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Defective-interfering (DI) viruses arise spontaneously by deletion mutations. The shortened
genomes of the DI particles cannot replicate unless they coinfect a cell with a wild-type virus.
Upon coinfection, the DI genome replicates more quickly and outcompetes the wild type. The
coinfected cell produces mostly DI viruses. At the population level, the abundances of DI and
wild-type viruses #uctuate dramatically under some conditions. In other cases, the DI viruses
appear to mediate persistent infections with relatively low levels of host cell death. This
moderation of viral damage has led some to suggest DI particles as therapeutic agents.
Previous mathematical models have shown that either #uctuation or persistence can occur for
plausible parameter values. I develop new mathematical models for the population dynamics
of DI and wild-type viruses. My work extends the theory by developing speci"c predictions
that can be tested in the laboratory. These predictions, if borne out by experiment, will explain
the key processes that control the diversity of observed outcomes. The most interesting
prediction concerns the rate at which killed host cells are replaced. A low rate of replacement
causes powerful epidemics followed by a crash in viral abundance. As the rate of replacement
increases, the frequency of oscillations increases in DI and wild-type viral abundances, but the
severity (amplitude) of the #uctuations declines. At higher replacement rates for host cells,
nearly all cells become infected by DI particles and a low level of #uctuating, wild-type viremia
persists.
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Introduction

Viral genomes occasionally produce mutant
copies with large deletions. The partially deleted
genomes may, for example, lack the coding
regions for replication enzymes and capsid pro-
teins. Defective particles of this sort cannot repli-
cate or transmit by themselves. But when they
coinfect a cell with normal viruses, defective par-
ticles can replicate and coat themselves with
products encoded by their partners' genomes
(von Magnus, 1954; Huang & Baltimore, 1977;
Holland, 1990).
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Defective genomes may gain a replication
advantage over the wild type simply because the
mutants are shorter. In addition, selection favors
defective genomes that outcompete the wild type
for replication enzymes and capsid proteins. This
competition causes coinfected cells to produce
few wild-type viruses and many fully coated,
infectious viruses with shortened genomes. The
shortened, parasitic genomes are often called
defective interfering (DI) particles (Huang &
Baltimore, 1977; Barrett & Dimmock, 1986;
Roux et al., 1991).

DI particles arise almost invariably during
in vitro serial passage of RNA viruses with high
( 2000 Academic Press
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multiplicity of infection per host cell (von
Magnus, 1954; Holland, 1990). RNA genomes
have high mutation rates, producing many dele-
tion mutants. Frequent coinfection guarantees
that shortened, rapidly replicating mutants can
parasitize the information of the wild type during
coinfection. DNA viruses also produce DI par-
ticles under similar conditions, but have not
been studied as intensively as RNA genomes
(Perrault, 1981).

DI particles have attracted attention for
three aspects of population dynamics. First,
in vitro serial passage often produces dramatic,
unpredictable #uctuations in the relative abund-
ances of DI and wild-type viruses (Roux et al.,
1991; Bangham & Kirkwood, 1993). Second, DI
particles can potentially act as therapeutic agents
by limiting viral damage to host tissue in vivo
(Huang & Baltimore, 1977; Cave et al., 1984). DI
infection by itself appears to be relatively benign.
Once host cells are widely infected by DI par-
ticles, wild-type virus typically causes superinfec-
tion of DI-infected cells. Superinfection produces
mostly infectious DI particles. These DI particles
infect more cells, making it increasingly
di$cult for the virulent, wild-type virus to
increase in abundance. Third, some authors have
suggested that DI particles play an important
role in maintaining persistent infections (Holland
et al., 1980; Barrett & Dimmock, 1986; Chen
et al., 1996).

Several models have analysed the population
dynamics of DI particles. Bangham & Kirkwood
(1990), Kirkwood & Bangham (1994) and Szath-
maH ry (1993) showed that #uctuating abundances
of DI and wild-type viruses often arise as a result
of the &&predator}prey'' feedback dynamics be-
tween wild-type and DI viruses. Prior hypotheses
had emphasized special attributes of replication
or molecular interaction. The mathematical
models were important because they showed that
the dynamics arise from universal properties of
birth, death, and transmission rather than the
special details of the system.

Chen et al. (1992) proposed that DI viruses
engineered speci"cally to interfere with HIV-1
replication could be used as therapeutic agents.
Nelson & Perelson (1995) developed a numer-
ically realistic model of DI dynamics based
on known parameters of HIV infection. They
concluded that DI particles are unlikely to sur-
vive or to in#uence HIV dynamics in peripheral
blood, but may survive within infected lymphoid
organs such as the lymph nodes and spleen.

I develop a model for the population dynamics
of wild-type and DI viruses. I extend past models
in the following ways. First, I develop a simpli"ed
model with only wild-type viruses and host cells.
I show that the factors that control oscillations of
viral abundance in this simpli"ed model explain
most, but not all, of the dynamical properties of
the full model with both wild-type and DI
viruses. This connection between the simpli"ed
model and the full model makes it much easier to
understand the processes that control the dynam-
ics in the full model.

Second, I extend the model to analyse the
spatial dynamics of viremia. Prior models as-
sumed homogeneous, well-mixed populations
of cells, wild-type viruses, and DI particles. My
spatial models allow one to compare dynamics
under di!erent assumptions about the movement
and mixing of viruses and the regeneration of
host cells. The methods for spatial modeling pro-
vide tools to enhance the study of within-
host dynamics for a wide variety of virus}host
interactions.

Third, I explore the parameter space to
develop comparative predictions about the dy-
namics of viremia. The prior, generic models of
SzathmaH ry (1993) and Kirkwood & Bangham
(1994) showed that oscillations plausibly arise
from the intrinsic feedbacks of virus}DI}host in-
teractions, but did not clarify which parameters
tend to control the main features of the dynamics.
By contrast, the model of Nelson & Perelson
(1995) did examine the role of various para-
meters, but their analysis was speci"cally de-
signed to study HIV infection of CD4` cells.

DI particles provide special insight into the
within-host dynamics of viral infections. The
polymorphism is relatively easy to detect when
compared with other types of viral diversity. The
DI particles and wild-type viruses di!er sharply
in their vital demographic characteristics of birth
and death rates, and they form a special trophic
relationship similar to a predator}prey interac-
tion. RNA viruses generate DI particles de novo
at a fairly high rate. Thus, even the failure to "nd
a signi"cant number of DI particles provides
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bounds on the demographic properties of viruses
and host cells.

In short, this striking polymorphism provides
a special window onto the dynamics within the
host. Such dynamics are undoubtedly very com-
plex. But the models that follow show how in-
creasingly complex systems may sometimes best
be studied by "rst stripping the system to its
barest essentials, there to "nd the simple pro-
cesses that drive many features of the more com-
plex interactions.

Model

I study the dynamics of free virus and several
classes of infected cells. A free virus is either a full
particle capable of the complete life cycle by itself,
denoted by <, or a DI particle, denoted by D.
Cells occur in "ve varieties: uninfected, C

U
; infec-

ted only by DI viruses, C
D
; infected only by full

viruses and early enough in the replication cycle
to be interfered by superinfection by a DI virus,
C

V
; infected only by full viruses and late enough

in the replication cycle not to be interfered by
superinfection by a DI virus, C<* ; and infected by
both full and DI viruses such that the DI viruses
can interfere with replication of the full genomes,
C

VD
[see Table 1].

The abundance of the viral and cellular types
may vary over space. The abundances in each
location depend on both the local interactions of
cells and viruses and the movement (di!usion)
TABLE 1
<ariables of the model

Variable Description

< Abundance of free virus
D Abundance of defective interfering (DI) virus
C

U
Abundance of uninfected cells

C
D

Abundance of cells infected only by DI viruses
C

V
Abundance of cells infected only by < viruses,
early in replication cycle and can be super-
infected and interfered by DI viruses

C<* Abundance of cells infected only by < viruses,
late in replication cycle and cannot be inter-
fered by DI superinfection

C
VD

Abundance of cells infected by both < and
D viruses, D viruses interfere with replication
of < viruses

N Total abundance of all cell types
of viruses from other locations. I assume that
cells do not move. The local abundance of each
variable is therefore a function of time, t, and
spatial location, x, where x is a location vector
in n dimensions. This system forms a classical
reaction}di!usion model common in ecological
applications (e.g. Segel & Levin, 1976; Hastings,
1978; Allen, 1983; Takeuchi, 1986; Murray, 1989).

The following equations describe this reac-
tion}di!usion system:
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where N is the total number of cells at a location,
and +2 terms are the vectors of second partial
derivatives in abundance in the n spatial dimen-
sions (L2/Lx2

1
,2, L2/Lx2

n
). Roughly speaking, the

di!usion terms cause a location's abundance of
viruses to be averaged over the abundances of
viruses in the neighboring locations. This
averaging occurs at a rate set by the di!usion
coe$cient, d.

Table 1 summarizes the variables of the model.
Table 2 de"nes the parameters with dimension
for each given in terms of time, t, length, ¸, and
number, d.



TABLE 2
Dimensional parameters in order of appearance in eqns (1)

Parameter Units and description

t (t), natural time scale
x
i

(¸), natural length scale for spatial dimension i
b (d/d) non-dimensional, number of < viruses produced divided by number of C<* cells at burst phase
n
2

(1/t), rate at which C<* cells burst to produce free virus
c (1/t), clearance of free virus (adsorption, decay, antibody clearance, etc.)
d (¸2/t), viral di!usion coe$cient
c (d/d) non-dimensional, number of D viruses produced divided by number of C

VD
cells at burst phase

/ (1/t), rate at which C
VD

cells burst to produce free virus
r (1/t), intrinsic rate of increase for C

U
cells

K (d), number of cells per location at cellular carrying capacity, determines density-dependent control of
cellular proliferation

k (1/td), rate of infection per virus
a (1/t), conversion of C

D
cell to C

U
cell by loss of DI virus viability in cell without < viruses

n
1

(1/t), rate at which C
V

cells convert to C<* cells
k (1/t), mutation of < to D viruses within cells, changing a C

V
cell into a C

VD
cell
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My model shares several features with the
model of Kirkwood & Bangham (1994).
Di!erences include: a spatial component in
my model against a single, well-mixed interaction
in their model; explicit age structure of infected
cells in their model against only two age catego-
ries for < infected cells in my model; density-
dependent regulation of cellular proliferation in
my model vs. uncontrolled growth in the absence
of virus in their model; and loss of DI viruses
from C

D
cells at rate a in my model vs. no loss in

theirs.
TABL

Non-dimensional varia

Non-dimensional
parameter Scaling of dimensional parameters

<K , DK , CK
y

"Z/K, where Z is a placeholder for the
various cellular types, and all abundance
CK

U
"C

U
/K

tL "ct, non-dimensional time units expres
xL
i

"x
i
(c/d)1@2, non-dimensional length u

dimensional time unit
n(
1
, n(

2
, /K , aL , kL , rL "z/c, where z is a placeholder for vario

/)"//c
kK "kK/c, infection rate per viral particl

abundance (K)
b, c De"ned originally as non-dimensional p

*Notes: (a) I use non-dimensional parameters beginning wit
The hats on the non-dimensional parameters are dropped in the
by the non-dimensional scalings and do not appear in the no
The system is easier to analyse when rewritten
in non-dimensional form (Segel, 1972; Murray,
1989). Non-dimensional analysis focuses atten-
tion on a minimal set of parameters and high-
lights relative magnitudes (scaling relations)
among the processes that drive the dynamics.
This is accomplished without altering the dynam-
ics or interpretation because one can translate
freely between the biologically motivated formu-
lation and the non-dimensional quantities.

Table 3 shows the non-dimensional scalings.
I use only the non-dimensional quantities in the
E 3
bles and parameters*

various viral and cellular abundances, y is a placeholder for
s are expressed in relation to cellular carrying capacity, K, e.g.

sed as the expected time to clear a free viral particle
nits expressed as the expected di!usion distance per non-

us rate parameters scaled to non-dimensional time units, e.g.

e adjusted to the non-dimensional scales for time (1/c) and

arameters

h eqns (2) and following through the remainder of the paper.
text. (b) The dimensional parameters c, d, and K are absorbed

n-dimensional system in eqns (2).
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remainder of the paper unless otherwise noted.
With these substitutions, the system in eqns (1)
can be rewritten in non-dimensional terms as
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where in these equations and in the following
I drop the hats from the non-dimensional para-
meters de"ned in Table 3. I describe in the
Appendix my methods for numerical analysis of
these partial di!erential equations.

Viral Dynamics without DI Particles

I begin analysis with a reduced version of
eqns (2). We can prevent the increase of DI par-
ticles and the associated variables D, C

D
, and

C
VD

by setting to zero the number of DI particles
that emerge from jointly infected cells, that is, by
setting c"0. The DI particles arise only by
mutation in this model, so we may also set k"0
to avoid introduction of DI viruses.

These simpli"cations reduce the system to the
four variables <, C

U
, C

V
, and C<* . Recall that

C
V

is a cell newly infected with standard virus
and susceptible to disruption by superinfecting
DI particles, whereas C<* cells have maturing
viral infections that are no longer susceptible to
superinfection. This distinction does not play
a role in the absence of DI particles. If we let
n
1
PR, then C

V
cells are transformed immedi-

ately into C<* cells. Thus, we may take the burst
rate for infected cells as n+n

2
, dropping

C
V

from the system. This leaves us with
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If we ignore di!usion, there is a single internal
equilibrium at

<"bnC<* , (4a)

C
U
"1/kb, (4b)
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U
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U
)/(rC

U
#n) (4c)

under the assumptions that nO0 and kb'1.
I discuss conditions for local stability of this
internal equilibrium in the Appendix. Note that
we can rescale this system by making the substi-
tution <"b=, with = as a scaled measure of
the abundance of free viruses. This substitution
causes the parameters k and b always to appear
together as a single parameter, kb. Thus, apart
from scaling, the global dynamics depend only on
the three parameters kb, r, and n.

I studied global dynamics without di!usion
numerically in light of the analytical results, and
reached three conclusions. (1) The virus is lost
when kb(1, otherwise as kb increases, abund-
ances #uctuate with decreased frequency and in-
creased amplitude of oscillations. (2) Increases in
r lead to increased frequency and decreased am-
plitude of oscillations, with a faster approach to
the internal equilibrium when the system is
stable. (3) Increases in n from low values cause
increased frequency and strongly increased am-
plitude of oscillations. Further increases create
strong transient bursts of virus followed by
crashes, leading to local extinction or very long



FIG. 1. Time-series plots of the system in eqns (3) without
spatial di!usion. Each panel shows the varying abundances
of all seven variables from eqns (2), although in this case only
<, C

U
, C<* vary. I show all variables here for comparison

with later "gures that plot changes in all seven types.
Abundances are plotted on a logarithmic scale, for viruses
from 0.01 to 10, and for cells from 0.001 to 1. All variables
and parameters are on the non-dimensional scale. The
panels compare results for changes in one parameter against
a standard set of: k"0.01; b"600; r"0.01; and n"0.07.
The parameter r was varied by a factor of two in the left
column, starting at the top with 0.005, in the middle row
with 0.01, and at the bottom row with 0.02. The parameter
n was varied by a factor of four in the right column, starting
at the top with 0.0175, in the middle row with 0.07, and at
the bottom row with 0.28. I used a stepsize for each iterate of
Dt"0.1 over 20,000 iterates, for a total of 2000 non-dimen-
sional time units. I initialized the system with <"C

U
"1

and C<*"0. The appendix describes the numerical
methods.

FIG. 2. Spatial pattern of the system in eqns (3) at a single
point in time. Arrangement and parameters are the same as
in Fig. 1. In addition, the spatial grid has 200 locations, and
the distance between locations is Dx"20, giving a total
non-dimensional length of 4000. The appendix describes the
numerical methods.
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periods between powerful transient bursts.
Figure 1 shows example dynamics for variations
in r and n.

I studied the role of spatial interaction with the
same system, adding back the di!usion term for
< in eqn (3a). Figure 2 shows spatial dynamics for
an array of parameters that matches Fig. 1. The
time series in Fig. 1 explains most aspects of the
spatial dynamics in Fig. 2. For example, increas-
ing r leads to increased frequency and reduced
amplitude of oscillations in the time series. These
changes correspond to increased frequency and
reduced amplitude over time in the spatial waves
in the left column of Fig. 2.

Figure 2 shows spatial pattern frozen at a
particular point in time. Space occurs in one
dimension over a line. To understand these spa-
tial patterns, one must imagine the space}time
dynamics as follows. At the start of a run, unin-
fected cells occur at full abundance over all loca-
tions, which would appear as a solid bar over the
line for C

U
. Also at the start, the abundance of

free, wild-type virus, <, is equal to the number of
uninfected cells only at the center grid point and
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is equal to zero elsewhere. This would appear as
a narrow peak for < in the center of the line. The
dynamics begin with free virus infecting cells at
this center location. The number of infected cells,
C<* , rises and the number of uninfected cells, C

U
,

declines at the center grid location.
The virus di!uses to neighboring locations,

beginning spatial waves that spread from the
center in both directions. The waves of viral
peaks cause a decline in C

U
and a peak in C<* . At

each location, as C
U

dips, that location cannot
maintain virus, so the peaks in < and C<* drop
and cannot rise again at that location until the
uninfected cells (C

U
) have recovered. The para-

meter r determines the rate of recovery of unin-
fected cells. The net e!ect is that the peaks in
< and C<* spread from the center, with corre-
sponding valleys in C

U
spreading in tandem. At

a particular location, the time between peaks
declines with an increase in r.

With this method of visualization in mind, one
can match the spatial patterns in the left column
of Fig. 2 with the temporal patterns in Fig. 1.
With low r (top, left panel), recovery takes a long
time, causing a low frequency of temporal and
spatial waves, each of large amplitude. With in-
creasing r (bottom, left panel), the damped tem-
poral oscillations in Fig. 1 correspond to reduced
amplitude spatial waves over time (near the
center) in Fig. 2, eventually approaching a non-
#uctuating equilibrium over the spatial domain.

Variations in n interact with spatial di!usion
in a di!erent way. Lower n corresponds to a
longer time between infection and burst produc-
tion of new virus. Slow production greatly reduc-
es the speed of the spatial waves, thus the low
temporal frequency in the upper right panel of
Fig. 1 corresponds to closely bunched, slowly
moving spatial peaks in the matching panel of
Fig. 2. Increasing n causes more rapidly moving
spatial waves but also greater local depression of
C

U
with a passing wave. Thus, a site requires

a longer time to recovery before it can support
the next wave. High n can lead to global extinc-
tion of the virus because rapidly moving waves of
infection travel o! the end of the line before the
center can recover su$ciently to support the next
round of infection.

Faster di!usion rates typically cause spatial
waves to travel faster. More importantly, high
di!usion rates can lead to viral extinction. The
key parameter is the length of the spatial domain
relative to the di!usion rate. When this length
scaling becomes too small, the spatial waves may
travel o! the ends so quickly that the uninfected
cells in the center do not have enough time to
recover and generate a new wave before viral
extinction. Thus, small organs may be more
prone to viral extinctions than large organs.

Dynamics with DI Particles

I return to the full system with DI particles
in eqns (2). I present results in this section
supporting two conclusions. (1) The frequency
of oscillations are driven primarily by the
<}C

U
}C<* subsystem summarized in the prior

section. (2) The rate of replacement of killed cells,
r, dominates the qualitative structure of the full
system as in the reduced<}C

U
}C<* subsystem. In

the full system, higher values of r lead to domi-
nance of DI particles and a signi"cant reduction
in the severity of cellular death caused by viral
(<) outbreaks.

Figure 3 shows time series for various para-
meter combinations without spatial di!usion.
The middle panel in the left column matches
closely the parameters used for the same panel in
the simpli"ed system of Fig. 1. The dynamics are
nearly identical*note that the time-scale di!ers
between the "gures. Starting with this middle
panel in the left column of Fig. 3, we can trace the
e!ects of varying r and a. A decline in r (top-left
panel) reduces the frequency of oscillations. A rise
in r (lower-left panel) increases the frequency of
oscillations and, as in the simpler system, has
a tendency toward a damped approach to a
steady state.

In the full model shown in Fig. 3, abundances
of all classes do not stabilize as quickly with a rise
in r as in the simpler system in Fig. 1. Instead, the
"rst e!ect of rising r in Fig. 3 is an increase in
the stable abundance of cells infected by DI (the
C

D
class). These DI-infected cells prevent the

spread of full viruses,<, because when a full virus
infects a cell with a latent DI particle, the cell
bursts producing only DI progeny. Note that the
abundances are on a logarithmic scale; there is
only a low frequency of C<* cells bursting to
produce <. Thus, the DI particles protect the



FIG. 3. Time series plots of the system in eqns (2) without
spatial di!usion. The structure of the "gure and the para-
meters match Fig. 1, with the following di!erences. The total
time here is 5000 non-dimensional units rather than the 2000
in Fig. 1. Abundance scales here are also logarithmic, but the
lower values are 0.1 for viruses and 0.01 for cells; these
increases in the lower limits make it easier to see how DI
particles reduce viremias to low levels. The base parameters
here are: n

1
"n

2
"0.07; /"0.05; k"0.0001; b"c"600;

and k"0.01. In the left column, a"0.0001 and r increases
from top to bottom as 0.002, 0.01, 0.05. In the right column,
r"0.05 and a increases from top to bottom as 0.0001, 0.001,
0.01.

FIG. 4. Spatial pattern of the system in eqns (2) at the end
of 5000 time units. Arrangement and parameters are the
same as in Fig. 3. In addition, the spatial grid has 200
locations, and the distance between locations is Dx"20,
giving a total non-dimensional length of 4000.
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host cells, reducing cellular death by viral viru-
lence to low, oscillating levels.

The parameter a describes the rate of loss of DI
particles from cells that lack < (C

D
cells). The

top-right panel of Fig. 3 has the same parameters
as the lower-left panel. As a increases down the
right column, DI particles are lost more quickly
from C

D
cells, causing a slight increase in the

frequency and amplitude of cellular deaths by
viral epidemics.

Figure 4 shows spatial dynamics for the same
parameter combinations as Fig. 3. The quali-
tative e!ects are the same as in the spatially
homogeneous case. Oscillations occur as moving
bands of viremia. The distance between bands
would, of course, be controlled by di!usion rate
(not shown).

Other parameters in#uence dynamics as
expected. For example, n

1
is the rate of transition

between C
V

and C<* cells. The C< cells are sus-
ceptible to infection by DI particles, whereas in-
fection by a DI particle of C<* is too late in the
viral replication cycle to in#uence the production
of < at burst. An increase in n

1
moves cells

quickly out of the susceptible phase and reduces
the abundance and potential controlling e!ects of
DI particles. Infected organs with small spatial
domains or high viral di!usion rates are more
prone to viral extinctions because viral waves
may travel out of the organ before the internal
tissues can recover su$ciently to support a new
wave.
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Discussion

Many papers report the di!ering conditions
that do or do not support widespread infection by
DI particles. The reviews listed in the introduction
summarize much of this literature. Here I mention
one example to illustrate the state of the "eld.
I then suggest that a comparative, testable theory
can be developed from the models presented here.
A comparative theory emphasizes how changes in
key parameters predict changes in the dynamical
outcomes of DI and wild-type viruses.

Holland et al. (1980, p. 167) reviewed the char-
acteristics of persistently infected cell lines with
and without DI particles. Carriers with DI par-
ticles included BHK cell lines with vesicular
stomatitis virus (VSV) and BHK cells with rabies.
Those without DI particles included L-cells with
VSV and the HeLa}VSV}Car49 cell line.

Two demographic characteristics di!ered
between cultured lines in which DI particles did
and did not in#uence persistence. First, cells in
which DI caused persistence had nearly 100% of
cells with viral antigen, whereas those lines that
did not require DI for persistence had a range of
cells with viral antigen from 0 to 30%. Apparent-
ly, DI virus infects nearly all cells in the "rst case,
greatly inhibiting the growth of the wild-type
virus, whereas viral infection varies when DI vi-
rus is not involved. Second, persistent infections
lasted many years when DI particles were in-
volved. By contrast, without DI particles severe
epidemics sometimes occurred, followed by loss
of the virus and curing of the cell line.

My models have parameter combinations that
match the observed di!erences. For example, DI
particles are rare and clearance follows epidemic
infections in the middle panel, left column of
Fig. 3. The panel below has a higher rate of
replacement for killed cells (higher r), a higher
frequency of infection by DI particles (C

D
), and

more frequent but less severe epidemic outbreaks
of cellular death. With higher values of r, virus
persists inde"nitely. Higher values of r moderate
oscillations by replacing killed host cells quickly
enough to keep host cell abundance above the
level required to maintain virus. The virus, in
turn, controls the increase in host cell abundance.
Virus and host lock into persistent oscillations
rather than bouts of epidemic catastrophe.
This "t of theory to observation shows that
simple dynamical considerations could plausibly
explain the data. But this "t by itself is not very
convincing. The true value of the theory derives
from its testable predictions. For example, rela-
tively larger organs or organs with relatively
lower rates of viral di!usion are more likely to
support persistent infections. Small organs or
high di!usion rates cause spatial waves of
viremia to travel out the organ boundaries before
new waves can develop in the interior.

The model also predicts that the rate of cellular
replacement, r, strongly in#uences the role of DI
particles. This could be tested experimentally by
varying the conditions of the growth medium to
modulate the rate of cellular division. If one
could, for a particular cell line and virus, change the
conditions that cause or prevent DI dominance,
then one would have made a convincing case for
the importance of cellular growth rate in explaining
the wide diversity of outcomes observed.

I thank R. M. Bush for comments on the manu-
script. National Science Foundation grant DEB-
9627259 supports my research.
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APPENDIX

Numerical Methods for PDEs

Numerical techniques for partial di!erential
equations (PDEs) must be chosen according to
the speci"c form of the equations (Ames, 1992).
By contrast with ordinary di!erential equations
or root-"nding problems, which can often be
solved by standard algorithms (Press et al.,
1992), a PDE system may require some modi"-
cation of existing methods to "t the problem
at hand. PDEs are also more di$cult because
of the computational burden of analysing
dynamics in both space and time. Algorithms
must therefore be computationally e$cient as
well as accurate.

To study eqns (2), I extended the method used
by Twizell et al. (1990) for the Fisher (1937) equa-
tion, which is the classic growth and di!usion
model for logistic dynamics of a single popula-
tion. In particular, my extensions allow compu-
tationally e$cient study of reaction}di!usion
models for community dynamics. I developed
this approach in my paper on bacteriocin dynam-
ics (Frank, 1994). Here, I brie#y outline my
method and the speci"c equations used for analy-
sis. See Press et al. (1992) and Ames (1992) for
general background and de"nitions of PDE
jargon, and Twizell et al. (1990) for more on the
particular approach taken here.

The method uses the Crank}Nicolson scheme
for spatial di!usion and a mixture of explicit and
implicit di!erence terms for the reaction (viral
infection, cellular growth, density dependent in-
teractions among cells). In this approach, the new
abundances in each time step, given by primed
variables, are calculated from a mixture of the
prior values (explicit terms) and the updated
values (implicit terms). The mixed explicit}impli-
cit "nite di!erence equations for eqns (2) without
the di!usion terms for < and D are
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These equations are easily solved for the prime
variables, providing simple calculations to up-
date each variable in each iteration. For example,
the solution for <@ is

<@"
<#bn

2
C<*Dt

1#Dt
,

with similar solutions for the other variables.
Di!usion of viral particles requires an alterna-

tive approach for updating < and D in each
iteration. Abundance at each spatial location
must be analysed simultaneously. Here, I study
only a single spatial dimension; the same prin-
ciple applies to higher spatial dimensions.

The "nite di!erences for < and D at location
i are
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The parameter h determines the mixture between
explicit (unprimed) and implicit (primed) values
used to calculate the e!ects of spatial di!usion.
I used the standard value of h"1

2
, which is the

Crank}Nicolson scheme. The spatial grid points
i occur along a single dimension, where each
non-dimensional spatial unit is divided into m
intervals and thus i"0,2, M, where M"m¸

for total non-dimensional length ¸. The bound-
aries are hostile, so that <

i
"D

i
"0 for i"0, M.

The "nite di!erence for the non-dimensional time
step is Dt. Spatial grid length is subsumed in
j"Dt/(Dx)2, where Dx"1/m is the non-dimen-
sional grid length.

The mixture of implicit (primed) and explicit
(unprimed) values in the reaction terms are
chosen to increase stability (Twizell et al., 1990)
and to prevent the negative abundances that
occur frequently in purely explicit schemes. In
addition, this system can be put in a form that
can be solved by e$cient computational
methods. All unprimed variables are known
quantities from the current time step in the iter-
ative procedure, so the only unknowns are the
primed variables. From these equations the
primed variables form a linear system of the
form
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This linear system is tridiagonal and can be
solved with O(N) calculations, allowing the study
of large spatial grids (Press et al., 1992).

I used open boundaries in all numerical stud-
ies, that is, I allowed di!usion o! the ends of the
spatial domain.

Dimensionality

I studied dynamics in a single spatial dimen-
sion in my numerical analyses. Extensive
modeling of Lotka}Volterra and other ecological
systems has been done for various spatial as-
sumptions, including multiple spatial dimensions
(e.g., Hastings, 1978; Allen, 1983; Takeuchi, 1986).
Segel & Levin (1976) point out that, with
a transition from one spatial dimension to two
dimensions in their predator}prey models, two
new phenomena may arise. First, smaller per-
turbations can disrupt locally stable equilibria in
higher spatial dimensions. Second, novel spatial
patterns can arise in equilibrium con"gurations
in two dimensions relative to one dimension.
Those novel equilibrium patterns have changing
densities of variables over space. It would be
interesting to extend the analyses of the DI sys-
tem to compare the results with various classical
ecological models.
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Eigenvalues for System without DI Particles

The system in eqns (3) has the internal equilib-
rium given in eqns (4) when nO0 and kb'1.
The Jacobian is
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where the variables< and C
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are evaluated at the

equilibrium given in eqns (4).
The characteristic equation is j3#a
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nal equilibrium, the coe$cients are
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The Routh}Hurwitz conditions for stability re-
quire that all coe$cients, a

i
, be positive, and that
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. All parameters and variables are pos-

itive, so the coe$cients are all positive. The con-
dition a
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Noting that C
U
"1/kb at the internal equilib-

rium, either 3#r'kb or n'kb is su$cient to
satisfy the inequality and guarantee local stability
of the internal equilibrium. Increases in kb
and declines in r are destabilizing. Values of n
greater than kb and small values of n are stabil-
izing; values between these bounds can promote
instability.
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