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Abstract

Somatic mosaicism for mutations in disease-causing genes has been reported in several recent studies. Examples include

hemophilia A, many skin disorders, and several cancers such as retinoblastoma and familial adenomatous polyposis. Many of these

disorders require multiple mutations in order to express the disease phenotype. For example, two recessive mutations to the

retinoblastoma locus are required to initiate retinoblastomal tumors. I develop a mathematical framework for somatic mosaicism in

which two recessive mutations cause disease. With my framework, I analyse the following question: Given an observed frequency of

cells with two mutations and an easily scored aberrant phenotype, what is the conditional frequency distribution of cells carrying

one mutation and therefore susceptible to transformation by a second mutation? This question is important because a high

frequency of carrier cells can cause genetic counselors to misdiagnose a mosaic as an inherited heterozygote carrier and because

widespread mosaicism can lead to some germline transmission. As more data accumulate, the observed distribution of mosaics can

be compared against my predicted distribution. These sorts of studies will contribute to a broader understanding of the distribution

of somatic mutations, a central topic in the study of cancer.

r 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

An adult human has about 1014 cells and even more
cell divisions in a lifetime. With a mutation rate of
roughly 10�7–10�6 per gene per cell division, each gene
is mutated in many cells.
Although the number of mutations is large, most

individuals have only a small fraction of their cells
mutated for a particular gene. For neutral mutations, an
average individual has a frequency of about nu cells
mutated for each gene, where n is the number of cell
divisions in the history of a cellular lineage from the
zygote to the current time, and u is the mutation rate in
producing each daughter cell. With n on the order of 50–
100, a gene is on average mutated in approximately
10�5–10�4 of the cells. There are about 104–105 genes, so
each cell may carry one or more mutations.
Each individual has much genetic mosaicism in the

somatic tissue. The consequences of mosaicism may
sometimes be limited because each gene is mutated in

only a small fraction of cells, and those mutations may
be recessive or in genes with limited effect in the mutated
tissue. Mosaicism is, however, an important topic for
three reasons.
First, a significant proportion of severe genetic disease

arises from de novo mutations during development,
causing mosaicism for normal and mutant cells. For
example, in eight of 61 cases of hemophilia A, an X-
linked disorder, the original mutation was traced to a
mother or grandmother who had leukocyte mosaicism
for the mutation (Leuer et al., 2001). The cases in which
the original DNA change was a point mutation had
eight of 32 (25%) mosaics. In the mosaic individuals,
0.2–25% of leukocytes carried the mutation, showing
wide variability in the level of mosaicism associated with
germline transmission. Several other studies have found
significant frequencies of somatic mosaicism in genetic
diseases, including retinoblastoma (Sippel et al., 1998),
familial adenomatous polyposis (Farrington and Dun-
lop, 1999), and various skin disorders (Nomura et al.,
2001; Paller, 2001). Accurate genetic counseling requires
attention to mosaicism to assess the risks of familial
transmission (Gottlieb et al., 2001).
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Second, different levels of mosaicism between tissues
may provide clues about the phylogenetic history of
cellular lineages within an individual. An observed
frequency of mosaicism in one tissue could be used as
conditional information to provide a better estimate of
mosaicism in other tissues such as the germline. This
would be useful for genetic counseling and to under-
stand the shared cellular history between the progenitor
cells that form different tissues.
Third, the probability of progression to cancer can

depend on the degree of mosaicism in a tissue. For
example, the development of retinoblastoma requires
two loss-of-function mutations to the retinoblastoma
gene (Knudson et al., 1975; Hethcote and Knudson,
1978). The probability that the second mutation occurs
increases in proportion to the frequency of cells in the
developing retina that carry the first mutation.
In this paper, I develop a mathematical framework

for the analysis of mosaicism. Mathematical analysis is
required to understand the distribution of mosaicism, to
predict the probability of germline transmission given an
observed degree of mosaicism, and to study the relations
between mosaicism and cancer.
With my framework, I analyse the following question:

Given an observed frequency of cells with two muta-
tions and an easily scored aberrant phenotype, what is
the conditional frequency distribution of cells carrying
one mutation and therefore susceptible to transforma-
tion by a second mutation?
Most genetic mosaics are discovered because they

have some cells with two mutations and noticeable
aberrations. My conditional distribution predicts the
probability distribution for the amount of mosaicism in
such cases. As more data accumulate, the observed
distribution of mosaics can be compared against my
predicted distribution. These sorts of studies will
contribute to a broader understanding of the distribu-
tion of somatic mutations, a central topic in the study
of cancer.

2. Extensions to the Luria–Delbr.uck distribution

The frequency of cells carrying at least one mutation
at a particular locus follows the classical Luria–
Delbr .uck distribution (Zheng, 1999). This distribution
would, for example, help to understand the frequency
of recessive X-linked mutations among the somatic cells
of a female. Females with somatic mutations also have a
small chance that the mutation happened early enough
in development to be contained in germ cells. Thus, I
emphasize the stage in development at which mutations
occur.
I consider the issue of two hits to a gene, leading to an

extension of the Luria–Delbr .uck theory. For example, if
an individual has a frequency f of aberrant cells caused

by two hits, then what is the conditional frequency of
cells with at least one hit? I assume that all mutations are
neutral with regard to birth and death rates. I use this
simplifying assumption so that I can emphasize the
structure of the problem. Under neutrality, I can
develop some simple approximations that highlight
key processes shaping the distributions of somatic
mutations.
Cancer is certainly not a neutral phenotype. However,

my analyses still provide insight into the distribution of
mosaicism in cancer mutations. For example, in many
cancers, the loss of function of one tumor-suppressor
locus by mutation to both alleles is not sufficient to
cause increased cell proliferation. It may be possible to
assay apparently normal tissue for the frequency of cells
with loss of function at a tumor-suppressor locus. The
frequency of this phenotype can then be used to analyse
the conditional distribution of cells carrying one
recessive mutation at the tumor-suppressor locus.
Alternatively, a tumor-suppressor locus may trans-

form a cell lineage into an expanding cancer clone after
it suffers mutations to both alleles. The frequency of
cells with two mutations then increases by selection, and
the neutrality assumption no longer applies. Therefore, I
focus on the time in cellular history at which the second
of two mutations to a cell first occur. Assuming that the
first mutation to a tumor-suppressor gene is neutral, the
time of the second mutation is the same under models
that assume neutrality or allow for selection. Estimating
the time of the second mutation can be accomplished by
measuring or making assumptions about the increase in
cell proliferation in the expanding cancer lineage.

3. Frequency of mutant cells

I start with the classical Luria–Delbr .uck problem as
background for my two-hit model and to motivate
thinking about the distributions in terms of the timing of
mutations in development. I also introduce a very simple
approximation which, although rough, shows the
processes involved in understanding the time of muta-
tions in development.
I use a branching process model to describe the

processes that shape the distribution of the number of
mutant cells. For the gene of interest, let each cell carry
either no mutations or at least one mutation. All cells
with a mutation give rise to cells with a mutation, that is,
there is no back mutation. Thus, one can describe each
cell division as a branching in which a parent cell with
no mutations produces 0, 1, or 2 daughter cells with no
mutations, with probabilities p0; p1; and p2; respectively.
This allows me to track the probability of having C cells
with no mutations after n rounds of cellular division.
Starting with one cell and assuming two daughter cells
in each round of division, the total number of cells is
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T ¼ 2n; thus 1� C=T is the frequency of cells with
at least one mutation.
I calculate the probability distribution for C by first

writing

p0 ¼ u2E0; ð1aÞ

p1 ¼ 2uð1� uÞE2u; ð1bÞ

p2 ¼ ð1� uÞ2E1� 2u; ð1cÞ

where uoo1 is the probability of a mutation along each
branch of the binary tree. The probability generating
function for the branching process is

fðsÞ ¼ p0 þ p1s þ p2s
2: ð2Þ

The coefficient on the j-th power of s gives the
probability of j descendants with no mutations, that is,
the probability that C ¼ j: The generating function can
be expanded recursively, such that

fkþ1ðsÞ ¼ fkðfðsÞÞ; ð3Þ

with f0 � s and f1 � fðsÞ: Thus, fn provides an exact
probability distribution for C among the 2n cells after n

cell divisions deriving from a single common ancestor.
However, the generating function provides little insight
and becomes time consuming to calculate as n increases.
There are many technical papers on the Luria–

Delbr .uck distribution (Zheng, 1999). Rather than
expand on that technical work, I develop a simple
approximation to clarify the processes that shape the
distribution. I also focus on what I call the effective time

of the first mutation, defined as M ¼ �log2ðmÞ; where m

is the frequency of mutant cells. If there is only one
mutation, then M is the round of cellular division at
which the mutation occurred. If there is more than one
mutation, then M is the effective time of mutation.
An approximate distribution for the frequency of

mutant cells can be built as follows. Start with a single,
initial cell. In the i-th round of division, the number of
new cells is 2i; the expected number of mutations is gi ¼
2iu; and the probability of one mutation is gie

�gi : A
mutation in the i-th round of cell division leads to a
mutation carried by at least 1=2i of the total cells
because the early mutation carries forward through time
in 1=2i of the lineages. The total number of branches in
the cellular history is 2ð2n � 1ÞE2nþ1: If 2nþ1uoo1;
then nearly all histories have either no mutations or one
mutation, and the probability that a frequency of 1=2i of
the cells is mutated is gie

�gi for i ¼ 1;y; n:
If 2nþ1u is greater than one, then cellular histories

often have more than one mutation. Each round of
cellular division contributes on average a frequency of u

mutations to the final total because the expected number
of mutants in the i-th round is 2iu and each mutation
carries forward in 1=2i lineages. Thus, k rounds of
cellular division add on average ku to the frequency
of mutants.

In the early rounds of cellular division, the accumula-
tion of mutations is highly stochastic. However, once the
expected number of mutations per round of cellular
division rises to about two, one can add to the mutation
frequency in a roughly deterministic way. Thus, if one
separates between stochastic and deterministic accumu-
lation at the round of division x such that 2xuE2 and
xE1� log2ðuÞ; then an approximate distribution is that
a frequency of m ¼ 1=2i þ ð1� 1=2iÞðn � x � 1Þu of
the cells is mutated with probability gie

�gi ; with iX1
increasing until the cumulative probability reaches one.
Fig. 1 shows the cumulative probability distribution for
m as a function of the effective time of mutation, M ¼
�log2ðmÞ:

4. Frequency of mutant cells given two hits in some cells

I extend my analysis by studying the frequency m of
cells with at least one hit given an observation of two
mutations in a frequency f of cells. This is important
because greater mosaicism for the first mutation
increases the risk of multiple cancer origins and germline
transmission. In the extreme case, the first mutation
happens very early in development and the affected
individual will often have symptoms similar to cases in
which the defective allele was inherited. It is useful to
know the probability that a case with hereditary
symptoms is in fact a consequence of somatic mosai-
cism.
Consider a binary tree for cellular history with 2n total

cells after n rounds of cellular division. Our problem
concerns the fraction m of the final cells that carry at
least one mutation given that a frequency f of the final
cells that carry two mutations. Let 1pypn be the time
step during which the earliest case of a second mutation
occurs, and let 1pxpy be the time step during which
the first mutation occurs in the lineage that eventually
has the earliest second mutation.
The first hit at time x will cause at least 2�x of the final

cells to carry at least one mutation—this is the degree of
mosaicism, mX2�x: If the second hit occurs at time y;
then the frequency of cells with two hits will be fX2�y:
To translate frequencies into effective times of mutation,
I use M ¼ �log2ðmÞ and F ¼ �log2ð f Þ: I define
effective time intervals based on x and y such that x �
1oMpx and y � 1oFpy; where x and y derive from
the frequencies m and f rather than the actual times of
the first and second hits.
I seek the conditional probability that x � 1oMpx

given that y � 1oFpy: This is roughly the same as
finding the probability for the effective time of the first
mutation, x; given the effective time of the second
mutation, y; where xpy:
I present a branching process formulation in

the appendix. The generating function from that
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formulation gives the exact probability distribution
function. However, the generating function becomes
very time consuming to calculate as n increases, and it
provides little insight into the factors that influence the
distribution.
I build up an approximation by estimating the

probability, px; that the frequency, m; among the final

2n cells with one or two hits is 2�xpmo2�xþ1; given
that the frequency, f ; of cells with two hits is
2�yp fo2�yþ1: I developed this approximation by
listing factors that contribute to the probability of
interest, and then dropping terms that did not sig-
nificantly affect the fit of the approximation to computer
simulations. I discuss only the significant terms.
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Fig. 1. Probability distribution of mosaicism for cells with at least one mutation in a particular gene. The x-axis is the frequency m of cells with

mutations, given as the effective time of mutation. The solid line shows the approximation given in the text. The dashed line shows the observed

distribution in a Monte Carlo simulation of the branching process for 500 000 replications with u ¼ 10�3: I used a large mutation rate so that I could
accumulate enough mutations in a reasonable amount of computer time. Each panel shows a different value of n; the total rounds of cellular division
leading to 2n cells. This is a form of the classical Luria–Delbr .uck distribution.
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Suppose that a second mutation occurred at time y:
Then a first mutation must have occurred in the lineage
leading up to the second mutation sometime during the
y cell divisions in that lineage. The mutation probability
per daughter cell deriving from a parent with zero
mutations is u for xoy: For x ¼ y; given that the second
mutation occurs, the probability of the first mutation in
that same cell is u=2: Thus, the approximate probability
of a first mutation occurring at time step x ¼ 1;y; y is
proportional to aðxÞ=2; with aðzÞ ¼ 0 for z > y; aðzÞ ¼ 1
for z ¼ y; aðzÞ ¼ 2 for zoy:
This approximation must be adjusted to account for

several additional factors. First, in the lineage descend-
ing from the first mutation, another mutation must not
occur before y or in two descendants at time y: The
number of descendants in which there must be zero
mutations is 2ð2y�x � 1Þ: Second mutations occur at rate
u=2; so the expected number of mutations in this class of
descendants is l1 ¼ ðu=2Þ2ð2y�x � 1Þ and the probability
of zero mutations is P0ðl1Þ ¼ e�l1 ; with PiðlÞ as the
Poisson probability of i occurrences of a process with
mean l:
Second, no mutations can occur at any branch at time

tpx except the first mutation at time x in the particular
branch leading to the focal second mutation at time y:
The probability of zero mutations of this sort is P0ðl2Þ;
with l2 ¼ uð2ð2x � 1Þ � 1Þ:
Third, another alternative is for the mutation in

the focal lineage to occur at any time t > x and
another mutation to occur at time x in a lineage
different from the focal lineage, which occurs with
probability P1ðl3Þ with l3 ¼ uð2x � 1Þ: One also has to
deduct for the probability of no mutations before x

with l4 ¼ uð2ð2x � 1Þ�1Þ; no second mutations in
the lineage with the first mutation at x; l5 ¼
ðu=2Þð2ð2y�x � 1Þ þ 1Þ; and no second mutations after t

and before the given second mutation at y; where such
second mutations occur on average at l6ðtÞ ¼
ðu=2Þð2ð2y�t � 1ÞÞ:
Fourth, one has to add to px those cases in which

enough mutations happen at rounds of cell division
greater than x to cause 2�xpmo2�xþ1: I handle this by
adding to px all probabilities pz such that z > x and zAZ;
where Z is the set of indices that map to x: Elements in
Z are obtained by starting with those z for which 2zu >
0:2; which limits the mapping to those z over which
multiple mutations are reasonably probable. If z satisfies
that condition, then z maps to x ¼ ceil½z � ðz � kÞ=2�;
where k ¼ �log2ð2

�z þ ð1� 2�zÞðn � z þ 1ÞuÞ; and ceilðaÞ
rounds to the nearest integer greater than or equal to a:
Here, k accounts for the nearly deterministic accumula-
tion of mutations after time x; in a way similar to my
approximation for the Luria–Delbr .uck problem. The
use of x ¼ ceil½z � ðz � kÞ=2� causes the later mutations
at z to flow back one-half the distance toward the
effective time, k: I chose the particular form of this
flowback factor by fitting to distributions from Monte
Carlo simulations.
Combining terms,

Spx ¼ aðxÞP0ðl1ÞP0ðl2Þ

þ P1ðl3ÞP0ðl4 þ l5Þ
Xy

k¼xþ1

aðkÞP0ðl6ðkÞÞ

þ
X

zAZ

pz
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Fig. 2. Probability distribution of individuals having a frequency of cells f with two mutations. The x-axis is given as the effective time of the second

mutation, �log2ð f Þ: This is the unconditional distribution, showing how often individuals carry a particular burden of doubly mutated cells. The

plot shows results from Monte Carlo simulation of the branching process for 500 000 replications with u ¼ 10�3: Each line shows a different value of
n ¼ 10;y; 18:
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for x ¼ 1;y; y; with S ¼
P

px and the definition of aðzÞ
given above.
Fig. 2 shows the unconditional probability distribu-

tion for individuals having a frequency f of cells with
two mutations. This shows how often phenotypic
aberrations of a particular abundance would arise in
individuals from two hits within a cellular lineage.

Fig. 3 shows the conditional distribution of indivi-
duals having a frequency of cells m with at least one
mutation given a frequency of cells with two mutations
of 2�ypfo2�yþ1 or, equivalently, an effective time
of a second mutation of y: My simple approxima-
tion matches very well the observed conditional
distributions.
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Fig. 3. Probability distribution of individuals having a frequency of cells m with at least one mutation given a frequency of cells with two mutations

of 2�ypfo2�yþ1 or, equivalently, an effective time of a second mutation of y: Each panel shows the conditional distribution given a value of

y ¼ 10;y; 18: Colored lines show results for n ¼ y;y; 18 from a Monte Carlo simulation of the branching process for 500 000 replications with

u ¼ 10�3: Each black line is based on the theoretical approximation given in the text for the average value of n in the panel, n ¼ ð18þ yÞ=2:

S.A. Frank / Journal of Theoretical Biology 223 (2003) 405–412410



5. Discussion

The distribution of mutation frequency in a popula-
tion contributes fundamentally to many aspects of
population biology and evolution. The Luria–
Delbr .uck distribution is the well-known description
for the frequency of mutations at a single locus in
haploid populations. I have extended the problem to
consider the relations between the frequency of cells
with two mutations and the frequency of cells with at
least one mutation.
Consider, for example, a patient with retinoblastoma

cancer. This cancer arises following mutations to both
alleles at the retinoblastoma locus (Knudson, 1993). The
developed retina has on the order of 106 cells. If one
assumes a mutation rate on the order of 10�6 or smaller,
then the frequency of cells with two hits at the time of
the second hit is at least u: Given a frequency of cells u

or greater with two hits at the time of the second hit, at
what stage in retinal development did the first hit occur?
Or, equivalently, assuming that the first hit occurred
during retinal development, what frequency of normal
retinal cells carries the first mutation and is at risk for
transformation by a second mutation?
My analysis shows that, given a frequency of at

least u cells expressing a mutant recessive phenotype
with the second hit occurring at the y-th round of
cellular division, there is a nearly uniform probability
that the first hit occurs at any time over the cellular
generations 1;y; zpy: This can be seen in the upper left
panel of Fig. 3, in which y ¼ 10 and, to speed
calculations, u ¼ 10�3: A second hit at y ¼ 10 means
that at least 1=2yEu cells have two hits. The nearly
linear cumulative distribution up to zE8 shows an
approximately uniform distribution over time for the
occurrence of the first hit.
When the second hit occurs later, and the frequency

of cells with two hits at the time of the second hit is
much smaller than u; the effective time of the first hit
becomes concentrated within one or a few rounds of
cellular division. For u ¼ 10�3 and the second hit at
y ¼ 18; the effective time of the first hit occurs mostly at
or just after the 7-th round of cellular division (Fig. 3,
lower right panel). Two opposing forces concentrate the
frequency of cells with one hit near 1=27: First, earlier
first mutations would almost certainly have second hits
before y ¼ 18: Second, later first hits are augmented in
frequency by the nearly deterministic accumulation of
first hits in other lineages at times i for 2iu > 1: This can
be seen in the Luria–Delbr .uck distribution for the
unconditional times of the first hit (Fig. 1, lower right
panel).
From these results and from simulations with u ¼

10�4 (not shown), when the second hit occurs late,
1=2yoou; it appears that the effective time of the first
hit concentrates near i such that 2iuE0:1: This matches

the observed simulation values of iE7 for u ¼ 10�3 and
iE10 for u ¼ 10�4; and predicts that iE17 for u ¼ 10�6:
These various results show how the effective time of

the second mutation provides information about the
effective time of the first mutation. When the first
mutation happens early in the cellular history, then the
cellular population carries a high frequency of cells
susceptible to transformation by a second mutation. If
the cellular history under consideration goes back early
into development, then different tissues will share
a high frequency of cells carrying the mutation. The
carrier frequency is particularly important when
considering the probability that the germline has the
mutation.
The degree to which different tissues carry the same

early mutation also provides information about the
cellular history of early development. This is particularly
important in understanding when the germline differ-
entiates, how many cells form the primordial germ
tissue, and what is the cellular history of those
primordial cells. These questions are, of course,
empirical problems. But the empirical problems are
greatly sharpened and more productively studied by
understanding the quantitative relations between muta-
tion and the history of cellular populations.
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Appendix

In this appendix, I present a branching process model
for the joint probability distribution of cells with one
and two hits. The conditional distribution of cellular
histories with m cells carrying at least one mutation
given f cells with two mutations can be obtained from
the joint distribution.
In this model, any previously unmutated allele

mutates during transmission from parent cell to
daughter cell with probability u=2: Each mutation event
affects only one of the four alleles in the two diploid
daughter cells. Thus, if a parent has two unmutated
alleles, then it produces one mutant copy with a
probability of approximately 4ðu=2Þ ¼ 2u: If a parent
has one mutated allele and one unmutated allele, then
the second allele is mutated in one progeny with a
probability of approximately 2ðu=2Þ ¼ u:
One can track the number of cells with 0, 1, or 2 hits

as C0; C1; and C2 in a three-type branching process. Let
piðx; y; zÞ be the probability that an individual with i ¼
0; 1; 2 hits produces x daughter cells with zero hits each,
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y daughter cells with one hit each, and z daughter cells
with two hits each. Every cell produces two progeny
after division. The values for the transition probabilities
are

p0ð2; 0; 0Þ ¼ ð1� u=2Þ4E1� 2u þ 3u2=2;

p0ð1; 1; 0Þ ¼ 4ðu=2Þð1� u=2Þ3E2u � 3u2;

p0ð0; 2; 0Þ ¼ 4ðu=2Þ2ð1� u=2Þ2Eu2;

p0ð1; 0; 1Þ ¼ 2ðu=2Þ2ð1� u=2Þ2Eu2=2;

p0ð0; 1; 1Þ ¼ 4ðu=2Þ3ð1� u=2ÞE0;

p0ð0; 0; 2Þ ¼ ðu=2Þ4E0;

p1ð0; 2; 0Þ ¼ ð1� u=2Þ2;

p1ð0; 1; 1Þ ¼ 2ðu=2Þð1� u=2Þ;

p1ð0; 0; 2Þ ¼ ðu=2Þ2;

p2ð0; 0; 2Þ ¼ 1:

The one-step probability generating functions for
individuals with i ¼ 0; 1; 2 hits are

fð0Þðs; t;wÞ ¼ p0ð2; 0; 0Þs2 þ p0ð1; 1; 0Þst þ p0ð0; 2; 0Þt2

þ p0ð1; 0; 1Þsw;

fð1Þðs; t;wÞ ¼ p1ð0; 2; 0Þt2 þ p1ð0; 1; 1Þtw þ p1ð0; 0; 2Þw2;

fð2Þðs; t;wÞ ¼ p2ð0; 0; 2Þw2;

with fðiÞ
1 ðs; t;wÞ � fðiÞðs; t;wÞ and, assuming that one

starts at time zero with a single cell that has 0 hits,
fð0Þ
0 � s:

The generating function is built recursively for
successive time steps as

fð0Þ
kþ1ðs; t;wÞ ¼ fð0Þ

k ½fð0Þðs; t;wÞ;fð1Þðs; t;wÞ;fð2Þðs; t;wÞ�:

The coefficient for sC0tC1wC2 in fð0Þ
n ðs; t;wÞ gives the

probability that after n rounds of cell division a lineage
has C0 cells with zero hits, C1 cells with one hit, and C2

cells with two hits. This generating function gives an
exact probability distribution, but it becomes very time
consuming to calculate as n rises above 10.
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