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It is better to be vaguely right than exactly wrong (Read,

1909).

Introduction

The species abundance distribution (SAD) describes the

number of individuals of each species observed in a

sample. The SAD shape is remarkably consistent across

communities. Many distinct rare species each have only a

single individual in the sample. The number of different

species declines as the count of individuals per species

rises (Fisher et al., 1943; Preston, 1948; MacArthur, 1957,

1960; Whittaker, 1965; May, 1975; Hubbell, 2001;

Magurran, 2004; McGill et al., 2007; Ulrich et al., 2010).

Such a consistent pattern naturally leads to widespread

interest. What is the best description of the pattern?

What theory best explains the consistency across such

diverse habitats? How should we think of the differences

in distribution that do occur between certain types of

habitat? A vast literature is devoted to these questions.

Here, I focus on connecting two points of view in the

recent debate.

The first point of view argues that different processes can

lead to the same pattern. Thus, a fit between the observed

SAD and a particular mechanistic theory must be treated

with caution, because other equally plausible mechanisms

lead to the same pattern (May, 1975; Pueyo et al., 2007;

McGill, 2010). No one argues directly against this point of

view. Nonetheless, the tendency of different processes to

lead to the same pattern is sometimes ignored, because we

do not have a fully convincing theory for why widely

different processes would in fact lead consistently to the

narrow range of observed SAD patterns.

The second point of view uses maximum entropy

theory to explain the observed SAD. In maximum

entropy, the most likely probability distribution is the

one that is most random, or has highest entropy, subject

to certain minimal constraints. A constraint might, for

example, be that the average population size of species is
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Abstract

The consistency of the species abundance distribution across diverse commu-

nities has attracted widespread attention. In this paper, I argue that the

consistency of pattern arises because diverse ecological mechanisms share a

common symmetry with regard to measurement scale. By symmetry, I mean

that different ecological processes preserve the same measure of information

and lose all other information in the aggregation of various perturbations.

I frame these explanations of symmetry, measurement, and aggregation in

terms of a recently developed extension to the theory of maximum entropy.

I show that the natural measurement scale for the species abundance

distribution is log-linear: the information in observations at small population

sizes scales logarithmically and, as population size increases, the scaling of

information grades from logarithmic to linear. Such log-linear scaling leads

naturally to a gamma distribution for species abundance, which matches well

with the observed patterns. Much of the variation between samples can be

explained by the magnitude at which the measurement scale grades from

logarithmic to linear. This measurement approach can be applied to the similar

problem of allelic diversity in population genetics and to a wide variety of

other patterns in biology.
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set by the habitat. By maximum entropy, the abundances

of species would be the most random pattern such that

the overall average abundance is fixed (Shipley et al.,

2006; Pueyo et al., 2007; Harte et al., 2008; Banavar et al.,

2010; Haegeman & Etienne, 2010; He, 2010).

Maximum entropy could, in principle, explain why

different mechanistic hypotheses lead to the same SAD

pattern. Two different mechanisms have the same SAD

shape if they both constrain the average abundance and

otherwise produce various perturbations that ultimately

tend to cancel in the aggregate. However, there is at

present no general understanding of the relation

between maximum entropy and the tendency for differ-

ent mechanistic hypotheses to converge to the same SAD

pattern. Thus, maximum entropy is often viewed as

an alternative theory for SAD patterns (McGill, 2010),

rather than a more fundamental principle about proba-

bility that necessarily plays a central role in translating

process into pattern.

In this paper, I use recent advances in maximum

entropy theory to strengthen the argument that many

different underlying mechanistic hypotheses lead to the

same common SAD pattern. The advances follow from

my work with Eric Smith, showing the importance of

information invariance and measurement scale in under-

standing the fundamental ways in which different

probability patterns arise (Frank & Smith, 2010, 2011).

The first section describes the common theoretical

SADs that have been used to fit observed patterns. In that

section, I show that the gamma distribution subsumes

the log series, power law, and geometric distributions as

special cases. The gamma distribution can also take on

shapes very close to the widely used lognormal distribu-

tion. The gamma often fits observed SAD patterns better

than the lognormal.

The second section argues that the gamma distribution

arises as the natural expression of pattern on a log-linear

measurement scale. A log-linear scale is logarithmic at

small magnitudes and continuously grades into a linear

scale at large magnitudes. In terms of SADs, the match to

the gamma pattern means that the information one

obtains from an observed species abundance in a sample

scales logarithmically at low abundance and linearly at

high abundance. I use recent advances in maximum

entropy theory to derive this relation between log-linear

measurement scale and observed SAD patterns (Frank &

Smith, 2010, 2011).

From the first two sections, I conclude that SADs often

follow a gamma distribution and the gamma distribution

arises naturally as the expression of pattern on a log-

linear measurement scale. Those conclusions leave us

with the question: Why do ecological mechanisms often

lead to log-linear scaling? My main goal is to establish

that question, which the first two sections accomplish. In

the third section, I explore possible answers by examin-

ing the way in which specific ecological mechanisms

associate with log-linear scaling.

The discussion analyzes the position of maximum

entropy among the various approaches to understanding

biological pattern. McGill (2010) recently classed maxi-

mum entropy as an approach that makes particular

hidden assumptions about mechanism. By this view,

maximum entropy is a testable hypothesis that can

be evaluated by observation. By contrast, I argue that

maximum entropy is like the calculus. One does not test

the calculus by comparing predictions with data. Rather,

both the calculus and maximum entropy provide ana-

lytical tools that help in understanding the logical

relations between assumptions and observations.

In the appendix, I note that Pueyo et al. (2007)

originally established the basic approach of maximum

entropy and invariance for species abundance problems.

I then describe specific limitations in the way that Pueyo

et al. (2007) framed the maximum entropy problem and

how my measurement theory approach resolves those

problems. My resolution connects the maximum entropy

method to a broader framework of measurement and

information, providing a deeper understanding that is

essential for interpreting ecological pattern.

With regard to ecological pattern, maximum entropy

can be used in two ways. First, from a consistently

observed pattern, such as the SAD, one can induce the

necessary and sufficient attributes that various ecological

mechanisms must have to match observed pattern.

Second, one can deduce the predicted pattern generated

by a wide class of ecological mechanisms that share

common attributes. Those shared attributes determine

the measurement scale and thus define pattern. I will

emphasize that the way in which maximum entropy has

been applied to ecology needs to be revised to relate the

method to the structure of the biological problem.

Common measurements of genetic diversity are often

analogous to the species abundance problem. In genetics,

one may classify genetic variants into distinct alleles and

then measure the abundance of each allele. The distri-

bution of allelic abundances in a sample has the same

structure as the distribution of species in a sample. The

equivalence of species and allelic sampling problems has

been discussed often (Watterson, 1974; Hubbell, 2001;

Leigh, 2007; Johnson et al., 1997, chapter 41). In this

paper, I focus on the ecological problem of species,

because that subject has developed more fully the

particular issues that I will analyze.

Maximum entropy methods in relation to ecological

and genetic patterns illustrate a deeper problem in

biology (Frank, 2009). How do we separate commonly

observed patterns generated by typical processes of

measurement and aggregation from those special pat-

terns that provide information about the underlying

biological mechanisms? Current biological analysis has

largely ignored this central problem. Consistent progress

depends on clearer understanding. In particular, we must

have some sense of what is surprising and informative

vs. what is unsurprising and uninformative. Otherwise,

486 S. A. FRANK

ª 2 0 1 1 T H E A U T H O R . J . E V O L . B I O L . 2 4 ( 2 0 1 1 ) 4 8 5 – 4 9 6

J O U R N A L O F E V O L U T I O N A R Y B I O L O G Y ª 2 0 1 1 E U R O P E A N S O C I E T Y F O R E V O L U T I O N A R Y B I O L O G Y



much analysis devotes attention to what is in fact

expected based on the simplest notions of aggregation

and measurement.

SADs follow the gamma distribution

Among S species, the probability py is the fraction of

species each with y individuals and Spy is the number of

species each with y individuals. The distribution of py

defines the SAD. I focus on the underlying distribution

of species abundances, ignoring the inevitable fluctua-

tions caused by sampling. Sampling fluctuations are

important, but in this paper, I wish to isolate the forces

that shape the underlying distribution from sampling

fluctuations.

In this section, I argue that a gamma probability

distribution is a simple and general description of

observed SAD patterns. Ulrich et al. (2010) recently

conducted a meta-analysis of 558 SADs derived from

306 publications. Their conclusions match the broad

consensus in the literature that SADs typically fit best to

either a log series distribution or a lognormal distribution.

They also found that several observed SADs fit best to a

power law distribution.

One can always quibble about the methods of fitting

and the choice of alternative distributions to compare.

My point of view in this paper does not depend on the

fine points of fitting alternative distributions. Rather, we

can simply take the qualitative conclusion that observed

distributions usually fit reasonably well to either the log

series, lognormal, or power law pattern. Different

observed SADs vary in which of these three distributions

fits best.

Log series and power law distributions

The log series distribution has the form

py ¼ k
hy

y
; ð1Þ

where k ¼ )1/log(1 ) h), 0 < h < 1, and y ¼ 1, 2, … is

the number of individuals in the sample for each species

of class y. I use ‘log’ for the natural logarithm. This

distribution has its highest value (mode) at y ¼ 1, so that

the rarest species, each represented by a single individual,

occur most frequently in the sample. Species with

increasingly large populations in the sample occur at a

decreasing frequency.

The power law distribution has the form

py ¼ ky�c; ð2Þ

where c > 1 and k is chosen so that the total probability

is one over all values of y. The power law also has a mode

at one, and frequency declines steadily for species with

increasing population sizes. The rate of decline in

frequency with increasing population size is slower for

the power law than for the log series.

For discrete distributions, such as the forms of the log

series and power law given here, we may truncate the

distribution so that the greatest value of y is not higher

than some upper bound, B, resetting k so that the total

probability is one.

Normal and lognormal distributions

To describe SADs by the lognormal, one must first

transform the underlying measurement scale. The tra-

ditional approach follows the Preston plot method, in

which one forms bins on a log2 scale for abundance

values y, such that y ¼ 1 maps to the 20 or log2 ¼ 0

bin, y ¼ 2 maps to the log2 ¼ 1 bin, the combination of

y ¼ 3,4 maps to the log2 ¼ 2 bin, the combination of

y ¼ 5, 6, 7, 8 maps to the log2 ¼ 3 bin, and so on. This

binning creates a discrete distribution on the logarithmic

scale.

On the logarithmic scale, the lognormal has the

symmetric shape of a normal distribution. For fits to

observed SADs, one matches a continuous normal

distribution to the discrete binned logarithmic distribu-

tion.

In the next section, I will describe the gamma

distribution on both the linear and logarithmic scales.

To compare those forms of the gamma with the

lognormal, it is useful to describe the transformations

between the log and linear scales for the lognormal.

Here, I use y for the linear scale and x ¼ log y for the

log scale. I use the standard notation for continuous

probability, in which pxdx is the probability that x falls in

the interval between x and x + dx for a small increment

dx. The magnitude of the increment dx may change in

ways that define the measurement scale, as shown in the

following.

On the log scale, the normal distribution is

pxdx ¼ ke�
ðx�lÞ2

2r2 dx; ð3Þ
where the measure dx is for the log scale, x. To get the

linear scale measure, we make the substitution x ¼ log y

to obtain

plog yd log y ¼ ke�
ðlog y�lÞ2

2r2 d log y;

where k is always taken to adjust so that the total

probability is one. We get the form of py on the linear

scale by changing the measure d log y ¼ dy/y and noting

that py ¼ plogy/y, yielding

pydy ¼ ky�1e�
ðlog y�lÞ2

2r2 dy:

Thus, the distribution here is normal on the log scale

and lognormal on the linear scale.

To compare the lognormal and gamma distribu-

tions with log-binned SAD data on the logarithmic

scale, we need to express the gamma on the logarithmic

scale.
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Gamma and exponential-gamma distributions

In this section, I first describe the gamma distribution on

the linear scale and then present what I call the

exponential-gamma on the log scale.

The discrete gamma distribution has the form

py ¼ kya�1e�ky ð4Þ

for y ¼ 1, 2, …. Define h ¼ e)k, which allows us to write

the discrete gamma as

py ¼ kya�1h y: ð5Þ

The discrete gamma contains the discrete log series,

power law, and geometric distributions as special cases.

For a ¼ 0, we obtain the log series distribution; for h ¼ 1,

we obtain the power law distribution; for a ¼ 1, we

obtain the geometric distribution. The gamma distribu-

tion subsumes the other classic distributions because it

derives from a generalization of the measurement scales

of the other distributions, as explained later.

Because the two-parameter discrete gamma distribu-

tion contains the one-parameter log series, power law,

and geometric distributions as special cases, the gamma

must always fit any observed SAD at least as well as the

special cases.

In fitting observed distributions, it is widely known

that the gamma and lognormal distributions can take on

similar shapes and are often hard to distinguish in

practice (Cho et al., 2004; Silva & Lisboa, 2007). For

SADs, the main weakness of the lognormal is that its

symmetry on the log scale usually underestimates the

frequency of rare species in the lower tail of the

distribution (Diserud & Engen, 2000; Hubbell, 2001;

Wilson & Lundberg, 2004). A greater weight in the lower

tail of the gamma is exactly the main difference between

the gamma and lognormal distributions. I show an

example below.

To examine the gamma distribution on the log scale,

we first need the continuous form on the linear scale.

The continuous linear form has the same expression

as the discrete form but with a continuous interpreta-

tion

pydy ¼ kya�1e�kydy;

where y > 0 and k ¼ ka/C(a), and I write dy to emphasize

the continuous measure of probability on the linear scale.

To transform this linear scale version to the log scale, we

will once again use the substitution x ¼ log y. However,

in this case, we are going in the reverse direction, so we

need the inverse substitution y ¼ ex yielding

pex dex ¼ kðexÞa�1
e�kex

dex

¼ keða�1Þx�kex

dex:

Now change the measure to the log scale in terms of x

by the substitution dex ¼ exdx and note that px ¼ pexex,

yielding what I call the exponential-gamma distribution

pxdx ¼ keax�kex

dx: ð6Þ
Because x ¼ log y and y > 0, the domain is )¥ < x < ¥.

However, it is often useful to study the truncated form

with x ‡ 0, corresponding to y ‡ 1 for species abundance

counts that have a lower bound of one. In the truncated

form, k ¼ ka/C(a,k), where the denominator is the

incomplete gamma function evaluated from a lower

bound of k.

In the case of the lognormal, that distribution is normal

on the logarithmic scale and lognormal on the linear scale.

In the case here, the distribution is gamma on the linear

scale and exponential-gamma on the logarithmic scale.

Example comparison of lognormal and gamma
distributions

In this paper, rather than fitting data to distributions, I

emphasize the gamma distribution as a natural expres-

sion for the diversity of observed SAD forms. However, it

is useful to look at a plot of some data to get a feel for the

shapes. Figure 1 shows data for a typical SAD. I fit by eye

the matching normal and exponential-gamma distribu-

tions on the log scale, corresponding to the lognormal

and gamma distributions on the linear scale.

This figure illustrates the commonly observed excess of

rare species compared with the lognormal pattern. The

gamma pattern differs most strongly from the lognormal

by allowing a higher probability weighting of small

values; otherwise, the lognormal and gamma distribu-

tions are similar.

Plotkin & Muller-Landau (2002) commented on the

good fit to SADs provided by the gamma distribution.

Fig. 1 Preston plot of species abundance distribution for tree species

with diameter at breast height (dbh) greater than 10 cm from a

50 ha plot on Barro Colorado Island, Panama. Data extracted from

fig. 5.7 of Hubbell (2001). The numbers on the abcissa show the

linear counts, y, scaled logarithmically so that x ¼ log y. The dashed

line shows a matching normal distribution on the log scale

(lognormal on the linear scale) from eqn (3). The solid line shows

a matching exponential-gamma distribution on the log scale

(gamma on the linear scale) from eqn (6).
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They also noted that the gamma distribution is not

commonly used to fit SADs, in spite of the generally good

match and some clear precedents (Fisher et al., 1943;

Dennis & Patil, 1984; Engen & Lande, 1996). The gamma

may lack popularity because explicit models of ecological

process and sampling often lead to other distributions.

In my view, those explicit models make the mistake of

setting too many exact assumptions about the generation

of pattern. Those exact assumptions can never be

matched by the heterogeneous reality of nature. Instead,

the dominant aspects of pattern may arise from very

general aspects of the way in which heterogeneous

perturbations combine in the aggregate. The central limit

theorem is the most obvious example, in which linearly

scaled perturbations lead to a normal distribution. When

perburbations follow other measurement scales, different

distributions may arise.

Other distributions may sometimes provide a better fit

than the gamma, for example, Hubbell’s (2001) zero-sum

multinomial distribution of the neutral theory. However,

my point goes beyond the particular fit by various

distributions with different numbers of parameters.

Rather, I emphasize that the gamma distribution

subsumes as special cases several classic distributions

commonly used for SADs, the gamma typically outper-

forms the lognormal in fitting, and the gamma arises

naturally from very general aspects of measurement and

information. I am particularly interested in this last

aspect of the gamma distribution as a simple expression

of likely probability patterns in relation to natural

changes in measurement scale with magnitude.

Gamma from log-linear measurement
and maximum entropy

In this section, I show that the gamma distribution arises

as the natural expression of pattern on a log-linear

measurement scale. A log-linear scale is logarithmic at

small magnitudes and continuously grades into linear at

larger magnitudes. The following section illustrates why

SADs may tend to associate with log-linear scaling, in

which low population abundances carry information in

relation to a log scale, and large population abundances

carry information in relation to a linear scale.

To explain the claim that the gamma distribution

expresses log-linear scaling, I first review the standard

method of maximum entropy to derive probability

distributions. I then describe recent extensions to max-

imum entropy to incorporate the role of measurement

scale. My review of maximum entropy and description of

the extensions for measurement scale are condensed

summaries of Frank & Smith (2010, 2011).

Maximum entropy

The method of maximum entropy defines the most likely

probability distribution as the distribution that maximizes

a measure of entropy (randomness) subject to various

information constraints (Jaynes, 2003). The idea is that

the many random perturbations that affect pattern

mostly tend to cancel each other in the aggregate,

leaving the aggregate completely random except for

any constraints that restrict the pattern.

For example, the average number of individuals per

species may be constrained by the productivity of the

habitat, and that average will be maintained in spite of

the wide variety of other processes that perturb species

distributions. So the final pattern must reflect that

constraint. Particular processes may tend to push species

abundances in one direction, but other processes will

push in the other direction. Only the constraints remain

in the aggregate, all else tends to maximum randomness

or entropy. Maximum randomness is equivalent to

minimum information. Thus, maximizing entropy is

equivalent to minimizing the information expressed in

the final pattern subject to any constraints that cause

information to be retained.

The power of maximum entropy is that aggregate

patterns almost always seem to converge to a few

simple patterns that express maximum randomness

subject to just a few informational constraints. To

analyze a problem by maximum entropy, one first

identifies the informational constraints that define a

particular problem. Then, by maximizing randomness

subject to those constraints, one obtains the predicted

form of the probability distribution that describes the

pattern. Going the other way, each common probabil-

ity distribution is an exact expression of a few

informational constraints with all else maximally

random.

To derive a probability distribution by maximum

entropy, we write the quantity to be maximized as

K ¼ E� jC0 �
Xn

i¼1

kiCi; ð7Þ

where E measures entropy, the Ci are the constraints to

be satisfied, and j and the ki are the Lagrange multipliers

to be found by satisfying the constraints. Let C0 ¼
P

py )
1 be the constraint that the probabilities must total

one, where py is the probability distribution function

of y. The other constraints are usually written as

Ci ¼
P

pyfiðyÞ � �fi, where the fi(y) are various trans-

formed measurements of y and the overbar denotes

mean value. A mean value is either the average of some

function applied to each of a sample of observed values or

an a priori assumption about the average value of some

function with respect to a candidate set of probability

laws. If fi(y) ¼ yi, then �fi are the moments of the

distribution—either the moments estimated from obser-

vations or a priori values of the moments set by

assumption. The moments are often regarded as ‘stan-

dard’ constraints, although from a mathematical point of

view, any properly formed constraint can be used.
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Here, I confine the analysis to a single constraint of

measurement. I express that constraint with a more

general notation, C1 ¼
P

pyTðfyÞ � �Tf , where fy ” f(y),

and T(fy) ” Tf is a transformation of fy. I could, of course,

express the constraining function for y directly through

fy. However, I wish to distinguish between an initial

function fy that can be regarded as a standard measure-

ment, in any sense in which one chooses to interpret the

meaning of standard, and a transformation of standard

measurements denoted by Tf that arises from information

about the measurement scale.

The maximum entropy distribution is obtained by

solving the set of equations

@K
@py

¼ @E

@py

� j� kTf ¼ 0; ð8Þ

where one checks the candidate solution for a maximum

and obtains j and k by satisfying the constraint on total

probability and the constraint on �Tf . For continuous

probability distributions, I assume that I can treat the

entropy measures, the contraints, and the maximization

procedure by the continuous limit of the discrete case.

In the standard approach, one defines entropy by

extension of Shannon information

E ¼ �
Z

py log
py

my

� �
dy: ð9Þ

For discrete distributions, my is a prior probability

distribution that sets the default pattern of randomness in

the absence of any additional informational constraints,

yielding an expression that can be interpreted as relative

entropy, sometimes called the Kullback-Leibler diver-

gence (Cover & Thomas, 2006). Alternatively, in the case

of continuous distributions, my may be an adjustment to

maintain an invariant measure of information under

changes in scale (Jaynes, 2003; Frank & Smith, 2011).

With these definitions, the solution of eqn (8) is

py / mye�kTf ; ð10Þ

where k satisfies the constraint C1, and the proportion-

ality is adjusted so that the total probability is one by

choosing the parameter j to satisfy the constraint C0. In

the applications in this paper, I will use my � 1 so that the

default distribution is uniform, the most random pattern

with the highest entropy, and the pattern that lacks any

information. I include in T(fy) any attributes of measure-

ment that may deform the default distribution (Frank &

Smith, 2010, 2011). The general maximum entropy

solution with my � 1 is

py / e�kTf : ð11Þ

Information invariance and measurement scale

Maximum entropy must capture all of the available

information about a particular problem. One form of

information concerns transformations to the measure-

ment scale that leave the most likely probability distri-

bution unchanged (Jaynes, 2003; Frank, 2009; Frank &

Smith, 2010). Here, it is important to distinguish between

measurements and measurement scale. In my notation,

I start with measurements, fy, made on the measurement

scale y. For example, one may have measures of squared

deviations about zero, fy ¼ y2, with respect to the

measurement scale y, such that �fy is the second moment

of the measurements with respect to the underlying

measurement scale.

Suppose that one obtains the same information about

the underlying probability distribution from measure-

ments of fy or transformed measurements, G(fy). Put

another way, if one has access only to measurements

G(fy), one has the same information that would be

obtained if the measurements were reported as fy. One

may say that the measurements fy and G(fy) are equiv-

alent with respect to information, or that the transfor-

mation fy fi G(fy) is an information invariance that

describes a symmetry of the measurement scale.

To capture this information invariance in maximum

entropy, we must express measurements so that

TðfyÞ ¼ dþ /T ½GðfyÞ� ð12Þ

for some arbitrary constants d and /. Putting this

definition of T(fy) ” Tf into eqn (11) shows that the same

maximum entropy solution arises from the observations

fy or the transformed observations, G(fy), because the j
and k parameters of eqn (8) will adjust to the constants d
and / so that the distribution remains unchanged.

Intuitive aspects of invariance and measurement

Intuitively, one can think of information invariance and

measurement scale in the following way. On a linear

scale, each incremental change of fixed length yields the

same amount of information or surprise independently of

magnitude. Thus, if we change the scale by multiplying

all magnitudes by a constant, we obtain the same pattern

of information relative to magnitude. In other words, the

linear scale is invariant to multiplication by a constant

factor so that, within the framework of maximum

entropy subject to constraint, we get the same informa-

tion about probability distributions from an observation y

or G(y) ¼ cy.

On a logarithmic scale, each incremental change in

proportion to the current magnitude yields the same

amount of information or surprise. Information is scale

dependent. We obtain the same information at any point

on the scale by comparing ratios. For example, we gain

the same information from the increment dy/y ¼ d log(y)

independently of the magnitude of y. Thus, we achieve

information invariance with respect to ratios by measur-

ing increments on a logarithmic scale. Within the

framework of maximum entropy subject to constraint,

we get the same information about probability distribu-

tions from an observation y or G(y) ¼ yc, corresponding
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to informationally equivalent measurements T(y) ¼
log(y) and T(yc) ¼ c log(y) (see Frank & Smith, 2010).

Nearly all of the common probability distributions

arise from a simple form of information invariance,

measurement scale, and a constraint on measured values

of y for mean values or measured values of y2 for

variances (Frank & Smith, 2010, 2011). The main

measurement scales in the common distributions express

a change of information with magnitude. For example,

the linear-log scale grades from linear at small magni-

tudes to logarithmic at large magnitudes, expressed as

T(y) ¼ log(1 + by), where b is a parameter that deter-

mines the magnitude at which the scale changes from

linear to logarithmic. When by is small, the scaling is

linear, and when by is large, the scaling is logarithmic. By

contrast, the log-linear scale grades from logarithmic

at small magnitudes to linear at large magnitudes,

expressed as T(y) ¼ y + b log(y).

Gamma distribution from log-linear scaling

When we use the log-linear scale, T(y) ¼ y + b log(y), in

the general maximum entropy solution of eqn (11), we

obtain the gamma distribution

py ¼ ke�kTf

¼ ke�kðyþb logðyÞÞ

¼ kya�1e�ky;

where a ) 1 ¼ )kb and k is the proportionality constant

needed for the total probability to be one. This distribu-

tion matches the discrete gamma first presented in

eqn (4). We obtain the same expression of the distribu-

tion from maximum entropy for discrete and continuous

cases, with proper definition of the domain as y ¼ 1, 2, …
for the discrete case and y > 0 for the continuous case,

and using the proper normalization for k to guarantee

that the total probability is one in each case.

The constraint associated with log-linear scaling is
�T ¼ l̂þ b logðĉÞ, where l̂ is the mean of y and ĉ is the

geometric mean for which logðĉÞ is the mean of log(y).

The means may either be estimated from a sample or

assumed a priori to take on particular values. It is well

known in the maximum entropy literature that one can

derive a gamma distribution by constraining the mean

and geometric mean (Kapur, 1989; Frank, 2009). How-

ever, the measurement theory approach to maximum

entropy derives the joint constraint on the mean and

geometric mean as an outcome of a general method to

analyze the relation between information and magnitude

(Frank & Smith, 2010, 2011). The earlier studies simply

invoked those constraints as a sufficient description of

the gamma distribution (Kapur, 1989; Frank, 2009).

The form of a probability distribution under maximum

entropy can be read directly as an expression of how the

measurement scale changes with magnitude (Frank &

Smith, 2011). From the general solution in eqn (11),

linear scales T(y) � y yield distributions that are expo-

nential in y, whereas logarithmic scales T(y) � c log(y)

yield distributions that are linear in yc. Exponential

distributions of the form e)ky arise from underlying linear

scales, whereas power law distributions of the form y)c

arise from underlying logarithmic scales.

The gamma distribution has form y)ce)ky. When the

magnitude of y is small, the shape of the distribution is

dominated by the power law component, y)c. As the

magnitude of y increases, the shape of the distribution is

dominated by the exponential component, e)ky. Thus, the

underlying measurement scale grades from logarithmic

at small magnitudes to linear at large magnitudes.

Indeed, the gamma distribution is exactly the expression

of an underlying measurement scale that grades from

logarithmic to linear as magnitude increases.

We can now state the key observation about measure-

ment and ecological pattern. Empirically, the evidence

strongly demonstrates that SADs almost always follow an

approximately log-linear scaling. Variation in the transi-

tion between the logarithmic and linear regime describes

nearly all of the variation in observed pattern.

Different ecological mechanisms
lead to log-linear scaling

What are the set of underlying ecological mechanisms

and aspects of measurement that lead in the aggregate to

log-linear scaling of SADs?

My main goal for this paper is to reformulate the

problem of SADs in terms of this question about log-

linear scaling. I cannot answer this question at present,

because there is no general understanding of the differ-

ent kinds of processes that, in the aggregate, lead to

particular information invariances and measurement

scales. Future progress in understanding biological

pattern depends strongly on progress in understanding

aggregation, invariance, and scale.

The following section presents a preliminary example.

That example hints at the range of processes leading to

log-linear scaling.

Stochastic models of population growth

Dennis & Patil (1984) showed that stochastic fluctuations

of population growth often lead to a gamma distribution

of population abundance. Their work generalized math-

ematical results from previous studies (May, 1974; May

et al., 1978). Costantino & Desharnais (1981) supple-

mented their mathematical derivation of gamma popu-

lation abundance with supporting data from several

laboratory studies of the flour beetle.

In this section, I highlight the essential aspect of

population dynamics that leads to the gamma distribu-

tion. The essence reduces to log-linear scaling of pertur-

bations, supporting my claim that a clear understanding

of the proper scale of measurement leads to a clear
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understanding of biological pattern. Measurement also

helps to explain why some patterns are so common,

because the most common patterns associate with the

most common measurement scales.

By studying the example of population growth, we can

learn how aspects of dynamics associate with scale.

However, one must remember that this particular model

of population growth is just one example of a process that

leads to log-linear scaling and the gamma pattern. I give a

simplified version of Dennis & Patil (1984), adding my

own interpretation with regard to log-linear scaling.

A deterministic model of population growth can often

be expressed as

dy

dt
¼ ygðyÞ;

where y is population size, and g(y) is the growth rate of

the population as a function of its size. An equilibrium

occurs when g(y*) ¼ 0, and the equilibrium is stable

when g¢(y*) < 0. A model with stochastic fluctuations can

be written as

dy

dt
¼ ygðyÞ þ yzðtÞ;

where z(t) is a Gaussian perturbation with mean zero and

variance r2. The magnitude of the perturbation scales

linearly with population size, which is equivalent to a

constant magnitude of perturbation per individual inde-

pendent of population size.

Suppose we approximate the growth rate by a linear

expression, g(y) � a ) cy. This linear approximation gives

the standard logistic growth equation, usually with

notation a ¼ r and c ¼ r/K, where )r/K is the slope of

the growth rate as the population size increases, and K ¼
y* is the equilibrium. It is common to call r the intrinsic

rate of increase and K the carrying capacity, although

here those parameters simply arise from a linearization

of the general function for growth rate, g(y). Putting the

pieces together, we obtain a model with Gaussian

stochastic fluctuations in proportion to population size

and a linear approximation of population growth

dy

dt
¼ yða� cyÞ þ yzðtÞ:

Turelli (1977) analyzed various interpretations of this

stochastic equation. For my purposes, the following

simplified presentation captures the essential aspect of

implicit log-linear measurement scale that leads to a

gamma distribution of population sizes.

We can think of perturbations of population size at

each point in time as having two components. First, a

direction component arises from the tendency for the

population to follow the expected instantaneous growth

rate a ) cy, leading to a mean directional tendency on

population size of m(y) ¼ y(a ) cy). The stochastic per-

turbations, z(t), have a mean value of zero and do not

contribute to a directional tendency. Second, the term

z(t) contributes a directionally unbiased fluctuation with

variance r2 and the combination yz(t) contributes vari-

ance v(y) ¼ y2r2. The stochastic fluctuations, r2, are of

the same order of magnitude or less than the maximal

directional tendency, a.

Because the population has a randomly fluctuating

component, the population size never settles to a single

value. Instead, a steady state may be reached, such that

for each population size, y, the tendency of the popula-

tion to move to another size is balanced by the overall

tendency of other population sizes to change to y. This

balance allows us to calculate the steady state probability

distribution for population sizes, which is

py ¼ ke�wðyÞ; ð13Þ

where k is chosen so that the total probability is one.

From a general solution of stochastic differential equa-

tions (May, 1974; May et al., 1978), we have

�wðyÞ ¼ � log vðyÞ þ 2

Z y mð~yÞ
vð~yÞ d~y: ð14Þ

Using the expressions above for the mean, m, and

variance, v, of perturbations and carrying out the

integration, we obtain

�wðyÞ ¼ ða� 1Þ log y� kyþ C; ð15Þ
where k ¼ 2c/r2 and a ) 1 ¼ 2(a/r2 ) 1), and C is a

constant that will be absorbed by k in the following step.

Using these expressions in eqn (13), we obtain

py ¼ keða�1Þ log y�ky

¼ kya�1e�ky;

which is a gamma distribution.

My main argument is that to interpret a probability

distribution with respect to underlying process, we must

focus on the measurement scale expressed by T(y). By

comparing eqn (13) for the stochastic solution of the

probability distribution with eqn (11) for the maximum

entropy probability distribution in relation to measure-

ment scale, we have that w(y) ¼ kT(y), where in eqn (11)

I use f(y) ¼ y and Tf ¼ T(y). From eqn (14), moving

log v(y) inside the integral yields

�kTðyÞ ¼ �wðyÞ ¼ 2

Z y mð~yÞ � v0ð~yÞ=2
vð~yÞ d~y;

where v¢ is the derivative with respect to y. Differentiat-

ing and using the shorthand notation m ” m(y) and

v ” v(y), we obtain

dTðyÞ / m� v0=2

v
dy:

The directional and stochastic perturbations, m and v,

change the effective measurement scale in the manner

given by this expression. One may think of the scale

dT as expressing information in relation to magnitude.

Stronger stochastic fluctuations, v, effectively reduce the

precision or information with regard to directional
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tendency, whereas stronger directional fluctuations, m,

in relation to v, effectively provide more information

about directional tendency.

Returning to the specific problem of population growth

that leads to the gamma distribution, we can translate the

stochastic solution for the probability distribution based

on eqn (15) into an expression in terms of the measure-

ment function T(y), yielding

�kTðyÞ ¼ �wðyÞ ¼ ða� 1Þ log y� ky;

allowing us to write the measurement function in the

generic form of log-linear scaling,

TðyÞ ¼ yþ b log y; ð16Þ
or, equivalently,

dTðyÞ / 1þ b

y

� �
dy:

This measure scales logarithmically when abundance, y,

is low and linearly when abundance is high.

The parameter b ¼ )(a)1)/k determines the magni-

tude of abundance at which the scale grades from

logarithmic to linear. We can express b in terms of the

parameters of the growth equation and the magnitude of

stochastic perturbations

b ¼ �K 1� r2

r

� �
;

where I have used the traditional parameters of logistic

growth, r for intrinsic rate of increase, and K for carrying

capacity.

This expression for b shows that higher carrying

capacity, K, increases the domain of the logarithmic

regime to higher magnitude, causing pattern to follow a

power law over a wider span. This control of the relative

logarithmic and linear domains is easy to understand. At

low abundance relative to carrying capacity, the deter-

ministic component of population growth perturbs

abundance exponentially. As abundance approaches

the carrying capacity, deterministic perturbations

become linear in abundance.

The term r2/r reflects the relative scaling of the linear

stochastic perturbations, r2, to the logarithmic deter-

ministic perturbations, r. Greater relative stochastic

fluctuations reduce b and shift scaling toward the linear

domain, because noise in this model is added as a linear

perturbation.

Discussion

The gamma distribution expressed in terms of the log-

linear measurement scale can be viewed in two alterna-

tive ways. First, the derivation of the gamma distribution

from a model of stochastic population growth can be

thought of as the primary line of reasoning. By that view,

the log-linear interpretation follows secondarily as a

description of stochastic population growth. Second, one

may think of the log-linear measurement scaling as a

primary argument for why a gamma distribution is likely

to be a common pattern. By that view, the derivation

from a particular stochastic model of population growth

arises secondarily as a special instance of a much wider

class of problems that share the common log-linear

scaling.

The current literature promotes the first view:

primary, specific derivations from underlying mechanis-

tic models. In my opinion, that approach is certain to be

exactly wrong. The exact part arises because the models

derive exact expectations from explicit mechanistic

assumptions. The wrong part arises because nature will

certainly not be the outcome of exactly those specific

assumptions. Natural pattern will almost certainly be

dominated by the aggregation of various distinct

processes.

In thinking about such aggregation, we will never

be able to specify exactly the various ecological mech-

anisms and their relative contributions. We can only

vaguely analyze how such aggregation may consistently

shape pattern. However, we know that aggregation of

heterogeneous processes can sometimes attract strongly

to particular outcomes, as in the central limit theorem.

My conjecture is that species abundance is dominated

in the aggregate by a log-linear measurement scale,

reflecting relatively consistent informational invariances

in relation to magnitude. Such invariance leads to the

gamma pattern. By this route of analysis, one can be

vaguely but consistently right about pattern and its

causes.

The ecological and genetical literature has devoted

little effort to search for general principles such as

measurement invariance. Instead, we have a vast catalog

of specific assumptions leading to exactly specified

outcomes. The neutral theories are typically posed as

outcomes that follow exactly from precise assumptions

about process, rather than expectations that follow

vaguely from general principles of aggregation and

measurement. These fields will never mature fully until

they develop a clearer sense of the relations between

theory and pattern.

My emphasis on aggregation’s tendency to attract to

particular patterns is of course not new. Many authors,

such as May (1975) and Levin & Pacala (1997), have

advocated the perspective of the central limit theorem or

mean field approximations to explain consistent pattern.

More recently, several papers have discussed how differ-

ent ecological mechanisms attract to the same SADs

(summarized by Alonso et al., 2008).

However, these studies, on how different mechanisms

attract to the same outcome, are limited in scope. Such

studies rarely develop a clear sense of what kinds of

processes do attract to a particular outcome, such as a

gamma distribution, and what kinds of processes do not

attract to that particular pattern. In this regard, mea-

surement theory sets the important questions. What
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essential aspects of ecological mechanisms and aggrega-

tion preserve key information invariances? What aspects

of process do not matter, because the details of those

processes do not alter the fundamental information

invariances?

The words invariance and symmetry can be used inter-

changeably, in the sense stated by Cantwell (2002, p. 4,

attributed to Hermann Weyl): An object is symmetrical if

one can subject it to a certain operation and it appears exactly

the same after the operation. The object is then said to be

invariant with respect to the given operation.

Thus, the causes of pattern reduce to the fundamental

symmetries of ecological process. Here, the symmetries

may often have to do with scale in relation to dynamics.

For example, in the log-linear scaling that arises in the

particular model of stochastic population growth, the

invariant transformations that define the symmetries of

the measurement scale change with magnitude, because

relative scaling of the deterministic and stochastic per-

turbations change with magnitude. Many problems must

reduce to such descriptions of symmetries, capturing the

essence of process in relation to pattern. What we need is

more work devoted to the special aspects of ecological

and genetic processes, so that we can readily reduce

particular, complex situations to their essential symme-

tries. That view, although relatively unused in biology, is

not so far-fetched. As Anderson (1972) noted: It is only

slightly overstating the case to say that physics is the study of

symmetry.
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Appendix

Pueyo et al. (2007) used maximum entropy to derive the

log series distribution for species abundances. Their

maximum entropy method applied Jaynes’ (2003) con-

cepts of invariance and symmetry to derive the log series

pattern. From the log series, Pueyo et al. (2007) added an

additional constraint to obtain the gamma distribution.

They showed that the gamma subsumes the log series,

geometric, and power law distributions and is close to the

lognormal. These points are the same ones that I have

emphasized throughout my paper. In this regard, Pueyo

et al. (2007) deserve full credit for the origins of these

ideas and their application to species abundances. Given

this clear precedent, my presentation in this paper

extends the topic in two ways.

First, Pueyo et al. (2007) begin with the same concepts

of invariance and symmetry from Jaynes (2003) on

which I based my own approach. The Jaynesian

approach is itself a slight extension of Jeffreys’ (1957)

Bayesian notion of prior distributions, in which one

maximizes a measure of entropy that is taken relative to a

prior description of what is most random for a given

problem.

Pueyo et al. (2007) emphasize that their particular

explanation of the prior distribution for ecological prob-

lems is their most important contribution. On page 1023,

they say

We have shown that common shapes of SADs can be

predicted from extremely general assumptions. This con-

clusion is extensive to common shapes of SARs [species

area relations], because these shapes are mathematically

related to the SADs we found (Pueyo, 2006). We expect

more findings to follow, because we think we have

correctly identified the prior distribution (eqn 7), which is

the Rosetta Stone that allows translating concepts between

statistical physics and macroecology.

The way in which Pueyo et al. developed the prior

following Jaynes was indeed the state of the art in 2007.

However, the particular derivation they gave and their

particular result was just a long way of arriving exactly at

the famous Jeffreys prior, in which the ‘most random’

expression of a variable, n, is a probability distribution

proportional to n)1.

Pueyo et al. (2007) present various specific derivations

of the Jeffreys prior based on particular ecological

assumptions. In one example that they highlight, spatial

and geometric aspects play a role in their derivation.

Although they emphasize that the Jeffreys prior is a very

general expression of invariance and symmetry, at the

same time, they tie their expression of their key result to

rather specific ecological descriptions.

I followed the same broad concepts, but the limitations

in the approach of Pueyo et al. (2007) are important. The

Jeffreys approach is based on a Bayesian notion of relative

entropy with a prior notion of randomness. Our work has

shown that view to be too limiting in understanding

probability (Frank & Smith, 2010, 2011). In the particular

case of the Jeffreys prior, all that is involved is the

assumption of ratio invariance for measurements, leading

to the natural scale for information as logarithmic. In this

regard, Pueyo et al. (2007) are too specific in claiming the

association between their particular ecological motiva-

tions and logarithmic scaling, giving the false impression

that they have found the ‘Rosetta Stone’ for ecological

pattern, when in fact all that they have done is give some

specific examples in which information is properly mea-

sured on a logarithmic scale, but without a clear notion of

the general role of measurement.

The understanding of ecological pattern will remain

confused as long as one conflates the general issue of

measurement scale with the specifics of certain ecological

examples. That confusion will prevent the full conceptual

power of maximum entropy and measurement from

being appreciated in its application to ecology. In

this paper, I worked toward joining the principles of

measurement theory to ecological pattern.
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My second extension to Pueyo et al. (2007) concerns

how one can derive the gamma distribution, the general

expression of SAD pattern. Pueyo et al. (2007) first

derived, too specifically, the Jeffreys prior. From that

prior, and a constraint on mean abundance, they obtain

the log series. They then recognize that the log series

is too limited to describe SAD pattern. To extend to the

gamma, they note that the log series constrains the

geometric mean when given arithmetic mean abun-

dance. To get the gamma from the log series, they realize

that the geometric mean must be allowed to vary

independently of the arithmetic mean, so, ad hoc, they

allow the geometric mean to vary independently.

Once the arithmetic and geometric means can vary

independently, one has the well-known description of

the gamma distribution as arising when arithmetic and

geometric means are sufficient statistics within a context

of maximum entropy subject to constraint (Kapur, 1989).

Although a correct expression of the relation between

constraint and pattern, that ends up just being a

description of the gamma rather than a derivation of

the pattern from a principled way of understanding how

pattern arises. By that approach, any probability distri-

bution can be obtained by tautologically invoking the

sufficient statistics that are the constraints under maxi-

mum entropy. One loses any claim to deriving pattern

from fundamental principles.

By contrast, Eric Smith and I (Frank & Smith, 2010,

2011) have replaced the limited Jeffreys–Jaynes

approach to relative entropy priors with a principled

notion of measurement scale based on the fundamental

concepts of measurement theory (Hand, 2004). We

started with the standard principles of measurement

theory and then developed a novel extension of

measurement to show the structural relations between

a variety of common measurement scales. Those struc-

turally related measurement scales combined with

maximum entropy encompass essentially all of the

common families of probability distributions. By con-

trast, Pueyo et al. (2007), by following the standard

implementation of the Jeffreys–Jaynes approach, found

that their log series expression had to be supplemented

with an ad hoc assumption to get to the desired gamma

pattern. In that one arbitrary step, they are already

outside of a coherent framing of invariance, symmetry,

and pattern.

All of this may seem more important for probability

and mathematics than for ecology. However, under-

standing ecological pattern depends on understanding

how aggregation, measurement, and randomness set the

basic contours of pattern in nature. In this regard, the

recent influx of maximum entropy concepts into ecology

is a welcome step. But if those concepts are developed in

ecology in a limited way or, more commonly, in a way

that confuses the specific and the general, the net result

will be the tendency to reject maximum entropy as a

failed or confused approach. That would be a mistake,

because ecological understanding will necessarily be

limited if the field does not properly incorporate the

fundamental principles of measurement and informa-

tion.
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