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Introduction

Commonly observed patterns follow a few families of
probability distributions. For example, Gaussian patterns
often arise from measures of height or weight, and
gamma patterns often arise from measures of waiting
times. These common patterns lead to two questions.
How are the different families of distributions related?

Why are there so few families, when the possible patterns
are essentially infinite?

These questions are important, because one can hardly
begin to study nature without some sense of the
fundamental contours of pattern and why those contours
arise. For example, no one observing a Gaussian distri-
bution of weights in a population would feel a need to
give a special explanation for that pattern. The central
limit theorem tells us that a Gaussian distribution is a
natural and widely expected pattern that arises from
measuring aggregates in a certain way.

With other common patterns, such as neutral distri-
butions in biology or power laws in physical phenomena,
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Abstract

Commonly observed patterns typically follow a few distinct families of
probability distributions. Over one hundred years ago, Karl Pearson provided a
systematic derivation and classification of the common continuous distribu-
tions. His approach was phenomenological: a differential equation that
generated common distributions without any underlying conceptual basis
for why common distributions have particular forms and what explains the
familial relations. Pearson’s system and its descendants remain the most
popular systematic classification of probability distributions. Here, we unify
the disparate forms of common distributions into a single system based on two
meaningful and justifiable propositions. First, distributions follow maximum
entropy subject to constraints, where maximum entropy is equivalent to
minimum information. Second, different problems associate magnitude to
information in different ways, an association we describe in terms of the
relation between information invariance and measurement scale. Our frame-
work relates the different continuous probability distributions through the
variations in measurement scale that change each family of maximum entropy
distributions into a distinct family. From our framework, future work in
biology can consider the genesis of common patterns in a new and more
general way. Particular biological processes set the relation between the
information in observations and magnitude, the basis for information
invariance, symmetry and measurement scale. The measurement scale, in
turn, determines the most likely probability distributions and observed
patterns associated with particular processes. This view presents a fundamen-
tally derived alternative to the largely unproductive debates about neutrality
in ecology and evolution.
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the current standard of interpretation is much more
variable. That variability arises because we do not have a
comprehensive theory of how measurement and infor-
mation shape the commonly observed patterns. Without
a clear notion of what is expected in different situations,
common and relatively uninformative patterns fre-
quently motivate unnecessarily complex explanations,
and surprising and informative patterns may be over-
looked (Frank, 2009).

Currently, the differences between families of common
probability distributions often seem arbitrary. Thus, little
understanding exists with regard to how changes in
process or in methods of observation may cause observed
pattern to change from one common form into another.

We argue that measurement, described by the relation
between magnitude and information, unifies the distinct
families of common probability distributions. Variations
in measurement scale may, for example, arise from
varying precision in observations at different magnitudes
or from the way that information is lost when measure-
ments are made on aggregates. Our unified explanation
of the different commonly observed distributions in
terms of measurement points the way to a deeper
understanding of the relations between pattern and
process.

We develop the role of measurement through maxi-
mum entropy expressions for probability distributions.
We first note that all probability distributions can be
expressed by maximization of entropy subject to con-
straint. Maximization of entropy is equivalent to mini-
mizing total information while retaining all the particular
information known to constrain underlying pattern
(Jaynes, 1957a,b, 2003). To obtain a probability distri-
bution of a given form, one simply chooses the informa-
tional constraints such that maximization of entropy
yields the desired distribution. However, constraints
chosen to match a particular distribution only describe
the sufficient information for that distribution. To obtain
deeper insight into the causes of particular distributions
and each distribution’s position among related families of
distributions, we derive the related forms of constraints
through variations in measurement scale.

Measurement scale expresses information through the
invariant transformations of measurements that leave
the form of the associated probability distribution
unchanged (Frank & Smith, 2010). Each problem has a
characteristic form of information invariance and sym-
metry that sets the measurement scale (Hand, 2004; Luce
& Narens, 2008; Narens & Luce, 2008) and the most
likely probability distribution associated with that partic-
ular scale (Frank & Smith, 2010). We show that
measurement scales and the symmetries of information
invariances form a natural hierarchy that generates the
common families of probability distributions. We use
invariance and symmetry interchangeably, in the sense that
symmetry arises when an invariant transformation
leaves an object unchanged (Weyl, 1952).

The measurement hierarchy arises from two processes.
First, we express the forms of information invariance
and measurement scale through a continuous group of
transformations, showing the relations between different
types of information invariance. Second, the types of
aggregation and measurement that minimize informa-
tion and maximize entropy fall into two classes, each
class setting a different basis for information invariance
and measurement scale.

The two types of aggregation correspond to the two
major families of stable distributions that generalize the
process leading to the central limit theorem: the Lévy
family that includes the Gaussian distribution as a special
case and the Fisher-Tippett family of extreme value
distributions. By expressing measurement scale in a
general way, we obtain a wider interpretation of the
families of stable distributions and a broader classification
of the common distributions.

Our derivation of probability distributions and their
familial relations supersedes the Pearson and similar
classifications of continuous distributions (Johnson et al.,
1994). Our system derives from a natural description of
varying information in measurements under different
conditions (Frank & Smith, 2010), whereas the Pearson
and related systems derive from phenomenological
descriptions that generate distributions without clear
grounding in fundamental principles such as measure-
ment and information.

Some recent systems of probability distributions, such
as the unification by Morris (1982; Morris & Lock, 2009),
provide great insight into the relations between families
of distributions. However, Morris’s system and other
common classifications do not derive from what we
regard as fundamental principles, instead arising from
descriptions of structural similarities among distributions.
We provide a detailed analysis of Morris’s system in
relation to ours in Appendix C.

We favour our system because it derives the relations
between distributions from fundamental principles, such
as maximum entropy and the invariances that define
measurement scale. Although the notion of what is
fundamental will certainly attract controversy, our
favoured principles of entropy, symmetries defined by
invariances, and measurement scale certainly deserve
consideration. Our purpose is to show what one can
accomplish by starting solely with these principles.

Maximum entropy and measurement
scale

This section reviews our prior work on the roles of
information invariance and measurement scale in setting
observed pattern (Frank & Smith, 2010). The following
sections extend this prior work by expressing mea-
surement in terms of the scale of aggregation and
the continuous group transformations of information
invariance.
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Maximum entropy

The method of maximum entropy defines the most likely
probability distribution as the distribution that maximizes
a measure of entropy (randomness) subject to various
information constraints (Jaynes, 2003). We write the
quantity to be maximized as

U ¼ E" jC0 "
Xn

i¼1

kiCi; ð1Þ

where E measures entropy, the Ci are the constraints to be
satisfied, and j and the ki are the Lagrange multipliers to
be found by satisfying the constraints. Let C0 ¼ ! pydy ) 1
be the constraint that the probabilities must total
one, where py is the probability distribution function
of y. The other constraints are usually written as
Ci ¼

R
pyfiðyÞdy" !fi, where the fi(y) are various trans-

formed measurements of y, and the overbar denotes mean
value. A mean value is either the average of some function
applied to each of a sample of observed values, or an a
priori assumption about the average value of some
function with respect to a candidate set of probability
laws. If fi(y) ¼ yi, then !fi are the moments of the distribu-
tion – either the moments estimated from observations or a
priori values of the moments set by assumption. The
moments are often regarded as ‘standard’ constraints,
although from a mathematical point of view, any properly
formed constraint can be used.

Here, we confine ourselves to a single constraint of
measurement. We express that constraint with a more
general notation, C1 ¼

R
pyTðfyÞdy" !Tf , where fy ” f(y),

and T(fy) ” Tf is a transformation of fy. We could, of
course, express the constraining function for y directly
through fy. However, we wish to distinguish between an
initial function fy that can be regarded as a standard
measurement, in any sense in which one chooses to
interpret the meaning of standard, and a transformation
of standard measurements denoted by Tf that arises from
information about the measurement scale.

The maximum entropy distribution is obtained by
solving the set of equations

@U
@py
¼ @E

@py
" j" kTf ¼ 0; ð2Þ

where one checks the candidate solution for a maximum
and obtains j and k by satisfying the constraint on total
probability and the constraint on !Tf . We assume that we
can treat the entropy measures and the maximization
procedure by the continuous limit of the discrete case.

In the standard approach, we define entropy by
extension of Shannon information

E ¼ "
Z

py log
py

my

! "
dy; ð3Þ

in which this expression may be called Jaynes’s
differential entropy (Jaynes, 2003), which is equivalent

in form to the continuous expression of relative
entropy or the Kullback–Leibler divergence (Cover &
Thomas, 2006). Here, we will interpret my by informa-
tion invariance and measurement scale as discussed
elsewhere. With these definitions, the solution of
eqn (2) is

py / mye
"kTf ; ð4Þ

where k satisfies the constraint C1, and the proportion-
ality is adjusted so that the total probability is one by
choosing the parameter j to satisfy the constraint C0.

Information invariance and measurement scale

Maximum entropy must capture all of the available
information about a particular problem. One form of
information concerns transformations to the measure-
ment scale that leave the most likely probability distri-
bution unchanged (Jaynes, 2003; Frank, 2009; Frank &
Smith, 2010). Here, it is important to distinguish between
measurements and measurement scale. In our notation,
we start with measurements, fy, made on the measure-
ment scale y. For example, we may have measures of
squared deviations about zero, fy ¼ y2, with respect to the
measurement scale y, such that !fy is the second moment
of the measurements with respect to the underlying
measurement scale.

Suppose that we obtain the same information about
the underlying probability distribution from measure-
ments of fy or transformed measurements, G(fy). Put
another way, if one has access only to measurements
G(fy), one has the same information that would be
obtained if the measurements were reported as fy. We say
that the measurements fy and G(fy) are equivalent with
respect to information, or that the transformation
fy fi G(fy) is an information invariance that describes a
symmetry of the measurement scale.

To capture this information invariance in maximum
entropy, we must express our measurements so that

TðfyÞ ¼ dþ /T ½G ðfyÞ' ð5Þ

for some arbitrary constants d and / (Frank & Smith,
2010). Putting this definition of T(fy) ” Tf into eqn (4)
shows that we obtain the same maximum entropy
solution whether we use the observations fy or the
transformed observations, G(fy), because the j and k
constants will adjust to the constants d and / so that the
distribution remains unchanged.

Deriving probability distributions

The prior section established two key steps. First, max-
imum entropy probability distributions have the form
given in eqn (4) as py / mye

"kTf . Second, the expression
of T(fy) for each problem comes from the particular
information invariance G(fy) associated with that
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particular problem. To derive specific probability distri-
butions, we must pass three further steps, which we
develop in the following sections.

First, we turn the abstract notions of information
invariance and measurement scale into specific expres-
sions for the measurement scale function, T(fy). We
accomplish this by developing the continuous group
transformations for information invariance. Those con-
tinuous transformations provide an abstract hierarchy of
forms for probability distributions based on the scale
factor, my, the specific measured attribute, fy, and how
the information and precision of measurements change
with magnitude expressed by the measurement scale
T(fy).

Second, we define my as the relation between the scale
of information invariance and the scale on which we
express probability. To use the maximization of entropy
and the associated minimization of information, we must
relate the information invariance of measurement to the
scale on which underlying processes dissipate informa-
tion. We consider alternative interpretations of scale that
may be associated with the dissipation of information by
aggregation of random perturbations and by measure-
ments of extreme values. We also consider measure-
ments on a scale that differs from the basis for dissipation
of information.

Third, we consider how to interpret fy, which is the
value used to describe the informational constraint in
relation to the measurement scale T(fy), leading to the
constraint !Tf . We discuss fy as a reduction in the
dimensionality of information to a single sufficient
dimension. That sufficient dimension sets the form of
probability under the various processes of informa-
tion dissipation that lead to the common probability
distributions.

Continuous group transformations
of measurement

The transformation in eqn (5) sets the relation between
information invariance and measurement scale. How-
ever, that expression does not show in a simple way the
relations between information and measurement.

To understand commonly observed patterns in relation
to the families of probability distributions, it is helpful to
express in a general way the underlying symmetry that
determines information invariance and measurement
scale. From that underlying symmetry, we may see more
clearly the associated relations between the forms of
probability distributions.

The affine structure

The relation between information invariance and mea-
surement scale in eqn (5) arises directly from the form of
maximum entropy solutions in eqn (4), in which prob-
ability distributions are exponentials of the transformed

constraint measures, Tf. In particular, the probability
distribution associated with a constraint is invariant to an
additive shift of the constraint and a multiplicative
change in the scale of the constraint, given by the
parameters d and / in eqn (5). It is that symmetry in
the affine structure of invariant transformation that
ultimately sets the underlying relations between infor-
mation, measurement and familial forms of the common
probability distributions.

To understand the affine structure of the invariant
transformation in eqn (5) more clearly, we can express
that invariant transformation as a continuous operator.
First, rearrange eqn (5) as an equivalent expression

T ½G ðfyÞ' ¼ aþ bTð fyÞ ð6Þ

with new parameters a and b that are easily calculated
from eqn (5). We show in Appendix A that we can
express the same information invariance of G(fy) by the
differential operator defined as

vw ¼ ðaþ bTÞ d

dT
ð7Þ

that can be applied to T as

vwðTÞ ¼ aþ bT : ð8Þ

Recursive application of vw preserves the affine struc-
ture and so keeps the successive transformations within
the group of admissible invariance relations.

We can express vw as

vw ¼
d

dw
; ð9Þ

where w ” w(fy) is some function of fy. We then have a
differential equation for T as

dT

dw
" bT ¼ a; ð10Þ

which has solutions of the general form

TðfyÞ ¼ T0ebw þ a
b
ðebw " 1Þ; ð11Þ

which as b fi 0 goes to T( fy) fi T0 + aw. eqn (11) gives
the most general class of measurement functions, T( fy),
for which the associated transformations generated by vw

preserve information invariance.
The operator vw can be applied repeatedly, creating a

recursively generated sequence of deformations that all
satisfy the fundamental relation between deformations
of measurement and information invariance. By thinking
of w(fy) as a parameter that expresses the deformation of
measurement associated with a measurement scale,
T( fy), we can create a sequence in which each successive
deformation corresponds to a successive class of proba-
bility distributions with familial relations to each other
defined by the structure of the sequence of deformations
to w(fy).
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The general form of probability distributions

From eqn (4), the maximum entropy solution is

py / mye
"kTf : ð12Þ

From eqn (11), we can now express the maximum
entropy solution as

py / mye"Kebw
; ð13Þ

where K ¼ k(T0 + a/b), and w ” w(fy). In the limit b fi 0,
this becomes

py / mye"cw

where c ¼ ka.
In Appendix B, we describe the case of extreme values,

for which we will use my ¼ dT(fy)/dy. When fy ¼ y and
my ¼ dT(y)/dy ¼ T ¢, it will be convenient to write

T 0 / w0ebw; ð14Þ

where w¢ ¼ dw(y)/dy, and as b fi 0, T ¢ " w ¢.

Intuitive description of measurement
and probability

Intuitively, one can think of the symmetry of informa-
tion invariance and measurement scale in the following
way. On a linear scale, each incremental change of fixed
length yields the same amount of information or surprise
independently of magnitude. Thus, if we change the scale
by multiplying all magnitudes by a constant, we obtain
the same pattern of information relative to magnitude. In
other words, the linear scale is invariant to multiplication
by a constant factor so that, within the framework of
maximum entropy subject to constraint, we obtain the
same information about probability distributions from
an observation y or G(y) ¼ cy. In this section, we use fy ¼
y to isolate the symmetry expressed by particular choices
of T and G.

On a logarithmic scale, each incremental change in
proportion to the current magnitude yields the same
amount of information or surprise. Information is scale
dependent. We obtain the same information at any
point on the scale by comparing ratios. For example,
we gain the same information from the increment
dy/y ¼ d log (y) independently of the magnitude of y.
Thus, we achieve information invariance with respect
to ratios by measuring increments on a logarithmic
scale. Within the framework of maximum entropy
subject to constraint, we obtain the same information
about probability distributions from an observation y or
G(y) ¼ yc, corresponding to informationally equivalent
measurements T(y) ¼ log(y) and T(yc) ¼ c log(y) (see
Frank & Smith, 2010).

The form of a probability distribution under maximum
entropy can be read directly as an expression of how the
measurement scale changes with magnitude. From the

general solution in eqn (4), linear scales T(y) " y yield
distributions that are exponential in y, whereas logarith-
mic scales T(y) " c log(y) yield distributions that are
linear in yc. Exponential distributions of the form e)ky

arise from underlying linear scales, whereas power law
distributions of the form y)c arise from underlying
logarithmic scales.

Many common distributions have compound form, in
which one can read directly how the underlying mea-
surement scale changes with magnitude. For example,
the gamma distribution has form y)ce)ky. When the
magnitude of y is small, the shape of the distribution is
dominated by the power law component, y)c. As the
magnitude of y increases, the shape of the distribution is
dominated by the exponential component, e)ky. Thus, the
underlying measurement scale grades from logarithmic
at small magnitudes to linear at large magnitudes.
Indeed, the gamma distribution is exactly the expression
of an underlying measurement scale that grades from
logarithmic to linear as magnitude increases. Nearly,
every common probability distribution can be read
directly as a simple expression of the change in the
underlying measurement scale with magnitude.

Hierarchies of common probability
distributions

Given a particular form for the function w(fy), the
measurement scale T(fy) follows from eqn (11) and the
associated probability distribution follows from eqn (13).
Although we can choose w in any way that we wish,
certain measurement scales and information invariances
are likely to be common. We discussed in our earlier paper
the importance of two scales (Frank & Smith, 2010). The
first scale grades from linear to logarithmic as magnitude
increases, which we call the linear-log scale. The second
scale inverts the linear-log scale to be logarithmic at small
magnitudes and linear at large magnitudes, giving the
log-linear scale. The inversion relating the two scales can
be expressed by a Laplace transform, showing the natural
duality of the scales and a connection to recent studies on
superstatistics (Frank & Smith, 2010).

The linear-log scale

In terms of the notation in the present paper, we can
define w to establish a hierarchy of measurement
deformations, in which each level in the hierarchy arises
from successive application of the linear-log scaling to the
scale in the previous level in the hierarchy.

To define the linear-log measurement function in
terms of w, note from eqn (11) that, as b fi 0, the forms
of w and the measurement function T become equivalent
with respect to setting the associated probability distri-
bution. Thus, by setting w, we are defining the limiting
form of the measurement function. With these issues
in mind, define
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wðiÞ ¼ logðci þ wði"1ÞÞ;

with w(0) ¼ fy. The constant ci sets the transition between
linear and logarithmic scaling: the scale is linear when
w(i)1) is small relative to ci and logarithmic when w(i)1)

is large relative to ci. As ci fi 0, we can use wðiÞ ¼
logðwði"1ÞÞ.

It is easiest to see the abstract structure of the
measurement hierarchy and the associated forms of
probability distributions in the limiting case ci fi 0,
leading to purely logarithmic deformations. The first
row of Table 1 begins with the base measurement w(0) ¼
fy. The following two rows show the first two deforma-
tions for the sequence i ¼ 0,1,2.

This table gives the hierarchy of probability distribu-
tions that arise from successive logarithmic deformations.
With this structure in mind, we give the full expansion
with ci „ 0 in Table 2.

We discuss the interpretation of my and fy below. The
different interpretations of those values lead directly to
specific forms for probability distributions. Before inter-
preting my and fy, we present an alternative measurement
scale.

The log-linear scale

We obtain the log-linear measurement deformation
hierarchy (Frank & Smith, 2010) from

wðiÞ ¼ ciw
ði"1Þ þ logðwði"1ÞÞ;

from which we obtain the probability distributions in
Table 3. The log-linear scale changes logarithmically at
small magnitudes and linearly at large magnitudes.

Other scales

The linear-log and log-linear scales describe common
forms of measurement functions. In this section, we
briefly mention some other scales listed in Table 4. These
additional scales illustrate the ways in which measure-
ment relates to the patterns of probability.

The first line of Table 4 shows a log-linear-log scale for
a measure on the interval (c1,c2). That scale changes
logarithmically near the boundaries and linearly near the
middle of the range, in which log b describes the skew in
the scaling pattern.

The second line of Table 4 shows a linear-log-linear
scale for fy > 0. That scale changes linearly near the lower
boundary of zero, linearly at large magnitudes and
logarithmically at intermediate values.

The scale of information

The prior section presented probability distributions in
terms of my and fy. This section develops the interpreta-
tion of my, which arises from the relation between the
scale of information invariance and the scale on which
we express probability.

The key issue is that maximum entropy requires
some underlying process to dissipate information. With
regard to deriving probability distributions, we may
consider three aspects of scale in relation to the
dissipation of information. First, we may measure an
outcome that arises from the aggregation of a series of
random perturbations. Second, we may measure only
the extreme values of some underlying process thereby
throwing away all information about the underlying
process except the form of the upper or lower tail of
the underlying distribution. Third, the dissipation of
information may occur on one scale, but we may wish
to make our measurements with respect to another
scale.

Each of these three aspects of the scale of information
dissipation leads to a simple interpretation of probability
measure in maximum entropy analysis. We give a brief

Table 1 The logarithmic measurement hierarchy.*

w(fy) py py|b fi 0

fy mye"Kebfy
mye"cfy

log fy mye
"Kf

b
y myf"c

y

log log fy mye"Kðlog fy Þb my( log fy)
)c

*py is the form of the probability distribution function from eqn (13).

Note that b fi 0 of each line corresponds to b ¼ 1 of the following line.

Table 2 The linear-log measurement hierarchy.

w(fy) py py|b fi 0

fy mye"Kebfy
mye"cfy

log ðc1 þ fyÞ mye"Kðc1þ fy Þb myðc1 þ fyÞ"c

logðc2 þ logðc1 þ fyÞÞ mye"Kðc2þ logðc1þ fy ÞÞb myðc2 þ logðc1 þ fyÞÞ"c

Table 3 The log-linear measurement hierarchy.*

w(fy) py py|b fi 0

fy mye"Kebfy
mye"cfy

c1fy + log fy mye"Kfy
bec1bfy

myfy
"ce"c1cfy

c2ðc1fy þ log fyÞ þ logðc1fy þ log fyÞ mye"Kebw
mye

)cw

*In the last line of the table, we use w ” w(fy) to shorten the

expression.

Table 4 Alternative measurement scales.*

w(fy) py py|b fi 0

logððc2 " fyÞðfy " c1Þ
bÞ mye"Kðc2" fy Þbðfy " c1Þ

bb
my(c2 ) fy)

)c(fy ) c1))bc

c2fy + b log(c1 + fy) mye"Kðc1þ fy Þbbec2bfy
my(c1 + fy)

)bce"c2cfy

*As b fi 0, line 1 is a log-linear-log measurement scale, and line 2

is a linear-log-linear measurement scale.
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description of each scale of information dissipation in
relation to calculating my.

Aggregation of perturbations

In the standard application of maximum entropy, accu-
mulation of random perturbations without constraint
leads to a uniform probability measure, which has
maximum entropy and minimum information. Thus,
the scale at which information dissipates is the same as
the scale of the probability measure. In this case, our
formulation of maximum entropy has my ” 1, because
any information that arises from deformation of mea-
surement relative to the uniform default is included in
our expression of measurement scale, T(fy).

Extreme values

The distribution of extreme values depends only on the
total (integral) of the probability measure in the tail of
an underlying probability distribution (Embrechts et al.,
1997). Because extreme value distributions arise from
integrals of probability measures, the dissipation of
information and the associated measurement scale for
extreme values are expressed in terms of the cumulative
distribution function (see Appendix B). To obtain the
associated form of the probability measure with respect
to the probability distribution function, py, we must
transform the invariant measurement scale originally
expressed with respect to the integral of the underlying
probability measure.

To change from the integral scale of the cumulative
distribution to the scale of the probability measure
associated with the probability density function, we
simply differentiate the initial measurement scale, T(fy),
from the cumulative distribution scale to obtain the
associated change in probability measure (Appendix B).
For fy ¼ y, we obtain my ¼ dT(y)/dy ¼ T ¢. We gave the
general form of my ¼ T ¢ in eqn (14).

Change of variable

In some cases, information may dissipate on one scale,
but we choose to express probability on another scale.
The log-normal distribution is the classic example. Using
Table 1, we may consider measurements that lead to the
Normal or Gaussian distribution by either analysing
squared deviations from a central value, fy ¼ (y ) l)2 in
line one of Table 1 with b fi 0 or, equivalently, linear
perturbations of fy ¼ (y ) l) in line two of Table 1 with
b ¼ 2. In these cases, the perturbations are direct
measures rather than the tail probabilities of extreme
values, so my ¼ 1, and we have the standard form of the
Gaussian as py " e)c(y)l)2.

If we prefer to analyse values on a logarithmic scale,
then we make the transformation y fi log y. This case
does not arise from invariant information and the

associated measurement transformation, but rather from
a change of variable to a different scale. So we must
change our measure, as in any standard change of
variable. In this case, the change of measure is mydy ¼
d log y ¼ dy/y, thus my ¼ y)1 and we obtain the log-
normal distribution py / y"1e"~c log y"~lð Þ2 , where ~c and ~l
are transformed appropriately.

Sufficiency: reduction of information

The algorithm of maximum entropy allows us to choose
any constraint T(fy). However, one of our main goals is to
provide a clear rationale for the choice of constraint, so
that maximum entropy is more than a tautological
description of probability distributions. We have expressed
the choice of the measurement scale, T, in terms of
information invariance set by the underlying problem.
Although information invariance may take various forms,
we followed our earlier paper (Frank & Smith, 2010) in
which we defended the linear-log and log-linear scales
as likely to be common scales associated with common
information invariances.

Once we have set the transformation T(fy) by these
common information invariances, many widely observed
probability distributions follow. In some cases, deriving
probability distributions requires using an observable,
fy „ y, that differs from the scale y of the underlying
probability measure. For example, we may use the
squared deviations from a central location, or a fractional
moment fy ¼ ya, where a is not an integer (Frank, 2009).
Use of fy ¼ y or of squared deviations fy ¼ (y ) l)2 is
widely accepted. Such choices lead to fy being a sufficient
reduction of all of the information in observations in
order to express common probability distributions.

For our purposes in this paper, we simply note that we
can derive many common distributions by the widely
accepted use of fy ¼ y or fy as a squared deviation. But the
reasons that particular choices of fy are sufficient have
not been fully explained with regard to maximum
entropy, particularly fractional moments such as fy ¼ ya

(Frank, 2009). Those reasons probably have to do with
the sort of analysis described by large deviation theory
(Touchette, 2009), in which the retained information
arises from the minimal descriptions of location and scale
that remain when one normalizes the consequences of a
sequence of perturbations so that one obtains a stable
limiting form.

Conclusion

Table 5 shows many of the commonly observed proba-
bility distributions. Those distributions arise directly from
maximum entropy applied to various natural measure-
ment scales. The measurement scales express informa-
tion invariances associated with particular types of
problems and the scale on which information dissipation
occurs. We confined ourselves to various combinations
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of linear and logarithmic scaling, which were sufficient
to express many common distributions. Our method
readily extends to other types of information invariance
and measurement scale and their associated probability
distributions.
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Gauss/Normal e"cy2
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*The column T.L.C gives the table, line and column of the underlying form presented in the earlier tables of abstract distributions. For example,

1.1.2 refers to Table 1, first line, second column. The measurement adjustment is given as either my ¼ 1 for direct scales, or my ¼ T ¢ for extreme

values as in eqn (14), along with any consequences from a change of variable such as y fi log y. Cases in which the same structural form

arises for either my ¼ T ¢ or my ¼ 1 are shown as T ¢,1, without adjusting parameters for trivial differences. The value of fy gives the reduction of

data to sufficient summary form. Direct values y, possibly corrected by displacement from a central location, y ) l, are shown here as y without

correction. Squared deviations (y ) l)2 from a central location are shown here as y2. Listings of distributions can be found in various

texts (Johnson et al., 1994, 1995; Kleiber & Kotz, 2003). Many additional forms can be generated by varying the measurement function.

In the first column, the question marks denote a distribution for which we did not find a commonly used name.

!See Frank (2009).
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Appendix A: On the association between
measurement functions and classes
of scale transformations

If the transformation fy ! G
#
fy

$
is an invariance of a

measurement function T, it is clear that repeated appli-
cations of G, expressed as GsG,GsGsG,…, are also
invariances of T. It is the larger group of invariances that
we wish to identify with the measurement scale that
defines T, and not only a single transformation. To
simplify notation in this Appendix, we use fy ¼ y. The
same analysis applies to fy.

In general, making a unique association between a
transformation G and a measurement function T is
inconvenient for finite transformations, because G com-
bines a magnitude and a direction of deformation. The
magnitude is added under compositions GsG…, while
the direction remains invariant. As we will derive below,
the relevant measure of the magnitude of a transforma-
tion as in eqn (6) will be ( log b, and the relevant
measure of direction will be a/(b ) 1). To isolate the
direction of G that may be associated with a measure-
ment function T, we work with infinitesimal rather than
finite affine transformations.

Infinitesimal transformations are constructed from
eqn (6) in the text by writing a ” !a, (b ) 1) ” !b and
then taking ! fi 0 for fixed a and b. An infinitesimal
transformation G! then satisfies eqn (6) in the form

T ½G!ðyÞ' ¼ TðyÞ þ !½aþ bTðyÞ': ð15Þ

G itself must therefore also be infinitesimally different
from the identity and must have the form

G!ðyÞ ¼ yþ !vðyÞ: ð16Þ

for some function v(y).
We introduce a quantity v̂ called the generator of the

deformation, such that the operator e!v̂ generates the
infinitesimal transformations eqns (15, 16), and such
that finite transformations G or affine transformations

eqn (6) are produced by the exponential operation of v̂
with noninfinitesimal !. Compounding a function corre-
sponds to addition of parameters !, as may be checked
from the power-series definition of e!v̂ within its radius
of convergence.

We define a representation of the generator v̂ as an
explicit differential operator that produces the correct
transformation on the argument y or T(y), as appropriate.
The two representations of the generators are related as

T yþ !vðyÞ½ ' ¼ 1þ !vðyÞ d

dy

% &
TðyÞ

¼ 1þ !ðaþ bTÞ d

dT

% &
T :

ð17Þ

From the requirement that the two expressions pro-
duce the same result, we may assign the representations

v̂$ vðyÞ d

dy
) d

dw

$ ðaþ bTÞ d

dT

ð18Þ

for some function w(y) ¼ !ydy ¢1/v(y ¢).
Regarding T as a function of argument w rather than y,

and setting equal the two coefficients of ! in eqn (17), we
obtain a relation between any function w(y), coefficients
a and b and the function T in the form

dT

dw
¼ aþ bT : ð19Þ

This is rearranged to produce eqn (10).
From the solutions to eqn (19), we may readily check

that the action of the transformation e!v̂ for arbitrary !
(not necessarily small) is

T ½GðyÞ' ¼ e!v̂TðyÞ ¼ a
b
ðe!b " 1Þ þ e!bTðyÞ; ð20Þ

from which we recover expressions for the coefficients a
and b in eqn (6). Under composition G fi GsG, the
parameter ! fi 2!. The composition rules for a and
b under composition of G may be worked out easily,
but depending on the function w(y), the direct compo-
sition of finite transformations G on y may be quite
complicated.

Appendix B: Information measures for
cumulative distributions

The presence of the measure my in the probability density
function in eqn (12) complicates the discussion of mea-
surement invariance, because in the general case my is
not required to obey any prescribed transformation when
fy fi G( fy). In general, y need not even be a numerical
index, whereas T(fy) is necessarily numerical because it
is proportional to an information measure ) log (py/my).

The class of cases in which the measurement func-
tion, T, completely controls the properties of py are
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those in which measurement constrains the cumulative
probability distribution function rather than the prob-
ability density function. For these cases, my is not
independent, but is given in terms of T and fy, as we
now show.

Relative entropy is ordinarily defined for the probabil-
ity density. However, if we set

my ¼
dT fy
# $

dy
¼ dfy

dy
T 0 fy

# $
; ð21Þ

then my becomes a Lebesgue measure on y with respect
to the increment dT. The probability density from
eqn (12) becomes

py /
d

dy
e"kT fyð Þ: ð22Þ

Equation (22) defines the relation between a proba-
bility density and its cumulative distribution, meaning
that under a suitable ordering of y, we may take e)kT(fy)

to be the cumulative distribution.
With this choice of measure, the relative entropy E

from eqn (3) becomes

"
Z

dy py log
py

my

! "
¼ "

Z
dy

dT

dy

py

dT=dy

! "
log

py

dT=dy

! "

¼ "
Z

dTpT log pT ; ð23Þ

in which pT is the probability density defined on the
variable T. Since the maximum entropy solution is
always exponential in T, the relative entropy of
eqn (23) is effectively an information function for the
cumulative distribution.

An application in which constraints under aggregation
apply by construction to the cumulative distribution is
the computation of extreme-value statistics (Kotz &
Nadarajah, 2000). The cumulative probability distribu-
tion for the maximizer or minimizer of a sample of n
realizations of a random variable is the product of n
factors of the cumulative distribution for a single reali-
zation.

It was also noted in Frank (2009) that the relative
entropy may be evaluated on the characteristic function
(Fourier or Laplace transform) of a distribution and that
the maximum entropy solutions in the transformed
domain are the Lévy stable distributions. The charac-
teristic function at frequency argument k ¼ 0 always
takes value unity. Therefore it, like a cumulative
distribution, has a reference normalization of unity,
and indeed, the symmetric Lévy-stable distributions
(Sato, 2001) correspond in form to the Weibull family
of extreme value distributions. Both are obtained within
our classification for my defined by eqn (21), for suitable
reductions fy.

Appendix C: The Morris Natural
Exponential Families in relation
to entropy-maximizing distributions

Symmetry-based approaches to select or to classify
probability distributions

Many systems, since Pearson’s, for either selecting or
classifying probability distributions, have been based on
symmetry groups, as our method is. (Pearson’s system
may be seen as one based on the analytic structure of the
log-probability, a criterion that we will return to consider
in a moment.) The systems differ in generality, depend-
ing on the space in which the symmetry group acts and
depending on whether it constrains a single distribution
or a family. Two methods based on symmetry (ours and
that of Carl Morris, described below) have interpretations
in terms of scale invariance of observables. Both systems
collect probability distributions into families, whose
members differ only by a scale factor. A third approach
(known as Objective Bayesian methods) applies symmetry
to the underlying measure space, which may be very
different from the space of observed magnitudes. This
approach is concerned not directly with families of
distributions, but with the particular distribution defined
by a reference measure. We will briefly summarize the
overlaps and differences of these methods.

Objective Bayesian methods, initiated by Jeffreys
(1957) but given the interpretation of objectivity largely
by Jaynes (1968), recognize that the reference measure
my in a relative entropy – beyond being needed to make
logarithms well-defined and independent of change of
variables – may reflect information about measurement
scales. By ensuring that the reference measure is
consistent with known symmetries of the phenomenon
under study (which are not generally expressed within
particular sample observations), Objective Bayesian
methods seek to systematize the entire maximum
entropy procedure. This use of the reference measure
is consistent with our treatment of measurement,
although by itself it is more limited, as we discuss
in Frank & Smith (2010), and it may also be misleading
in cases (Seidenfeld, 1979). In the context of the
present discussion, the most important limitation of
Objective Bayesian methods is that they select proper-
ties of a single distribution my, rather than properties
of a family.

Our approach broadens the class of symmetries that
can be considered, beyond those available to Objective
Bayesian methods, as discussed in Sec. 7 of Frank &
Smith (2010). Through the measurement function, it
relates a potentially nonlinear contour of deformations
of measured magnitudes to a linear transformation
within the affine group that exists for general maxi-
mum entropy problems. We have embedded distribu-
tions within a hierarchy by using the two-parameter
freedom of the affine group to provide a range of
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responses of information to the change in the scale of
measurement.

The Morris classification of distributions
in relation to maximum entropy

In a pair of papers, Carl Morris (1982, 1983) proposed
another classification system for probability distributions,
which overlaps both with Objective Bayesian methods
and with our approach. Like our method, Morris’s
concerns families of probability distributions generated
by a change in constraint or measurement scale. Like all
of the approaches we have mentioned, Morris’s system
uses relative entropy in a conventional maximization
framework. That system differs from ours in using only
a linear constraint on what Morris terms the natural
observation and obtaining nonlinear dependence on that
constraint through a second boundary condition placed
on entropy.

The Morris system blends interesting elements of
Pearson’s restrictions on analytic structure, our use of
symmetry and the Objective Bayesian concern with the
reference measure, as follows: Morris considers distribu-
tion families that are invariant under offset and rescaling
of the natural observation, which Morris labels X, and
which is analogous to using a coordinate system that is
always linear in our fy. His classification therefore does
not invoke any explicit representation of the symmetries
inherent in differing measurement systems. In order to
encompass distributions that are not simply exponential
in the values x (taken by the observation X), he instead
restricts the form of the reference measure in a relative
entropy, analogous to our my. Unlike Objective Bayesian
methods, however, this restriction does not come from
the direct action of a symmetry on the reference
measure, but rather from the form of the relative entropy
across the family of distributions produced by scale
change.

The classification system of Morris (1982) derives from
the cumulant-generating function, and the relation
between the variance and the mean as the parameter in
this generating function is shifted. The distributions that
define the cumulant-generating function constitute what
Morris calls natural exponential families (NEF), and the
dependence of variance on mean within these families is
restricted in his system to be an exact quadratic polyno-
mial. The resulting subclass of distributions within the
NEF class is termed QVF (for quadratic variance function).
The mean–variance relation that defines the NEF-QVF
distributions is preserved under offset and rescaling of the
natural observation, and under convolution. Therefore,
the distributions in this class would be expected to arise
frequently in problems of aggregation. We show in this
appendix that the QVF condition is equivalent to the
requirement that the relative entropy over a family
has the form (up to analytic continuation) of a
Kullback–Leibler divergence. The analytic continuation

is determined by the roots of the quadratic variance
polynomial, and these roots in turn have a relation to
the roots for log-probability in the Pearson system.

The distributions selected by Morris’s criterion are
bounded or have exponential or faster decay in their
tails. We show that, when they are classified according
to their analytic structure, they are in fact either interior
members or degenerate limits of only two families of
distributions: One family of continuous-valued distribu-
tions is associated with complex-conjugate roots of the
variance function, and a complex analytic continuation
of the Kullback–Leibler form for relative entropy. A
second family of discrete-valued distributions is associ-
ated with real-valued roots and real-valued continua-
tions of the Kullback–Leibler relative entropy. In this
sense, the Morris classification shows that six important
distribution families are in fact selected by a single set of
invariances – of these, the offset and scale invariances are
instances of our linear measurement rescaling. These
selected families are therefore very commonly observed,
but also rather tightly restricted. Preservation of a
functional class under convolution is similar to the
criterion leading to the extreme value or Lévy distribu-
tions, as we have discussed in the main text, and is
therefore one of many forms of measurement invariance
that may be considered.

Here, we will re-formulate the Morris criterion and its
solutions within a standard framework of maximum
entropy. We will show that the role of the reference
measure in a relative entropy is equivalent to that of a
second observed quantity, which will generally be linearly
independent of the natural observation X. Scale change
of the natural observation defines what is known as an
expansion path, which consists of the distributions
within an exponential family. The second observed
quantity, associated with the reference measure, is given
a gradient constraint rather than a value constraint. It is
through the interaction of these two constraints that
nonlinear dependence on x is obtained in the log-
probability. At the end of the Appendix, we mention a
relation between the Morris system and the Pearson
system based on the log-probability. When the Morris
QVF criterion is expressed as a formal constraint on
entropy, this form is imposed on the leading terms of log-
probability by the large-deviations property of cumulant-
generating functions.

Definition of the natural exponential families

The NEF distributions are defined in relation to the
cumulant-generating function, which arises naturally in
the method of maximum entropy. The most direct way to
re-formulate the original presentation of Morris (1982,
1983) in terms of maximum entropy is to assume a
(Shannon-type) entropy in a higher-dimensional state
space than the univariate space of the natural observation
X. The high-dimensional states have nonuniform density
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when they are projected onto the one dimension in which
the probability distribution varies. Once a Lagrangian is
defined from this initial re-formulation, it becomes easy
to re-interpret the density of states as a reference measure
in a relative entropy (and the latter interpretation is more
general). The cumulant-generating function is then the
Legendre transform of this relative entropy. We develop
the two interpretations in order, to connect the deriva-
tions of Morris (1982, 1983) systematically to the formu-
lation we use in the main text.

The Stieltjes measure as a density of states
Morris (1982) introduces a Stieltjes measure dF(x), and
an initial probability distribution P0 associated with this
measure, defined by

P0ðX 2 AÞ ¼
Z

A

dFðxÞ; ð24Þ

for an arbitrary set A in the range of x. With respect to
this original probability measure, Morris introduces the
exponential families in terms of a probability mass
function

/ðx j hÞ ¼ e xh"wðhÞ; ð25Þ

which multiplicatively weights the original measure
dF(x). The normalizing constant w(h) in eqn (25) is the
cumulant-generating function, given by

ewðhÞ )
Z

dFðxÞe xh: ð26Þ

The NEF distributions are the normalized versions of
the distributions that define the cumulant-generating
function.

In the original Stieltjes measure, the probabilities
defined from these distributions are

PðX 2 AÞ ¼
Z

A

dFðxÞ e xh"wðhÞ: ð27Þ

With respect to the measure dF(x), we may obtain the
solutions (25) by extremizing the Lagrangian

L ¼"
Z

dFðxÞ/ðxÞ log /ðxÞ

þ h
Z

dFðxÞ/ðxÞx " l
! "

" j
Z

dFðxÞ/ðxÞ " 1

! "
ð28Þ

over its natural argument /(x) and the Lagrange multipli-
ers h and j. Here, we have replaced the notation k from the
text with Morris’s h for ease of reference. From its role as
a normalization constant, the multiplier j must evaluate
to the cumulant-generating function w(h) on solutions.

Lagrangian problems of this form arise frequently in
systems where a high-dimensional state space is pro-
jected down onto a single coordinate x, which is the only
observed property on which distributions depend. The
Lagrangian (28) effectively treats /(x) as the ratio of a

probability density to a uniform reference measure on the
original high-dimensional space. The Stieltjes measure
dF(x) is the marginal projection of the original measure
onto the coordinate x, and the derivative dF/dx is
known as the density of states. (dF(x) need not be smooth,
and dF/dx may readily be a noncontinuous distribution,
such as a sum of Dirac d-functions, representing a
discrete rather than continuous probability density).

The entropy in this formulation appears as a standard
Shannon entropy (equivalent to a relative entropy with a
uniform reference measure) in the high-dimensional
coordinates. It evaluates to the Legendre transform of
the cumulant-generating function,

SðlðhÞÞ ) "
Z

dFðxÞ pðx jhÞ log pðx jhÞ

¼ "hlðhÞ þ wðhÞ;
ð29Þ

in which l(h) is the mean value in the distribution
p(x Œh). h is the natural argument of w, while l from the
variational problem is the natural argument of S. There-
fore, it is usual to write this Legendre transform pair as

wðhÞ ¼ S ðlÞ " l
dS

dl

''''
l¼lðhÞ

SðlÞ ¼wðhÞ " h
dw
dh

''''
h¼hðlÞ

ð30Þ

In the second line, h(l) is the inverse function to l(h).
(In statistical mechanics, where )h is the inverse tem-
perature if x is the energy, w arises as h times the
Helmholtz Free Energy.)

We note several properties of these functions that will
be useful in understanding Morris’s NEF-QVF families.
When h ¼ 0 no correction to the normalization is needed
in P(X 2 A), so we have immediately that w(0) ¼ 0 as
well. If we denote by l0 ” l(0), then it follows that
S(l0) ¼ 0 also. The definition of the Legendre transform
pair (30) gives the important dual relations

dwðhÞ
dh

¼ lðhÞ

dSðlÞ
dl

¼ "hðlÞ:
ð31Þ

It follows that dS/dl|l0
¼ 0. With these two constants of

integration, S(l) will be completely specified by the form
of its second derivative.

Replacing the density of states with a reference measure
in relative entropy
For the univariate distributions, whether continuous or
discrete, we may define a shorthand for eqn (27) by
identifying the probability density function on x as

pxjh )
dF

dx
e xh"wðhÞ: ð32Þ

The Lagrangian (28) becomes, under this change of
variable,
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L ¼ "
Z

dx px log
px

dF=dx

! "

þ h
Z

dx pxx " l
! "

" j
Z

dx px " 1

! "
:

ð33Þ

The constraint terms are unchanged, but the entropy is
now manifestly a relative entropy for the density px with
reference measure dF/dx.

Arriving at nonlinear expansion paths through mixed
boundary conditions
The Morris families, like the Pearson families and like our
classes based on measurement, include distributions that
are nonlinear in the values x taken by the natural
observation X. Both Morris’s families and ours are based
on affine transformation, so that their distributions form
what are known as expansion paths [this term is used also
in economics for constrained maximization problems, in
which l generally describes a budget constraint; the
original usage, in statistics, is mentioned in Morris
(1982)]. Whereas we achieve nonlinear dependence on x
by considering the symmetries of measurement, the
Morris system achieves nonlinearity through the use of
mixed boundary conditions, when this system is described
in terms of entropy maximization. By using two con-
straints – one to specify the family and the other to fix a
point on the expansion path – Morris is able to apply a
fixed-gradient condition with respect to one constraint,
and a fixed-value condition for the natural observation.
Because we specify distributions from the affine transfor-
mation of a single observable, we must incorporate
nonlinearities into the measurement function itself.

Here, we derive the NEF criterion by converting the
relative entropy to a form in which the reference
measure may be interpreted as a second observable.
The ubiquitous use, in statistical physics and thermody-
namics, of cumulant-generating functions and their
Legendre transforms under mixed boundary conditions,
provides intuition from familiar systems for the meaning
of the resulting expansion paths. In the next section, we
derive the way in which the QVF condition of Morris
then places constraints on the reference measure, which
plays the role of the secondary observation.

The Lagrangian (33) is an instance of a more general
class of maximum entropy problems in which the relative
entropy has uniform measure (and therefore has the
form of a Shannon entropy), and the reference measure
appears as an additional constraint term,

L ¼"
Z

dx px log px þ h
Z

dx pxx " l
! "

þ k
Z

dx px log
dF

dx

! "

" j
Z

dx px " 1

! "
:

ð34Þ

Here, a variable k has been added as a parameter in the
variational problem, parallel to the parameter l in the

constraint on ! dxpxx. When k ¼ 1, eqn (34) reduces to
eqn (33), and the choice of reference measure does not
matter because it cancels in the two logarithms. For more
general k, a uniform reference measure is explicitly
required to make the logarithms well defined. The
distribution solving eqn (34) is

px ¼ ek logðdF=dxÞþhx"j: ð35Þ

The Shannon entropy of eqn (34) is maximized subject
to mixed constraints, which may be seen as follows. The
entropy with two constraint terms is a function of two
arguments S(l,n), where n ¼ < log (dF/dx)> at the given
values of k and l. Then, k ¼ )¶S/¶n, just as h ¼ )¶S/¶l
from eqn (31). Because l is an argument to the entropy,
whereas k is a gradient, problems of this sort resemble
solutions to differential equations under mixed Dirichlet
and Neumann boundary conditions.

The set of distributions (35), as k is held fixed and l
is varied, make up the expansion path for the entropy
with respect to constraint ! dx pxx. The natural exponen-
tial families are the distributions on this expansion path,
given a gradient constraint with respect to the observable
! dx px log (dF/dx).

The subset of natural exponential families
with quadratic variation

Any reference measure may in principle form the basis
for an expansion path with mixed constraints. In contrast
to Objective Bayesian methods, in which log (dF/dx) is
constrained by symmetry, the Morris system constrains
reference measures by restricting the form of the
variance function – equivalent to restricting the form of
the entropy – along the nonlinear expansion path.

The QVF family and Kullback–Leibler entropies
The definition of the cumulant-generating function is
that, not only does dw/dh ¼ l, but d2w/dh2 is the
variance of the observation X. Morris defines its relation
to the mean l as a variance function V(l). The quadratic
variance relation is the dependence

dl
dh
¼ v0 þ v1lþ v2l2: ð36Þ

By definition of h(l) and l(h) as inverse functions, it
follows that the variance is also the (geometric and
algebraic) inverse of the curvature of the relative
entropy. We differentiate the second line in eqn (30)
twice and substitute eqn (36), to produce

d2S

dl2
¼ " dh

dl
¼ "1

v0 þ v1lþ v2l2
: ð37Þ

Because we have first and second constants of inte-
gration from the relations following eqn (30), eqn (37)
has an unambiguous integral. To assign meaning to this
integral, however, and in the process to expose a relation
between the Morris and Pearson approaches to classifi-

Common probability distributions 481

ª 2 0 1 1 T H E A U T H O R S . J . E V O L . B I O L . 2 4 ( 2 0 1 1 ) 4 6 9 – 4 8 4
J O U R N A L O F E V O L U T I O N A R Y B I O L O G Y ª 2 0 1 1 E U R O P E A N S O C I E T Y F O R E V O L U T I O N A R Y B I O L O G Y



cation, we first factor the variance function into an
overall normalization and the roots of the polynomial.
Write

v0 þ v1lþ v2l2 ) v2 l" l1ð Þ l" l2ð Þ; ð38Þ

with the solutions

l1;2 ¼ "
v1

2v2
*

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v1

2v2

! "2

" v0

v2

s

: ð39Þ

Then, the integral of eqn (37) becomes

v2S ¼ l2 " l
l2 " l1

! "
log

l2 " l
l2 " l0

! "

þ l" l1

l2 " l1

! "
log

l" l1

l0 " l1

! "
:

ð40Þ

If we denote by u ” (l ) l1)/(l2 ) l1), the analytic
continuation of a partition of the unit interval, we may
write eqn (40) as

v2S ¼ 1" uð Þ log
1" u
1" u0

! "
þ u log

u
u0

¼Dðu! jju!0Þ:
ð41Þ

In the second line, we use u
!

to stand for the
‘probability distribution’ (u,1 ) u) on two atoms, and
likewise for u

!
0. Dðu! jju!0Þ is the Kullback–Leibler diver-

gence of u
!

from the distribution u
!

0 defined by the
equilibrium mean l0 and the variance function. The
standard form for the curvature of a Kullback–Leibler
divergence S may be written

v2 l2 " l1ð Þ2 d2S

dl2 ¼
1

u 1" uð Þ : ð42Þ

A slight variation on the formula (40), making use of
forms (39) for the roots, the Legendre transform relations
(30) and the constants of integration, reads

2v2w hð Þ þ v1h ¼ log
l2 " lð Þ l" l1ð Þ

l2 " l0ð Þ l0 " l1ð Þ

! "

¼ log
u 1" uð Þ

u0 1" u0ð Þ

! "
:

ð43Þ

This integral relation between the cumulant-generat-
ing function and the variance function appears as eqn 3.7
in Morris (1982).

Two fundamental NEF-QVF families and various limits
Working in terms of the signs and magnitudes of the
coefficients v0, v1, v2, Morris identifies exactly six
inequivalent natural exponential families with quadratic
variance functions. Three are continuous (Gaussian,
gamma, and hyperbolic-cosecant probability density
functions), and three are discrete (binomial, negative
binomial, and Poisson probability mass functions), up to
offset and scaling of the natural observation X. We will
see here that, working in terms of the analytic structure

of the entropy (40), and a simple classification of the
roots l1,2, we may identify two main classes, correspond-
ing to the continuous and discrete distributions, and
various limiting forms of these, which complete Morris’s
families.

The quantity that distinguishes the continuous from
the discrete NEF-QVF families is the discriminant
d ) v2

1 " 4v0v2 ¼ 4v2
2 l2 " l1ð Þ2 (which is unchanged by

offset of X). In the case where d > 0, the variance
function (36) has two real roots, while if d < 0, it has two
complex-conjugate roots. By choice of offset and scale,
we may obtain Morris’s canonical families by making the
complex-conjugate roots purely imaginary when d < 0,
or by taking one of the two real roots to lie at the origin
if d > 0.

We begin with the imaginary roots, which select the
continuous-valued NEF-QVF distributions. The canonical
form for these is obtained when v1 ” 0, and v0,v2 > 0. We
may then define

l1;2 ) *iK; ð44Þ

with K )
ffiffiffiffiffiffiffiffiffiffiffi
v0=v2

p
.

The relative entropy, about a distribution px Œ0 in the
NEF-QVF family with mean l0, must have the form

v2S ¼ 1

2
log

K2 þ l2

K2 þ l2
0

! "
þ l

K
tan"1 l0

K

) *
" tan"1 l

K

) *h i

¼ 1

2
log

K2 þ l2

K2 þ l2
0

! "
þ l

K
tan"1 K

l

! "
" tan"1 K

l0

! "% &
:

ð45Þ

The relation of h to l and l0 is

v2h ¼
1

K
tan"1 l

K

) *
" tan"1 l0

K

) *h i
: ð46Þ

If we choose a background in which l0 ¼ 0 (by
freedom to offset X), it follows that we may write the
cumulant-generating function as

v2w ¼
1

2
log 1þ tan2 v2Khð Þ
# $

: ð47Þ

The canonical normalization for this family of distri-
butions is given by v2 ¼ 1. One may check directly that
they are produced by the family of hyperbolic-cosecant
density functions

pxj0 ¼
1

K
1

epx=2K þ e"px=2K
ð48Þ

(The proof is by contour integral. Check that

cos Khð Þew hð Þ ¼ 1

p

Z 1

0

du

1þ u2
iuð Þ~h þ "iuð Þ~h

) *

¼ 1

p

Z 1

"1

du iuð Þ~h

1þ u2
¼ 1;

ð49Þ

with integration variable u ” epx/2K and shifted parameter
~h ) 2Kh=p. The contour that avoids branch cuts, in the log-
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transform to variables u, closes in the negative-imaginary
half-plane, encircling the pole u ¼ )i.) The distributions
atK ¼ 1 are the canonical densities given in Morris (1982),
eqn 4.2.

It is straightforward to check that, as K fi ¥, the
relative entropy (45) reduces to the form

S! " l" l0ð Þ2

2v0
; ð50Þ

for a Gaussian distribution

pxj0 ¼
1ffiffiffiffiffiffiffiffiffiffi

2pv0

p e"ðx"l0Þ
2=2v0 ð51Þ

with arbitrary mean. We have used v2K
2 ” v0 as v2 fi 0.

In the other limit, as K fi 0, it is convenient to take
v2 ¼ 1/q ” 1/l0, in which case we recover the relative
entropy

S! l0 " lþ l0 log
l
l0

! "
; ð52Þ

appropriate to the standard gamma distribution

pxj0 ¼
1

C qð Þ
x q"1ð Þe"x: ð53Þ

Two of the three continuous-valued NEF-QVF families,
therefore, are degenerate limits of the hyperbolic-cose-
cant distribution, which represents the generic case.

The discrete-valued families, following when the
variance function has real roots, may be handled in
similar fashion. We choose canonical forms by offsetting
x to set l1 ¼ 0 and attain this in the variance function
by taking v0 fi 0. The canonical scale for x is then given
by taking v1 ¼ 1.

For the discrete distributions, there are two ‘interior’
families of solutions (the binomial and negative bino-
mial) and one limiting family (the Poisson) that may be
reached from either of them. The root l2 ¼ )v1/v2 in all
cases. To obtain the binomial distribution on N samples
with mean l0 ¼ pN,

pxj0 ¼
N
x

! "
px 1" pð ÞN"x; ð54Þ

we take l2 ¼ N, corresponding to v2 ¼ )1/N. For this
distribution only, the range is finite, 0 £ x £ N. The
relative entropy takes the standard form of a Kullback–
Leibler divergence without extending the definition of u
by analytic continuation,

S!"N 1" l
N

) *
log

1" l=N

1" p

! "
þ l

N
log

l=N

p

! "+ ,

¼"N 1" l
N

) *
log

1" l=N

1" l0=N

! "
þ l

N
log

l
l0

! "+ ,

¼"NDðl! =Njj p!Þ:
ð55Þ

The negative binomial distribution is immediately
obtained by taking N fi )N in the second line of

eqn (55) while holding l0 fixed. The corresponding
distribution is

pxj0 ¼
N " 1þ x

x

! "
px 1" pð ÞN ; ð56Þ

with p ¼ l0/(N + l0). This is the other ‘interior’ solution,
with l2 ¼ )N and therefore v2 ¼ 1/N.

The Poisson distribution is the limit of either of the
previous two forms as v2 fi 0, so l2 fi ± ¥, at p ¼ l0

fixed. The distribution is

pxj0 ¼ e"l0
lx

0

x!
; ð57Þ

and the entropy becomes

S! l" l0 " l log
l
l0

! "
; ð58Þ

For either of the negative binomial or the Poisson, the
range of x is unbounded, x ‡ 0.

The relative entropy expressions (52, 58) for the
gamma and the Poisson distributions are the same
functional form, under exchange of the reference mean
l0 with the distribution mean l. Their respective
distributions are likewise interchanged under exchange
of x with l0, except that in the gamma case (53),
a further shift l0 fi l0 ) 1 must be performed as well.
We will return to integer shifts of this form in the
next section.

(We note that the association of imaginary roots
with continuous-valued distributions, and of real
roots with discrete-valued distributions, is a defining
structural feature of quantum mechanical distribu-
tions for particles with finite temperature but contin-
uous time-dependence (Mahan, 2000). This is one
of many interesting connections to the NEF-QVF fami-
lies that it will not be possible to explore in this
publication.)

Relations to the Pearson system through
large-deviations formulae

It is instructive to compare the forms for the entropies of
the distributions in the NEF-QVF families to the loga-
rithms of the probability densities or mass functions
themselves. By virtue of the entropy as a large-deviations
measure (Touchette, 2009), it and the log-probability will
coincide to leading exponential order for sufficiently
sharply peaked distributions.

The entropy is defined in the Morris system as a second
integral of a rational function with two poles. The log px Œ0
is defined in the Pearson system similarly, except that it
is a first-integral of a rational function with two poles
(Johnson et al., 1994). The difference between these
two degrees of integration leads to noncoincidence of
the two families, although in many parameter limits they
overlap.
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We begin by comparing the continuous distributions.
For the Gaussian, the two functions are identical up to
a constant

log pxj0 ¼"
x " l0ð Þ2

2v0
" 1

2
log 2pv0ð Þ

S ¼" l" l0ð Þ2

2v0
:

ð59Þ

For the standard gamma with mean l0 ¼ q,

log pxj0 ¼q" 1" x þ q" 1ð Þ log
x

q" 1

! "

S +q" x þ q log
x

q

! "
;

ð60Þ

in which the + in the second line keeps the first two
terms in Stirling’s formula for log C(q). The functions
are identical in form but differ by an offset q fi q)1.

The hyperbolic-cosecant density shows the least simi-
larity in its domain of small argument. However, at small
K, where it is sharply peaked, and at fixed x or l, the
following expansion becomes informative,

log pxj0 ¼"
p xj j
2K
" log K" log 1þ e"p xj j=K

) *

S ¼" l
K

tan"1 l
K

) *
" log Kþ 1

2
log l2 þ K2
# $

:

ð61Þ

For l/K , 1, tan )1(l/K) fi sgn(l)p/2, giving the
same two leading terms for x and for l.

The discrete distributions behave similarly. For the
binomial,

log pxj0 +" ND
x
!

N

 '''''
l
!

0

N

'''''

!

S ¼" ND
l
!

N

 '''''
l
!

0

N

'''''

!

;

ð62Þ

and for the Poisson

log pxj0 +x " l0 " x log
x

l0

! "

S ¼l" l0 " l log
l
l0

! "
;

ð63Þ

where again + stands for the first two terms in Stirling’s
formula for factorials. Within these approximations, the

two functions are identical. The negative binomial differs
by terms at O

#
x=N

$
, but within a similar Stirling

approximation, it may be written

log pxj0 + N þ xð Þ log
N þ x

N þ l0

! "
" x log

x

l0

! "

þ N þ xð Þ log 1" 1

N þ x

! "
" N log 1" 1

N

! "

" log 1þ x

N " 1

) *

+ N þ xð Þ log
N þ x

N þ l0

! "
" x log

x

l0

! "

" O
x

N " 1

) *

S ¼ N þ lð Þ log
N þ l
N þ l0

! "
" l log

l
l0

! "
: ð64Þ

The leading terms, corresponding to the analytic
continuation of the Kullback–Leibler form, again coin-
cide. The only differences arise from shifts N fi N ) 1
in a subset of terms, similar to the shift q fi q ) 1 in
eqn (60).

The equivalence of log px Œ0 and S to leading exponential
order is a consequence of the large-deviations property
(Touchette, 2009) for these distributions. The cumulant-
generating function is the integral of the shifted density,

ew hð Þ ¼
Z

dx pxj0ehx: ð65Þ

The exponential of the entropy cancels the absolute
magnitude of the inserted weight factor ehx near the
maximum of the shifted distribution, because for sharply
peaked distributions the maximum is near x + l,

eS lð Þ ¼
Z

dx pxj0eh lð Þ x"lð Þ: ð66Þ

S(l) is therefore approximately equal to px Œ0, evaluated
at x + l. Thus, the Morris restriction to quadratic
variance functions implies that log px Œ0, at leading order,
will equal the analytic continuation of a function of
Kullback–Leibler form.
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