phenotypic

effects on its own fitness combine into one term. In the

calculus analysis, that term is the small change in direct

fitness for a given small change in the focal individual’s

phenotype, holding constant the phenotype of other

individuals.

The small changes are usually described as ‘marginal

changes,’ matching the classical usage of marginal val-

ues in economic analysis. The first term is thus the

marginal effect of an individual’s phenotype on its own

fitness, holding constant all other effects. This marginal

effect matches exactly the cost term in Hamilton’s rule.

One traditionally defines this effect as a cost in such

models, because in the standard case of altruism, one

analyses a phenotype that directly lowers the actor’s fit-

ness – the cost. Mathematically, there is no need for

this direct effect to be negative and costly, and in some

models it is not. However, we retain the traditional

usage and label this term ‘the cost’. Because the calcu-

lus approach analyses small changes, that method auto-

matically gives us the marginal cost.

The second component is the marginal effect of small

changes in an individual’s phenotype on the fitness of

social partners. Traditionally, the effect of the actor on

recipients is called the ‘benefit’. Thus, this second effect

is the marginal benefit component.

The third component measures the association

between the actor’s phenotype and the phenotype or

genotype of social partners. The exact measure depends

on various issues (Frank, 1998). Here, simply note that

the calculus approach automatically weights any mar-

ginal benefit components by the association between

the actor and recipient. That association matches the

coefficient of relatedness from Hamilton’s rule,

although in a generalized form.

An equilibrium can occur only when selection does

not favour a change in phenotype. Thus, at equilib-

rium, the marginal Hamilton’s rule equals zero and has

the form

rBm � Cm ¼ 0; (7)

in which I use the m subscripts to emphasize that the

benefit and cost terms are marginal values (Taylor &

Frank, 1996). The marginal values will change with

changing phenotypic values and with changing ecologi-

cal and demographic context. Thus, this analysis makes

clear that Hamilton’s rule arises from context-dependent

benefit and cost terms. Others had noted the context

dependence of those terms (Grafen, 1985; Queller,

1992a,b). However, Taylor & Frank (1996) was the first

approach that easily found the ESS phenotype and at

the same time showed the underlying conceptual basis

by expressing a generalized Hamilton’s rule. I use the

term ‘generalized’ because the analysis extended the

kinds and complexity of social interaction that could be

studied and the interpretation of relatedness. It also

became clear how to deal with multiple social processes

simultaneously, leading to multiple marginal cost and

benefit terms.

The Taylor & Frank method leaves out much mathe-

matical detail. That simplicity allows one to start with

an expression for how different phenotypes and other

factors influence fitness, take a standard type of deriva-

tive from calculus, and evaluate an equilibrium ESS

outcome favoured by selection. This method of analysis

automatically gives the form for the equilibrium ESS

condition as the marginal Hamilton’s rule in eqn 7. The

ESS provides the basis for comparative statics, in which

one can see clearly how the predicted phenotype

changes with respect to various social, ecological and

demographic causes.

To achieve that simplicity, one ignores dynamics,

certain details of genetics and the developmental com-

plexities that connect genotype to phenotype. Most of

those complications do not alter the mathematical

results with respect to searching for equilibrium values.

That magical simplification arises because, whenever

the amount of variation in the population is small,

most of the complexities become negligible in size and

the method correctly identifies the outcome of selec-

tion. Although it is possible to include additional com-

plexity, the method simplifies by design, following the

precepts of comparative statics.

Marginal Hamilton’s rule analysis of dispersal

The marginal Hamilton’s rule in eqn 7 evaluates a

problem by the marginal costs and benefits of a phe-

notype. Consider the dispersal model of Hamilton &

May (1977) described earlier. If we start with the

fitness expression in Box 4, take the derivative of fit-

ness with respect to the variant phenotype of a focal

individual, and collect together the terms, we end

up with the cost, benefit and relatedness compo-

nents of the marginal Hamilton’s rule (Frank, 1998,

Section 7.2).
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Following that method

Cm ¼
c

1� cd
; (8)

in which the marginal cost of increased dispersal, Cm, is

the cost of dispersal, c, divided by the level of competi-

tion on a patch for a breeding spot, 1 � cd (Box 5). The

marginal benefit is

Bm ¼
1� d

ð1� cdÞ2
; (9)

in which the numerator, 1 � d, describes how

increased dispersal reduces the competition experienced

by neighbours. The denominator adjusts the benefit of

reduced competition by the intensity of competition

between pairs of individuals for each breeding spot

(1 � cd)2 (Box 5). Putting these terms in the marginal

Hamilton’s rule of eqn 7 leads to the general solution

for dispersal in eqn 5.

The marginal cost and benefit expressions are essen-

tially impossible to obtain either intuitively, by thinking

about the dispersal problem, or by inspecting the math-

ematical expression for fitness given in Box 4. It is only

with the maximization technique that the separate

marginal cost and benefit expressions can be found.

Once one has the marginal expressions, one can

study them to learn how the simple biological assump-

tions translate into cost and benefit effects on different

components of fitness. As the phenotype of interest

changes, the costs and benefits change through com-

plex social, demographic and ecological interactions.

There will essentially never be fixed costs and benefits

that can be plugged into some equation. Instead, one

must extract those costs and benefits from the biologi-

cal assumptions and the analysis of the problem.

Historically, people have tended to take Hamilton’s

rule as an expression based on fixed costs and benefits.

That history arose because of the population genetic

modelling that was associated with the early evaluation

of the theory. In a population genetic model, the ten-

dency has always been to set costs and benefits as

parameters associated with different genotypes. Fre-

quency and density dependence, and other biological

interactions, were considered distinct from the costs

and and benefits, as if those costs and benefits were not

an outcome of the biology. That approach misled peo-

ple to think of Hamilton’s rule as an expression that

translated fixed costs and benefits into a conclusion

about evolutionary change.

The Taylor & Frank (1996) method helps because it

gives a way to translate biological assumptions about

phenotypes and fitness into the separate marginal cost

and benefit terms needed to evaluate Hamilton’s rule.

One must keep in mind that Hamilton’s rule is, in prac-

tice, an expression that derives particular meaning from

context. Without context, the marginal cost and benefit

terms are abstract. That abstraction is the primary

strength of Hamilton’s rule, allowing it to apply univer-

sally. At the same time, abstraction often causes confu-

sion, because the power of abstraction requires a

certain degree of consideration to understand and apply

properly (Frank, 2012b).

Taylor’s insight into reproductive value,
demography and life history

In the recent literature, the methods of Taylor & Frank

(1996) are primarily used to analyse specific models by

the marginal version of Hamilton’s rule (eqn 7). As

long as one accepts the approach of comparative statics,

generating testable hypotheses follows a simple proce-

dure. First, express the different phenotypes and eco-

logical factors that affect fitness in an equation that

describes the natural history assumptions. Second, max-

imize the fitness expression to obtain the predictions of

comparative statics.

That mathematical method solves what had previ-

ously been complex and often beyond analysis. It also

provided a conceptual advance by developing my ear-

lier Price equation and maximization approaches into

the marginal Hamilton’s rule expression in eqn 7. The

marginal Hamilton’s rule clarified understanding about

how selection works and how to interpret a wide vari-

ety of problems in natural history (Frank, 1998).

The importance of reproductive value

From my point of view, however, the great advance in

Taylor & Frank (1996) came from Peter Taylor’s insight

about reproductive value in models of kin selection.

Box 5: Analysis of dispersal model

For the marginal cost in eqn 8, we obtain the competition

term in the denominator by counting the number of indi-

viduals on a patch competing for each breeding slot. That

number is proportional to the fraction of individuals that

do not disperse and stay at home to compete, 1 � d, plus

the fraction of individuals that disperse and become immi-

grants into each patch. The immigrant fraction is the frac-

tion that disperse, d, multiplied by the probability of

surviving the dispersal phase, 1 � c. Putting the pieces

together for the denominator, which is an expression pro-

portional to the number of competitors on a patch, we

obtain 1 � d + d(1 � c) = 1 � cd.

For the marginal benefit in eqn 9, the denominator

measures the intensity of competition between pairs of

individuals in the patch for a given level of dispersal and

cost of dispersal. Roughly speaking, intensity of competi-

tion can be measured by the probability that two individ-

uals will compete for the same breeding spot. From the

previous paragraph, the intensity of competition for a

breeding spot is proportional to 1 � cd. Thus, the pairwise

competition for a spot is proportional to (1 � cd)2.
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Reproductive value concerns the relative contribution

of an individual to the future of the population. For

example, older individuals may have a lower expecta-

tion of future reproduction before death than do youn-

ger individuals. The benefit of altruism provided to an

older individual must be discounted by the low

expected reproductive value of old age when compared

with the greater reproductive value associated with

altruistic benefits given to a younger individual.

The problem of reproductive value had always been

a part of kin selection theory. Hamilton (1972) clearly

noted that different individuals in a social interaction

may contribute differently to the future of the popula-

tion. In Hamilton’s analysis, when calculating the bene-

fit of altruism towards different individuals, one must

weight each individual by its genetic relatedness to the

actor and by its relative reproductive value. For exam-

ple, helping a young cousin in the prime of life pro-

vides greater net benefit than the same help given to a

much older sibling near the end of life. Relatedness

alone is not sufficient.

Prior status of the theory

Although the importance of reproductive value was

understood, the theory was in an odd state before

1996. The general approach used by Hamilton and most

followers was simply to attach a reproductive value

weighting to each component of fitness. If an actor and

recipient had different reproductive values, then an

extended Hamilton’s rule might be rBvr � Cva > 0, in

which vr and va are the reproductive value weightings

for recipient and actor. If, for example, the recipient is

a young individual near prime reproductive age, and

the actor is an old individual near the end of life, then

vr is much larger than va, and the old individual may

be favoured to express a costly altruistic act towards the

young individual even if the recipient is only distantly

related to the actor.

Simply, attaching reproductive value terms to fitness

components is correct but often not helpful. It is not

helpful, because it provides no guidance about how to

find the right valuations in realistic problems.

Separately, a complete theory of life history had

developed (Charlesworth, 1994). That theory provided

clear guidelines for how to compare different classes of

individuals and different components of fitness with

respect to their reproductive values. The relative repro-

ductive value weightings predict how life history char-

acters, such as relative investment in reproduction and

survival, may change with age, condition, local ecologi-

cal factors and the demographic structure of the popu-

lation. That well developed theory of life history had

many successes in explaining major aspects of organis-

mal physiology and behaviour.

Actual problems of natural history often required

combining the relative reproductive valuations with the

role of kin interactions. However, connecting life his-

tory theory to kin selection analysis had not been

achieved in a generally useful way. When studying the

theory of such problems, one could come up with vari-

ous special approaches or complicated analyses (e.g.,

Frank, 1987). However, if one cannot apply a theory in

a clear and simple way, one does not truly understand

the theory at a deep level. In this case, the basic issue

was combining reproductive value with the various

aspects of phenotypic evolution that arose in social set-

tings. But it was not known how to do that in an easy

way.

Combining kin selection and life history

Peter Taylor saw all of that. He figured out how to

attach our general kin selection approach with life his-

tory analysis. The extended method accounted for the

full context of ecological and demographic factors that

interact with social phenotypes (Taylor & Frank, 1996).

The method easily translates natural history into analy-

sis. As before, one specified a problem by how pheno-

types affect fitness. In addition, one now also specified

the different classes of individuals involved and the dis-

tinct components of fitness. For example, there could

be older individuals and younger individuals. The age

groups would be embedded in the demographic struc-

ture of birth and death rates, which could depend on

the social phenotypes. Each class could be either actor

or recipient or both, in the sense that the phenotype of

interest could be expressed by different kinds of indi-

viduals and could affect different kinds of individuals.

Many realistic problems of sociality have this sort of

class structure.

All of this may sound complicated. But the beauty

of Taylor’s insight is that the crude maximization

method that I had been using was transformed into a

simple method that combined analysis of sociality,

generalized notions of kin relations through correla-

tions between phenotypes, and the full power of life

history analysis.

Opportunity for synthesis

Up to 1996, I had relatively little interest in theories of

kin selection, inclusive fitness and group selection as

separate subjects worthy of study. Instead, I had

thought of those theories as tools that one used to solve

problems of natural history, in the sense of comparative

statics. I had developed those solutions into testable

hypotheses about interesting phenotypes. My collabora-

tion with Peter Taylor opened my eyes to the deep

problems of selection that had been latent in the sub-

ject.

In particular, our new approach brought out the

proper formulations for marginal valuation and repro-

ductive valuation. Of course, that was, in a sense, not
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new, because Hamilton had all the right ideas. But, just

as Hamilton could not use kin selection theory to solve

the problems that most interested him, such as dispersal

and sex ratio, he also could not use life history and

reproductive value to solve problems of sociality

embedded in the natural complexities of demography

and multiple classes of social interactants.

I had always believed that if one could not use a the-

ory to solve problems, then one had only a superficial

understanding of deeper concepts. With Taylor & Frank

(1996), I suddenly realized the deep connections

between the understanding of marginal valuation and

reproductive valuation in sociality and the solving of

actual problems of natural history. That new perspec-

tive caused me to take up the study of the general the-

ory. I wanted to evaluate the status of the deeper

principles in relation to the way in which one analysed

problems.

Unresolved issues

I soon found that Taylor & Frank (1996) led to many

key points that remained vague or unresolved. Two

issues stood out. First, the meaning of the relatedness

coefficient seemed to be confused. Variations in inter-

pretation arose for different kinds of problems. The ori-

ginal simplicity of Hamilton’s genetic kinship theory

had finally sunk. There were many earlier hints of

problems, but with the expanded scope of the theory,

the contradictions became too numerous to ignore.

The second issue concerned the connections between

the models of phenotype in sociality and the develop-

ing theories of multivariate selection in quantitative

genetics. Those theories of multivariate selection had

advanced greatly since the classic article by Lande &

Arnold (1983). Following Lande & Arnold, many stud-

ies considered how to partition the causes of selection

among the different characters that affected fitness and

how to analyse expanded notions of heritability. Those

advances in quantitative genetics seemed to be closely

related to the problems of analysing social evolution.

Some steps had been made to connect those advances

to sociality, yet the deeper relations remained unclear.

Following up on what I learned by working with

Peter Taylor, I set out to understand those two issues:

the generalization of relatedness and the causal analysis

of fitness and heritability. I eventually came across a

surprising number of problems that I had never under-

stood or had not even realized that I was ignoring in

my many prior analyses of kin interactions.

Queller’s insight and the true meaning of
Hamilton’s rule

In pursuit of unresolved issues, I soon came to the key

articles by Queller (1992a,b). Queller developed the

idea that Hamilton’s analysis had always been about

the causal interpretation of fitness components. Hamil-

ton separated the total fitness effect of a social act into

costs, benefits and relatedness so that one could reason

more clearly about how selection shaped behaviours.

Hamilton never presented the theory as an alternative

to classical methods. Instead, he was after causal

decomposition.

Much of the literature through the 1980s lost sight of

this primary emphasis on causal decomposition. Con-

troversies about population genetics vs. kin selection

were ultimately about the tension between dynamics

and comparative statics. Full dynamical analyses with

detailed assumptions about genetics provide exact theo-

ries that perhaps apply to no real cases. Statics applies

approximately to all situations, but perhaps not exactly

to any particular case.

In my own comparative statics analyses of dispersal,

sex ratios and various social traits, I focused on the

solutions for phenotypes in terms of biological assump-

tions. I did not try to analyse the problems with respect

to the sort of causal decomposition into costs and bene-

fits that Hamilton had emphasized. Later, I came to

understand the power of the marginal Hamilton’s rule.

I then began to understand my past comparative statics

models in terms of Hamilton’s partition into causal

components. In particular, the marginal Hamilton’s rule

automatically separated fitness components into direct

effects (costs) and indirect effects (benefits) weighted by

relatedness (Taylor & Frank, 1996).

Queller (1992a,b) had also derived an expression

similar to the marginal Hamilton’s rule. Queller first

partitioned fitness into components according to a

regression model. His regression terms included the

phenotype of the actor and the phenotype of the recipi-

ent – or the genotypes depending on the analysis.

Queller considered the different phenotypes within the

general context of quantitative genetic analyses of

multivariate selection (Lande & Arnold, 1983). That con-

nection to multivariate quantitative genetics eventually

opened the way to a broader interpretation of the com-

ponents of fitness and the components of heritability.

Queller put his multivariate regression expression for

fitness into the Price equation to obtain a multiple

regression form of Hamilton’s rule. One term is the

effect of an actor’s phenotype on its own fitness, hold-

ing constant the phenotype of its neighbours (cost).

The other term is the effect of the neighbours’ pheno-

type on the actor’s fitness, holding constant the actor’s

phenotype (benefit). These cost and benefit terms arise

as partial regression coefficients in the partitioning of

fitness into components. In the Price equation, one

automatically obtains a weighting of the benefit term

by the regression of neighbour phenotype on actor phe-

notype (or genotype). That weighting provides a mea-

sure of relatedness. Thus, the condition for the increase

of an altruistic behaviour is rB � C > 0, where each

term directly corresponds to a regression coefficient.
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Queller’s partial regression terms for cost and benefit

are similar to the cost and benefit terms of the marginal

Hamilton’s rule. However, two differences are impor-

tant. First, Queller’s approach emphasizes the causal

analysis of components. He explicitly related the regres-

sion model of fitness to a path analysis model, which

highlights a causal interpretation of the different terms

in the regression.

Second, the regression terms, although more general

and potentially interpreted by causal analysis, provide a

poor method for analysis of actual problems in terms of

comparative statics. Even simple models of dispersal

and sex ratio lead to complex and essentially uninter-

pretable regression expressions. That complexity led me

to abandon the direct use of such regressions in my

earlier Price equation models and instead to develop

the maximization technique. The maximization tech-

nique requires the additional assumption of limited var-

iation. In return for that assumption, one obtains a

simple and powerful comparative statics tool. In prac-

tice, one trades the conceptually powerful regression

modelling and causal analysis for the analytically pow-

erful maximization method and comparative statics.

Once I had the first formal expression of the maximi-

zation technique from Taylor & Frank (1996), I evalu-

ated the advantages and disadvantages of the various

approaches. I could see that one had to unite Queller’s

causal approach through regression and path analysis

with the analytical power of the maximization and

marginal value techniques. Causal analysis ties back to

Hamilton’s original goal of separating fitness and trans-

mission into components to reason more clearly about

how selection and genetics shape social traits. Marginal

values and comparative statics are also necessary, to

provide the tools to analyse actual problems. Put

another way, causal analysis provides the foundations

for reasoning about complex problems, and marginal

value analysis provides the techniques for applying that

reasoning to particular cases.

Taylor & Frank (1996) came close to uniting the

quantitative genetic and causal models given by Queller

(1992a,b) with the calculus techniques for comparative

statics. However, once that loose connection was made,

I soon began to see the next level of unsolved prob-

lems. In essence, the overly simple notions of an actor

and a recipient and of a cost and benefit were too limit-

ing. Those restrictive assumptions limited general

understanding of causes and the analysis of particular

cases. To move ahead, one had to think through vari-

ous types of natural history and to work out how to

separate the many causes into distinct components.

That causal decomposition was Hamilton’s original goal.

But one no longer had to be confined to the oversim-

plified abstractions in which Hamilton originally

worked to show how causal decomposition might be

done. Instead, the time had come for a more general

approach.

The class structured modelling for social interactions

introduced in Taylor & Frank (1996) suggested the next

steps. Taylor & Frank gave examples with multiple clas-

ses in social interactions. Those sorts of multiclass prob-

lems lead to more general causal decompositions with

multiple actors and recipients and, more generally, with

a broader way to reason about the causal components

of realistic problems. Those multiclass problems also

brought out the challenge of tracing the distinct path-

ways of transmission and heritability that determine

what fraction of the change by selection transmits to

the future population.

The way forward was to work carefully with causal

decompositions of fitness and the transmission of char-

acters, to use the Price equation as a formal tool to

keep track of everything in an exact evolutionary anal-

ysis, and then to simplify as needed to obtain practical

tools for comparative statics. Although that may sound

complicated, it turns out to be a natural extension of

rB � C > 0. One simply needs additional causal terms

to match realistic problems, and to interpret the various

terms more broadly than Hamilton did.

The proper generalization of kin
selection theory

Hamilton’s theory is ultimately about causal interpreta-

tion. The proper generalization arises from a clearer

understanding of causal decomposition. With regard to

the causal analysis of relatedness, Hamilton (1970,

1975) had already given up on the limited interpreta-

tion of the theory with regard to pedigree relations and

classic notions of kinship. Instead, he realized that the

theory could be extended to deal with genetic similari-

ties no matter how those similarities arise. Causally,

selection must be indifferent to the process that gener-

ates genetic similarity. Selection can only act on the

current patterns of genetic variation and the current

processes that influence fitness.

Subsequent generalizations continued to refine the

causal interpretation of selection. The theory naturally

transformed from its initial emphasis on identity by

descent and lineal kin relations to statistical associations

of genotypes and then to broader aspects of correlated

characters in social interactions.

An example: interspecific altruism

My study of altruism between species taught me that

kin selection must be thought of as part of a wider set

of problems (Frank, 1994). I had asked the typical

altruism question: when is an individual favoured to

help another at a cost to itself? In this case, the prob-

lem concerned whether an individual of one species

could be favoured to help an individual of another

species. Clearly, the traditional view of genetic kinship

could not be involved. Members of different species
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that do not interbreed cannot be cousins or other

types of related kin.

I set up the interaction between species as a variant

of Hamilton’s standard model. In this case, I evaluated

whether altruistic behaviour by one species toward a

second species can increase by selection.

Individuals of the first species have phenotype x, the

level of help they provide to individuals of the other

species. The altruistic phenotype directly reduces the

fitness of actors from the first species by Cx. Individuals

of the other species have phenotype y, the level of help

they provide to individuals of the first species. That

altruistic phenotype of the second species directly

enhances the fitness of recipients of the first species by

By. The goal is to evaluate how these behavioural inter-

actions determine the direction of change in the altruis-

tic phenotype x of the first species.

The first species cannot accrue inclusive fitness bene-

fits by helping the second species. An inclusive fitness

benefit is the indirect transmission of the actor’s geno-

type through the recipient of the actor’s altruistic

behaviour. Members of another species cannot carry

genotypic differences that influence the evolution of

traits in the focal species. Inclusive fitness has no mean-

ing in relation to altruism between species. Nonethe-

less, we end up with Hamilton’s rule, as follows.

Focus on an individual in the first species with altru-

istic phenotype, x. That altruism reduces fitness by Cx.

The focal individual may receive benefits from the

altruism of the other species. Suppose that the particu-

lar social partners from the other species for the focal

individual have phenotype y, which adds By to the fit-

ness of the focal individual. The combination of gains

and losses for these effects causes an increase in fitness

to the focal individual when

By� Cx > 0:

Now comes the key step: the association between the

altruistic behaviours of partners from the two species.

Suppose the slope (regression) of y relative to x is r.

Then, in evaluating fitness changes, we can use y = rx,

because the altruistic level of the focal individual, x,

predicts the associated value of y. The translation

between x and y is the regression coefficient, r.

Using y = rx, the fitness change is positive when

Brx � Cx > 0;

which is the same as

rB� C > 0:

Is that Hamilton’s rule? If one abides by inclusive fit-

ness and the traditional view established by Hamilton,

then the answer is no. If one recognizes that the tradi-

tional view came into being before we understood the

broader analysis of characters and the general role of

correlations, then the answer is maybe. In the latter

case, we must figure out the broader context and its

relations to traditional models of social evolution, and

then make a decision about how to understand the full

range of social characters.

After Taylor & Frank (1996), I followed up by trying

to apply the new theory to various problems of natural

history. Several conceptual limitations became clear.

The most important problem concerned the meaning of

relatedness. A second associated issue concerned the

interpretation of inclusive fitness. The remainder of this

section discusses relatedness. The following section

takes up inclusive fitness.

Two types of relatedness: social partners and
transmission

Queller (1992a,b) quantitative genetic approach linked

kin selection to Lande & Arnold’s (1983) general analy-

sis of multivariate selection. In the traditional multivari-

ate approach, one usually thinks of two different

phenotypes as traits present in each individual. That

same conceptual approach to multivariate analysis can

also evaluate social situations, in which one phenotype

is present in one type of individual, and the other phe-

notype is present in the social partners of the first type

(Frank, 1997b).

The two interacting types of individuals may be play-

ers in a game, members of different species, members

of a family or any other combination. For any of those

interactions, we can often evaluate the consequences in

the same way that I described for the interaction

between two different species. The focal individual has

a phenotype with direct cost Cx. That focal individual

also has social partners that influence the focal individ-

ual’s fitness by a factor By, where y is the average phe-

notype of the social partners. These two phenotypes, x

and y, lead to a multivariate analysis of selection that

depends on the correlation between characters. In this

case, the two characters happen to be in different indi-

viduals, but the analysis is essentially the same as a

standard multivariate selection problem.

The correlation between the focal individual’s pheno-

type, x, and its partners’ phenotype, y, is best expressed

as a regression coefficient r of y on x. If partners are

genetic kin, the r will be a kind of genetic kinship coef-

ficient. If the partners are genetically similar but not by

traditional lines of kinship, the r is still similar to the

form of the relatedness coefficient that Hamilton (1970)

introduced as the key to his theory, which did not

depend on traditional kinship ties.

The partners may have correlated phenotypes, but be

genetically uncorrelated. If so, our focal individual still

gains by the beneficial social phenotype of its partners.

The magnitude of that gain is in proportion to the same

regression coefficient, r, in which the association is

purely phenotypic. However, we must separate two

aspects: selection and transmission. That separation

forms a standard part of multivariate quantitative
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genetics. Selection is the differential success within a

period, such as a behavioural episode or a generation.

Transmission is the fidelity by which selected traits are

transmitted to the future, the heritability.

In this model, we can think of two distinct classes of

individuals. The focal individual is both an actor and a

recipient for its own phenotype, x. It is an actor because

it expresses the phenotype; it is a recipient because its

success is influenced by the same phenotype, x. The

partners are actors, because they express the pheno-

type, y. But they are not recipients, because we have

not specified that either trait, x or y, affects the part-

ners’ own success. The focal individual is a recipient of

the phenotype, y.

The total fitness increment on the focal individual

with respect to the phenotype, x, is proportional to

rB � C, as shown in the previous section. Evolutionary

change depends on the heritability of the phenotype, x.

This follows the typical combination in genetics: selec-

tion determines relative reproduction, and heritability

determines the fraction of selective change that is trans-

mitted to the future.

The heritability is not particularly important in this

case. Suppose, for example, that the heritability is

τ = Rh. Here, R is the genetic kinship between the focal

individual and its descendants, and h is the fraction of

the phenotypic variability attributed to genes. In a typi-

cal parent–offspring example, R = 1/2. If we compared

an individual to a niece through a full sibling, then typ-

ically R = 1/4. The condition for x to increase must

include the heritability. Thus, the condition is

ðrB� CÞτ > 0;

which describes the transmitted fraction, τ = Rh, of the

selective gain, rB � C. If the trait is heritable, τ > 0,

then this condition is the same as rB � C > 0. Here, dis-

tinguishing the similarity between social partners, r,

and transmission in proportion to R, did not change the

result.

Distinguishing the types of relatedness

In many cases, one must distinguish the role of social

partners from the role of transmission. Consider the

following example (Frank, 1997b, fig. 9). There are

two classes of individuals. Individuals of the active class

express an altruistic phenotype, x, with cost C. A focal

individual of the active class has social partners from

the active class that express an average level of altru-

ism, y, with benefit B to the focal individual. The fit-

ness increment for a focal individual in this active class

with respect to the altruistic behaviours is w1 =
By � Cx.

Each individual from the active class also has a single

partner from a second, inactive class. Members of that

second class do not express an altruistic phenotype.

They may, for example, be relatives that receive care

but do not give care. The inactive partner gains a bene-

fit, B̂, from its active partner’s altruism, x, so its fitness

increment from altruism is w2 ¼ B̂x. To simplify, we

ignore the potentially different reproductive values of

the two classes. An inactive partner might, for example,

be an offspring or a nondescendant kin.

From the previous section, the direct fitness effect on

class one is rB � C, where r is the regression of y on x.

If the phenotypic association between an actor and its

social partners, r, arises from genetic similarity, then r

is a classic kin selection coefficient of relatedness. How-

ever, nothing in the model requires genetic similarity.

Here, r only has to do with phenotypic similarity,

because rB � C is the fitness effect separated from

aspects of transmission to the future.

The class one individuals transmit their phenotypes

to the future in proportion to τ1, the heritability of their

altruistic trait. Thus, the total direct transmitted compo-

nent by class one is proportional to (rB � C)τ1, which

matches the result of the prior section.

In this case, we also have the beneficial effect, B̂, of

the class one individuals on their inactive partners from

class two. The benefit, B̂, describes the fitness effect

separate from aspects of transmission to the future. For

example, if the class two individuals are genetically

unrelated to their actor partners, then the enhanced fit-

ness of the class two individuals has no effect on the

evolution of altruism, because those class two recipients

are genetically unrelated to the actors.

In general, we may specify the heritability of a class

one actor’s phenotype, x, through its beneficial effect

on its class two partner, as τ2. For example, the class

two partner may produce nieces and nephews of the

actor, and τ2 would be the relatedness of the actor to

its nieces and nephews. However, the more general

interpretation is important: τ2 is the heritability, or

transmitted information, of the class one phenotype

through its beneficial fitness effect on its partner of

class two. The net direct effect of selection and trans-

mission on class two is B̂τ2.

Combining the class one and class two effects, the

total transmitted consequence of the actor’s phenotype

favours an increase in altruism when

ðrB� CÞτ1 þ B̂τ2 > 0: (10)

This expression combines the role of correlated pheno-

types between social partners, r, and the pathways for

the fidelity of transmission to the future, τ.
This example illustrates how to combine the two dif-

ferent aspects of similarity, or relatedness, that arise in

models of social evolution. The general approach

requires separating classes of individuals according to

their role in the social process, following the direct fit-

ness effects on each class, weighting each class by the

fidelity of transmission of the phenotype under study

and also weighting each class by its reproductive value
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(Frank, 1997a,b, 1998). In practice, one typically uses

the maximization technique of Taylor & Frank (1996),

as updated in Frank (1997a, 1998).

All of this follows the kind of causal decomposition at

the heart of Hamilton’s approach to kin selection the-

ory. However, one has to accept several generalizations

to the theory, otherwise the problem is beyond under-

standing by kin selection analysis. In particular, one

must separate the correlation between phenotypes that

influences fitness from the correlation between an actor

and various descendants that determines heritability.

The original theories of kin selection and inclusive

fitness blurred the distinction between these different

kinds of correlation. To understand the issues more

broadly, one must accept a theory that follows different

causes of fitness, including correlations between social

partners, and different causes of transmission, including

direct and indirect pathways by which phenotypes pass

to future generations (Frank, 1997a,b, 1998).

Kin selection vs. correlated selection

I have emphasized a causal analysis of selection rather

than a purely kinship analysis of selection. In the

broader causal perspective, the two key factors are

transmission and selection. Transmission of social char-

acters always depends on aspects of shared genotype, or

at least on shared heritable traits. For selection, corre-

lated social phenotypes play the key role. Such correla-

tions may arise by kinship, by shared genotype through

processes other than kinship, or by associations through

processes other than shared genotype.

With regard to correlated social phenotypes, it may

seem tempting to define the genetic associations as the

proper limited domain for kin selection theory. Hamil-

ton developed his theory by first analysing classical

pedigree kinship. He then broadened his scope to

include shared genotype through processes other than

kinship. But he did not expand his theory to the gen-

eral analysis of correlated traits by processes other than

shared genotype.

There can never be a final resolution with regard to

the proper domain for kin selection theory. Ultimately,

subjective factors determine how different people

choose to split domains and attach labels. If someone

chooses to associate genetic correlations with ‘kin selec-

tion’ and nongenetic associations with ‘correlated selec-

tion’, that is fine as long as the choice is expressed

clearly and understood as a subjective choice.

In the absence of analysing particular problems, I

would be inclined to separate kin selection and corre-

lated selection. Those processes seem different, and so it

makes sense to differentiate between them. However, I

have repeatedly found that separating in that way is

very unnatural when actually analysing particular

problems (Frank, 1998). Neither the mathematics nor

selection distinguishes the way in which phenotypic

correlations between social partners arise. For example,

in problems that follow the structure that led to

eqn 10, the causal effect captured by the phenotypic

correlation r depends only on the phenotypic associa-

tion. The genetic aspects of transmission are handled

independently by the τ terms.

For the phenotypic associations, one could choose

to separate the causes of association into shared geno-

type and other factors. That separation would distin-

guishes between a narrow interpretation of kin

selection and a residual component of correlated

selection. That separation can certainly be useful. But

repeatedly, in analysing particular problems and in

developing the underlying abstract theory, the mathe-

matics unambiguously leads one to blur the distinc-

tion when focusing on the causal analysis of how

selection shapes phenotypes. For the particular causal

component that concerns differential success separated

from transmission, it is only the phenotypic correla-

tions that matter.

Intuition often runs against the lessons urged by logi-

cal and mathematical analyses. That discord is perhaps

the most interesting aspect of mathematics. People tend

to split over that discord. Most trust their intuition

above all else. Some, having felt the failure of their

intuition too many times in the face of unambiguous

logic, give in to the mathematics. I follow the latter

course, in which it is much better to adjust intuition to

mathematics and logic than to try and bend mathemat-

ics and logic to fit intuition.

In my view, the mathematics of selection has led

inevitably to certain developments in the theory. Over

time, the theory came to subsume the early ideas of

kin selection into a broader causal perspective. That

broader perspective is much more powerful when try-

ing to analyse particular problems, and much simpler

and conceptually deeper when trying to grasp the fun-

damental principles of evolutionary change. However,

tastes vary. Others will prefer to separate and label dif-

ferently. If one properly understands the underlying

theory, different labelling causes few problems and ulti-

mately is not a particularly interesting issue.

Direct and inclusive fitness

Consider two alternative ways to calculate fitness. The

direct fitness method counts only the direct reproduc-

tion of individuals. If an individual behaves altruisti-

cally, we count only the negative effect of that

behaviour on the individual. If that individual’s social

partners behave altruistically, then we add to the direct

reproduction of our focal individual the benefit

received from the altruism of neighbours. To calculate

the total effect over the whole population, we sum up

all of the positive and negative effects on the direct fit-

ness of each individual, based on the individual’s own

phenotype, the phenotype of each individual’s social
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partners, and the heritabilities through different path-

ways of transmission.

Inclusive fitness alters the assignment of fitness com-

ponents. If an individual behaves altruistically, we

assign two components of fitness to that individual. The

negative cost of altruism reduces the individual’s own

reproduction. The benefit of altruism to neighbours

increases the neighbours’ reproduction. We assign that

increase in neighbours’ fitness to the original altruistic

individual that caused that increase, rather than

directly to the neighbours themselves. We discount the

neighbours’ fitness component by their genetic similar-

ity to the altruistic individual. Thus, the individual that

expressed the behaviour is assigned both the direct

effect on its own fitness and the indirect effect on

neighbours’ fitness discounted by genetic similarity.

Hamilton’s approach

Hamilton’s mathematical analysis showed that, under

some conditions, inclusive fitness provides the same

calculation as direct fitness. Hamilton preferred inclu-

sive fitness, because it assigns all fitness changes to the

behaviour that causes the changes. Some of the fitness

changes are direct effects on the individual expressing

the behaviour, and some of the fitness changes are

indirect effects on other individuals receiving the

behaviour. This assignment of all fitness effects back to

the behaviour that caused them provides a clearer

sense of cause and effect. Clear causal analysis aids in

reasoning about the evolution of complex social behav-

iours. For example, inclusive fitness emphasizes that

the effects of a behaviour on the reproduction of pas-

sive recipients can play a key role in determining

whether genes associated with the behaviour tend to

increase in frequency.

Hamilton understood that direct fitness was the ulti-

mate measure for evolutionary analysis. His mathemati-

cal studies primarily had to do with showing that

inclusive fitness was equivalent to direct fitness under

many conditions. Hamilton emphasized inclusive fitness

as his primary contribution to understanding social evo-

lution. He discussed how inclusive fitness should be

regarded as the fundamental process that encompasses

kin selection, group selection, and other approaches to

social interactions between genetically similar individu-

als (Hamilton, 1975). Almost all debates about the costs

and benefits of Hamilton’s approach and descendant

ideas focus on inclusive fitness.

Development of the theory and failure of inclusive
fitness

Since Hamilton’s initial work, the study of social evolu-

tion expanded to analyse a broader and more realistic

range of evolutionary problems. In my view, inclusive

fitness has become as much a hindrance as an aid to

understanding. I am not saying that inclusive fitness is

wrong. Inclusive fitness does provide significant insight

into a wide variety of problems. But one must know

exactly its limitations, otherwise trouble is inevitable.

Realistic biological scenarios arise for which inclusive

fitness is important but not sufficient. When one does

not clearly recognize the boundaries then, when faced

with a solution for which inclusive fitness is not suffi-

cient, it becomes too common to conclude that inclu-

sive fitness and all broader approaches to kin selection

analysis fail entirely, and one must discard the whole

theory.

The issues are somewhat technical in nature. I pro-

vided a full analysis and discussion in Frank (1997a,

1998). Here, I give a sense of the problem and why it

matters. I begin by briefly summarizing the main points

from the previous section, which distinguished alterna-

tive measures of association between individuals. Sepa-

rating those different kinds of association must be done

clearly in order to understand the distinction between

direct to fitness and inclusive fitness.

In the previous analysis leading to eqn 10, two differ-

ent classes of individuals interacted. Consider first the

direct fitness of class one individuals. They lose the cost

C for their altruistic behaviour. Their social partners

from the same class express an altruistic behaviour that

provides an average benefit rB to a member of the

class. The B is the beneficial trait of partners per unit of

costly phenotype expressed by each individual, and r is

the phenotypic association between the costly behav-

iour of an individual and the beneficial phenotype of

partners. Thus, the total direct fitness effect on each

individual of class one is proportional to rB � C. The

heritability of the altruistic phenotype for class one

individuals is τ1, thus the heritable increase in altruism

from the direct effect of class one individuals is

(rB � C)τ1.

A second class of individuals does not express the

altruistic phenotype, but may carry genes for that phe-

notype – for example, genetic relatives that receive care

but do not give care. The net beneficial effect of altru-

ism from class one on the direct fitness of class two

individuals is B̂. The heritability for class two individu-

als of the altruistic trait expressed by class one individu-

als is τ2. Thus, the total heritable increase in altruism

through the direct reproduction of class two individuals

is B̂τ2. Putting the direct fitnesses of the two classes

together and weighting them equally leads to eqn 10

from the previous section, repeated here for conve-

nience

ðrB� CÞτ1 þ B̂τ2 > 0:

Note the two different kinds of association, r and τ.
The r coefficient measures the phenotypic association

between the altruistic expression in social partners from

class one. It does not matter how that phenotypic asso-

ciation arises. It may be caused by shared genotype, in
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which case it is a common type of genetic relatedness

coefficient. Or it may be caused by shared environ-

ment, such as sunlight or temperature, that is indepen-

dent of genotype. No matter the cause of the

phenotypic association, the direct fitness of class one

individuals is proportional to rB � C. The actual value

of r is a regression coefficient, and is sometimes called a

coefficient of relatedness. However, it is more general

than a coefficient of relatedness, because many differ-

ent kinds of causes may be involved. With regard to

immediate evolutionary consequences, the cause of the

association does not matter.

By contrast, the τ coefficients measure heritability,

and so can reasonably be understood as a measure of

genotypic contribution to the expression of the altruis-

tic character. In the case of τ1, the measure is the heri-

tability through the direct reproduction by an

individual that expresses the altruistic behaviour. The

τ2 coefficient measures the direct contribution of class

two individuals to the increase in the altruistic charac-

ter, even though those individuals do not express the

character. Because B̂ represents an increment in fitness

caused by the behaviour of class one individuals, the

heritability of the altruistic phenotype expressed by

class one individuals through the increment of fitness

in class two individuals is proportional to the shared

genotype between the class one actors and the class

two recipients.

If class two recipients are genetically unrelated to class

one actors, then τ2 = 0, and the condition for the

increase in altruism is rB � C > 0. That has the form of

Hamilton’s rule. However, r measures phenotypic asso-

ciation, no matter the underlying cause. It may be that

social partners in class one are genetically unrelated but

phenotypically associated. Nonetheless, rB � C > 0 is

still the proper condition, although it is certainly not an

inclusive fitness expression in the manner usually

understood by that theory. One can adjust definitions so

that inclusive fitness still works. But the clearest under-

standing comes from analysing direct fitness, so that r

carries its natural interpretation as a phenotypic associa-

tion that may becaused by shared genes or may be

caused by some other shared nongenetic process.

Alternatively, suppose that the phenotypic associa-

tion between social partners in class one is zero, r = 0.

Then, the condition for the increase in altruism is

�Cτ1 þ B̂τ2 > 0:

Now consider the interpretation of the τ coefficients

in terms of transmission and heritability. The ratio of

indirect heritability to direct heritability is R = τ2/τ1.

That coefficient, R, is the form of genetic relatedness

commonly used in inclusive fitness theory. For inclu-

sive fitness, one measures the relative transmission of

causal genes through indirect compared with direct

pathways of reproduction, which is the ratio of

heritabilities. If, in the prior expression, we divide by

τ1, and use R = τ2/τ1, then we have

RB� C > 0;

in which R is the inclusive fitness coefficient of related-

ness. This form is the classic expression of Hamilton’s rule,

which we may interpret with respect to inclusive fitness.

The direct fitness approach gives the correct analysis

in all cases, with proper interpretation of r as a pheno-

typic association between social partners and τ as trans-

mission to the future through heritability. Inclusive

fitness arises as a special case. By contrast, if one begins

with an inclusive fitness perspective, one has to strug-

gle to obtain the right interpretation, and confusion will

often arise with regard to both the analysis and the

interpretation.

The actual distinctions between direct and inclusive

fitness are more extensive and more subtle (Frank,

1998, Chapter 4). Direct fitness typically provides a

clear and complete analysis, and subsumes inclusive fit-

ness as a special case. Inclusive fitness does have the

benefit of an intuitively appealing causal perspective.

However, inclusive fitness is more limited and more

likely to cause confusion. As understanding of a subject

develops, it is natural for yesterday’s general under-

standing to become today’s special case.

Understanding how selection shapes
phenotypes

Hamilton (1970) originally set out to develop a causal

decomposition of social evolution into components. His

decomposition by inclusive fitness had two steps: the

separation of fitness into components and the analysis

of heritability. With regard to fitness, Hamilton’s

approach partitioned the total effect of a phenotype

into the direct consequence on the actor and the indi-

rect consequence on social partners. With regard to

heritability, Hamilton weighted the different fitness

components by their fidelity of transmission relative to

the phenotype in the focal individual. His coefficient of

relatedness measured the ratio of the heritability

through the indirect fitness component of social part-

ners relative to the heritability through the direct

reproduction by the actor.

Multivariate selection and heritability

Independently of Hamilton’s work, the theory of natu-

ral selection developed during the 1980s and 1990s.

That development primarily followed the influential

paper by Lande & Arnold (1983), which built on two

earlier lines of thought. First, Pearson (1903) had estab-

lished the partitioning of fitness into distinct compo-

nents. Second, Fisher (1918) had established the

modern principles of heritability and the conceptual

foundations of quantitative genetics.

ª 2 0 1 3 T H E A U T H O R . J . E V O L . B I O L . 2 6 ( 2 0 1 3 ) 1 1 5 1 – 1 1 8 4

J O U R N A L O F E V O L U T I O N A R Y B I O L O G Y ª 2 0 1 3 E U R O P E A N S O C I E T Y F O R E V O L U T I O N A R Y B I O L O G Y

1172 S. A. FRANK



The development of these two lines – the compo-

nents of fitness and the components of heritability –
independently paralleled the two lines in Hamilton’s

thought. In retrospect, the parallel development is not

surprising. Anyone attempting a causal analysis of

selection and evolutionary change would ultimately be

led to those same two essential parts of the problem.

In the early 1980s, I began to develop my own meth-

ods for analysing phenotypes influenced by kin selec-

tion. I started with the Price equation methods that I

inherited from Hamilton’s graduate seminar in 1979. As

I refined my methods of analysis and then eventually

generalized the approach with the help of Peter Taylor,

I was inevitably up against the two problems of parti-

tioning fitness into components and tracing pathways

of heritability. However, until my work with Taylor in

1996, I had not given much thought to the underlying

structure of the problem.

Following 1996, when I found Queller’s papers that

merged Hamilton’s kin selection theory with the Lande

and Arnold method of multivariate selection and quan-

titative genetics, I began work on developing that con-

nection identified by Queller. The result is that kin

selection and inclusive fitness became part of the

broader approach to the study of natural selection

(Frank, 1997b, 1998, 2012b,c, 2013). With that

advance, it is no longer possible to separate cleanly

between the initial view of kin selection as a special

kind of social problem among genetically similar indi-

viduals and the broader approach of causal analysis for

phenotypes, fitness and heritability.

From the merging of kin selection theory and the

broader aspects of selection and heritability, problems

like the analysis of altruism between species have come

to look like a kin selection analysis, and classical prob-

lems of kin selection have come to look like a Lande &

Arnold type of analysis of multivariate selection, with

the addition of a more complex analysis of heritability.

Statics and the three measures of value

With regard to studying particular biological problems, I

continue to favour comparative statics for its pragmatic

approach. In analyses of comparative statics, kin selec-

tion problems are transformed into the analysis of three

measures of value: marginal value, reproductive value

and the valuations of relative transmission (Frank,

1998).

Marginal values transform different phenotypic com-

ponents into common units. Suppose, for example, that

we analyse the marginal costs of a behaviour associated

with the direct reproduction of an actor and the mar-

ginal benefits of that behaviour associated with the

indirect effect on the fitness of a social partner. The

relative marginal valuations provide a substitution, or

translation, measure. That measure tells us, for each

small change in phenotype, how much the marginal

benefits change relative to how much the marginal

costs change. For example, does a small change in the

costs for direct reproduction translate into a small or a

large change in the benefits for social partners? It is the

relative marginal valuations that give us that transla-

tion.

Marginal valuation only applies to the analysis of

small changes. More generally, when one analyses large

changes, the regression coefficients from multivariate

analysis arise. In that context, the regression coeffi-

cients serve as translations for the relative scaling

between different phenotypes and components of fit-

ness (Frank, 2013).

Reproductive value provides a weighting for different

kinds of individuals with respect to their contribution

to the future of the population. Reproductive value is a

component of the transmission of phenotypes. How-

ever, we separate reproductive value from heritability,

because reproductive value usually differs by demo-

graphic rather than genetic aspects. For example, age is

a demographic property, and individuals of different

ages have different reproductive values, although they

may have the same heritability in transmission of their

phenotypes. Ecological factors, such as available

resources or the tendency for local extinctions of

groups, also influence reproductive valuation. In terms

of classical demography, resource availability may affect

birth rates and local extinctions of groups may affect

death rates.

Valuations of relative transmission, or heritability,

obviously play an essential role in tracing the causes of

evolutionary change by natural selection. The coeffi-

cients of relatedness in the initial theories of kin selec-

tion had to do with relative heritabilities through

different pathways of transmission. Those coefficients of

relatedness are just special cases of the broader analysis

of heritabilities in the general study of natural selection.

Social evolution and traditional kin selection prob-

lems raise particular issues with regard to the three

measures of value. However, the analysis of those social

aspects falls within the broader framework of natural

selection, which applies to all problems of selection and

the transmission of phenotypes to future generations.

This merging of kin selection and inclusive fitness into

the broader framework for the study of selection has

led to deeper understanding and more powerful analyt-

ical approaches. At the same time, the separate initial

history of kin selection compared with the analysis of

nonsocial problems sometimes leads to confusion about

the current understanding of the theory of social evolu-

tion.

The failure of group selection

Properly understood, then, the origins of an idea can

help to show what its real content is; what the degree
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of understanding was before the idea came along and

how unity and clarity have been attained. But to

attain such understanding, we must trace the actual

course of discovery, not some course which we feel

discovery should or could have taken, and we must

see problems (if we can) as the men of the past saw

them, not as we see them today.

In looking for the origin of communication theory

one is apt to fall into an almost trackless morass.

I would gladly avoid this entirely but cannot, for

others continually urge their readers to enter it. I only

hope that they will emerge unharmed with the help

of the following grudgingly given guidance (Pierce,

1980, pp. 20–21).

A causal analysis of selection begins by expressing

how phenotypes and other variables influence the fit-

ness of individuals. In social problems, the characteris-

tics of an individual’s local group sometimes enter the

expression for individual fitness. If group characters

influence fitness, then a causal component of selection

is attributed to the group. That causal component

attributed to the group is one common way in which

group selection arises.

Hamilton developed models of group selection by this

partition into individual and group characters. I used

Hamilton’s group selection methods in my own early

studies. Later, I came to understand the limitations and

ultimate failure of the group selection perspective.

I then merged kin selection theory with the general

causal analysis of selection and transmission.

Hamilton’s group selection models

In the 1970s, Hamilton studied social phenotypes in

group structured populations. He analysed sex ratios

and dispersal polymorphisms of wasps that live in figs

(Hamilton, 1979). Each fig formed a clearly defined

group. He also studied multigeneration groups of

insects and other arthropods that lived in isolated

rotting logs (Hamilton, 1978). As always, Hamilton

combined his natural history observations with mathe-

matical models to analyse natural selection. For these

group structured problems, he followed the hierarchical

multilevel methods of Price (1972), as described in

Hamilton (1975).

Interestingly, a Price equation analysis of group struc-

tured populations is similar to a Lande & Arnold analy-

sis of multivariate selection. In the case of group

structure, fitness depends on an individual’s phenotype

and on the average phenotype of social partners in the

group. That decomposition of fitness into individual

and group components, when used in the Price equa-

tion, gives a causal decomposition that ascribes effects

to the individual and group phenotypes. The causal

component attributed to groups may be interpreted as

group selection. There is nothing special about using

individual and group phenotypes in a Price equation

analysis of fitness. If one used an individual’s pheno-

type, the phenotype of the individual’s mother, and

temperature, one would obtain a decomposition in

terms of those variables. The analysis works for any

choice of variables that affect fitness.

Lande & Arnold (1983) also used the Price equation

for their analysis of multivariate selection. Lande &

Arnold’s approach was in fact very similar to the

unpublished Price equation method Hamilton used to

analyse the sex ratios of fig wasps. However, Hamilton

did not interpret his Price equation method broadly as

the multivariate analysis of selection, but instead fol-

lowed Price’s limited interpretation of partitioning indi-

vidual and group components of success.

Following Hamilton, I began my own studies of dis-

persal and sex ratios by thinking in terms of group

structured natural history. The mathematical models

partitioned individual and group components of fitness

(Price, 1972; Hamilton, 1975). Hamilton was not a

committed group selectionist in the sense that began

to develop in the 1980s. Instead, Hamilton interpreted

group structure as one way to obtain a positive

genetic association between individuals, as emphasized

very clearly in the quotes from Hamilton (1975) that I

presented in an earlier section. To some extent, Hamil-

ton’s strong focus on group structure arose from his

inability to analyze phenotypes such as dispersal and

sex ratios in terms of kin selection and inclusive fit-

ness. He understood that those processes were the

key, but he could not write down mathematical analy-

ses in terms of kin selection. He had access to Price’s

methods for group structuring and so used that

method instead.

Hamilton was not fully satisfied with his group level

analysis of sex ratios as given in his 1979 notes from

his graduate course at the University of Michigan. He

never published that analysis, perhaps because it

showed only that greater genetic similarity within

groups led to a stronger kin selection effect. That vague

point was already obvious, as he had emphasized in his

1975 article. Simply to show that vague conclusion

again for sex ratios did not add any real insight.

My early group selection models

I took up the empirical study of fig wasp sex ratios in

1981. At that time, I also began to study Hamilton’s

notes and to learn how to extend Price’s hierarchical

multilevel selection analysis to apply to my empirical

work. My initial success with that method was limited

to seeing that greater group structuring and more

limited migration increased the genetic similarity of

individuals within groups. The more closely related

group members are, the stronger the kin selection

effects.
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By the reasoning from Hamilton’s, 1975 paper and

his teaching, I understood the equivalence between the

kin selection perspective and the conclusion that the

greater genetic variance among groups, the stronger

the tendency for biased sex ratios. So, one could call

that a group selection perspective. But there was always

the clear understanding that the ultimate causal basis

arose from kin selection or inclusive fitness perspec-

tives. I summarized my early understanding of hierar-

chical multilevel selection and related group selection

analyses in my first article, A hierarchical view of sex ratio

patterns (Frank, 1983a).

In my early work, I focused only on group structured

populations. I maintained an unbiased dual perspective

between kin and group selection. However, in that

early work, I made limited progress towards teasing

apart how selection influenced sex ratio evolution.

I was stuck at the same vague group selection perspec-

tive that stopped Hamilton. I slowly figured out how to

move ahead. Particular sex ratio models played a key

role – the synergism between application and abstrac-

tion.

In a particular study, I analysed the case in which

males competed for mates locally within groups,

females competed for resources against neighbouring

females, and the males and females migrated varying

distances before mating. I then traced the causal pro-

cesses that determined the evolution of the sex ratio.

Assuming that the mother controlled the sex ratio of

her progeny, one could adopt the mother’s perspective

with regard to pathways of causation. This new work

grew from Price and Hamilton’s multilevel selection

analyses, reflected in the title of a key article, Hierarchi-

cal selection theory and sex ratios. I. General solutions for

structured populations (Frank, 1986c). Although that arti-

cle emphasized hierarchical multilevel selection, it also

placed the group structured perspective into its proper

role: a special case within the broader analysis of phe-

notypes by kin selection theory.

Pathways of causation replace group selection

In the group structured sex ratio models, one can sepa-

rate several distinct causes with respect to kin interac-

tions. For example, the value of an additional son

depends on the mother’s genetic relatedness to the

males that her sons compete with for mates. Greater

relatedness reduces the transmission benefit to a

mother for an additional son. We can express the effect

as the marginal gain in mating success through an addi-

tional son multiplied by the relative heritability of the

mother’s sex ratio trait through sons minus the mar-

ginal loss in mating success among competing males

multiplied by the heritability of the mother’s sex ratio

trait through those competing males.

The value of an additional daughter depends on the

mother’s genetic relatedness to the females that her

daughters compete with for access to resources. Greater

relatedness reduces the transmission benefit to a

mother for an additional daughter. We can express the

effect as the marginal gain in reproductive success for

an additional daughter multiplied by the relative herita-

bility of the mother’s sex ratio trait through daughters

minus the marginal loss in reproductive success among

competing females multiplied by the heritability of the

mother’s sex ratio trait through those competing

females. In addition to the direct contributions through

each sex, there are also effects of one sex on the other.

For example, an extra daughter may provide additional

mating opportunities for sons.

The full analysis showed how various causal path-

ways influence the predicted sex ratio (Frank, 1985b,

1986b,c). Those pathways often include the genetic

associations between competitors, measured by coeffi-

cients of relatedness. Typically, a coefficient of related-

ness can be expressed either as the genetic variance

between groups divided by the total genetic variance in

the population, or as a regression coefficient that

measures the genetic correlation between interacting

individuals. The two interpretations are simply alterna-

tive expressions for the same measure. The first, group

based expression for the measure suggests a group

selection interpretation, whereas the second, individ-

ual-based expression suggests a kin-centric interpreta-

tion. However, the measure is the same in both cases

(Frank, 1986c, 1998).

The problem with the group-based interpretation is

that different causal pathways may be associated with

different patterns of grouping. Or there may not be any

natural grouping. The pairwise correlations of kin selec-

tion theory do not require group structure. If there is

no group structure, kin selection works perfectly

whereas group selection fails.

Group selection, which initially provided a nice intui-

tive way to think about group structured populations,

ultimately proved to be the limitation in understanding

the evolution of phenotypes. Inevitably, I had to return

to the fundamental causal level, in which the correla-

tions between individual phenotypes and the different

pathways of heritability were made clear.

Once at the proper level of causation, one could see

that emphasis on groups hindered analysis. The proper

view always derives from the causes of fitness and the

pathways of transmission. The different causes of fitness

rarely follow along a single pattern of grouping. For

example, males may interact over one spatial scale,

females may interact over another spatial scale, and

mating between males and females may occur on a

third scale. It is relatively easy to trace cause by the

correlations between phenotypes, the ecological context

of resource distribution and the pathways of genetic

transmission. Those causal components do not naturally

follow the sort of rigid grouping needed for a group

selection analysis to work.
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The last paragraph of Frank (1986c) emphasized how

analysis of particular biological problems led to a deeper

understanding of causal process:

In summary, all three theories – inbreeding, within-

sex competition among relatives, and group selection

truly describe causal mechanisms of biased sex ratios

in structured populations. Through the study of a

variety of scenarios with hierarchical selection theory,

I draw the following conclusions. First, inbreeding

biases the sex ratio since producing a daughter that

inbreeds … passes on twice as many parental genes as

producing a son would. Second, as the amount of

within-sex competition among related individuals

increases, the relative genetic valuation of that sex

decreases. Third, genetic differentiation among groups

… and genetic correlation within groups … are related

descriptions for the same phenomenon. Some recent

papers (Colwell, 1981; Wilson & Colwell, 1981) have

stressed the group selection aspect of this phenome-

non without clarifying its similarity to genetic related-

ness. Using group selection for describing causal

mechanisms is particularly slippery, since, as in the

various scenarios presented in this paper the differen-

tiation among groups may refer to groups of compet-

ing males, groups of competing females or groups that

contain inbreeding pairs. While hierarchical selection

theory, which is a group selection sort of analysis, has

proved a powerful analytical tool, it seems that, for

describing causal mechanisms, it is often useful to

apply the genetic regressions [kin selection coeffi-

cients] considered in the discussion.

Logically, there cannot be a group selection
controversy

Two conclusions emphasize the failure of group selec-

tion. First, the ultimate causal processes concern corre-

lations between phenotypes and pathways of genetic

transmission. Group structuring is just one limited way

in which phenotypic correlations and genetic transmis-

sion pathways may be influenced. Second, insisting on

a group perspective greatly limits the practical applica-

tion of the theory to natural history. Most natural his-

tory problems do not have a single rigid group

structure shared by all causal processes. If one starts

with a group selection perspective, solving problems

becomes extremely difficult or impossible. No gain in

understanding offsets the loss in analysis.

Although group selection has problems that limit its

scope, it also has attractive features. There is a natural

intuitive simplicity in group structured analysis. Total

selection arises from the balance between the dynamics

of selection within groups and the dynamics of selec-

tion between groups. Altruistic characters often tend to

lose out during selection within groups and often tend

to increase by selection between groups. The problem is

that once people gain such intuition, they do not easily

give it up in the face of the inevitable conceptual and

practical limitations. Like the growth of any kind of

understanding, one must allow the first general insights

to become the special cases of broader conceptual and

analytical approaches. Pinning a topic to the first simple

illustrative model limits progress. Concepts and their

associated language naturally develop and transform

over time.

Given this history, the idea of a group selection con-

troversy seems to me to be a logical absurdity. I do

understand the intuitive appeal of group selection. I

was trained by Hamilton to think about the interesting

properties of groups and about the dynamical processes

of within-group and between-group selection. I also

learned from Hamilton the mathematical techniques to

analyse multilevel selection. My early conversion, how-

ever, did not last. Both the conceptual and practical

limitations became apparent as I tried to make progress

in understanding various problems of natural history

and the mathematical models needed to evaluate those

problems.

In summary, when groups are the cause of genetic

associations, then group structuring is the causal basis

for the associations that drive kin selection. When

group structuring is less clear, the principles of kin

selection still hold, as they must.

However, the controversy continues

The Los Angeles Times newspaper published an inter-

view with E.O. Wilson on 19 September 2012. With

regard to kin and group selection, the interviewer began:

The biologist J.B.S. Haldane explained ‘kin selection’

when he was asked whether he would lay down his

life for his brother. No, he said, but he would for two

brothers, or eight cousins. In the journal ‘Nature’ in

2010 (Nowak et al., 2010), you challenged kin selec-

tion and created a stir, to say the least.

Wilson replied (the following is an exact unmodified

typographic transcription of the published article)

I was one of the main promoters of kin selection back

when it looked good. By the ‘90s I thought I heard

the whine of wheels spinning. Willie Hamilton’s [British

evolutionary biologist W.D. Hamilton] generalized rule

[of kin selection] was that if you’ve got enough peo-

ple looking after [relatives], society could become very

advanced. It wasn’t working. By 2010, I had pub-

lished peer-reviewed articles on what was thoroughly

wrong [with kin selection]. I said we’ve got to go back

to ‘multilevel selection’. Groups form, competing with

one another for their share. It’s paramount in human

behaviour. The spoils tend to go to groups that do

things better – in business, development, war and so

on.
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I knew the biology. I saw that multiple-level selection

works, but in different ways in different cases, and

[with] my mathematical colleagues, said [in the

Nature article], kin selection cannot work. We knew

that was going to be a paradigm changer. We pub-

lished it and the storm broke.

I agree with the three key points emphasized by Wil-

son in his article (Nowak et al., 2010): that multilevel

selection is important; that one should think about

group selection in human sociality; and that kin selec-

tion in relation to haplodiploidy is not sufficient to

explain insect sociality. However, I do have a different

perspective on some of the conceptual issues and the

history of the subject.

Multilevel selection
I have emphasized Hamilton’s own interest in multi-

level selection. Thus, Wilson’s way of opposing kin

selection vs. multilevel selection does not make any

sense to me. To expand briefly on this point with

regard to human sociality, note that Hamilton’s (1975)

primary publication on multilevel selection had the title

Innate social aptitudes of man: an approach from evolutionary

genetics. In that article, Hamilton first developed his the-

oretical perspective on human evolution by extending

Price’s (1972) hierarchical selection methods. Hamilton

then devoted approximately ten pages to group level

perspectives on human sociality.

In Hamilton’s (1996) collected works, he gave the

reprinted version of this article (Hamilton, 1975) the

secondary title Friends, Romans, Groups, and wrote in

the preface for the article:

[I] am proud to have included the first presentation of

Price’s natural selection formalism as applied to

group-level processes. … He [Price] himself published

one application of the formula to groups but I think it

was less explicit and general than mine, indeed almost

as if he was trying still to conceal his formula’s full

significance (Price, 1972). For myself, I consider the

format of analysis [for multilevel selection] I was able

to achieve through his idea brilliantly illuminating.

Kin vs. group selection in human sociality
Alexander (1979, 1987) built his comprehensive evolu-

tionary analysis of human sociality on the importance

of group against group competition. In developing the

theoretical foundations for his analysis, Alexander had

thoroughly reviewed issues of group selection. He

expressed his thinking on this topic in an article with

the title Group selection, altruism and the levels of organiza-

tion of life (Alexander & Borgia, 1978).

I took my first undergraduate course in evolution

from Alexander at the University of Michigan in 1978.

His views on multilevel selection in Alexander & Bor-

gia (1978) were particularly important in shaping how

I understood the subject. Interestingly, Alexander was

not much influenced by Hamilton’s multilevel selec-

tion analysis, which derived from the mathematical

theories of Price. Instead, Alexander was an entomolo-

gist with a deep interest in human behaviour. He

developed his thinking from broad consideration of

natural history.

A comment on the first page of Alexander & Borgia

(1978) provides historical context

[E]volution by differential extinction of groups has

recently been modelled or discussed anew by several

authors … Wilson (1975b), for example, has argued

that ‘In the past several years a real theory of inter-

population selection has begun to be forged, with

both enriched premises and rigorous model building.

… Insofar as the new theory considers the results of

counteraction between group and individual selection,

it will produce complex, nonobvious results that con-

stitute testable alternatives to the hypothesis of indi-

vidual selection. My own intuitive feeling is that

interpopulation selection is important in special cases’.

Clearly, Wilson has long given thought to the poten-

tial importance of group structuring in nature. The

point here is that this line of thought goes back over

40 years, with much debate about conceptual issues

and the relative importance for understanding natural

history. However, most theories conclude that differen-

tial extinction of groups is usually a relatively weak

force (Maynard Smith, 1976). Only Hamilton’s milder

version of group structuring in relation to differential

reproduction and genetic differentiation between

groups seems to be on solid ground as an explanation

for common patterns of natural history.

I have argued throughout that Hamilton’s type of

multilevel selection is clearly a special case within the

broader theory of kin selection. Although group extinc-

tions are usually thought to be outside the scope of kin

selection theory, the merging of demography and kin

selection by Taylor & Frank (1996) and Frank (1998)

brings those different processes within a single coherent

theoretical framework. Bringing together those different

processes is more than just a theoretical convenience.

Suppose, for example, that a particular problem

requires analysing how an altruistic phenotype evolves.

That phenotype may affect the probability of extinction

for its group. Its group may be composed of genetically

similar individuals, perhaps kin in the traditional sense.

The phenotype may also have other costs and benefits

with regard to interacting with social partners. It is too

hard to figure out what to expect by separately analy-

sing extinctions, group variations in genetics, social pro-

cesses of costs and benefits, and other processes. Nowak

et al. (2010) say that one must make a specific model

for a specific case, and then one gets the right answer.

True, but the history of science shows unambiguously

that one gains a lot by understanding the abstract
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causal principles that join different cases and different

models within a common framework (Frank, 2012b).

That truth leaves only the sort of causal perspective I

have emphasized as a reasonable candidate for how to

think about such problems.

Certainly, not everyone agrees with me. Alexander &

Borgia (1978) understood Hamilton’s (1975) claim that

group selection was just a special case of kin selection.

However, they rejected that point of view

That groups are often composed of kin does not mean

that kin selection and group selection are in any sense

synonymous (e.g. Williams, 1966; West-Eberhard,

1975; Wilson, 1975a,c). As West-Eberhard (1976)

points out, ‘In the same trivial sense that kin selection

is group selection, all of natural selection is group

selection, since even “individual” selection really con-

cerns the summed genetic contribution of a group –
the individual’s offspring’. Moreover, although kin

selection can occur in continuously distributed popu-

lations, group selection cannot. For reasons elaborated

later, we agree with Maynard Smith (1971) that it is

more appropriate to distinguish kin selection and

group selection than to blur their differences by con-

sidering them together.

This quote shows the clear historical precedent for

Wilson’s argument that multilevel selection is distinct

from kin selection. As often happens with historical

analyses of ideas in science, one can find significant

antecedents that support a variety of different positions.

Because a controversy about kin and group selection

will always come down to how one chooses to interpret

words, there can be no final resolution.

What we can say, unambiguously, is that Hamilton

never argued for a distinction between multilevel analy-

sis and kin selection. Instead, he saw multilevel analysis

as one of the most powerful approaches to thinking

about the general problems that arise in applications of

his theory. My own view follows Hamilton. In addition,

the mathematics do not allow a logical distinction. Any

distinction must be injected by a particular bias with

respect to how one uses the words and interprets the

history. However, as long as the historical and concep-

tual issues are made clear, it does not matter to me how

one chooses to use the words. Indeed, given how clearly

we understand the theory, it puzzles me why so much

attention and argument continues to focus on this issue.

Returning to Alexander & Borgia (1978), their main

point concerned how we should think about human

evolution. In their concluding remarks about humans,

they state

Human social groups represent an almost ideal model

for potent selection at the group level (Alexander,

1971, 1974, 1975; Wilson, 1973). First, the human

species is composed of competing and essentially hos-

tile groups that have not only behaved towards one

another in the manner of different species but have

been able quickly to develop enormous differences in

reproductive and competitive ability because of cul-

tural innovation and its cumulative effects. Second,

human groups are uniquely able to plan and act as

units, to look ahead, and to carry out purposely

actions designed to sustain the group and improve its

competitive position, whether through restricting dis-

ruptive behaviour from within the group or through

direct collective action against competing groups.

Alexander & Borgia (1978) certainly understood the

broader implications of multilevel selection analysis

with regard to a variety of biological problems. The first

paragraph of their summary is

[T]here may be few problems in biology more basic or

vital than understanding the background and the

potency of selection at different levels in the hierar-

chies of organization of living matter. The approaches

currently being used by evolutionary ecologists and

behaviorists in assessing the likelihood of effective

selection at the level of groups or populations of indi-

viduals may also be used to advantage by those con-

cerned with function at intragenomic levels. The kind

of selectionist techniques used recently to analyze the

behavior of nonhuman organisms may in the near

future be widely applied toward understanding not

only human social phenomena, but a variety of phe-

nomena of classical biology such as mitosis, meiosis,

sex determination, segregation distortion, linkage,

cancer, immune reactions, and essentially all problems

in gene function and in ontogeny.

The year 1978 was a long time ago. I do not under-

stand why these ideas are still thought of as novel or

controversial.

Insect sociality. Wilson particularly emphasized the

failure of kin selection theory in explaining the evolu-

tion of advanced sociality in insects (Nowak et al.,

2010). Once again, we must consider what is meant by

the scope of kin selection theory. I tend to think of kin

selection as a particular causal perspective within the

broader theory of natural selection. Although it is

tempting to limit the scope of kin selection theory to

certain simple scenarios and predictions, such limits

never make sense in the logical or mathematical analy-

sis of the subject. However, to the extent that others

choose to distinguish more finely, that does not bother

me as long as the concepts and history are made clear.

For those who view kin selection narrowly, the

potential problems of that narrow theoretical view for

understanding the origin of complex sociality (eusoci-

ality) in insects was a lively topic in the 1970s and

1980s. Andersson (1984) introduces his excellent

review of the topic by noting that eusociality has arisen

multiple times in insects. He then turns to an early the-
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ory based on kin selection to explain why eusociality is

particularly common in bees, ants and wasps (Hyme-

noptera).

Hamilton’s (1964a,b) celebrated explanation is that

haplodiploid sex determination in Hymenoptera

makes sisters share three quarters of their genes,

whereas a daughter only receives half her genome

from her mother. Hymenopteran females may there-

fore propagate their genes better by helping to raise

reproductive sisters than by raising daughters of their

own. Haplodiploidy therefore should make the evolu-

tion of nonreproductive female workers particularly

likely among the Hymenoptera. This and other stim-

ulating ideas of Hamilton’s started a revolution in

the study of social behaviour, particularly of the role

of kin selection (Maynard Smith, 1964; Michod,

1982).

Several entomologists have warned against overem-

phasis on the 3/4 relatedness hypothesis, and they

have pointed to other factors important in the evolu-

tion of eusociality (e.g. Kennedy, 1966; Lin & Mich-

ener, 1972; Alexander, 1974; Michener, 1974;

Michener & Brothers, 1974; West-Eberhard, 1975,

1978; Evans, 1977; Crozier, 1979; Eickwort, 1981;

Brockmann, 1984). Hamilton (1964a,b, 1972) and

Wilson (1971) also noted that haplodiploidy alone

cannot explain eusociality in Hymenoptera. Such res-

ervations were often forgotten, however, and the 3/4

hypothesis came to dominate many textbook and pop-

ular accounts. For example, in his comprehensive

review of social behaviour in animals, Wilson (1975c,

p. 415) stated that ‘the key to Hymenopteran success

is haplodiploidy’ and that ‘nothing but kin selection

seems to explain the statistical dominance of eusociali-

ty by the Hymenoptera’ (Wilson, 1975c, p. 418). A

long list of similar evaluations of the 3/4 relatedness

hypothesis by other authors could be cited.

The main empirical evidence in favour of the 3/4

hypothesis is that eusociality seems to have arisen

many more times in the haplodiploid Hymenoptera

than in other insects (Wilson, 1971; Brockmann,

1984). This evidence initially appeared impressive, but

several recent findings indicate that haplodiploidy and

3/4 relatedness between sisters may have been of lim-

ited importance for the evolution of eusociality. Other

factors have clearly been involved, and it seems possi-

ble that haplodiploidy has even been insignificant

compared to these factors. At least five lines of evi-

dence cast doubt on the overwhelming importance

sometimes ascribed to haplodiploidy [and the nar-

rowly defined kin selection hypothesis].

The further details do not concern us here. The main

point is that by 1984, the problems with a narrow

interpretation of kin selection for explaining eusociality

had been widely discussed.

Summary. Inevitably, the debates about kin selection

and group selection will continue, because the ultimate

problem concerns different usage of words. People vary

in whether they prefer to emphasize differences or sim-

ilarities between components of a broader problem.

Those who like differences emphasize distinctions

between kinship interactions and group structuring of

populations. Those who like similarities see kin and

group selection as part of a broader theory of natural

selection. So what? Perhaps, the debate can advance a

bit by a more nuanced consideration of the underlying

concepts and history.

Discussion

Separation into component causes

Kin selection theory analyses the evolutionary causes

of social phenotypes. Causal analysis is not an alterna-

tive to other analyses, such as population genetics.

Rather, causal analysis brings out the factors that one

must emphasize to understand pattern. Why do pheno-

types vary in the way that they do? What matters

most? What factors should one focus on to make test-

able predictions?

Hamilton separated evolutionary change into three

causes. A direct component affects the individual that

expresses a phenotype – the cost. An indirect compo-

nent affects social partners influenced by the focal

individual’s phenotype – the benefit. To combine those

two components into the total evolutionary effect on

the phenotype, one must adjust the indirect component

to have the same units as the direct component. The

adjustment translates the indirect component of change

into an equivalent amount of direct change. That trans-

lation is often a genetic measure of similarity between

the individuals affected directly and indirectly – the

coefficient of relatedness.

Note the structure of causal analysis. The total change

is what matters. To understand that total change, we sep-

arate it into parts that help to reason about the problem.

Once we have a set of distinct parts, we have to combine

those parts back into a common measure for total

change. To combine properly, each part is weighted by a

factor that translates into a consequence for total change.

Separation into distinct causal processes leads to testable

predictions about which causal components explain pat-

terns of variation. Separation also highlights the com-

mon causal basis that unites previously unconnected

problems within a common conceptual framework.

Causal analysis by kin selection is never an alterna-

tive to other analyses of total change. Rather, it is a

powerful complement to other approaches. In practice,

kin selection can be so powerful in analysis and so

helpful in the conceptual framing of problems, that

one does not need other complementary methods.

However, determining the best methods always
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depends on the particular goals. For example, in the

study of alternative genetic assumptions and complex

aspects of dynamics, population genetic models provide

superior methods.

Hamilton’s rule

Confusion over Hamilton’s rule arises when it is not

properly understood as a partitioning of causes. The

rule is the partition of total change for a social pheno-

type into direct and indirect components. It does not

make sense to consider whether the rule is true or

false. Rather, following Hamilton, one thinks of the

rule in two ways. First, is there a simple form for the

partition of causes that matches the ultimate measure

of total change, at least approximately and under par-

ticular conditions? If so, what are the proper definitions

for the components? Second, how should we expand

Hamilton’s original causal partition for more complex

problems?

Roughly speaking, Hamilton’s original expression in

terms of costs, benefits and genetic relatedness provided

a useful partition that works for simple problems. How-

ever, as the theory was applied to more realistic prob-

lems, the associated causal analysis had to be extended.

The modern theory of kin selection provides a more

comprehensive causal analysis. Multiple direct and indi-

rect components of fitness may occur. Costs and bene-

fits are understood to depend on context. Relatedness

coefficients and their generalization by multiple regres-

sion coefficients translate all fitness components into

common units of total change. Separation between

selection and transmission clarifies the distinctions

between causal components.

Methods of analysis for solving problems have been

developed to complement the causal decomposition.

The limitations of the analytical methods and the causal

decompositions are reasonably well understood. Causal

decomposition and simplified analysis provide tools to

enhance understanding rather than alternatives to

more complex and detailed mathematical analyses of

particular problems.

Limitations of inclusive fitness

Hamilton introduced inclusive fitness as a particular

type of causal partition. Inclusive fitness assigns an

indirect fitness effect through a social partner back to

the behaviour that caused the fitness effect. For exam-

ple, if an individual saves its sibling’s life, that fitness

benefit is attached to the individual who saved the life

rather than the individual whose life was saved. That

fitness benefit is discounted by the genetic relatedness

of the savior to the sibling.

Inclusive fitness has the advantage of assigning

changes in components of fitness to the phenotype that

caused those changes. That causal decomposition can

provide much insight into evolutionary process. The

problem arises because that very particular form of cau-

sal partitioning is often equated with the entire theory

of kin selection. Instead, it is much better to view kin

selection as a general approach to the causal analysis of

social processes. Inclusive fitness is a particular causal

decomposition that helps in some cases and not in

others.

For example, phenotypic associations between social

partners that do not share a common genotype can

have a very powerful effect on social evolution. Inclu-

sive fitness fails as a complete analysis of correlated

phenotypes between social partners. That failure does

not mean we should give up on trying to understand-

ing the causes of social evolution in such cases, or that

we should conclude that kin selection theory fails as a

general approach. Instead, we must understand the

broader approach of causal analysis, and how different

aspects of natural history should be understood from a

broader causal perspective. That broader perspective

was developed many years ago and has proved to be a

powerful tool for analysing complex social interactions.

Correlated social phenotypes vs. genetic
relatedness

When correlated social phenotypes do not arise from

shared genotype, how should we think of the related-

ness coefficients of kin selection theory? Proper causal

analysis solves the problem. Changes in phenotypes

cause changes in fitness. Those fitness changes must be

translated into changes in the transmission of pheno-

types to the future population. In analysing the causes

of fitness and the causes of transmission, we must put

all the components together into a common measure of

total change. The weighting of the different compo-

nents leads to different types of regression coefficients.

Those regression coefficients are the translations of dif-

ferent causal components into a common scale.

The fact that Hamilton’s original theory considered

only a very particular aspect of transmission and

genetic relatedness has led to confusion. Hamilton’s

original regression coefficient of relatedness is not the

single defining relatedness and regression coefficient of

kin selection theory. Rather, it is the particular coeffi-

cient that arises in the special inclusive fitness analysis

that Hamilton considered in developing his theory.

Synergism between abstraction and application

Abstraction arises by recognizing the common processes

that recur in different cases. Application demands

analysis of particular phenotypes under particular cir-

cumstances. Kin selection theory grew naturally by the

synergism between abstraction and application. Hamil-

ton pulled out the first clear abstraction that united

various simple applications. Yet, he could not use his
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abstract theory to move on to new applications. In par-

ticular, he could not solve the problems of dispersal

and sex ratios that arose from kin interactions.

As the applied theory eventually developed for dis-

persal, sex ratios and more complex social phenotypes,

deeper abstract principles emerged. For example, the

distinction between selection and transmission became

clear, and relatedness coefficients became a part of

translating causal components into common units. The

improvements in abstract theory enhanced the scope of

application to complex social phenotypes.

The necessary synergism between abstraction and

application showed the ultimate failure of group selec-

tion. In particular, group selection is a useful abstrac-

tion for a limited set of applications. When faced with a

variety of applications, such as sex ratio evolution with

multiple male and female interactions, group selection

fails. Instead of the limited perspective of group selec-

tion, the deeper abstract principles dominate. Those

principles include a clear causal analysis of distinct

fitness components, separation of selection and trans-

mission, and the proper weighting of the distinct causal

components to attain an overall analysis of total

change.

When different people focus exclusively on either

abstraction or application, deep tension and fruitless

debate arise. When the two modes come together, great

progress follows.
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