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Preface

Social evolution occurs when there is a tension between conflict and co-

operation. The earliest replicating molecules inevitably competed with

their neighbors for essential resources. They also shared a common in-

terest in using local resources efficiently; otherwise, more prudent car-

tels would eventually drive overly competitive groups out of business.

The conflicts and shared reproductive interests among cells within a

complex organism, or among members of a honey bee colony, also qual-

ify as social phenomena.

This book is about the economic concepts of value used to study so-

cial evolution. It is both a “how to” guide for making mathematical mod-

els and a summary with new insight about the fundamentals of natural

selection and social interaction.

I have cast the subject in a manner that is comfortable for an evo-

lutionary biologist but retains sufficient generality to appeal to many

kinds of readers. These include economists, engineers who use evolu-

tionary algorithms, and those who study artificial life to gain insight

about evolution, cognition, or robotics.

A fellowship from the John Simon Guggenheim Foundation in 1995–

1996 allowed me to catch up on other work. Andrew Pomiankowski

and Yoh Iwasa invited me to join them at the Institute for Advanced

Study in Berlin in 1996–1997, which provided an ideal opportunity for

writing. The National Science Foundation supported my research during

this period. My wife, Robin Bush, listened patiently and advised wisely.
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1 Introduction

The elder Geoffroy and Goethe propounded, at about the same

time, their law of compensation or balancement of growth; or,

as Goethe expressed it, “In order to spend on one side, nature

is forced to economise on the other side.”

—Charles Darwin, On the Origin of Species

The theory of natural selection has always had a close affinity with eco-

nomic principles. Darwin’s masterwork is about scarcity of resource,

struggle for existence, efficiency of form, and measure of value. If off-

spring tend to be like their parents, then natural selection produces a

degree of economic efficiency measured by reproductive success. The

reason is simple: the relatively inefficient have failed to reproduce and

have disappeared.

This book is about the proper measure of value in economic analyses

of social behavior. Some count of offspring is clearly what matters. But

whose reproductive success should be measured? Three exchange rates

define the value influenced by natural selection.

Fisher (1958a) formulated reproductive value by direct analogy with

the time value of money. The value of money next year must be dis-

counted by the prevailing interest rate when compared to money today.

Likewise, the value of next year’s offspring must be discounted by the

population growth rate when compared with the value of an offspring

today. This exchange rate makes sense because the ultimate measure of

value is not number of offspring, but contribution to the future of the

population. In general, individuals must be weighted by their expected

future contribution, their reproductive value.

The second factor is marginal value. This provides the proper scaling

to compare costs and benefits of different consequences on the same

scale, as in all economic analyses.

These first two exchange measures are standard aspects of economics

and biology. The third scaling factor is defined by the coefficient of

relatedness from kin selection theory. This exchange appears, at first

glance, to be a special property of evolutionary analysis.
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The theory of kin selection defines how an individual values the re-

production of a relative compared with its own reproduction (Hamilton

1964a). The following is a typical analysis. Sisters share by genealogical

descent one-half of their genes. This relatedness coefficient of one-half

means that natural selection is indifferent between a female who uses

resources to produce one offspring of her own or gives those resources

to her sister to produce two offspring. The one-half is an exchange rate

for evolutionary value, because the same number of copies of a gene is

made whether by one direct offspring, or by two indirect offspring each

devalued by one-half.

Genealogy provides an appealing notion of kinship and value. How-

ever, Hamilton (1970) showed that kin selection properly values social

partners according to statistical measures of genetic similarity that do

not necessarily depend on genealogical kinship. This must be so because

future consequences are determined only by present similarity, not by

the past complexities of genealogy. The current theory of kin selection

uses coefficients based on Hamilton’s statistical measure of similarity.

Once one accepts statistical similarity as the proper measure of value,

other puzzles arise, which have not been widely discussed. For example,

interactions between different species are governed by the same form of

statistical association as are interactions within species (Frank 1994a).

But it does not make sense to speak of kinship or genetic similarity

for interactions between species. Thus the simple notion of a genetic

exchange rate in kin selection appears to be part of a wider phenomenon

of correlated interaction.

I describe the current theory of kin selection in detail. I then show

that kin selection has a close affinity to the ideas of correlated equilib-

rium in game theory and economics (Aumann 1974, 1987; Skyrms 1996).

I connect these ideas to various notions of statistical information and

prediction. This shows the logical unity of social evolution, statistical

analysis of cause, aspects of Bayesian rationality, and economic mea-

sures of value.

I present the economic concepts of value by working through the

methods needed to analyze particular problems. Thus the book also

serves as a step-by-step guide for developing models of social evolution.

Chapter 2 is a self-contained summary of the main concepts and meth-

ods of analysis. This chapter also develops a statistical formalism of
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natural selection that detaches the theory from the particulars of genet-

ics and biology. In spite of this abstraction, I preserve the language and

style of typical biological models.

Chapter 3 reviews previous theories of kin selection. This chapter

begins with Hamilton’s (1970) derivation of inclusive fitness, which is

a particular type of causal analysis for interactions among relatives.

Queller’s (1992a) model follows as an alternative to inclusive fitness,

in which social interaction is analyzed as a problem in the evolution of

correlated characters (Lande and Arnold 1983).

Chapter 4 develops new methods for studying social evolution. The

first method extends Queller’s analysis of correlated characters in social

interaction. The second method transforms the analysis of correlated

characters into an enhanced version of Hamilton’s inclusive fitness the-

ory. The measures of value are then used to develop maximization tech-

niques. These techniques provide practical tools for solving problems.

Chapter 5 works through several cases of social interaction with cor-

related phenotypes. Many examples are in familiar game theory form.

This provides background for the new interpretations of relatedness

that follow.

Chapter 6 suggests that relatedness is, in fact, a statistical measure

of information. Several examples are developed to illustrate this con-

cept. This chapter also emphasizes the notion of conditional behavior,

in which an individual adjusts its strategy in response to additional in-

formation. An example of kin recognition provides a natural connection

between conditional behavior and the interpretation of relatedness as

information.

Chapter 7 works through several examples of kin selection. Particu-

lar emphasis is placed on the distribution of resources and individuals.

This shows how social behavior must be analyzed in its full ecological

and demographic context. The models also illustrate how to use the

techniques developed earlier to solve real problems.

Chapter 8 analyzes social interaction among different classes of indi-

viduals. The classes may be defined by age, size, or other attributes that

change the marginal costs and benefits of sociality. A powerful tech-

nique is presented for combining class structure, reproductive value,

and kin selection. The technique is illustrated by models of parasite

virulence, social behavior in different kinds of habitats, and juvenile
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mortality in social groups. This chapter completes the presentation of

fundamental principles and methods of analysis.

Chapters 9 through 11 summarize sex allocation theory. The problem

of sex allocation is how a parent divides its resources between sons and

daughters. The consequences depend on what neighbors do, creating

a social aspect to payoffs for different strategies. Interactions among

relatives change the shape of the payoffs. The analysis illustrates the

methods and concepts of the previous chapters.

Chapter 12 reviews what has been accomplished and what remains to

be done.



2 Natural Selection

“Natural selection is not evolution.” This first sentence of Fisher’s (1930)

book, The Genetical Theory of Natural Selection, describes the limits of

my analysis. I am concerned with the ways in which natural selection

shapes patterns of biology. This is apart from many historical details

of how evolution has actually proceeded. Suppose, for example, that

humans were suddenly to become extinct. Perhaps another lineage of

ape would follow the path of advancing language and intellect. Details

of hair morphology, color, and development would likely differ from

those of any extant people.

Maybe another humanlike lineage would never arise. The theory of

natural selection is rather weak in predicting the special combination

of ecological and genetic circumstances required to create a particular

animal or plant. Rather, the theory is local. A question we might be

able to answer is: for two otherwise similar populations that differ in a

few parameters, what direction of change in social traits does the theory

predict? This question emphasizes direction of change in a comparison.

It is much more difficult to explain the degree of fit between organism

and environment in a particular case.

So, in spite of social evolution in my title, this book is really about

social natural selection. Even within this narrower scope, I have a limited

goal. I am concerned with the logical deductions that follow from natural

selection. I emphasize concepts and methods that aid rational thought,

rather than an accounting of particular theories in light of the available

data.

I begin with a summary of some useful tools for the analysis of natural

selection. This summary provides an informal sketch of the principles.

Later chapters fill in some of the formal detail and history for social

topics.
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2.1 Aggregate Quantities

The regularity of [natural selection] is in fact guaranteed by

the same circumstance which makes a statistical assemblage

of particles, such as a bubble of gas obey, without appreciable

deviation, the laws of gases.

—R. A. Fisher, The Genetical Theory of Natural Selection

One of the first great challenges to the theory of natural selection came

with the rediscovery of Mendel’s laws of heredity in 1900. Mendel show-

ed that discrete characters, such as wrinkled or smooth peas, may each

be associated with a correspondingly discrete piece of hereditary ma-

terial. Each individual gets one hereditary particle for wrinkled, W , or

smooth, S, from each of its two parents. (Details of the following history

can be found in Provine (1971) and Bennett (1983).)

An offspring obtaining W from each parent, written as genotype WW ,

expresses the wrinkled phenotype. An SS offspring is smooth. Another

of Mendel’s interesting observations is that the mixed offspring, SW , is

smooth and phenotypically indistinguishable from the SS genotype. The

tendency of the mixed genotype to express the same phenotype as one

of the pure types is called dominance—one allele (hereditary particle) is

dominant over the other.

Mendel also studied the pattern of association between different char-

acters. In one example, he analyzed simultaneously alternative colors,

white or yellow, and alternative textures, wrinkled or smooth. He found

that the color and texture qualities were inherited independently. Later

work showed that independent inheritance is common, but partial as-

sociation (linkage) also occurs in many cases.

In summary, Mendel showed that characters are discrete with large

gaps between types, offspring with mixed hereditary particles express

one of the pure phenotypes rather than an intermediate character, and

different characters tend to be inherited independently.

The new Mendelians of the early 1900s interpreted these results as

a great challenge to the primacy of natural selection as an evolutionary

force. If there are large gaps between inherited characters, then differ-

ences between species must arise spontaneously by a new mutation of

large effect. This contradicts Darwin’s emphasis on gradual change over
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long periods of time—the slow and continuous reshaping of pattern by

the inexorable process of selection acting on small variations.

The biometricians fought bitterly with the new Mendelians. They had

been measuring the statistical properties of populations since Galton’s

work in the 1880s. Their characters, such as weight, varied continu-

ously and were readily described by moments of distributions, such

as means and standard deviations. Heredity was naturally described

as the statistical association between parent and offspring—the correla-

tion among relatives. Darwin’s slow and continuous evolution by natural

selection was readily understood by these statistical properties. Select-

ing heavier parents for breeding caused the mean weight of offspring

to increase because parent and offspring are correlated. The increase

was easily predicted by the excess among the selected parents and the

parent-offspring correlation.

The biometricians did not have a theory that joined the facts of Men-

delian heredity with the detailed observations of continuity and cor-

relation. The Mendelians argued that, with the first clear information

about heredity in hand, the case for particulate, discrete inheritance was

settled and the biometricians’ program was flawed. To resolve these

opposing views, Yule suggested that many traits lacked the complete

dominance found by Mendel. If many separate factors with incomplete

dominance were combined, then Mendel’s particulate inheritance might

sum up to express continuous trait values.

Yule was correct but ignored. The turning point began with a public

talk in 1911 by a young Cambridge undergraduate, R. A. Fisher. Fisher

independently developed the idea that the dynamics of natural selection

could be described by aggregate statistics of the hereditary particles. He

explicitly discussed the analogy with statistical mechanics: the behavior

of gases is often best described by the statistical properties of the pop-

ulation of molecules rather than the detailed dynamics of each particle.

Fisher’s (1918) classic paper settled the issue, although it took several

years for the debate to subside.

COVARIANCE OF A CHARACTER AND FITNESS

Statistical descriptions of selection are useful for predicting short-term

changes in populations. Such measures also provide a powerful method

for reasoning about complex problems of selection independently of the

underlying hereditary system.
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The change in the average value of a trait is

w∆z = Cov (w, z) = βwzVz, (2.1)

where w is fitness and z is a quantitative character. I have assumed that

z is inherited perfectly between parent and offspring. This assumption

is relaxed below.

Eq. (2.1) shows that the change in the average value of a character,∆z, depends on the covariance between the character and fitness or,

equivalently, the regression coefficient of fitness on the character, βwz ,

multiplied by the variance of the character, Vz . This equation was dis-

covered independently by Robertson (1966), Li (1967), and Price (1970).

The equation simply says that the more closely a character is associated

with fitness, the more rapidly it will increase by selection.

Because fitness itself is a quantitative character, one can let the char-

acter z in Eq. (2.1) be equivalent to fitness, w . Then the regression, βww ,

is one, and the variance, Vw , is the variance in fitness. Thus the equation

shows that the change in mean fitness, ∆w , is proportional to the vari-

ance in fitness, Vw . The fact that the change in mean fitness depends on

the variance in fitness is usually called Fisher’s fundamental theorem of

natural selection, although that is not what Fisher (1958a, 1958b) really

meant. Price (1972b) clarified Fisher’s theorem in a fascinating paper

that I will discuss later.

DYNAMIC SUFFICIENCY

The covariance equation can be thought of as a transformation from

a system that specifies the dynamics of individual hereditary particles

(alleles) to one that specifies the dynamics of the aggregate effects of the

alleles. The transformed dynamics are expressed as the moments and

cross-products of statistical properties of the population. This is useful

because, in studying social evolution, the problem is to understand how

selection changes the means and variances of social traits.

The great advantage of the covariance equation is that it depends only

on relatively easily measured variables—the trait itself and the fitness

of individuals with particular trait values. The cost for simplicity and

few assumptions is that prediction of changes in the mean beyond the

immediate response requires knowledge about the future value of the

covariance. This is the problem of dynamic sufficiency. By making few
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assumptions about the dynamics of the causal particles, one can derive

fewer consequences about system dynamics.

The conditions under which an evolutionary system is dynamically

sufficient can be seen from the covariance equation, Eq. (2.1) (Frank

1995a). Initially, we require z, w , and wz to calculate ∆z because

Cov(w, z) = wz − w z. We now have z after one time step, but to use

the covariance equation again we also need Cov(w, z) in the next time

period. This requires equations for the dynamics of w and wz. Changes

in these quantities can be obtained by substituting either w or wz for z
in Eq. (2.1); note that z can be used to represent any quantity, so we can

substitute fitness, w , or the product of fitness and character value, wz,

for z. The dynamics of wz are given by

w∆wz = Cov (w,wz) = w2z −w wz.

Changes in the covariance over time depend on the dynamics of wz,

which in turn depends on w2z, which depends on w3z, and so on. Sim-

ilarly, the dynamics of w depend on w2, which depends on w3, and so

on. Dynamic sufficiency requires that higher moments can be expressed

in terms of the lower moments (Barton and Turelli 1987).

Emphasis on the immediate (partial) direction of change caused by

selection is a practical compromise to get a feeling for what is happening

in complex systems. It requires careful use and study of limitations, as

we will encounter in later sections.

Treating selection as a statistical process, based on aggregate quanti-

ties, is the first step toward a powerful method of analysis. The second

step is partitioning evolutionary change into components, and assigning

an explicit cause to each component.

2.2 Partitions and Causal Analysis

[A] good notation has a subtlety and suggestiveness which at

times make it seem almost like a live teacher.

—Bertrand Russell

The evolutionary consequences of selection may be separated into dif-

ferent components. For example, inherited ability to withstand severe

cold provides some individuals with a survival advantage during a win-

ter storm. The adults that survive may differ from the population that
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existed previously. These changes are the direct effect of selection. The

consequences for subsequent generations depend on the details of the

inheritance system—the following generation is produced as the remain-

ing adults breed and mix their alleles. The total change between gen-

erations can be partitioned into two components: the change among

adults plus the change from breeding adults to offspring of the next

generation.

A different partition emphasizes selection within and among groups.

A selfish individual may outcompete its neighbors and increase its con-

tribution to the next generation when compared with those neighbors.

This is within-group selection. Selfish individuals may also reduce the

efficiency and productivity of their group. The total contribution of

a group with many selfish individuals will tend to be lower than the

contribution of a group with few selfish individuals. Thus an individ-

ual’s total success may be accounted by the combination of two levels:

success relative to neighbors, and success of the neighborhood against

other groups (Hamilton 1975; Wilson 1980).

Fisher’s fundamental theorem of natural selection describes a third

partition. Fisher separated changes in frequency caused directly by nat-

ural selection from other factors, which he called environmental effects.

This theorem has been particularly confusing because Fisher ascribed

indirect consequences of frequency change caused by natural selection

to his second, environmental term. I will discuss this theorem below.

Partitions never change the total effect, and any total effect may be

partitioned in various ways. Partitions are simply notational conven-

tions and tools of reasoning. These tools may show logical connections

and regularities among otherwise heterogeneous problems. Because al-

ternative partitions are always possible, choice is partly a matter of taste.

The possibility of alternatives leads to fruitless debate. Some authors

inevitably claim their partition as somehow true; other partitions are la-

beled false when their goal or method is misunderstood or denigrated.

Statistical regression models, used for prediction or causal analysis,

provide a complementary method of partition. Two steps have been par-

ticularly important in studies of natural selection. First, characters are

described by their multiple regression on a set of predictor variables.

The most common predictors in genetics are alleles and their interac-

tions, but any predictor may be used. The second step is to describe
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fitness by multiple regression on characters. Once again, characters

may be chosen arbitrarily.

Using these two steps in the Price Equation clarifies many historical

aspects of the study of natural selection. In the following sections I

show the relations among Fisher’s fundamental theorem, Robertson’s

covariance theorem, the Lande and Arnold (1983) model for the causal

analysis of natural selection, and Hamilton’s rule for kin selection. This

analysis not only unifies historical aspects, but also provides a power-

ful method for studying social evolution. (The following sections briefly

summarize Frank (1997e), which provides additional details about par-

titions and causal analysis.)

THE PRICE EQUATION

Conceptual simplicity, recursiveness, and formal separation

of levels of selection are attractive features of [Price’s] equa-

tions.

—W. D. Hamilton, “Innate Social Aptitudes of Man”

The Price Equation is an exact, complete description of evolutionary

change under all conditions (Price 1970, 1972a). The equation adds

considerable insight into many evolutionary problems by partitioning

change into meaningful components.

Here is the derivation. Let there be a population (set) where each

element is labeled by an index, i. The frequency of elements with index

i is qi , and each element with index i has some character, zi . One can

think of elements with a common index as forming a subpopulation

that makes up a fraction, qi , of the total population. No restrictions are

placed on how elements may be grouped.

A second (descendant) population has frequencies q′i and characters

z′i . The change in the average character value, z, between the two pop-

ulations is ∆z =∑q′i z
′
i −
∑

qizi. (2.2)

Note that this equation applies to anything that evolves, since z may

be defined in any way. For example, zi may be the gene frequency of

entities i, and thus z is the average gene frequency in the population,

or zi may be the square of a quantitative character, so that one can
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study the evolution of variances of traits. Applications are not limited

to population genetics. For example, zi may be the value of resources

collected by bees foraging in the ith flower patch in a region (Frank

1997b) or the cash flow of a business competing for market share.

Both the power and the difficulty of the Price Equation come from

the unusual way it associates entities from two populations, which are

typically called the ancestral and descendant populations. The value

of q′i is not obtained from the frequency of elements with index i in

the descendant population, but from the proportion of the descendant

population that is derived from the elements with index i in the parent

population. If we define the fitness of element i as wi , the contribution

to the descendant population from type i in the parent population, then

q′i = qiwi/w , where w is the mean fitness of the parent population.

The assignment of character values z′i also uses indices of the par-

ent population. The value of z′i is the average character value of the

descendants of index i. Specifically, for an index i in the parent popu-

lation, z′i is obtained by weighting the character value of each entity in

the descendant population by the fraction of the total fitness of i that

it represents (see examples in later sections). The change in character

value for descendants of i is defined as ∆zi = z′i − zi .
Eq. (2.2) is true with these definitions for q′i and z′i . We can proceed

with the derivation by a few substitutions and rearrangements

∆z =∑qi (wi/w) (zi +∆zi)−∑qizi

=
∑

qi (wi/w − 1) zi +
∑

qi (wi/w)∆zi,
which, using standard definitions from statistics for covariance (Cov)
and expectation (E), yields the Price Equation

w∆z = Cov (w, z)+ E (w∆z) . (2.3)

The two terms may be used to develop a variety of partitions because

of the minimal restrictions used in the derivation (Hamilton 1975; Wade

1985; Frank 1995a). For example, the terms describe changes caused

by selection and transmission, respectively. The covariance between

fitness and character value gives the change in the character caused

by differential reproductive success. The expectation term is a fitness-

weighted measure of the change in character values between ancestor

and descendant.
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Recursive expansion of Eq. (2.3) provides another common partition

(Hamilton 1975; Frank 1995a). For example, if the population is divided

into groups, then w and z can denote the average fitness of a group

and average character of a group, respectively. The covariance term

then describes selection among groups. The expectation term subsumes

selection within groups and other factors. This can be seen with self-

expansion.

There is no satisfactory notation for hierarchical expansion. Each

publication uses a different style to fit the particular problem. Here I use

uppercase letters for individual values and lowercase for group means.

Thus, for a particular group, w =W and z = Z, so the expectation term

is EG(W∆Z). The subscript G emphasizes that the expectation is taken

over groups. This form shows that the left side of the equation can be

used to expand W∆Z , yielding

W∆Z = Cov (W,Z)+ E (W∆Z) , (2.4)

which expresses selection within the group in the covariance term and

transmission in the expectation term. Since w∆z = W∆Z, Eq. (2.4) can

be substituted into Eq. (2.3) to give the total change in the population

w∆z = Cov (w, z)+ EG [Cov (W,Z)+ E (W∆Z)] .
The equation could be used to expand the final term, W∆Z . Repeating

the process provides an arbitrary number of hierarchical levels.

CAUSAL ANALYSIS

It is often convenient in measurement or in theoretical argument to con-

sider explicitly the various factors that influence fitness. Multiple regres-

sion provides a useful set of tools to describe or estimate from data the

direct effects of various predictors on fitness

w = πz + β′y+ ε,

where π is the direct (partial regression) effect on fitness by the char-

acter under study, z, holding the other predictors y = (y1, . . . , yn)T con-

stant, β′ = (β1, . . . , βn) are the partial regression coefficients for the

predictors, y, and ε is the error in prediction.
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Lande and Arnold (1983) analyzed natural selection and the change

in character values within generations by study of

w∆z = Cov (w, z) = πCov (z, z)+
∑
i
βiCov (yi, z) .

This equation describes the direct effect of the character, z, on its own

fitness, and the effect of correlated characters, y, on the fitness of z. Ex-

panded regression methods, such as path analysis, have been discussed

widely (e.g., Crespi 1990). Heisler and Damuth (1987) and Goodnight

et al. (1992) noted that one is free to use any predictors, y, of inter-

est. In particular, they emphasized that characteristics of groups can

be used, allowing analysis of the direct effects of selection on group

properties and the consequences for evolutionary change. I will return

to this topic in a later section on kin selection.

Lande and Arnold (1983) extended their analysis to describe the re-

sponse to selection, that is, the change in character values from one

generation to the next. They used heritabilities to transform changes

within a generation into changes between generations. However, heri-

tabilities do not provide exact results when there is selection, even in

theoretical models. I take an exact approach for character change be-

tween generations by using the Price Equation.

The difficulty for any method of describing character change between

generations is that observed character values, z, will have many causes

that are not easily understood. Further, some of those causes, such

as random environmental effects, will not be transmissible to the next

time period; thus ∆z in the second term of Eq. (2.3) will be erratic and

difficult to understand. It would be much better if, instead of working

with z as the character under study, we could focus on those predictors

of the character that can be clearly identified. It would also be useful

if the transmissible properties of the predictive factors could be easily

understood, so that some reasonable interpretation would be possible

for ∆z.

Let a set of potential predictors be x = (x1, . . . , xn)T . Then any char-

acter z can be written as z = b′x+δ, where the b′ are partial regression

coefficients for the slope of the character z on each predictor, x, and

δ is the unexplained residual. The additive, or average, effect of each

predictor, bx, is uncorrelated with the residual, δ.

In genetics the standard predictors are the hereditary particles (alle-

les). We write our standard regression equation for the character z of
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the ith individual as

zi =
∑
j
bjxij + δi = gi + δi, (2.5)

where gi =
∑

j bjxij , is the called the breeding value or additive genetic

value. The breeding value is the best linear fit for the set of predictors,

xi , in the ith individual. Each xij is the number of copies of a particular

allele, j , in the ith individual. If we add the reasonable constraint that

the total number of alleles per individual is constant,
∑

j xij = K, then

the degree of freedom “released” by this constraint can be used among

the b’s to specify the mean of z. Thus, we can take z = g, and δ = 0.

The breeding value, g, is an important quantity in applied genetics

(Falconer 1989). The best predictor of the trait in an offspring is usually

(1/2)(gm + gf ), where gm and gf are genetic values of mother and fa-

ther. Heritability is usually defined as Vg/Vz , where Vg is the variance in

breeding values, g, and Vz is the variance in character values, z. There

is, of course, nothing special about genetics in the use of best linear

predictors in the Price Equation. The trait z could be corporate profits,

with predictors, x, of cash flow, years of experience by management,

and so on. I will often use the term allele for predictor, but it should be

understood that any predictor can be used.

A slightly altered version of Eq. (2.3) will turn out to be quite useful in

the following sections. Any trait can be written as z = g+δ, where g, the

sum of the average effects, is uncorrelated with the residuals, δ. Average

trait value is z = g, because the average of the residuals is always zero

by the theory of least squares. In the next time, period z′ = g′ +δ′, and

z′ = g′. Thus the change in average trait value is z′ − z = ∆z = ∆g. To

study the change in average trait value we need to analyze only ∆g, so

we can use z ≡ g in the Price Equation, yielding

w∆z = w∆g = Cov
(
w,g

)+ E
(
w∆g) (2.6)

= βwgVg + E
(
w∆g) , (2.7)

where, by definition of linear regression, Cov(w, g) can be partitioned

into the product of the total regression coefficient, βwg, and the variance,

Vg, in trait value that can be ascribed to our set of predictors. In genetics,

g is the (additive) genetic value, and Vg is the genetic variance. Yet

another form of the Price Equation, obtained by simple rearrangement
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of terms in Eq. (2.7), will also turn out to be useful (Frank 1997e)

∆g = Cov
(
w,g′

)
/w + E

(∆g)
= βwg′Vg′/w +Dg. (2.8)

Here g′ is the breeding value transmitted by parents when measured

among offspring. The first term accounts completely for differential

fitness, andDg is the change in breeding value between ancestor-descen-

dant pairs.

Robertson (1966), in a different context, derived the Cov(w, g) as the

change in a character caused by natural selection. This covariance result

is called Robertson’s secondary theorem of natural selection, and is the

form used by Lande and Arnold (1983) to describe evolutionary change

between generations.

Robertson did not provide a summary of the remainder of total change

not explained by the covariance term. Crow and Nagylaki (1976), ex-

panding an approach developed by Kimura (1958), specified a variety of

remainder terms that must be added to the covariance. They provided

the remainders in the context of specific types of Mendelian genetic in-

teractions, such as dominance, epistasis, and so on. The Price Equation

has the advantages of being simple, exact, and universal, and we can see

from Eq. (2.6) that, for total change, it is the term E(w∆g) that must be

added to the covariance term.

PREDICTORS AND ADDITIVITY

Confusion sometimes arises about the flexibility of predictors and of

the Price Equation. The method itself adds or subtracts nothing from

logical relations; the method is simply notation that clarifies relations.

For example, in Eq. (2.5), I partitioned a character into the average, or

additive, effect of individual predictors (alleles). One could just as easily

study the multiplicative effect of pairs of alleles, including dominance

and epistasis, by

zi =
∑
j
bjxij +

∑
j

∑
k
αjkxijxik + δi = gi +mi + δi,

where αjk is the partial regression for multiplicative effects, and mi

is the total multiplicative effect of alleles. Then the analogous, exact

expression for Eq. (2.6) is

w∆z = w∆(g +m
) = Cov

(
w,g +m

)+ E
[
w
(∆g +∆m)] .
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Examples of the Price Equation applied to dominance and epistasis are in

Frank and Slatkin (1990a). That paper showed how to calculate character

change during transmission by direct calculation of E[w(∆g +∆m)].
With respect to the general problem of additivity of effects, it is useful

to recall the nature of least squares analysis in regression. That analysis

makes additive the contribution of each factor, for example, g+m. But

a factor, such as m, may be created by any functional combination of

the individual predictors.

What is additivity? Unfortunately the term is used in different ways.

Consider two contrasting definitions.

First, one can fit a partial regression (average effect) for each predic-

tor in any particular population. The effects of the predictors can then

be added to obtain a prediction for character value. Interactions among

predictors (dominance and epistasis) can also be included in the model,

and these partial regression terms are also added to get a prediction.

The word additivity is sometimes used to describe the relative amount

of variance explained by the direct effects of the predictors versus in-

teractions among predictors.

Second, one can compare regression models between two different

populations, for example, parent and offspring generations. If the par-

tial regression coefficients for each predictor remain constant between

the two populations, then the effects are sometimes called additive. This

may occur because the context has changed little between the two pop-

ulations, or because the predictors have constant effects over very dif-

ferent contexts.

Constancy of the average effects implies E(w∆g) = 0 in many genet-

ical problems. This sometimes leads people to say that the equality re-

quires or assumes additivity, but I find little meaning in that statement.

Small changes in E(w∆g) simply mean that the partial regression coef-

ficients for various predictors have remained stable, either because the

context has changed little or because the coefficients remain stable over

varying contexts. Constancy may occur whether the relative amount of

variance explained by the direct effects of the individual predictors is

low or high.

Constancy of average effects plays an important role in a variety of

well-known selection models. I use the Price Equation in the following

sections to unify those models within a single framework.
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FISHER’S FUNDAMENTAL THEOREM

R. A. Fisher stated his famous fundamental theorem of natural selection

in 1930: “The rate of increase in fitness of any organism at any time is

equal to its genetic variance in fitness at that time.” He claimed that

this law held “the supreme position among the biological sciences” and

compared it with the second law of thermodynamics. Yet for 42 years

no one could understand what the theorem was about, although it was

frequently misquoted and misused to support a variety of spurious ar-

guments (Frank and Slatkin 1992; Edwards 1994). Approximations and

special cases were proved, but those sharply contradicted Fisher’s claim

of the general and essential role of his discovery. Price (1972b) was the

first to explain the theorem and its peculiar logic. Price’s work, known

only to a few specialists, was clarified by Ewens (1989).

Price’s (1970) own great contribution, the Price Equation, has a tanta-

lizingly similar structure to the fundamental theorem, yet Price himself

did not relate the two theories in any way. In this section I provide

a proof of the fundamental theorem, following directly from the Price

Equation (Frank 1997e). The proof combines the Price Equation with the

models of causal analysis outlined in the previous sections.

Fisher did state that the rate of increase in the average fitness of a

population is equal to the genetic variance in fitness. In spite of that

statement, Fisher was not concerned with the total evolutionary change

in fitness. Rather, he was interested in how natural selection directly

changes the adaptation of individuals when studied in the context of to-

tal evolutionary change. By his definitions, natural selection inevitably

increases individual fitness, but environmental changes act simultane-

ously in a way that usually reduces fitness by approximately the same

amount. This must be so because, as Fisher noted, if average reproduc-

tive rate (fitness) were continually increasing or decreasing, then popu-

lations would either overrun the earth or quickly disappear.

By Fisher’s view, the “partial” change in average fitness caused by

natural selection is an increase proportional to the variance in fitness.

The full evolutionary change in average fitness is the sum of the par-

tial change in fitness caused by selection and a second term that is the

partial change in fitness caused by changes in the environment. Environ-

mental change includes every aspect of change in the genetic system, in

interactions among individuals, and in the physical environment. Thus
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the natural selection term is extracted from the full evolutionary dynam-

ics. The term focuses attention on selection as a single force in complex

systems.

The Price Equation applies to general selective systems without any

assumptions about the specifics of heredity. The equation has a similar,

although not identical, partitioning between selective and environmen-

tal effects on evolutionary change. If, for example, we take fitness as

the character under study, z ≡ w , then

w∆w = Cov (w,w)+ E (w∆w)

= Var (w)+ E (w∆w) ,
(2.9)

where the first term is the variance in fitness and the second is the com-

ponent of evolutionary change caused by changes in the environment.

This is all a bit abstract. I show later how the partition between selec-

tive and environmental effects can be useful. The general point is that

Eq. (2.9) provides an equilibrium condition

Var (w)+ E (w∆w) = 0.

Selective improvements in fitness, Var(w), must be exactly balanced by

what Fisher called “deterioration of the environment,” here represented

by E(w∆w).
Eq. (2.9) is similar to the fundamental theorem, but Var(w) is the to-

tal variance in fitness rather than Fisher’s “genetic” variance. We can,

however, prove the fundamental theorem directly from the Price Equa-

tion form given in Eq. (2.7). The trait of interest is fitness itself, z ≡ w ,

and, as for other traits, we write w = g + δ. Thus βwg = 1, and Vg is

the genetic variance in fitness. Fisher was concerned with the part of

the total change when the average effect of each predictor is held con-

stant (Price 1972b; Ewens 1989). Since g is simply a sum of the average

effects, holding the average effect of each predictor constant is equiva-

lent to holding the breeding values, g, constant, thus E(w∆g) = 0 (Frank

1997e). The remaining partial change is the genetic variance in fitness,

Vg; thus we may write

∆fw = Cov
(
w,g

)
/w = Vg/w, (2.10)

where ∆f emphasizes that this is a partial, Fisherian change, obtained

by holding constant the contribution of each predictor.
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Although Eq. (2.10) looks exactly like Fisher’s fundamental theorem, I

must add important qualifications in the following paragraphs. But first

let us review the assumptions. The Price Equation is simply a matter of

labeling entities from two sets in a corresponding way. The two sets

are usually called parent and offspring. With proper labeling, the co-

variance and expectation terms follow immediately from the statistical

definitions.

For any trait we can write z = g + δ, where g is the sum of effects

from a set of predictor variables, the effects obtained by minimizing the

summed distances between prediction and observation (maximizing the

use of information available from the predictors). This guarantees g is

uncorrelated with δ. If we substitute into the Price Equation, the result

in Eq. (2.7) follows immediately. Fisher was concerned with the part

of the total change in fitness when the effect of each predictor is held

constant, yielding Eq. (2.10). Thus Eq. (2.10) is obtained by using the

best predictors of the trait substituted for the trait itself, and holding

constant the effects of the predictors.

I close this section by reviewing a few technical details about Fisher’s

theorem. I discussed these issues extensively in Frank (1997e). Here I

emphasize those points that will aid in the analysis of kin selection and

Hamilton’s rule.

From Eq. (2.10) and a bit of algebra given in Frank (1997e), the funda-

mental theorem can be expressed in terms of frequency change

∆fw = Cov
(
w,g

)
/w = Vg/w =

∑
(∆qi) gi,

where gi is the breeding value of the ith element and, using definitions

from the section on the Price Equation, the change in frequency of the

ith element in the population caused by natural selection is

∆qi = q′i − qi = qiwi/w − qi = qi (wi/w − 1) .

This notation emphasizes Fisher’s interpretation that natural selection

directly causes changes in frequency, and only indirectly has conse-

quences for changes in the effects of predictors via changes in breeding

value. Thus the partial change caused by natural selection is the fre-

quency change caused directly by natural selection, holding constant

the effects of the predictors (breeding value).

I have given my equations for the fundamental theorem in terms of

the frequencies of the aggregate elements, that is, the frequency of the
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aggregate i as qi . In genetics the aggregate i would normally be an indi-

vidual genotype, composed of a set of alleles (predictors) that comprise

the genotype. In the notation of Eq. (2.5), the individual alleles are xij ,
for the number of copies of the jth allele in the ith individual. I denote

frequencies for allele j as rj . With this notation, I (Frank 1997e) showed

the equivalence of the theorem expressed in terms of the aggregate el-

ements or the individual predictors

∆fw =
∑

(∆qi) gi = n
∑(∆rj)bj ,

where bj was defined above as the average effect (partial regression) for

each allele and n is the maximum number of copies of an allele in each

individual (ploidy).

This form shows that the partial change caused by natural selection,∆fw , is the frequency change of the predictor caused by selection, ∆rj ,
holding constant the effect of each predictor, bj . Fisher (1958a) limited

his discussion of the theorem to cases in which all frequency changes

in the predictors (alleles) are caused directly by selection. Under this

interpretation, the theorem holds only when selection is the sole force

influencing frequency changes, and fails when mutation or other forces

act on frequency. By contrast, I interpret the frequency change terms

as partial changes caused by differential fitness. Under this interpreta-

tion the “partial frequency fundamental theorem” is universally true and

provides a useful guideline for analysis of models such as kin selection

(Frank 1997e).

KIN SELECTION

The next chapter is devoted to kin selection. But it is useful here to

place the topic within the broader framework for the analysis of natural

selection.

Hamilton’s (1964a, 1970) famous rule provides a condition for the

increase in altruistic characters

rB − C > 0,

where r is the kin selection coefficient of relatedness between actor and

recipient, B is the reproductive benefit provided to the recipient by the

actor’s behavior, andC is the reproductive cost to the actor for providing

benefits to the recipient.
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We start our analysis, as before, by writing the character under study

as zi = gi + δi . For offspring derived from parental type i, z′i = g′i + δ′i .
Because δ′ = δ = 0, we have, as before, ∆z = ∆g, so we can work at

the level of breeding values. Following Queller (1992a, 1992b) and the

general approach of Lande and Arnold (1983), we begin with a regression

equation for fitness

w = βwg·Gg + βwG·gG+ ε,

where G is the average breeding value of the local group with which an

individual interacts, βwg·G is the partial regression of fitness on individ-

ual breeding value, holding group breeding value constant, βwG·g is the

partial regression of fitness on group breeding value, holding individual

breeding value constant, and ε is the error term which, by least squares

theory, is uncorrelated with g and G.

We can match this notation to standard models of kin selection (Quel-

ler 1992a, 1992b). The direct effect of an individual’s breeding value on

its own fitness, βwg·G, determines the reproductive cost of the pheno-

type. To match the convention that cost reduces fitness, we set βwg·G =
−C. The direct effect of average breeding value in the local group on

individual fitness, βwG·g , measures the benefit of the phenotype on the

fitness of neighbors, thus βwG·g = B. The fitness regression can now be

written as w = −Cg + BG + ε. Substituting into the Price Equation, the

condition for ∆z to increase is equivalent to the condition for w∆g > 0,

thus
w∆g = Cov

(
w,g

)+ E
(
w∆g)

= −CCov
(
g, g
)+ BCov

(
G,g
)+ E

(
w∆g) ,

and, dividing by Cov(g, g) = Vg, we obtain the condition for w∆g > 0 as

(Frank 1997e)

rB − C > −E
(
w∆g)
Vg

,

where r = Cov(G, g)/Cov(g, g) is the kin selection coefficient of relat-

edness (reviewed by Seger 1981; Michod 1982; Queller 1992a).

This is an exact, total result for all conditions, using any predictors

for breeding value. The predictors of phenotype may include alleles,

group characteristics, environmental variables, cultural beliefs, and so

on. If we use the Fisherian definition of partial change caused directly by
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natural selection, holding average effects constant, then the right side is

zero and we recover the standard form of Hamilton’s rule. Thus Hamil-

ton’s rule is an exact, partial result that applies to all selective systems,

just as the partial frequency fundamental theorem is an exact, partial

result with universal scope. Hamilton’s rule may also be thought of as

a kind of fundamental theorem, with the object of study a social char-

acter rather than fitness, and the causes of fitness separated between

individual and social effects.

Several classical analyses of selection, such as Hamilton’s rule and

Fisher’s fundamental theorem, assume constancy of average effects (see

Predictors and Additivity, p. 18). Those statistical models share a point

of view, from which one tends to overlook the details of how each partic-

ular combination of alleles (genotype) determines a particular character

(phenotype).

2.3 Genotypes and Phenotypes

[A] system may be as broad or as narrow as we please depend-

ing upon the purpose at hand; and the data [parameters] of

one system may be the variables of a wider system depending

upon expediency. The fruitfulness of any theory will hinge

upon the degree to which factors relevant to the particular

investigation at hand are brought into sharp focus.

—Paul A. Samuelson, Foundations of Economic Analysis

To study the evolution of a phenotype, do we need to know its genetic

basis? This is an important question, because I am headed for a sim-

plified analysis that often ignores genetic details. Before arriving, it is

useful to consider what is being left out. The main issue concerns how

one chooses to separate factors into those fixed extrinsically (parame-

ters) and those undetermined prior to analysis (variables).

Sex allocation provides a good illustration of the problem. I will dis-

cuss this topic fully in Chapter 9. Here I outline two contrasting models.

The first emphasizes maximization of success in an economic analysis

of phenotype. The second focuses on the dynamics of the hereditary

particles (alleles) that determine phenotype.
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PHENOTYPES AND MARKET SHARE

Any trait that increases its relative representation in the population will

become common. The inexorable increase of successful traits is natural

selection. This suggests that we could analyze how natural selection

shapes traits by seeking those traits that maximize their relative success.

In economic language, we seek traits that maximize market share.

For example, how does natural selection influence a parent’s division

of resources between sons and daughters? How many boys and how

many girls? How much energy to devote to each? The economic prob-

lem is to divide a limited supply of resources into two distinct invest-

ment strategies, with the goal of maximizing market share relative to

other competing families in the population. A model describing this

investment problem is

w (x, y) = µ (x)
NE [µ (x)]

+ φ(y)
NE
[
φ(y)

] ,
where w(x, y) is the relative success of a mother as a function of her

investment in sons, x, and daughters, y , subject to the constraint that

x + y = K. A mother’s ability to increase her representation through

sons depends on the value of her sons, µ(x), relative to the total value

of sons produced by families. This total is NE[µ(x)] = NEµ , where N is

the number of families and Eµ is the average value of sons in each family.

Likewise, market share achieved through daughters is φ(y) compared

with NE[φ(y)] = NEφ.

The details of this model will be described in Chapter 9. Here I simply

note that the split between sons and daughters, x and y , that maximizes

relative success satisfies

µ′ (x)
NEµ

= φ′ (y)
NEφ

, (2.11)

where the primes denote derivatives. The term µ′(x) is the marginal

value of investment in sons. That return is standardized by the total

value of sons, NEµ . The right side is the marginal value of female in-

vestment standardized by the total value of female investment. This

outcome follows the fundamental result of economic theory, the equi-

libration of marginal values. The factors in the denominator transform

the problem into maximization of market share.
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Figure 2.1 Three types of dominance relations for a single diploid locus. The
phenotype space in this problem is a number on the continuous interval [0, K].
The phenotypes of the homozygotes, AA and BB, are shown. The heterozy-
gote, AB, may have a phenotype smaller than both homozygotes, labeled as
u, for underdominance. If the heterozygote is between the homozygotes, it is
labeled i, for intermediate dominance. If the heterozygote is larger than both
homozygotes, it is labeled o, for overdominance.

If returns are linear for each sex, µ(x) = ax and φ(y) = by , with a
and b arbitrary, positive constants, then Eq. (2.11) reduces to

a
Nax

= b
Nby

.

Thus

x∗ = y∗, (2.12)

where ∗ denotes equilibrium. Under linear returns, an equal split be-

tween investment in males and females is favored at the population

level. This result, first given by Fisher (1958a, 158–160), plays an im-

portant role in the foundations of social evolution. However, this equal

allocation theory has been overused because the required restrictions

on µ(x) and φ(y) are often forgotten (see Chapter 9).

GENETICS:  CONSTRAINTS ON PATHS OF PHENOTYPIC EVOLUTION

The phenotypic model hides many details. For example, if all geno-

types in the population produce family allocations that underweight

sons, x < K/2, then the population allocation is x < K/2. Equal allo-

cation may be favored, but a phenotype cannot evolve if no genotype

produces that phenotype. Even if a genotype that produced x = K/2
existed, the population might be stuck at an alternative equilibrium.

Fig. 2.1 shows various assumptions about the relationship between

genotype and phenotype. Sex allocation in this example is controlled by

a pair of alleles, one inherited from the mother and one from the father (a

single diploid locus). The sex allocation, expressed as resources invested
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Figure 2.2 The three cases of dominance in Fig. 2.1 shown on a fitness scale.
From left to right, intermediate dominance, underdominance, and overdomi-
nance.

in sons, x, ranges from zero to K. Suppose initially that the population

has only the A allele: everyone is an AA homozygote with a phenotype

x < K/2. Then one of the A alleles mutates into a B allele with a different

phenotypic effect. The BB homozygote has a phenotype x closer to K/2,

but still less than this midpoint.

Does this rare B allele spread in a population fixed for the A allele?

There are three cases:

1. The AB heterozygotes have a phenotype x intermediate between

AA and BB. The i in Fig. 2.1 shows the location of the AB pheno-

type. Since K/2 is the favored phenotype, and i is closer to K/2 than

the common AA genotype but farther than the BB genotype, AB ex-

hibits intermediate dominance on the fitness scale. This is shown in

Fig. 2.2a.

Initially, the rare B allele will exist in AB genotypes because one B
will very rarely meet another B. Since AB has a higher fitness than

AA, selection carries the B to higher frequency. The BB genotype has

a higher fitness than AB, so selection continues to push the frequency

of B higher until everyone is BB and the A allele has been eliminated.

The mutation B has shifted the population closer to the optimum of

K/2.

2. The AB heterozygotes have a phenotype x smaller than AA. The

u in Fig. 2.1 shows the location of the AB phenotype. Since a larger

value is the favored phenotype, and u is smaller than either AA or

BB, the AB genotype is underdominant on the fitness scale. This is

shown in Fig. 2.2b.

The rare AB types that occur after the B mutation arises have lower

fitness than the common AA type. Thus the frequency of B declines
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until the B allele disappears from the population. This extinction

occurs in spite of the fact that the BB homozygote has a higher fitness

than the resident AA type. The improved BB equilibrium cannot be

reached when AA is common and AB is underdominant.

3. The AB heterozygotes have a phenotype x greater than both AA
and BB. The o in Fig. 2.1 shows the location ofAB. In this case the het-

erozygote is closer to the favored phenotype than either homozygote,

and is called overdominant. This is shown in Fig. 2.2c.

The rare AB genotypes that occur after after the B mutation arises

have higher fitness than the common AA type. Thus the frequency

of B initially increases, and the population contains a mixture of the

two pure genotypes and the mixed heterozygote. The heterozygote

has the highest fitness, but the population cannot become purely het-

erozygous because, in each generation, an individual inherits one al-

lele from each parent. Some individuals will, by chance, get two A
alleles, others will get two B alleles, and yet others will get the favored

mixture of alleles. This mixed condition of A and B alleles stabilizes

at an equilibrium, polymorphic state.

These three cases only hint at the potential dynamic complexities of

genetics. They do, however, show that economic maximization of fitness

(market share) can easily be prevented by the way in which phenotypes

are specified by the hereditary mechanism.

RESOLUTION: THE SPECTRUM OF MUTATIONS

The genetic models assume the range of genetic variability to be given

by fixed parameters. The phenotypic models seemingly ignore genetics

altogether. Since the genetic models show that phenotypic maximiza-

tion is not a necessary outcome of selection, how can one justify using

the simpler, phenotypic models?

Suppose that we also consider the range of mutations that are pos-

sible and how frequently they occur. The genetic assumptions are now

variables that change rather than fixed parameters. We have pushed

back the level of explanation, and now take the origin of genetic varia-

tion as the controlling parameter.

If, for example, the population is fixed at AA, and an underdominant

mutation, B, occurs, as in Fig. 2.2b, the B allele does not increase. Under-

dominance prevents the population from moving closer to the predicted
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phenotypic optimum. However, the next mutation to come along, C, may

have intermediate dominance, allowing individuals to move closer to the

optimum. If a sufficient diversity of mutations is allowed, with varying

dominance and magnitude of effect, then eventually the population will

converge on the maximum. Once there, no mutation will displace it.

Thus, genetics determines the rate of transitions, but the final stop is

independent of genetics (Hammerstein 1996).

If one is concerned with short-term responses to selection pressures,

then explicit genetic theory and matching observation would be valuable

(Eshel 1996). This has been difficult because the genetics of interesting

behavioral traits are rarely known.

Extant genetics is less important than the spectrum of mutations over

long periods of time. Because mutations are rare events, it is very diffi-

cult to obtain observations that would aid in predicting the time course

of evolutionary change. These theoretical and practical reasons suggest

that the phenotypic approach is the only viable method for study of

social evolution (Grafen 1991).

Theory with explicit genetics and assumptions about mutation can

be useful. Such models allow one to quantify how often and by how

much a simplified phenotypic model differs from models with restricted

assumptions about genetics and mutation. However, theoreticians de-

voted to this subject have not concerned themselves with this practical

question, probably because it can be studied only by approximate com-

puter methods rather than by the quasi-physical dynamics and theorems

that this research group prefers (see Gayley and Michod 1990, for an in-

teresting exception).

Some limits must be placed on possible phenotypes. For example,

a mutation that caused better performance in every dimension would,

of course, increase in frequency. All useful theories must impose con-

straints on the phenotypic space. The source of such constraints may

arise from genetics, physics, development, and so on. Plausible con-

straints are constructed from prior data or by hypothesis. This issue

has been summarized by Parker and Maynard Smith (1990).
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2.4 Comparative Statics and Dynamics

Often in the writings of economists the words “dynamic” and

“static” are used as nothing more than synonyms for good

and bad, realistic and unrealistic, simple and complex. We

damn another man’s theory by terming it static, and adver-

tise our own by calling it dynamic. Examples of this are too

plentiful to require citation.

—Paul A. Samuelson, Foundations of Economic Analysis

I have two major goals in this book. First, I extend the classical statistical

models of social evolution described in the previous sections. Second,

I develop new analytical methods within the framework of comparative

statics. This section provides a brief introduction to comparative statics.

The following section outlines the new analytical methods.

THE IMPORTANCE OF COMPARISON

Fisher’s sex allocation theory predicts equal investment of parental re-

sources in sons and daughters (Eq. (2.12)). How can such a theory be

tested? One common approach is to estimate the resources invested in

each sex and compare the fit to the predicted equal division. There are

several problems with fitting. A fit requires a precise estimate for in-

vestment, for which there is no clear and universally applicable working

definition. The prediction of equal allocation requires a strict assump-

tion about the functional forms of returns on investment in each sex

(e.g., µ(z) ≡ φ(z)). Further, one cannot exclude alternative theories

that, for some parameter values, also predict equal allocation. A fit pro-

vides a sample size of one to test a particular theory versus alternative

causal explanations. Finally, lack of fit provides limited information

about what aspect of the theory requires further study.

Comparison solves some of these problems. For example, let returns

on male investment be µ(z) = zs and returns on female investment be

φ(z) = zt , where 0 < s, t ≤ 1. If all families have the same resource

level then, from Eq. (2.11), the equilibrium allocation ratio of males to

females in a population is c : 1, where c = s/t.
We now have a simple comparative prediction: as c rises, the relative

investment in males is expected to increase. A precise measure of c is

impossible. But, in comparison among cases, it may be easy to determine
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how c changes. For example, in one case it may be that returns on male

investment diminish faster than returns on female investment, c < 1,

whereas in a second case the reverse is true. The theory predicts a switch

from female-biased investment (c < 1) to male-biased investment (c >
1). If observations fail to match the theory, we can reject an equilibrium

controlled by c as an explanation for sex allocation.

This example illustrates the fundamental role of comparison in the

formulation of a theory. I will develop the subject of sex allocation in

Chapter 9.

DYNAMIC ASSUMPTIONS IN COMPARATIVE STATICS

A system at equilibrium does not change. Thus equilibrium is often

referred to as a static condition. Comparison among predicted equi-

libria as a function of a parameter, as in the sex allocation example

with parameter c, is called comparative statics (e.g., Schumpeter 1954;

Samuelson 1983).

Comparative statics requires that populations change more quickly

than parameters. If the parameter c varied rapidly but populations ad-

justed only slowly to those changes, then an observed population would

probably not be close to an equilibrium for the current value of c.

Comparative statics may mislead if disequilibrium is sufficiently wide-

spread. The arguments for pushing ahead with comparative statics are

mainly practical rather than formal:

1. A hypothesis of disequilibrium is, by itself, irrefutable. A causal

model can take on almost any state when the causes of disequilibrium

are not specified.

2. Dynamics are interesting only when predictions can be formu-

lated in a comparative way. How do observable dynamics change as a

measurable parameter changes? Theoretical complexity and the lack

of suitable data put comparative dynamics out of reach for most sub-

jects.

3. A practical defense of comparative statics requires only use-

fulness, rather than a formal guarantee of success. Practically, one

requires that directional tendencies predicted by comparative stat-

ics are dynamically valid often enough that, on average, something is

learned. When a particular prediction fails, one cannot separate the
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approximate nature of the theory from the possibility that the expla-

nation is incorrect. Only across many cases to which the theory may

apply can confidence be improved.

These problems of inference can often be studied in a formal way by

computer analysis. One constructs a dynamical model of evolutionary

change, complete with a specific spectrum of mutational effects. Then,

one builds an evolving biological system in the computer; the program

measures only those attributes that an experimenter could actually mea-

sure. Those data are analyzed, and the inferences are compared with

the true evolutionary trend in the evolving computer population. With-

out such an analysis, it is often impossible to determine the power of a

particular sampling scheme for discriminating among competing expla-

nations.

2.5 Maximization and Measures of Value

An engineer finds among mammals and birds really mar-

velous achievements in his craft, but the vascular system of

the higher plants, which we do not understand, has appar-

ently made no considerable progress. Is it like a First Law,

not a great engineering achievement, but better than any-

thing else for the price? Are the plants not perhaps the real

adherents of the doctrine of marginal utility, which seems to

be too subtle for man to live up to?

—R. A. Fisher, Letter to Leonard Darwin

The job of doing comparative statics is much easier when one can use

maximization techniques to search for local equilibria. If the desired

result is a maximum, then the problem reduces to three steps. First,

specify the appropriate value function to be maximized. Second, de-

scribe constraints on the variables. Third, use the standard tools of

calculus to find local maxima subject to the constraints.

Relative reproductive rate, or fitness, is the measure of value one uses

to study the consequences of natural selection. Many fundamental in-

sights about natural selection concern the proper formulation of a fit-

ness function for use in maximization methods. Some examples follow.
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REPRODUCTIVE VALUE

If an allele can produce an effect (trait) that increases its future fre-

quency, then the associated trait will increase in prevalence. A proper

analysis of selection projects future consequences for the present dis-

tribution of traits. The allele with the greatest rate of increase will de-

termine biological pattern in the future.

Analysis of the future entails prediction. Most biological theory is,

however, concerned with explanation of the past. A mathematical state-

ment about traits that maximize projection into the future provides hy-

potheses about how past selection has shaped the current distribution

of traits.

How does one measure the reproductive consequences of a trait? That

depends on the trait. For the design of vascular structure in plants, the

natural measure is a simple count of the number of successful offspring.

Alleles that influence vascular design will spread or disappear according

to the number of successful offspring produced by the plants in which

the alleles live.

Suppose the trait is the distribution of parental resources to offspring

of different ages. Let our organism live n years. The number of offspring

produced, a, is the same in each year. The probability of survival to the

next year is p, until certain death after the nth year (start of the n+ 1st

year).

The expected future contribution of each offspring depends on its

age, x. In the current year it will produce a offspring, it will survive with

probability p to produce a offspring in the next year, and so on. Thus

reproductive value, v(x), is

v (x) = a
n−x∑
i=0

pi = a
(

1− pn−x+1

1− p

)
,

where the right side of the equation is produced by the standard identity

for geometric series.

How should a parent distribute limited resources among offspring

of different ages? This is a common sort of question, which is really

a shorthand for the following. Suppose there is genetic variation that

influences a parent’s behavior with regard to distribution of resources to

offspring. Which genotypes will be favored? How will natural selection

shape parental behavior?
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We must search for allelic effects that maximize reproductive rate.

Older offspring have a lower future expectation of reproduction and

therefore may be less valuable than younger offspring. Consider two

cases. First, suppose that parental resources influence the survival of

offspring to the following year. Then offspring reproductive value is

v (x, δx) = a+ a (p + f (δx))
n−x−1∑
i=0

pi x = 0 . . . n− 1

= a x = n

where f (δx) is the effect on offspring survival to the next year given an

additional input of parental resources of δx. The parent’s problem is to

divide its limited resources among offspring of different ages. If f is a

diminishing-returns function, then by the theory of marginal values the

maximum occurs when

∂v
∂δx

= ∂v
∂δy

x, y = 0 . . . n− 1

and δn = 0 because offspring of age n die in the following year. From

this condition the equilibrium must satisfy

f ′ (δx) = K∑n−x−1
i=0 pi

= K (1− p)
1− pn−x

x = 0 . . . n− 1,

where K is a constant determined by the amount of parental resources

available for distribution. The right side of the equation increases in x,

so older individuals must be associated with higher marginal survival,

f ′(δx). Higher marginal survival occurs with lower values of δx. Thus

parents are favored if they allocate fewer resources to relatively older

offspring.

In this first case, parents influence offspring survival for one year,

from the current year to the following year. The second case assumes

that parents influence offspring reproduction for one year, the current

year. In this model the effect of parental investment δx to offspring of

age x is

v (x, δx) = a+ g (δx)+ a
n−x∑
i=1

pi,

where g(δx) is the effect of parental investment on reproduction in the

current year. Since ∂v/∂δx is independent of age, x, parents are favored

if they treat offspring of all ages equally.
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In the first model, changes in offspring survival through the current

year provide marginal returns in proportion to future reproduction. The

favored distribution of resources is age-dependent because young off-

spring have a higher future expectation of reproduction than old off-

spring. In other words, young offspring have higher reproductive value

than old offspring.

In the second model, parental aid of offspring reproduction helps all

offspring equally in the current year, and has no consequences for fu-

ture reproduction. Thus parents are favored if they distribute resources

independently of age.

Reproductive value is a method of weighting individual values so that

simple maximization techniques can be used. I will discuss in Chap-

ter 8 various demographic and genetic factors that influence reproduc-

tive value.

KIN SELECTION

In the previous section a trait influenced its future frequency by direct

effects on offspring. The value of investment in each offspring was

measured by marginal change in reproductive value, that is, by marginal

change in expected contribution to the future gene pool.

The success of a trait may also be affected by social partners with

correlated traits. I previously analyzed social interaction by partitioning

the fitness consequences of a trait into individual and social components

(see Kin Selection, p. 23). Here I briefly extend the analysis to show that

kin selection coefficients have a broader interpretation as measures of

value.

HAMILTON’S RULE

An individual’s fitness, w , can be written as a function of its own

phenotype, y , and its neighbors’ average phenotype, z,

w (y, z) = βwy·zy + βwz·yz + ε,

where the β’s are partial regression coefficients and ε is uncorrelated

with y and z (Queller 1992a, 1992b). The effect of y on w , holding z
constant, is the effect of an individual’s phenotype to its own fitness,

so we may say that the cost of an individual’s phenotype on its fitness

is C = −βwy·z . Similarly, the effect of z on w , holding y constant, is
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the effect of the neighbors’ phenotype to our focal individual’s fitness.

Thus we can call the benefit of the neighbors on our focal individual

B = βwy·z . Substituting, we have

w (y, z) = −Cy + Bz + ε

My goal is to study the evolution of the allelic effect, x, via its pheno-

typic effects on an individual and its neighbors. From the Price Equa-

tion (2.3), if one holds constant the average effect of the allele over time,∆x = 0, then the condition for an increase in x is Cov(w, x) > 0. Thus

the condition for increase is

Cov (w, x) = −C Cov (y, x)+ B Cov (z, x) > 0,

under the assumption that Cov(ε, x) = 0, that is, the allele x influences

fitness only through its effect on the phenotypes y and z. Dividing by

Cov(y, x), we recover Hamilton’s rule, rB − C > 0, where the definition

of relatedness, r , between individual and neighbor is

r = Cov (z, x)
Cov (y, x)

. (2.13)

RECOVERY OF MAXIMIZATION

Hamilton’s rule provides a measure of valuation, r , for comparing

social components of fitness. But the rule itself is given as an inequal-

ity. It would be useful to express valuation in a way that allows us to

use maximization methods. Such methods provide powerful tools for

developing comparative statics.

Taylor and Frank (1996) showed how to incorporate kin selection into

standard optimization methods. To continue with the above example,

with fitness function w(y, z), individual phenotype y , neighborhood

phenotype z, and allelic value x, suppose we differentiate w with re-

spect to x. Using the chain rule, we obtain

dw
dx

= ∂w
∂y

dy
dx

+ ∂w
∂z

dz
dx

.

In the typical maximization analysis we would evaluate dw/dx = 0 at

x = x∗. The technical problem here is what to make of the derivatives

with respect to y and z, because relations to x may be statistical rather
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than functional. However, dy/dx and dz/dx are slopes of phenotype

on allelic value, and if we replace these by the corresponding statistical

regression coefficients we get

dw
dx

= ∂w
∂y

βyx + ∂w
∂z

βzx.

Dividing by βyx we get the rate of change in fitness with changes in

individual phenotype, y , as

∆w = ∂w
∂y

+ r
∂w
∂z

= −Cm + rBm,

where r , given in Eq. (2.13), is relatedness of an individual, y , to a random

neighbor, z. From the previous section, it is clear that −∂w/∂y = Cm is

the marginal cost of an individual’s behavior to its own reproduction,

and ∂w/∂z = Bm is the marginal benefit of the behavior to a neighbor.

This marginal version of Hamilton’s rule shows that an equilibrium,∆w = 0, often satisfies the condition that marginal costs and benefits be

equal, Cm = rBm. Note how the relatedness coefficient, r , plays the role

of currency translation between marginal effects on direct and indirect

reproduction.

I will rework the theory of kin selection in later chapters, including

these brief examples as special cases. The important point here is that

the standard maximization method can be adapted to analyze inter-

actions if we simply replace derivatives by the appropriate regression

coefficients. The method can also be extended to handle social interac-

tions when different neighbors have different reproductive values. This

extended method provides a simple, general maximization approach for

the study of social interactions.

RELATEDNESS, GENEALOGY AND INFORMATION

The common interpretation of relatedness is genealogical kinship.

Relatives share similar genes by common ancestry. An allele may in-

crease its frequency by enhancing the reproduction of the body in which

it lives or by increasing the reproduction of the same allele in a different

body. In this context, the regression coefficient of relatedness, r , mea-

sures value by weighing the excess number of copies of itself in different

bodies when compared to the population average.
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Genealogical kinship is probably the most important factor in social

evolution. But the following example shows that kin selection must be

a subset of a broader phenomenon.

Let pairs of individuals interact in a social situation. Label the indi-

viduals of a pair as player I and player II for convenience. The average

probability that player I acts cooperatively is p, and the average proba-

bility that player II acts cooperatively is q. A particular allele causes an

increase in player I’s probability of cooperating by an amount x, so that

p = p+ x. This increase in the tendency to cooperate reduces player I’s

own reproduction by an amount Cx.

We can, by standard regression, always write the tendency of player

I’s partners to cooperate as

q − q = r (p− p)+ ε

= rx+ ε,
(2.14)

where the expected value of ε is zero by regression theory. The regres-

sion coefficient, r , is the slope of deviations in partner phenotype, q−q,

relative to deviations in the actor’s genotype, x. The expected deviation

in the partner’s phenotype is rx, and that change in cooperative behavior

has a benefit to the actor of rxB.

The condition for x to increase is that benefit be greater than cost,

rxB − Cx > 0, which is equivalent to

rB − C > 0.

This is, of course, Hamilton’s rule. The point here concerns the inter-

pretation of the coefficient, r . This coefficient is simply the regression

of partner phenotype on actor genotype. Nothing in the derivation sug-

gested that the partners must be related by common kinship. Indeed,

the partners could be different species, and the same derivation would

apply. Given that kinship is not required, what does the regression co-

efficient mean?

Regression coefficients predict the value of one variable based on the

given value of a second, predictor variable. Put another way, regres-

sion coefficients describe conditional information: given the predictor,

a more accurate estimate of the outcome is possible. In this case, the

predictor is the genotype of an actor. The phenotypes of partners are

the outcome variables that are estimated with improved accuracy.
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Figure 2.3 The entries show the payoff to player I given strategies by two play-
ers in an encounter. The alternative strategies for each player are C and D, for
Cooperate and Defect.

Hamilton’s rule describes how selection favors maximal use of the

information available. Genealogical kinship is one form of information

that is commonly available. But other types of information influence se-

lection in the same way, as illustrated by the example in which partners

are different species. I discuss relatedness as a coefficient of informa-

tion in Chapter 6.

GAME THEORY, ESS

Much of the recent literature on social behavior is concerned with game

theory. The popularity of this approach arose from Maynard Smith and

Price’s (1973) paper, which outlined the conditions for an Evolutionar-

ily Stable Strategy (ESS). Briefly, a strategy (phenotype) is evolutionarily

stable if all members of a population adopt the strategy and any rare

deviant individual has lower fitness than the normal types. This is, of

course, a simple criterion for a local equilibrium, and we have already

used it in previous sections. The ESS also turns out to be closely allied

to the classic Nash equilibrium of formal game theory (Maynard Smith

1982).

MONOMORPHIC EQUILIBRIUM WITH CONTINUOUS PHENOTYPES

The history of game theory and its connections to other fields are

interesting, but sometimes obscure how simple the methods really are

in practice. I illustrate this with the game shown in Fig. 2.3. Phenotypes

are continuous in this case. Thus we can write a function to describe

individual fitness and then maximize the function with respect to small

variants about a potential equilibrium. Let p be the probability that our
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focal individual, player I, plays strategy C. The frequency of opponents,

player II, that play strategy C is q. Individual fitness, w , is

w (p, q) = pqa + p (1− q)b + (1− p) qc + (1− p) (1− q) d, (2.15)

where, in the first term, our focal individual plays C with probability

p, its opponent also plays C with probability q, and the payoff for this

combination is a. Similar descriptions apply to the other three combi-

nations.

By the methods given above, let x be a small deviation in the average

effect of an allele influencing phenotype. Evaluating dw/dx = 0, re-

placing the phenotypic derivative with r , and evaluating at p = q = p∗

yields

p∗ = b − d + r (c − d)
(1+ r) (b + c − a− d)

,

which has been obtained previously by other methods (see Chapter 5).

However, this differentiation method is perhaps the simplest, and main-

tains a consistent maximization approach for various types of problems.

Other approaches appeal to ad hoc methods for kin selection and other

special circumstances.

A mixed equilibrium, 0 < p∗ < 1, always obeys an important eco-

nomic principle. When individuals can vary their allocations to differ-

ent strategies by small amounts, then a mixed equilibrium always occurs

when the marginal fitness returns are equal for the different strategies.

The marginal returns are measured with respect to the fitness of allelic

variants of small average effect.

EQUILIBRATION OF FITNESSES FOR TWO ALLELES

The previous model assumed the potential for small variations in the

phenotype, x. Another common problem assumes that two compet-

ing genotypes have very different phenotypes. What is the equilibrium

frequency of the two types in the absence of mutations to other pheno-

types?

This question raises an important point about natural selection. We

have, thus far, been obtaining equilibrium points by maximization, but

an equilibrium under natural selection guarantees only the weaker con-

dition that fitnesses of all alleles be the same. If the fitness of some allele

is greater than the others, it will increase in frequency until fitnesses are

either equilibrated or the competing alleles are driven to extinction.
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Maximization was appropriate in the prior cases because we allowed

small variants near a candidate equilibrium, and only came to rest when

those variants had lower fitness. Thus the equilibrium is a local maxi-

mum. In the present case there are no variant phenotypes, only two fixed

types, and so we can use only the principle of equilibration to obtain an

equilibrium condition.

The standard game theory model with discrete phenotypes assumes

“pure” strategies, in which each player always plays either C or D (May-

nard Smith 1982). Thus p = 1 for always play C, and p = 0 for always

play D. Mixtures of the two types are possible in the population. The

goal of the analysis is to find the equilibrium mixture, p∗.

There are various approaches to studying interactions between kin or,

more generally, between correlated players (Chapter 5). The most gen-

eral approach to correlation between players is given in Eq. (2.14), where

the expected value of player II’s strategy, q, given player I’s strategy, p
is

E (q − q|p) = r (p− p) .

I assume that both players come from the same population; thus p = q.

The expected value of q given p is therefore

q = p+ r (p− p)

= (1− r)p p = 0

= r + (1− r)p p = 1.

Fitnesses for haploid individuals can be obtained from Eq. (2.15). Indi-

viduals always playing strategy C, with p = 1, have fitness wC = w(1, q),
and those playing strategy D, with p = 0, have fitness wD = w(0, q).
Substituting for q and expanding these definitions yields

wC = ra+ (1− r) [p (a− b)+ b]

wD = d + (1− r)p (c − d) .

The solution for p = p∗, obtained from wC = wD , is

p∗ = b − d + r (a− b)
(1− r) (b + c − a− d)

,

suggesting that the constrained phenotypes have equilibrated fitnesses

at this point, but individual fitnesses are not at a local maximum with

respect to variations in the probability that a particular individual will

play either strategy C or strategy D.
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DIFFICULTIES

Maximization works only if small variants are present, there is a dynamic

path to the maximum, and the maximum is stable. For discontinuous

phenotypes, equilibration of fitnesses also requires stability. Against

this, many types of feedback destabilize, and nonlinearities create multi-

ple equilibria that may block the pathway to a particular local maximum.

Much of the theoretical literature is devoted to these problems. Their

importance in practice is unknown and perhaps unknowable—hence the

enduring value of simplified comparative statics.

Another issue concerns the maximization of value when there are

stochastic fluctuations in payoff. The theories given here and below

assume that stochastic factors and risk can be ignored. Theories of

value with uncertainty are well developed in economics and have been

applied to behavioral and genetic models in biology (e.g., Gillespie 1977;

Real 1980; Tuljapurkar 1990).

Three special features of biology differentiate the theory of value un-

der risk from standard concepts in economics (Frank and Slatkin 1990b).

First, the evolutionarily relevant measure of value is relative success,

or market share. This requires that allelic success be divided by av-

erage success of the population. This ratio of two correlated random

variables introduces some interesting complications into standard eco-

nomic theories of risk. Second, each individual faces uncertain returns

in the accumulation of resources and the production of offspring. This

individual variability has evolutionary consequences to the extent that

such phenotypic variation influences genetic change. This leads to the

third issue. Each allele occurs in many different individuals. Evolution-

ary consequences depend on the average success of an allele across its

individual instances.

Difficulties can be studied. For dynamic complications, one needs

to know how often simplified economic analyses will mislead. This de-

pends on the particular hypothesis under study. One approach is to

model evolving populations in the computer. Samples from those artifi-

cial populations provide information about how often similar sampling

schemes in natural populations would cause incorrect inference. This

approach is sometimes used in population genetics (e.g., Frank 1996c),

but I do not know of cases in which this method has been applied to

social evolution. Gayley and Michod (1990) used a computer model to
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study the dynamics of social evolution, but they did not consider the

problems of sampling natural populations with respect to testing par-

ticular comparative hypotheses.

The problems of uncertainty have been well studied for resource ac-

quisition (Stephens and Krebs 1986) and life history (Tuljapurkar 1990).

Only a few authors have considered topics that are more directly social

(e.g., Frank 1990b; McNamara 1995). On the whole, dynamic complica-

tions and uncertainty have not been developed in a useful way for social

problems, and will not be discussed in the remainder of the book.



3 Hamilton’s Rule

Considerations of genetical kinship can give a statistical re-

association of the [fitness] effects with the individuals that

cause them.

—W. D. Hamilton, “Selfish and spiteful

behaviour in an evolutionary model”

Many traits decrease the reproductive success of their bearer and raise

the success of particular neighbors. The most striking case is sterility

of worker castes in social insects (Wilson 1971). The workers forgo their

own reproduction and devote their lives to raising the offspring of one

or a few royal members of the colony.

Less spectacular cases pervade nearly every aspect of ecology and

behavior. For example, some “prudent” parasites appear to use host re-

sources more slowly than the rate that would optimize their reproduc-

tive success. The outcome is lower relative success for the individual,

but a higher level of productivity for the group of parasites in a host

(Herre 1993).

Most students of natural selection, prior to Hamilton’s (1964a, 1964b)

work, explained traits only by their direct effect on individual reproduc-

tion (see Hamilton 1972, for discussion of the history). Insect sterility

and prudent parasites are puzzling from this individual view. These

traits lower the reproduction of their bearers, and therefore cannot be

explained purely by their direct effect on individuals.

Hamilton emphasized that traits change in frequency by two routes.

First, a trait may influence the reproduction of the individual that ex-

presses the trait. Second, a trait may influence the reproduction of

neighboring individuals that possess a nonrandom sample of genes for

the trait.

Hamilton was particularly interested in “altruistic” traits that reduce

the reproduction of the actor but enhance the reproduction of neigh-

bors. The net rate of increase of genes causing such a trait depends on

the reduction in individual reproduction compared with the increase in

neighbor reproduction. Reproduction by neighbors must be weighted
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by the neighbors’ deviation in frequency from the population average.

If neighbors are closely related, then there is a higher probability than

average that they share similar genes, and altruistic behaviors may be

frequent. If neighbors are distant relatives, then direct reproduction is

the only pathway by which genes may increase their own frequency, and

altruistic traits are expected to be rare.

Hamilton (1964a, 1964b, 1970) introduced a mathematical theory to

study the evolution of social traits. He expanded the theory of natural

selection from one that focused solely on individual reproduction to a

theory that could analyze the combined effects of individual reproduc-

tion and reproduction by relatives. Hamilton summarized his work in

an elegant result, now known as Hamilton’s rule. Subsequent debates

have focused on the interpretation and validity of this rule.

3.1 Overview

Hamilton’s rule states that a behavior increases in frequency when

rB − C > 0,

where r is the kin selection coefficient of relatedness between an actor

and recipient of a particular behavior, B is the reproductive benefit con-

ferred on the recipient, and C is the cost to the actor in direct reproduc-

tion. Hamilton (1970, 1972) emphasized that the rule depends on sev-

eral assumptions, including weak selection, additivity of costs and ben-

efits of fitness components, and a special definition of relatedness that

uses statistical correlations among individuals rather than genealogy to

describe similarity. The full mathematical details have been reviewed by

Seger (1981), Michod (1982), Grafen (1985), and Queller (1992a, 1992b).

There are, roughly speaking, two schools of thought on Hamilton’s

rule. On one side, the limitations have been exposed formally by a wide

variety of models in which Hamilton’s rule fails (e.g., Charlesworth 1978;

Uyenoyama and Feldman 1982; Karlin and Matessi 1983). On the other

side, Michod (1982), Grafen (1985), and Queller (1992a, 1992b) have sup-

ported Hamilton’s rule as a fundamental evolutionary principle by cate-

gorizing exceptions to the rule under the few well-understood headings

that Hamilton pointed out in his original work.

The size and complexity of the literature has led to some confusion.

Can one use simple reasoning based on kin selection to understand the
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evolution of complex behaviors? Is Hamilton’s rule the proper simplifi-

cation? Or, are the exceptions to simplified methods so numerous that

one must formulate a complex genetic model to understand each social

trait and its special conditions?

I take a middle position between these opposing views. On the one

hand, kin selection, when properly used, is a powerful analytical tool.

Complex problems can be reduced to simple models in which the biolog-

ical interactions are clarified. On the other hand, the common practice of

applying rB−C > 0 to reason about social evolution often fails. It is not

so much a failure of the rule, but that the rule as stated hides too much.

The inviting simplicity leads to hasty conclusions without careful spec-

ification of the biological interactions and the control of phenotypes.

My view is that overly simplified analyses based on kin selection are too

common, but that the full power of kin selection as an analytical tool is

rarely employed.

Given the complexity of the subject, it is useful to follow the history

of some technical issues. I begin with Hamilton’s (1970) derivation. I

then turn to Queller’s (1992a, 1992b) elegant quantitative formulation,

which uses the statistical approach outlined in Chapter 2. Queller’s work

places Hamilton’s rule in the broader context of multivariate selection

and causal analysis (Lande and Arnold 1983).

The prior work by Hamilton and Queller leaves several conceptual

issues unresolved, and fails to provide practical guidelines for the so-

lution of common problems. I extend the concepts and methods of kin

selection in the following chapter. Later chapters illustrate the power of

these extended methods by solving a wide array of problems in social

evolution.

3.2 Hamilton’s 1970 Proof

In the late 1960s George Price explained his covariance formulation of

natural selection to W. D. Hamilton (1996, 171–176). Hamilton quickly

realized that this covariance method provided a new way to study social

behavior. This led to Hamilton’s (1970) publication, which I summarize

in this section (see Grafen 1985, for further details). I use Hamilton’s

notation in this section to allow comparison with the original publica-

tion. My notation in other sections matches the style of this book, which

differs from Hamilton’s.
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DIRECT FITNESS

Hamilton first wrote an expression for the fitness of an individual as

affected by its own phenotype and the phenotype of its neighbors. This

simple description of individual fitness is called direct fitness, or some-

times personal or neighbor-modulated fitness.

The direct fitness of individual j in a population is

wj = 1+
∑
i
sij ,

where sij is the effect of the ith social partner on the fitness of the jth

individual. The term sjj is the effect of the individual on itself.

I follow the frequency of an allele, A, which occurs at a diploid locus

(one allele from mother and one allele from father for each gene of an in-

dividual). The allele frequency of A in each individual, j , is qj = (0, 1
2 ,1).

I use the Price Equation to calculate the change in allele frequency. Re-

peating Price’s formula from Eq. (2.3),

w∆q = Cov (w, q)+ E (w∆q) .
The term ∆q describes the change in allele frequency transmitted by an

individual. I make the standard population genetic assumption that the

allele frequency transmitted by an individual, in its successful gametes,

is the same as qj , the allele frequency in the adult. Thus, if qj = 1/2,

then the adult transmits the allele A to one-half of its offspring. This

standard assumption about transmission implies that ∆q = 0. Thus the

change in allele frequency is determined entirely by the covariance term

w∆q = Cov (w, q) = 1
n

∑
j

∑
i
sij

(qj − q
)
. (3.1)

This form matches the social effects, s, with the individual affected.

The total of all social effects,
∑

i sij , determines the direct fitness of the

jth individual. But it is difficult to predict how natural selection will

affect the social characters, s, and the direct fitness. Each individual is

influenced by a diversity of social partners, and each social partner may

have differing reproductive interests.
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INCLUSIVE FITNESS

Hamilton showed that social behavior may be easier to interpret if we

take the point of view of the individuals who control behavior (actors)

rather than those who receive the effects (recipients). Reassociation of

the fitness effects in Eq. (3.1) can be achieved as follows. Express the

allele frequency in the jth individual as a function of the allele frequency

in the ith individual, qi , yielding

qj − q = bij (qi − q)+ εj .

I have made a few minor changes from Hamilton’s definitions. I define

the b’s as deviations that can be positive or negative, such that the total

deviations are necessarily zero,
∑

j bij = 0. The εj are the unexplained

part of the deviation, with the ε’s summing to zero. Substitution into

Eq. (3.1) yields

w∆q = 1
n

∑
i
xi (qi − q) , (3.2)

where Hamilton defined

xi =
∑
j
sijbij (3.3)

as the inclusive fitness of the ith individual. The term sij is the effect

the ith individual has on the fitness of the jth recipient. The term bij is

a measure of the degree to which a deviation in actor allele frequency,

qi − q, predicts a deviation in recipient allele frequency, qj − q. Thus

the total effect of an actor’s behaviors on allele frequency change is

proportional to xi , the actor’s inclusive fitness. From Eq. (3.2), we can see

that an allele A that increased xi would increase in frequency. Selection

therefore increases the inclusive fitness of individuals.

HAMILTON’S RULE

Suppose an actor, i, sacrifices an amount C of its own reproductive suc-

cess, and increases a recipient j ’s success by an amount B. Is this behav-

ior favored by selection? Application of Eq. (3.3) allows easy calculation

of the inclusive fitness effect

xi = bijsij + biisii,

where the effect on the neighbor is sij = B, the effect on self is sii = −C,
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the term bii = 1 because the slope of an individual’s genotype on its own

genotype is one, and we define bij = r as the coefficient of relatedness

between actor and recipient. The behavior has a positive net effect when

xi > 0, which is

rB − C > 0.

This condition is Hamilton’s rule.

The definition of relatedness requires further explanation, and Hamil-

ton’s rule requires additional justification. I will return to these topics

after introducing better methods of analysis.

3.3 Queller’s Quantitative Genetic Model

Hamilton’s original work and the literature of the 1970s and 1980s for-

mulated kin selection within the classical theory of population genetics.

This theory typically analyzes the dynamics of a few alleles at one or

two loci. Quantitative genetics provides an alternative style of analysis.

The emphasis is on measurable phenotypes, such as height and weight.

Measurements on populations are summarized by means, variances, and

correlations among relatives. The genetics is implicit in the correlation

among relatives, but one does not analyze directly specific alleles and

loci.

Population genetics theory requires every detail to be specified in or-

der to calculate the dynamics of allele frequencies. One can therefore

be certain of any evolutionary deductions derived from a population ge-

netics model, for example, whether or not an altruistic trait can increase

in frequency. The price for this certitude is that one must make specific

assumptions about many factors that are never known even approxi-

mately in practice. Suppose one wants to know why in some species

young male birds stay with their parents to help raise siblings, whereas

in other species the young males always migrate away from the nest.

A population genetics analysis requires that one specify the number of

loci that affect the trait, the linkage relations among the loci, the fitness

of all genotypes, and so on.

Quantitative genetics has therefore dominated empirical studies that

emphasize behaviors and other phenotypes. This has led to an uneasy

relation between theory, often formulated in the population genetics

tradition, and practical studies that depend on quantitative genetics. A

few theoretical studies formulated kin selection within the framework
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of quantitative genetics (reviewed by Queller 1992b), and those theories

generally confirmed the basic insights of Hamilton.

Queller (1992a, 1992b) demonstrated that kin selection theory has al-

ways had a close affinity to the aims and methods of quantitative genet-

ics, in spite of the population genetics tradition for the theory. Hamilton

(1970) formulated his key result with the Price Equation, which describes

evolutionary change by the covariance between a phenotypic character

and fitness. I discussed in Section 2.2 the relationship between the Price

Equation and Robertson’s secondary theorem of natural selection, which

is the fundamental basis of theoretical quantitative genetics.

This close connection between the Price Equation and quantitative ge-

netics was obscured by early studies. Both Price (1970) and Hamilton

(1970) used the Price Equation, but assumed that the character of inter-

est, z, was a gene frequency within individuals, as described in the pre-

vious section (in which the symbol q was used for z to match Hamilton’s

notation) . Thus Price and Hamilton could use w∆z = Cov(w, z) as an

exact expression for gene frequency change, requiring only Mendelian

segregation so that ∆z = 0. This usage transforms the Price Equation,

which is generically about quantitative characters, into an exact expres-

sion of population genetics.

Queller’s (1992a, 1992b) first step followed standard quantitative ge-

netics by partitioning the character of interest into heritable and envi-

ronmental components. Any character can be written as z = g+δ, where

g is the heritable component, or breeding value, and δ is the component

not explained by genotype (Falconer 1989). The breeding value and the

environmental component are uncorrelated, Cov(g, δ) = 0, and the av-

erage value of the environmental effect is zero, thus z = g + δ = g (see

Eq. (2.5)). This allows one to write the Price Equation as

w∆z = w∆g = Cov
(
w,g

)+ E
(
w∆g)

= βwgVg + E
(
w∆g) .

The standard in quantitative genetics is to assume that breeding val-

ues are inherited without change between parent and offspring, so that∆g = 0. This is rarely true exactly, but provides a good approximation

in most cases. Thus the standard of quantitative genetics is to live with

this approximation without much concern for the consequences. This

apparently innocuous assumption greatly limits the analysis of social
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Figure 3.1 Queller’s regression model for kin interactions. (a) A path diagram
for Eq. (3.4). (b) The regression coefficients are relabeled with kin selection
notation. The r here may differ from Hamilton’s kin selection coefficient under
conditions discussed later. I discuss this point in a later section. Note from
the diagram that the total regression of fitness on breeding value is βwg =
βGgβwG·g + βwg·G = rB − C.

evolution. I return to this point below. Here I continue to follow Quel-

ler’s development, assuming ∆g = 0 and applying the shortened Price

Equation, w∆g = Cov(w, g) = βwgVg. The condition for the character z
to increase is w∆g > 0 or, equivalently, βwg > 0.

The next step is to partition fitness into separate causes. For social

evolution, we are concerned with the direct effects of a character on

fitness and the contribution of social interactions to fitness, so

w = αw + βwg·Gg + βwG·gG+ εw , (3.4)

where αw is a constant, G is the average breeding value of the local

group with which an individual interacts, βwg·G is the partial regression

of fitness on individual breeding value, holding group breeding value

constant, βwG·g is the partial regression of fitness on group breeding

value, holding individual breeding value constant, and εw is the error

term which, by least squares theory, is uncorrelated with g and G, that

is, Cov(g, εw) = Cov(G, εw) = 0. This is a direct fitness model because

w summarizes individual fitness as influenced by social partners.

Eq. (3.4) can be expanded into the path diagram in Fig. 3.1a by writing

G as a regression on g, in particular

G = αG + βGgg + εG. (3.5)

Substituting G from Eq. (3.5) into Eq. (3.4) yields

w = α+
(
βwg·G + βwG·gβGg

)
g + ε

= α+ βwgg + ε,



HAMILTON’S RULE 53

where the expansion

βwg = βwg·G + βwG·gβGg

is shown in Fig. 3.1a, and α and ε are combined constant and error

terms from the previous regression equations. (See Li 1975, for a full

discussion of regression equations and path diagrams.)

Queller matched this notation to models of kin selection (Fig. 3.1b).

The direct effect of an individual’s breeding value on its own fitness,

βwg·G, determines the reproductive cost of the phenotype. To maintain

the convention that cost reduces fitness, we set βwg·G = −C. The direct

effect of average breeding value in the local group on individual fitness,

βwG·g, measures the benefit of the phenotype on the fitness of neighbors,

thus βwG·g = B.

The condition for the character to increase is βwg > 0, which is

rB − C > 0

where r = βGg = Cov(G, g)/Cov(g, g) is a kind of kin selection coeffi-

cient of relatedness. I discuss relatedness coefficients in later chapters.

Queller’s model shows that social evolution can be studied by par-

titioning components of selection with multiple regression. He noted

that this is an application of the commonly used multivariate analysis

of selection developed by Lande and Arnold (1983), which I described

in Chapter 2. With this insight, Queller realized that a broad array of

regression models can be applied to social evolution, a point also made

but not developed by Heisler and Damuth (1987) and Goodnight et al.

(1992). Queller listed a few simple examples. Rather than repeat his

particular examples, I turn to a general analysis in the next chapter. The

general model clarifies many conceptual issues and provides practical

techniques for the study of social evolution.

3.4 Exact–Total Models

All the models presented thus far assume that average effects are trans-

mitted from parent to offspring without change. The models therefore

have the same status as Fisher’s fundamental theorem: they are exact

models for partial change, holding average effects constant (see Chap-

ter 5). In some applications it is useful to have an exact model for total

change.



54 CHAPTER 3

EXACT HAMILTON’S RULE

Starting with the exact Price Equation, Eq. (2.7),

w∆g = βwgVg + E
(
w∆g) ,

the condition for the increase of an altruistic trait is w∆g > 0, or

βwg > −E
(
w∆g)
Vg

,

and, using the total regression of fitness on breeding value as βwg =
rB − C from Fig. 3.1, we obtain an exact Hamilton’s rule (Frank 1997e)

rB − C > −E
(
w∆g)
Vg

. (3.6)

This is an exact, total result for all conditions, using any predictors

for breeding value. The predictors of phenotype may include alleles,

group characteristics, environmental variables, cultural beliefs, and so

on.

Eq. (3.6) can be expressed differently by starting with the Eq. (2.8)

form of the Price Equation, with g′ for transmitted breeding value

∆g = βwg′Vg′/w +Dg,

using the regressions w = αw + βwgg + ε and g′ = αg′ + βg′gg + γ,

expanding by standard statistical definitions

βwg′Vg′ = βwgVgβg′g + Cov
(
ε, γ
)
,

and dropping the correlation of residuals, Cov(ε, γ), giving

∆g = βwgβg′gVg/w +Dg.

The condition for ∆g > 0 is (Frank 1997e)

(rB − C)βg′g/w >
−Dg

Vg
. (3.7)

This form has two advantages. First, the left side shows the distinction

between components of fitness, rB−C, and fidelity of transmission, βg′g.

The second advantage of this form is that it allows easy calculation, in

which each term can be readily understood.
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EXAMPLE: REBELLIOUS CHILD MODEL

I mentioned that the predictors used for traits can be alleles, cultural

beliefs, or other variables. Here I study the evolution of a culturally

inherited trait for altruistic behavior. The trait is transmitted directly

from parent to offspring, but children are rebellious and switch to the

opposite behavior from their parents with probability µ. For simplicity,

I assume that each offspring has only one parent.

Let p be the frequency of the altruistic trait. Breeding value, g, is zero

or one if the trait is, respectively, absent or present in an individual.

The change in average breeding value between parent and offspring,

g′ − g = ∆g, is µ if parental value, g, is zero, and −µ if parental value is

one. The general equation for fitness, from Fig. 3.1, is

w = α− Cg + BG + ε,

where I have taken individual phenotype as equivalent to breeding value,

g, and group phenotype as equivalent to group breeding value, G. With

this setup, p = g = G, and α is chosen so that ε = 0.

We can obtain the equilibrium frequency of the altruistic character,

p∗, when the condition in Eq. (3.7) is an equality. The terms are

βwg = rB − C

βg′g = (1− 2µ)

w = α+ p (B − C)

Dg = µ (1− 2p)

Vg = p (1− p) .

This provides all the information we need to substitute into Eq. (3.7)

and solve for the equilibrium frequency of altruism. The solution is a

quadratic in p. When α = 0 and rB − C > 0, the solution is

p∗ = (rB − C) (1− 2µ)+ µ (B − C)
(rB − C) (1− 2µ)+ 2µ (B − C)

. (3.8)

Simple numerical calculations provide values of p∗ for α �= 0. Fig. 3.2

shows how the frequency of rebellion, µ, influences the cultural evolu-

tion of altruism. Note how quickly the frequency of altruism declines

when the frequency of rebellion increases from zero.
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Figure 3.2 The equilibrium frequency of altruism, p∗, in a model of cultural
inheritance. From Eq. (3.8) with r = 0.1, B = 1.1 and C = 0.1. Solid curve,
α = 0; dashed curve, α = 1. Note that r is treated as a parameter in the spirit
of comparative statics. A fully dynamic model might define r as a function of
rebellion frequency, µ.

3.5 Coefficients of Relatedness

Hamilton (1970) gave a coefficient of relatedness that could be calcu-

lated from shared genealogy. His population genetic coefficient em-

phasized the fact that kinship causes individuals to share a common

genotype by descent from ancestors. Later work, based on Price (1970),

showed that statistical associations among individuals determine the

course of selection (Hamilton 1972; Seger 1981; Michod 1982; Queller

1992a, 1992b). Shared genealogy is simply one process that causes sta-

tistical association.

The relatedness coefficient given above for Queller’s model is

r = Cov
(
G,g
)

Var
(
g
) = Cov

(
G,g
)

Cov
(
g, g
) , (3.9)

where G is the breeding value of social partners, and g is the breeding

value of a focal individual. This coefficient shows the statistical nature

of relatedness. Many variants on this type of coefficient have been re-

ported, but they all have the same basic form of a regression coefficient

(Michod 1982). The standard inclusive fitness coefficient takes G as the

breeding value of recipients, and g as the breeding value of actors.

It is often difficult to estimate directly the statistical associations

among social partners. Thus the standard approach, following Hamil-

ton (1970), is to assume that no selection is occurring and that genes
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shared from recent ancestors are the only cause of phenotypic associa-

tion. Genealogy can then be used to estimate the statistical association

between partners. For example, starting with Queller’s coefficient in a

diploid organism, we can write g = x1+x2 and G = y1+y2, where x and

y are random variables denoting the allelic effects of the two alleles at

a single locus. Assume that actor and recipient are different members

of the same population, with the social trait under study determined by

the same locus in the different individuals. Then Var(x) = Var(y) = σ 2

because x and y are alleles sampled from the same population at the

same locus. Thus

Cov
(
g, g
) = Cov (x1 + x2, x1 + x2)

= 2σ 2 + 2Cov (x1, x2)

= 2σ 2 (1+ F) ,

where F = Cov(x1, x2)/σ 2 = Corr(x1, x2) is the correlation between alle-

les within an individual. This correlation is often referred to as Wright’s

fixation index or as the inbreeding coefficient (Crow and Kimura 1970).

A similar calculation shows that Cov(G, g) = 4σ 2f , where f = Corr(y, x)
is the correlation of allelic values between different individuals. This

correlation is sometimes referred to as Wright’s relatedness coefficient

(Crow and Kimura 1970).

The kin selection coefficient of relatedness can now be rewritten in

terms of the two allelic correlations

r = 2f
1+ F

. (3.10)

When there is no selection, the inbreeding coefficient, F , and the allelic

correlation, f , can be calculated from a pedigree. I give examples in later

applications.

The form in Eq. (3.10) was given by Hamilton (1970) as the regres-

sion coefficient of relatedness. He used this form to connect his the-

ory to classical population genetics. This form also highlights a “selfish

gene” interpretation of value (Hamilton 1972; Dawkins 1982). Randomly

choose one of the two alleles at a locus. That allele values its own body

by 1+F . The 1 is the allele’s valuation of itself. The F is the probability

that the two alleles are identical. Our focal allele values another body by

the probability that partner alleles are identical to the focal allele. This

probability of identity is f for each allele in the other body, and there are
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two alleles, so the valuation is 2f . Thus r describes an allele’s valuation

of another body relative to its own body.

3.6 Prospects for Synthesis

This chapter began with Hamilton’s (1970) classic model of inclusive

fitness. Hamilton studied the population genetics of allele frequency at

a single locus. He showed that an actor’s net effect on allele frequency

change is described in terms of its fitness effects on social partners and

its statistical associations in allele frequency with those partners.

Queller (1992a, 1992b) expressed social evolution in a quantitative ge-

netic framework. Hamilton’s rule arises as a special case of the quantita-

tive genetic model when shared genotype causes correlation of charac-

ters between social partners. Queller’s study suggests a general method

for multivariate analysis of correlated characters in social evolution. The

next chapter develops this approach.



4 Direct and
Inclusive Fitness

In spite of advances made by Queller and others, Hamilton’s rule re-

mains confusing because it is too simple to be an effective guide for

many realistic problems. I clarify the concepts and methods of kin se-

lection by placing the techniques within a broader framework for the

analysis of natural selection. My extension shows that there are, in fact,

two distinct processes in social evolution (Frank 1997d, 1997e).

The first process is the effect of social partners on the reproductive

success of individuals. Queller (1992a, 1992b) showed that social com-

ponents of selection are naturally expressed by treating the phenotypes

of social partners as correlated characters of a focal individual. One

can then apply the multivariate analysis of natural selection (Lande and

Arnold 1983), describing interactions among kin as one process that

creates correlations among characters. For example, the phenotypic

correlation in sex ratio produced by two females in an isolated patch

influences the favored sex ratio.

The second process is the transmission fidelity via different compo-

nents of fitness. For example, a female values daughters versus nieces

according to the genotypic correlation, or transmission fidelity of char-

acters.

The difficulty is that selection and transmission are distinct processes,

yet both can be described by what look to be, at first glance, the same

form of Hamilton’s rule. In the first case, the phenotypic correlation

in sex ratio describes one common type of relatedness coefficient. In

the second case, the genotypic correlation of a female to a daughter

or niece describes a different type of relatedness coefficient. This cre-

ates confusion when a problem requires social aspects of selection to be

separated from components of transmission. Clarification is required

to understand the basic concepts of social evolution, and to use these

concepts for the solution of realistic problems.

I show how correlated selection and proper weighting of transmission

components can, together, provide a common currency for success. This

common economic currency allows me to transform the general con-

cepts and methods into a practical maximization technique for solving
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problems. (Frank 1997d, provides details of work summarized in this

chapter.)

Later chapters illustrate the power of these methods applied to a wide

array of problems in social evolution. The examples show that the con-

ceptual clarifications and new techniques are essential. Many important

problems cannot be solved by standard application of Hamilton’s rule

or Queller’s extensions.

4.1 Modified Price Equation

I begin with the usual expression for a trait in terms of breeding value,

z = g + δ, where z = g and δ = 0. To study the change in trait value

over time, I write character value in the next time period as z′ = g′ +δ′,
with z′ = g′. Thus the change in average trait value is z′ −z = ∆z = ∆g.

The Price Equation provides a method to obtain an exact analysis of ∆g.

I use a modified version here that is convenient for my purposes.

Before proceeding, it will be useful to rearrange the scheme for in-

dexing individuals. Social evolution is conveniently studied by dividing

the population into different behavioral classes, for example, mothers,

daughters, nieces, social partners, and so on. I will be concerned with

individuals that are members of a particular social class. Let i index

social class, and ik be members of social class i with genotype k. The

frequency of the kth type in the ith class is qik = qipik, where qi is the

abundance of the ith class and pik is the abundance of the kth geno-

type within the ith class. The standard identities for frequencies hold,

in particular,
∑

ik qik = 1 and
∑

k pik = 1.

I start with the simple definition

∆g = g′ − g =
∑

q′ikg
′
ik −
∑

qikgik.

I use the peculiar definitions of the Price Equation with respect to the in-

dices ik. The value of q′ik is not obtained from the frequency of elements

with index ik in the descendant population, but from the proportion of

the descendant population that is derived from the elements with index

ik in the parent population. If we define the fitness of element ik as

wik, the contribution to the descendant population from type ik in the

parent population, then q′ik = qikwik/w , where w is the mean fitness of

the parent population.
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The assignment of breeding values g′ik also uses indices of the parent

population. The value of g′ik is the average breeding value contributed

to descendants by parents with index ik. The change in breeding value

for descendants of ik is defined as ∆gik = g′ik − gik.
This scheme has the advantage that we can define parental classes, i,

in any convenient way, and we can assign members of the descendant

population to any parental class without the need to respect lineal de-

scent. This is particularly useful for kin selection, in which one often

assigns a fitness component of a neighbor to an actor whose phenotype

controls the neighbor’s fitness component. This will be made clear later.

We can use these definitions to write an exact expression for the

change in character value

∆g =∑
ik
q′ikg

′
ik −
∑
ik
qikgik

=
∑

qik (wik/w)g′ik −
∑

qikgik

= Cov
(
w,g′

)
/w +

∑
qik
(
g′ik − gik

)
= βwg′Vg′/w +Dg. (4.1)

This matches Eq. (2.8), but the notation here is convenient for the prob-

lems of this chapter. The term Dg is the change in the effect of alleles

between the parent and offspring generations. I will assume Dg = 0. It

is important to consider what assumptions this requires

Dg =
∑
ik
qik
(
g′ik − gik

)
=
∑
i
qi
∑
k
pik
(
g′ik − gik

)
=
∑
i
qi
(
g̃′i − gi

)
= g̃′ − g.

The second line is obtained by the prior definition, qik = qipik. The third

line defines the average breeding value for the character among class i
parents as gi and the average breeding value among offspring assigned

to class i parents as g̃′i . Note that g̃′i is defined with respect to parental

frequencies, pik. Thus descendant values are weighted equally for all

parents, ignoring selection and differential fitness among parents. The

final line defines g̃′ as the average breeding value among descendants,

taken with respect to parental frequencies.
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Thus Dg summarizes the change in breeding value between ancestor-

descendant pairs. Recall that we may assign descendants to nonlineal

ancestors. Although there are many ways for Dg to be equal to zero,

two general assumptions capture the main issues.

First, if there is no variation in gi among parental classes i, then the

pattern by which descendants are assigned to parental class has no ef-

fect on Dg. This assumption is reasonable when the definition of class

(e.g., sister, brother) is uncorrelated with the average breeding value of

the class. When breeding value for the character is associated with class

definition, then the particular details of the problem should make it clear

how to calculate Dg.

The second assumption to make Dg = 0 is that the average effect

of a particular genotype does not change between parent and offspring.

Changes in environment or changes in allele frequency with nonadditive

allelic interactions can change the effect of genotype between parent and

offspring. Changes in environment are never fully predictable. Changes

in average effect can be calculated for particular assumptions about

nonadditivity, but the calculations are often tedious. Average effects

are approximately constant over time when the population has little

genetic variance and allele frequencies change by a small amount. This

constancy of additive effects is equivalent to linearization of a dynami-

cal system within a small analytical region, the standard assumption of

local equilibrium analysis.

When Dg = 0, the direction of evolutionary change is completely sum-

marized by the sign of the regression coefficient, βwg′ in Eq. (4.1), thus

sign
(∆g ) = sign

(
βwg′

)
= sign

(
Cov
(
w,g′

))
. (4.2)

The next section analyzes factors that influence the direction of evolu-

tionary change.

4.2 Regression Equations

DIRECT FITNESS

This section follows Fig. 4.1 to partition the regression βwg′ into com-

ponents of correlated selection and kin selection. This method analyzes

variation in the fitness of class i members, wik, by starting with varia-

tion in the descendant genotype of class i members, g′ik. Fitness is af-

fected by phenotypes zij , which may be controlled by other classes. The
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wig’i

zi2

Wi
vi

zi1 β
i1

βi2β

ρi1

ρ
i2

Figure 4.1 Causal chain for the association between offspring breeding value,
g′, and fitness, w . The pathway between g′ and w is repeated for each i.

method therefore tracks the direct fitness of each class as influenced by

the behavioral phenotypes of social partners.

Total fitness in the population is W = ∑qikwik. Each wik measures

contribution to following generations for genotype k of class i, and thus

implicitly includes reproductive value weightings. I discuss reproduc-

tive value in Chapter 8. Here I summarize the notation.

We can separate reproductive value and reproductive success bywik =
viWik, where vi is the reproductive value of an individual of class i. Thus

total fitness is

W =
∑
ik
qikwik

=
∑
ik
qikviWik

=
∑
i
qivi

∑
k
pikWik

=
∑
i
ciWi. (4.3)

Here the frequency of class i, qi , is combined with the reproductive value

of each member of class i as ci = qivi , with the v ’s normalized so that∑
ci = 1. The c’s are therefore the class reproductive values, the total

contribution of class i to the following generations. The term Wik is

the reproductive success of genotype k of class i. The class average,

Wi , is normalized to the population average W when there is no genetic

variation. I assume here that each Wi refers to a fitness component with

a common reproductive value weighting (see Chapter 8).

Expanding Eq. (4.2), we obtain

Cov
(
w,g′

) =∑
ik
qipikwik

(
g′ik − g̃′

)
=
∑
ik
qipik (viWik)

(
g′ik − g̃′

)
, (4.4)
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where the average effect of parental alleles in the offspring generation

is g̃′ =∑qipikg′ik, with the summation over parental frequencies.

Two regression equations are required to complete the paths shown

in Fig. 4.1

Wik = αw +
∑
j
βijzijk + εw

zijk = αz + ρijg′ik + εz.

If we assume that all unspecified error terms in Fig. 4.1 are uncorrelated,

then we can combine the regressions with Eq. (4.4) to obtain

Cov
(
w,g′

) =∑
i
qi

vi∑
j
βijρij

∑
k
pikg′ik

(
g′ik − g̃′

)
. (4.5)

Genotypic variation can be expanded as∑
k
pikg′ik

(
g′ik − g̃′

) =∑
k
pikg′ik

(
g′ik − g′i + g′i − g̃′

)
=
∑
k
pikg′ik

(
g′ik − g′i

)+ g′i
(
g′i − g̃′

)
= σi + g′i

(
g′i − g̃′

)
.

As discussed above, under the assumptions for Dg = 0, I assume no

variation among classes, g′i − g̃′ = 0. When there is variation among

classes, the terms g′i (g
′
i − g̃′) must be retained to describe selection

among classes. If we drop the among-class terms and use the identity

given above for reproductive value, ci = qivi , Eq. (4.5) becomes

Cov
(
w,g′

) =∑
i
ci
∑
j
βijρijσi. (4.6)

The term σi is a measure of variance among the offspring of class i,
taken with respect to parental frequencies. If we assume that the dis-

tribution of genetic variance is uncorrelated with the division of fitness

components into classes, then σi is a constant with respect to i. This

is reasonable because genetic variance is often the same within behav-

iorally defined classes, such as sisters or brothers. If σi is constant with

respect to i, then the direction of evolutionary change is

sign
(
Cov
(
w,g′

)) = sign

∑
i
ci
∑
j
βijρij

 . (4.7)
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(a)

(b)

g’i

g’i

zi1

zi1

gi1

gi1

di1

di1

τi1

τ̃i1

πi1

Figure 4.2 Association between offspring breeding value, g′i , and a character
that influences parental fitness, zij . These diagrams expand the regression
described by ρij in Fig. 4.1. (a) Introduction of an intermediate explanatory
variable, gij . The term gij is the breeding value for the character under study
in an individual (actor) that influences the jth character of the ith parental
class. (b) The inclusive fitness pathway. Inclusive fitness arguments usually
ignore effects not associated with the actor; thus the π pathway is dropped.
In order to place the actor at the center of causal explanation, the direction of
the regression is changed between the actor and the recipient offspring. Thus
τ is the heritability component, or relatedness coefficient, given as slope of
breeding value of recipient offspring on actor breeding value.

The regression terms, β and ρ, may change with directional evolution

of the character under study. Thus the condition is primarily used for

describing the instantaneous direction of change for a given set of as-

sumed or measured regression parameters or for providing equilibrium

conditions.

INCLUSIVE FITNESS

Social evolution is commonly studied by inclusive fitness. The analysis

begins with the individuals that control phenotype. This point of view

partitions into components the ρij regression coefficients introduced in

Fig. 4.1.

Two regression equations, summarized by the diagram in Fig. 4.2a,

can be combined to partition the ρij in Fig. 4.1

zijk = αz + dijgijk +πijg′ik + εz

gijk = αg + τ̃ijg′ik + εg,

yielding ρij = τ̃ijdij + πij , under the assumption that εg and εz are

uncorrelated.
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The ρij of Fig. 4.1 simply summarizes the association between a phe-

notype, zij , and offspring genotype, g′i , without specifying how the phe-

notype is determined. The gij of Fig. 4.2 is the genotype of the actor that

controls the phenotype zij , which in turn influences the fitness of the

recipient. The explicit role of controlling genotype introduces a natural

aspect of causal analysis. The difficulty with the path in Fig. 4.2a is that

the causal flow in the regression is from offspring genotype, on the left,

to character, on the right, via the controlling genotype as an intermedi-

ary. Inclusive fitness takes the controlling genotype’s point of view, so

that both phenotype, zij , and offspring genotype, g′i , are expressed by

regressions on the controlling genotype, gij .
Fig. 4.2b shows the analysis taken fully from the controlling geno-

type’s point of view. There are two differences from Fig. 4.2a. First, the

term πij is dropped, ignoring extrinsic factors that cause an association

between z and g′. Second, the direction of the regression between gij
and g′i is reversed, so that the new regression is expressed as offspring

of recipient genotype on controlling genotype. This assigns variations

in the abundance of descendant genotypes to the classes that control

variations in phenotype. Put another way, pathways follow phenotypic

cause rather than lineal descent.

When is the flip in the direction of regression valid in Fig. 4.2b? If we

substitute the regressions of Fig. 4.2a into Eq. (4.6) and drop π , we have

sign
(
Cov

(
w,g′

)
/w
) = sign

∑
i
ci
∑
j
βijdij τ̃ijσi

 . (4.8)

We use the definition of regression to switch the direction of the τ co-

efficient, τijψij = τ̃ijσi , where ψij is the genetic variance within the

class that controls phenotype j of class i. The genetic variance is al-

ways with respect to the character under study, which may differ from

the phenotype zij . Substituting into Eq. (4.8) yields

sign
(
Cov
(
w,g′

)
/w
) = sign

∑
i
ci
∑
j
βijdijτijψij

 . (4.9)

In the direct fitness formulation, I assumed that the variance among

recipient offspring within class i, σi , is independent of i; in other words,

I assumed that Var(g′i ) over individuals indexed by k as constant with

respect to i. Convenient analysis of inclusive fitness requires that the
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d zc
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βcβ

Figure 4.3 An actor has two characters, watching (w) and calling (c), that
influence the fitness of a recipient. This diagram shows the inclusive fitness
effect of the actor when studying the evolution of the watching character. The
actor’s character value for watching, zw , has, by definition, a slope of one on its
breeding value for watching, gw . The actor’s character value for calling, zc , has
a slope of d on its breeding value for watching. The value of d is influenced by
linkage disequilibrium, or pleiotropy. The slope of the recipient’s transmitted
breeding value, g′w , on the actor’s breeding value is τ, the relatedness of actor
to recipient.

genetic variance within controlling classes for the character under study

be the same in all classes. In particular, the variance over individuals

indexed by k, ψij = Var(gij), must be constant with respect to ij . If one

takes these variance terms as constants, then the condition in Eq. (4.9)

can be simplified to

sign
(
Cov
(
w,g′

)
/w
) = sign

∑
i
ci
∑
j
βijdijτij

 . (4.10)

This provides the direction of evolutionary change by inclusive fitness.

Let us review the meaning of each term on the right side of Eq. (4.10).

The term ci is the class reproductive value for the ith fitness component

(see Chapter 8).

The term τij is the slope of the transmitted genotypic value g′i on

the genotypic value of the controlling class, gij . This regression is fre-

quently defined as a kin selection coefficient (for reviews, see Michod

1982; Grafen 1985), and can also be viewed as a component measure of

transmission fidelity, or heritability (Frank 1997e).

The term βij is the slope of Wi , the ith fitness component, on zij , the

jth character affecting Wi . This is the commonly defined regression of

fitness on multiple characters used by Lande and Arnold (1983). One

difference from Lande and Arnold, however, is that here the character

may be controlled by a social partner rather than by the individual itself.

The term dij is the slope of zij on controlling genotype, gij . Geno-

type gij is measured with respect to the character under study, which
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may differ from the phenotype zij . Consider, for example, guarding of

social groups, in which an individual watches the periphery for preda-

tors, and gives an alarm call when a predator is sighted. The terms are

illustrated in Fig. 4.3. Watching and calling are two distinct characters.

When the analysis focuses on watching, then all breeding value terms,

g, refer only to the watching character. The fitness of individuals is,

however, also influenced by calling. One of the z’s in social partners is

the calling character, and the associated d term is the regression of the

calling character on breeding value for watching within social partners.

COMPARISON OF DIRECT AND INCLUSIVE FITNESS

The inclusive fitness equation has advantages and disadvantages when

compared with the direct fitness form in Eq. (4.7). On the positive side,

the τ coefficients measure what can be thought of as components of

heritability, all taken consistently from the causal actor’s point of view.

This is matched with the central role of actors in controlling fitnesses

of the recipient classes.

On the negative side, the inclusive fitness formulation excludes π in

Fig. 4.2a. This pathway measures the partial association between g′ and

z not mediated directly by the actor’s breeding values for the character

under study. The inclusive fitness formulation also requires that genetic

variances be the same within all actor classes.

These problems may not be serious within the context of inclusive

fitness analysis. First, if the only goal is to measure the consequences

of behavior by genetic relatives, then excluding π is acceptable but may

prevent complete analysis of evolutionary consequences. An example is

given below. Second, many simple inclusive fitness formulations study

the behavior of a single actor class; thus the requirement that genetic

variances be the same within all actor classes is irrelevant.

COMPARISON WITH QUELLER’S ANALYSIS

The general models of this section differ from Queller’s analysis in two

ways. First, the directionality of Queller’s relatedness coefficient, βGg in

Fig. 3.1, is opposite to the directionality of Hamilton’s inclusive fitness

coefficient. Queller regresses actor genotype, G, on recipient genotype,

g, providing a measure equivalent to τ̃ in Fig. 4.2a. The proper mea-

sure for inclusive fitness has the direction reversed, the τ in Fig. 4.2b.
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The directionality of τ is irrelevant in many common applications, as

noted in the previous section. But it is important to be clear about the

underlying theory and concepts.

The second difference from Queller’s analysis concerns the compo-

nents of transmission. Consider an actor who has a different influence

on the male and female reproductive components of a recipient. In Quel-

ler’s model, there is no clear way to represent these separate male and

female transmission pathways. The extended model provides a distinct

separation between the components of fitness and the components of

transmission.

NONADDITIVE MODELS

One commonly discussed failure of Hamilton’s rule arises when fitness

effects are not additive. For example, suppose that fitness effects be-

tween neighbors have a multiplicative component. This can be handled

in the model of Fig. 4.1 by defining a third character, zi3 = zi1zi2. One

cannot reduce a problem to the simple rB − C > 0 form if benefit and

cost have multiplicative effects, but the general analysis of kin selection

by regression still applies (Queller 1992a).

When variation in characters is small, then multiplicative effects are

approximately the sum of additive effects, zi3 ≈ zi1zi2 + zi1zi2. This

separation is handled automatically by the equilibrium maximization

techniques presented in the next section.

4.3 Maximization

Kin selection provides a measure of valuation, the relatedness coeffi-

cient, for comparing direct and indirect reproduction. But the theory

is often difficult to apply. The regression parameters typically depend

on the frequency of phenotypes and on aspects of demography. Pheno-

types and demography change as selection proceeds. Thus a condition

for the direction of evolutionary change, although true, is difficult to

use because the parameters summarize complex processes.

The kin selection regressions above start with a complex separation

of direct and indirect reproduction. It would be useful if we could turn

the problem around. Begin instead with a mathematical expression that

describes the direct reproductive success of individuals in terms of the
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biological problem of interest. Next, use standard maximization meth-

ods to obtain the direction of evolutionary change. Maximization meth-

ods provide the most powerful set of analytical tools available, and lead

naturally to simple theories of comparative statics.

To use maximization, we must find a function that, when differenti-

ated, correctly describes the direction of change under natural selection.

Thus we require that differentiation automatically lead to a proper com-

parison of direct and indirect effects on reproduction, with an exchange

rate that measures these different currencies on the same scale of value.

MARGINAL DIRECT AND INCLUSIVE FITNESS

Frank (1997d) showed that a simple maximization method can be used

to obtain the direction of evolutionary change (extending Frank 1995b;

Taylor and Frank 1996). This allows one to start with natural, biolog-

ical expressions for direct fitness given in terms of all the characters

affecting each class. The solution, expressed in the form of Eq. (4.7),

maintains the direct fitness point of view. The solution, in the form of

Eq. (4.10), transforms the direct fitness expressions into a summary of

inclusive fitness.

For direct fitness, we begin with the definition in Eq. (4.3) of total

fitness, W =∑ ciWi . We then differentiate W with respect to a randomly

chosen allele in the descendant population. The population is assumed

to be genetically monomorphic, except for rare genotypic variants of

small average effect. The method thus defines

dW
dg′

=
∑

ci
dWi

dg′i

=
∑
i
ci
∑
j

∂Wi

∂zij
dzij
dg′i

. (4.11)

The left side has a natural interpretation as a slope of W on g′, matching

the statement in Eq. (4.2) that the direction of evolutionary change is

determined by the sign of the regression βwg′ . The right side matches

Fig. 4.1, with

∂Wi

∂zij
= βij

dzij
dg′i

= ρij .
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Thus the sign of the derivative dW/dg′ is sufficient for analysis of the

direct fitness condition in Eq. (4.7).

A maximization method for the inclusive fitness condition in Eq. (4.10)

can also be obtained. The steps for deriving the inclusive fitness form

are a bit awkward, but the causal point of view of actors is often valuable.

Starting with Eq. (4.11)

dW
dg′

=
∑
i
ci
∑
j

∂Wi

∂zij
dzij
dg′i

=
∑
i
ci
∑
j

∂Wi

∂zij
dzij
dgij

dgij
dg′i

, (4.12)

where the last line matches Fig. 4.2a with

dzij
dgij

= dij

dgij
dg′i

= τ̃ij .

The goal is to define a differentiation operator that leads to Eq. (4.10),

without worrying about the steps that get there. Thus, following the

transition from Fig. 4.2a to Fig. 4.2b, we define differentiation with re-

spect to actor genotype by rearranging Eq. (4.12) as

dw
dg

=
∑
i
ci
∑
j

∂Wi

∂zij
dzij
dgij

τij, (4.13)

where the right side matches Fig. 4.2b and Eq. (4.10). The term gij is

defined as follows. Randomly choose an individual of class i, and focus

on the character zij that influences the individual’s fitness. Then gij is

a randomly chosen actor from the class that controls zij in the focal

individual. The value of gij is the breeding value of the actor for the

character under study, not the genotypic value affecting the character

zij .
Equilibrium is obtained by analyzing dW/dg′ = 0 for direct fitness,

or dW/dg = 0 for inclusive fitness, evaluated at a point with no genetic

variation. Thus, at equilibrium, we take zijk = z∗ij in the derivative and

solve for the equilibrium values of z∗, checking that the condition pro-

vides a local maximum.
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Technically, the method is equivalent to the exact Price Equation, with

all effects linearized by studying small variations. The term∆g is of sec-

ond order (product of the change in frequency multiplied by change in

phenotypic effect), and all nonlinear interactions become linear terms

plus negligible second-order terms. The effect of each character on

fitness is expressed as a marginal effect, ∂W/∂z. Thus we obtain a

marginal theory of kin selection, which is always true because fitness

effects are rendered additive and selection is weak (Grafen 1985).

A locally stable equilibrium obtained by this method resists invasion

by phenotypes with small deviations from the equilibrium. A locally

stable phenotype is often called an Evolutionarily Stable Strategy (May-

nard Smith and Price 1973; Maynard Smith 1982). Technical details of

stability were discussed extensively in a special issue of the Journal of

Biomathematics (Diekmann et al. 1996). I discuss a few aspects of dy-

namics in a later chapter, which uses simple games to explore the role

of relatedness between social partners.

MARGINAL HAMILTON’S RULE

I provide many examples in later chapters that show the power of the

marginal kin selection formulation. Here I limit myself to a derivation

of the marginal form of Hamilton’s rule.

Suppose that individuals are paired. One behaves as the actor, with

character z. This character reduces the actor’s fitness, but raises the

fitness of its partner, the recipient of the behavior. This model has two

classes. Class 1 is the actor, and class 2 is the recipient. Following the

standard procedure, total fitness is W = c1W1 + c2W2, where the sub-

scripts denote class, c is class reproductive value, and Wi is reproduc-

tive success. Each Wi is a function of the actor’s character, z. To match

Hamilton’s original model, I ignore the reproductive value weightings,

assuming that c1 = c2.

Marginal inclusive fitness is, from Eq. (4.13)

dW
dg

= ∂W1

∂z
dz
dg1

τ1 + ∂W2

∂z
dz
dg1

τ2,

where I have dropped the j subscript because there is only one character.

The term ∂W1/∂z = −Cm is the marginal effect of the actor’s own

phenotype on its fitness. To match standard Hamilton’s rule notation,

define Cm as the marginal cost. The term g1 is the breeding value of



DIRECT AND INCLUSIVE FITNESS 73

the actor, who controls the character z. Following our standard model,

the slope of individual phenotype on individual breeding value is one,

dz/dg = 1. The relatedness coefficient is τ1 = Cov(g′1, g1)/Var(g1),
where g′1 is the breeding value that the actor transmits to the next gen-

eration.

The second set follows along in a similar way. The term ∂W2/∂z =
Bm is the marginal effect of the actor’s phenotype on the fitness of the

recipient. To match Hamilton’s rule, define Bm as the marginal benefit.

The term g1 is used because the phenotype, z, is controlled by the actor

class. The relatedness coefficient is τ2 = Cov(g′2, g1)/Var(g1), where g′2
is the breeding value transmitted by the recipient to the next generation.

When variation in g is small, the condition for the character z to in-

crease is that marginal inclusive fitness be greater than zero, dW/dg > 0,

which yields

τ2Bm − τ1Cm > 0.

If we divide by τ1, and define the kin selection relatedness coefficient as

r = τ2/τ1, then we recover the marginal form of Hamilton’s rule

rBm − Cm > 0,

where

r = Cov
(
g′2, g1

)
Cov

(
g′1, g1

) .
This form of r is the correct definition of the relatedness coefficient for

an inclusive fitness interpretation of Hamilton’s rule.

This marginal version of Hamilton’s rule shows that an equilibrium

often satisfies the condition that marginal costs and benefits are equal,

Cm = rBm. Note how the relatedness coefficient, r , plays the role of

currency translation between marginal effects on direct and indirect re-

production.

I show in later chapters that the marginal rule is difficult to apply

directly. Instead of starting with the rule and measuring value by in-

clusive fitness, it is better to start with a simple expression for direct

fitness of an individual. Maximization, coupled with appropriate substi-

tution of kin selection coefficients, yields the correct answer, which is

always consistent with the marginal theory of kin selection. Hamilton’s

rule can sometimes be used to interpret the results, but is not useful in

the derivation.
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4.4 Coefficients of Relatedness

Much of the literature on kin selection is concerned with justifying Ham-

ilton’s rule or describing exceptions to the rule. A large part of this

literature concerns the definition of r that can make Hamilton’s rule

work (Michod and Hamilton 1980; Seger 1981; Michod 1982). However,

many interesting problems of kin selection cannot easily be forced into

an rB − C > 0 form. I prefer to study how the basic partitions of direct

and inclusive fitness can be used to solve interesting problems.

In this section I first present a model of sex ratio evolution. This prob-

lem illustrates how direct and inclusive fitness analyses differ in their

use of relatedness coefficients and phenotypic correlations. I then dis-

cuss the proper use of the transmitted breeding value term, g′. Specifi-

cally, when should this term be taken as the genotype of offspring, and

when as the genotype transmitted directly by a parent through particu-

lar fitness components?

EXAMPLE: SEX RATIO

This model is the standard analysis of local mate competition, described

in detail in Chapter 10. The two classes, or recipient fitness components,

are male and female offspring. I use y for the sex ratio phenotype of a

mother, and z for the average sex ratio phenotype of a local group. Sex

ratio is the frequency of males per brood.

Each mother has fitness components for male and female offspring

Wm = y
z
(1− z)

Wf = 1− y.

When there is no variation in phenotype at equilibrium, y = z = z∗, the

fitness components have a normal value of 1 − z∗. For direct fitness,

equilibrium is analyzed by studying dW/dg′ = 0, evaluated at y = z =
z∗. Total fitness is W = cmWm + cfWf , with the c’s denoting class-

specific reproductive values for males and females. Differentiating the

components yields

dWm

dg′m
= ∂Wm

∂y
dy

dg′m
+ ∂Wm

∂z
dz

dg′m

= r̃m
(

1− z∗

z∗

)
− sr̃m

(
1
z∗

)
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Figure 4.4 The direct fitness model for sex ratio. The analysis begins with
transmitted genotypic value, g′. The associations with mothers phenotype, y ,
are given by r̃ . Direct fitness also requires a measure of association between g′
and average group phenotype, z. I have assumed that this association can be ex-
pressed as the product of the association between g′ and y , and the association
between y and z.

and

dWf

dg′f
= ∂Wf

∂y
dy
dg′f

= −r̃f ,
where Fig. 4.4 shows the new parent-offspring terms, r̃m = dy/dg′m and

r̃f = dy/dg′f , and the association between a male offspring and a random

mother in the group, sr̃m = dz/dg′m. Solving dW/dg′ = 0 yields the

equilibrium for the direct fitness model

z∗ = cmr̃m (1− s)
cmr̃m + cf r̃f

.

I discuss this result after obtaining the equilibrium by the inclusive fit-

ness method.

For inclusive fitness, the operator dg is interpreted as drawing a ran-

dom individual from the recipient class, focusing on a phenotype that

affects fitness, and picking the actor class that controls the phenotype.

Analysis by inclusive fitness of dW/dg = 0 is summarized in Fig. 4.5.

The analysis begins with

dWm

dg
= ∂Wm

∂y
dy

dgmy
τmy + ∂Wm

∂z
dz

dgmz
τmz

= rm
(

1− z∗

z∗

)
−Rm

(
1
z∗

)
.

The term dy/dgmy = 1 is the slope of individual phenotype on individ-

ual breeding value. The term dz/dgmz is the slope of a random indi-

vidual on the breeding value that controls its phenotype. In this case,
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Figure 4.5 The inclusive fitness model for sex ratio. (a) The term gy is the
genotypic value of a mother, with measures of transmission (relatedness) to
sons and daughters. (b) Group phenotypes are studied by choosing at random
a member of the group. The term gz is the genotype that controls the phenotype
of the chosen individual. The terms Rm and Rf are the transmission measures
(relatedness) of the controlling genotype to random offspring in the group.

each individual’s phenotype is controlled by its own breeding value, so

dz/dgmz = 1. The term τmy = rm is the slope of transmitted genotypic

value through males on maternal genotype, and τmz = Rm is the slope

of a mother’s transmitted genotypic value through males on a randomly

chosen maternal genotype in the group. Note that Rm is equivalent to

the relatedness of a mother to a random male offspring in the group.

For the female component

dWf

dg
= ∂Wf

∂y
dy

dgfy
τfy

= −rf

where dy/dgfy = 1 is the slope of individual phenotype on individual

breeding value, and rf = τfy is the slope of transmitted genotypic value

through females on maternal genotype. Solving dW/dg = 0 yields the

equilibrium for the inclusive fitness model

z∗ = cm (rm −Rm)
cmrm + cf rf

.

The direct fitness and inclusive fitness models differ in the way geno-

typic value transmitted to males, g′m, is associated with aspects of group

phenotype. For direct fitness, the proper measure is the slope sr̃m =
dz/dg′m. This slope is group phenotype on offspring genotype. For

inclusive fitness, the proper measure is Rm = dg′m/dgmz , the slope of

offspring genotype on the genotype of a random actor in the group.
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The direct fitness model is more general. For example, the pheno-

types of mothers may be correlated because of common environment,

behavioral coercion, shared nonadditive genetic effects, or other factors

not included in the breeding value. The direct fitness expression incor-

porates those additional associations. In terms of Fig. 4.2a, the direct

fitness model retains π , or, in terms of Fig. 4.4, the association s mea-

sures both shared breeding value and other factors.

The direct fitness analysis shows that sex ratio evolution is controlled

by two factors. The phenotypic association between social partners, s,
influences relative reproductive success through male and female fitness

components. The genotypic coefficients, r̃m and r̃f , measure transmis-

sion fidelity via male and female fitness components. Strong phenotypic

associations, s, favor a low frequency of males independently of whether

the association is caused by common additive genotype or by other fac-

tors.

TRANSMITTED BREEDING VALUE

I have defined g′ as the transmitted breeding value—the phenotypic ef-

fect in offspring of those predictors transmitted by parents. This def-

inition can be confusing because two alternative usages are possible

depending on the context.

The first case splits each offspring into maternal and paternal com-

ponents. The part of the offspring inherited from the mother is as-

signed to the mother. The part from the father is assigned to the father.

The transmitted breeding value is the breeding value contained in ga-

metes, when measured in the context of the offspring. Gametic breeding

value is often equivalent to parental breeding value, in which case the

parent-offspring relatedness coefficient is one. However, each parent is

assigned only one-half of the offspring, so total valuation is one-half.

The second case assigns whole offspring to one parent only. Sup-

pose, for example, that the genetic system is diploid and progeny are

assigned to the mother. The mother’s transmitted breeding value is her

own gamete plus her mate’s gamete. The mother’s relatedness to the

progeny is now the sum of two parts. She is assigned one-half of the

progeny through her own gamete, and is typically related to her own ga-

mete by one. The mother is also assigned the other half of the progeny

that comes from her mate’s gamete. She is related to the mate’s gamete

by a factor usually designated f . Her net relatedness to the progeny
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is (1 + f )/2. Thus, when whole offspring are assigned to the mother,

mother-offspring relatedness is a summary statistic for several distinct

phenomena.

For example, in the sex ratio model, the recipients of behavior are the

mothers who produce male and female offspring. These mothers also

transmit the gametic value of the their mates. Thus, a phenotype that

influences the success of a mother through her sons also affects in the

same way the success of the mother’s mates through sons.

In the first approach, each phenotype must be evaluated for its ef-

fect on the breeding values transmitted directly by mothers, and for its

effect on the breeding values transmitted directly by fathers. The sec-

ond approach treats g′ as the breeding value of the whole offspring,

which includes the contribution from the mother and her mate. This

automatically accounts for the joint effect on mothers and mates with-

out the need to bring fathers into the analysis. The second method is

commonly used in the literature, and I used it implicitly in the previous

section.

The same problem arises whenever a behavior influences the fecun-

dity of a recipient. The behavior affects both the recipient and the recip-

ient’s mates. By contrast, a behavior that influenced the mating success

of a male, but not his fecundity, would have no influence on the fitness

of the male’s mates. In this latter case it is important to use the first

definition of g′ as gametic breeding value rather than breeding value of

whole offspring.



5 Dynamics of
Correlated Phenotypes

Many interesting biological problems concern the transition from one

steady state to another. For example, most species consist of females

breeding alone. A few evolutionary transitions have occurred to females

breeding in cooperative groups. Comparative statics identifies the alter-

native steady states, but generally fails to provide a complete analysis

of transitions.

My goal here is not to analyze the biology of evolutionary transitions

(see Maynard Smith and Szathmáry 1995). Instead, I will describe in an

abstract way the mathematics of very simple transitions. My purpose is

to complement the methods of the prior chapter by studying discrete

phenotypes and phenotypic variants of large effect. My main point is

to emphasize, once again, the powerful role of statistical correlations in

the dynamics of social evolution.

The fitness consequences of interactions are conveniently described

as a game when there are two “players” (Maynard Smith 1982). The

payoffs can then be displayed as a matrix. I analyze a few simple games

to show how evolutionary dynamics depend on an interaction between

relatedness and the range of possible phenotypes.

5.1 Games with Saddles: Peak Shifts

The matrix in Fig. 5.1 shows a simple game. Each player has two dis-

crete behavioral options, C and D, which we can take for Cooperate and

Defect. The cells show the fitness payoff to player I when it makes a

particular play and its partner, player II, makes a corresponding play.

For example, when both players cooperate, the payoff is a. The payoffs

have been normalized in panel (b) to reduce the number of parameters

to the minimal set needed to describe the game. The normalization is

explained in the figure legend. I use the normalized game in (b) through-

out this discussion.

Let the frequency at which player I cooperates be p, and the frequency

at which its partner cooperates be q. Then the fitness of player I is

w1 (p, q) = pqa + (1− p) (1− q) . (5.1)
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C D

C          a            b

D          b            c

II

I

C D

C          a            0

D          0            1

II

I

(a) (b)

Figure 5.1 Game matrix. The cells show the payoff to player I given strategies
by two players in an encounter. The game is symmetric; that is, the payoff
depends only on the strategies of an individual and its partner and not on any
extrinsic condition. Thus the payoff to player II can be obtained by transposing
the matrix. In this case, transposition does not change the matrix. A game
matrix is used to determine which strategies maximize payoffs. (a) Basic game.
(b) Normalized game. The relative value of payoffs is unaffected when the same
constant is subtracted from all entries, or when all entries are divided by a
constant. The matrix in panel (b) is obtained from panel (a) by subtracting
b from all entries, and dividing by c − b. The upper left entry is therefore
â = (a − b)/(c − b). I assume c > b and a > b. Although a from the left panel
and â in this panel differ, I drop the hat in this panel to simplify the notation.
I use the normalized game for all analyses in the text.

If partners are uncorrelated, Cov(p, q) = 0, then the average partner fre-

quency q is equal to the population average value of cooperation among

partners, q.

Fig. 5.2 shows a plot of the fitness (payoff) for player I as a function

of the player’s own phenotype, p, and the average partner phenotype, q.

The fitness surface forms a saddle, with two peaks separated by a valley.

In this case, a = 1.2, so all individuals would do best by cooperating all

the time. However, if the initial frequency of cooperation in partners is

q = 0, then an individual maximizes its success by always being selfish,

p = 0. With p > 0, any tendency to cooperate will be strongly disfavored.

How can a population cross the valley, from the low peak at q = 0, to

the higher, cooperative peak at q = 1? Fig. 5.3 shows that some force

must move the average partner frequency, q. Each point on the curve

is the saddle point for a given height of the far peak, a. The value of q
must be moved past the saddle point, 1/(1+a), by some extrinsic force,

after which selection can complete the transition.
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Figure 5.2 Plot of the payoffs for the game in Fig. 5.1b. The surface shows
the saddle in the payoffs. A saddle point is a local maximum (stable equilib-
rium) in one dimension and a local minimum (unstable equilibrium) in another
dimension. The saddle point occurs at p = q = 1/(1+a) = 1/2.4 in this figure.
This point is a local maximum along the line p = 1 − q and a local minimum
along the line p = q. This combination of stability and instability in different
dimensions causes the payoff surface to have the shape of a saddle.
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Figure 5.3 The saddle point for the game in Fig. 5.1b, for a given population
frequency among partners, q, and height of the far peak, a. The saddle divides
the dynamics into regions in which the (C,C) peak will be attained by selec-
tion, q∗ → 1, and (a, q) pairs for which selection moves the population to the
(D,D) peak, q∗ → 0. It is assumed that q = p, either because both players
are drawn from the same population, or because the two populations have the
same average values.
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5.2 Correlated Phenotypes

This peak shift problem arises in many contexts. In classical population

genetics, the two players are distinct loci that interact to determine fit-

ness. This interaction, called epistasis, is most advantageous when both

loci express the C phenotype (Fig. 5.1b). Wright (1932) discussed genetic

peak shifts extensively in his shifting-balance theory. Wright imagined

that stochastic processes in small populations would perturb allele fre-

quencies and allow populations to cross valleys to higher peaks. Corre-

lations between the alleles at the paired loci can also affect the chance

of a peak shift. In genetics, correlations between loci are called linkage

disequilibrium.

The typical behavioral model assumes that individuals of the same

population interact (Maynard Smith 1982). The relatedness of paired

individuals may influence the probability of a peak shift. For example,

if individuals are always paired with genetically identical partners, then

playing C will increase in frequency whenever a > 1, regardless of the

current population frequency.

The players may be different species (Frank 1994a, 1995c, 1996a,

1997c). For example, a plant and its insect pollinator may interact such

that payoffs to each player depend on the joint behavior of the pair. The

payoffs in a simple interaction can be described by Fig. 5.1b. Behavioral

correlations between partners influence evolutionary dynamics.

Genetical, behavioral, and ecological interactions are typically treated

as separate domains, requiring unique conceptual and mathematical

techniques. One theme of this chapter is that statistical associations

change the shape of evolutionary dynamics. The role of statistical asso-

ciations are similar, perhaps identical, across a variety of traditionally

distinct biological problems. We can see this by treating our basic model

of fitness, Eq. (5.1), with a suitable level of abstraction. I repeat the equa-

tion here for convenience

w1 (p, q) = pqa + (1− p) (1− q) .

The goal is to study the evolution of p, the frequency at which player I

plays the C phenotype. The frequency of the C phenotype in partners

is q. The average frequency of C in the population from which player

I comes is p, and the average frequency in the population from which



DYNAMICS OF CORRELATED PHENOTYPES 83

player II is drawn in q. Of course, p = q when both players come from the

same population and their behaviors are controlled by the same locus.

In the two-locus genetic model, p and q are the allele frequencies

at the two loci. There are three cases: (1) The two loci are expressed

and interact within the same individual. This is the traditional genetic

problem. (2) Each locus affects a different individual in a pair of social

partners. For example, the larger partner may expressp, and the smaller

may express q. (3) The partners may be different species, one expressing

p, and the other, q.

SMALL DEVIATIONS

Suppose individual phenotypes deviate by only a small amount from the

average. We can use the simple expression for the fitness of player I in

Eq. (5.1) and differentiate to determine whether fitness is increasing or

decreasing with an increase in phenotype. The standard assumption for

this method, outlined earlier, is that genetic variants cause only small

phenotypic deviations from the population average.

Suppose the breeding value for the phenotype of player I is g1. The

derivative dw1/dg′1, analyzed at p = p and q = q, describes the rate of

change in fitness for player I as its transmitted breeding value changes.

For all analyses in this chapter, I assume that transmitted and parental

breeding values are equal, g′ = g. The derivative, dw1/dg1, is the di-

rect fitness maximization method of Eq. (4.11), yielding the derivative

analyzed at (p, q) as

dw1

dg1
= ∂w1

∂p
dp
dg1

+ ∂w1

∂q
dq
dg1

= aq − (1− q)+ r1 [ap− (1− p)] ,
(5.2)

where, as always, g1 is normalized so that dp/dg1 = 1. The term r1 =
dq/dg1 is the slope of player II’s phenotype on player I’s genotype.

If both players are drawn from the same population, and phenotypes

are determined by the same locus, then p = q. The term r1 is the coef-

ficient of relatedness of inclusive fitness theory only when phenotypic

correlation is caused entirely by a similar genotype at the same locus.

A candidate equilibrium is obtained by solving dw1/dg1 = 0 at p =
q = q∗, which yields q∗ = 1/(1 + a). This is the same unstable saddle

point shown in Fig. 5.3, where players were assumed to be uncorrelated,
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r = 0. Thus correlated phenotypes do not influence the dynamics. The

reason is that with only small deviations from the population average,

correlated phenotypes pass the saddle point only when already very near

the saddle, so that dynamics are determined only by the location of the

population relative to the saddle point. Put another way, prior knowl-

edge that a partner deviates in a particular direction from its population

average is of no value, because the magnitude of the deviations is too

small to matter.

The two players may be drawn from different populations. If the

problem is two-locus genetics, then each player is a sample from one

of the two loci. If the problem is ecological, then each player is drawn

from one of the two species.

Eq. (5.2) gives the change in the fitness of player I as its genotype, g1,

changes. Because the game in Fig. 5.1 is symmetric, the fitness of player

II is w2(p, q) = w1(q, p). Player II’s fitness changes with the breeding

value, g2, as

dw2

dg2
= ∂w2

∂q
dq
dg2

+ ∂w2

∂p
dp
dg2

= ap− (1− p)+ r2 [aq − (1− q)] ,

where g2 is normalized so that dq/dg2 = 1, and r2 = dp/dg2 is the slope

of player I’s phenotype on player II’s genotype. A candidate equilibrium

occurs where dw1/dg1 = dw2/dg2 = 0. Solving yields p = q = 1/(1+a),
as before. This internal point is the same unstable saddle point, which

does not depend on the statistical associations, r1 and r2. Thus, as we

see in Fig. 5.2, the stable points for (p, q) are (0,0) and (1,1).
The dynamics for these assumptions are not particularly interesting.

But the general problem of shifts from one equilibrium to another is

important. This simple game allowed introduction of some definitions

for study of dynamics, as shown in Fig. 5.4.

LARGE DEVIATIONS

What if the population is fixed at one of the peaks, with rare phenotypes

from the opposite peak? When does a transition to the opposite peak

occur? Correlations clearly matter. A population fixed near the lower

(0,0) peak will move to the higher peak if there are rare individuals that

always cooperate and always meet with cooperative partners—in other
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Figure 5.4 Dynamics for the game in Fig. 5.1b, with r1 = r2 = r . The arrows
show the direction of change favored by selection when individuals deviate by
only a small amount from their population averages, p and q. Changes are
obtained from the equations for dw1/dg1 and dw2/dg2 in the text. This type of
graph is called a phase plot, showing the joint dynamics of variables. In the left
panel, the horizontal line is the isocline for dw1/dg1 = 0. On this line, there is
no change in p; above the line p is increasing, and below the line p is decreasing.
The vertical line is the isocline for dw2/dg2 = 0, separating regions in which
q increases or decreases. The dashed line, q = 2/(1 + a) − p, separates the
space into regions that attract to the (0,0) equilibrium and those that attract
to the (1,1) equilibrium. This type of separating line is called a separatrix. In
the right panel, r is increased to 0.5. The increase in r changes the shape of
the dynamics, but does not change which equilibrium is attracting from a given
starting point for p and q.

words, when the correlation is perfect. The problem is to combine the

effects of statistical associations with large deviations from the popula-

tion averages.

Begin with the basic equation for fitness in this game

w1 (p, q) = apq + (1− p) (1− q) .

Next, express q as a regression that depends on deviations in p

q = q + rδ+ εq, (5.3)

where δ can be taken as phenotypic deviation, p−p or, equivalently, as

genotypic deviation, g1 − g1. For simplicity, I assume that p = g1. The

term r is the regression of q on δ, and εq and δ are independent. Taking

expected fitness, dropping the εq = 0 term, yields

w1 (p+ δ, q + rδ) = a (p + δ) (q + rδ)+ (1− p − δ) (1− q − rδ) .

Suppose that the population containing player I has two genotypes.

We can write the phenotypes of these two genotypes as p1 = p+δ1 and
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Figure 5.5 Dynamics for the game in Fig. 5.1b when the population is initially
fixed for either p = q = 0 or p = q = 1, and the opposite phenotype occurs. For
example, if the population is fixed at zero, and some individuals express p = 1
and q = 1, then a transition to p = q = 1 occurs only for those values of a and
r shown in the upper-right region, q∗ → 1. Similarly, a transition to p = q = 0
occurs only for those values of a and r shown in the upper-left region, q∗ → 0.
No changes occur in the stasis region.

p2 = p+δ2, with δ = 0 and δ1 > 0 > δ2. The condition for deterministic

increase of p is

∆w1 = E (w1|δ = δ1)− E (w1|δ = δ2) > 0,

which, after substitution and rearrangement, yields

(
δ2

1 − δ2
2

)
r (1+ a)+ (δ1 − δ2) [aq − (1− q)+ r (ap− (1− p))] > 0.

When variations are small, δ2
1 << δ1 and δ2

2 << δ2, then the condition

for increase matches exactly the condition for small deviations obtained

in Eq. (5.2). The match occurs because differentiation is simply a tech-

nique to study ∆w1/(δ2 − δ1) as (δ2 − δ1)→ 0.

When deviations are larger, we need the full expression for fitness

differences with the second-order terms δ2
1 and δ2

2. If we start near the

equilibrium p = q ≈ 0, with p2 = 0 and δ2 = −p ≈ 0, then the condition

for increase is

δ1 >
1+ r

r (1+ a)
.

When the deviant type is p1 = 1 and δ1 = 1 − p ≈ 1, the condition for

increase is

r >
1
a
.
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If both players are drawn from the same population, then p and q are

equivalent, and r > 1/a is the condition for transition from (0,0) to

(1,1), as shown in Fig. 5.5. The same approach, starting at (1,1), yields

the condition r > a for a transition to (0,0). If the paired players are

drawn from different populations, the dynamics of p and q must be

tracked separately. The methods in the previous section can be used to

study joint dynamics.

Explicit analysis of δ2 and, in general, deviations of large effect are

handled naturally with the standard regression equations for direct fit-

ness, Eq. (4.7), or by standard application of the Price Equation. I tracked

δ2 explicitly here in order to show the connection between deviations of

large effect and the calculus analysis of small deviations. (The problem

of peak shifts has been discussed extensively in a variety of evolutionary

and ecological contexts. See, for example, Price et al. (1993) and Mangel

(1994).)

COMPARATIVE DYNAMICS

The results described above provide simple conditions for the increase

in cooperation between partners. In this game with multiple peaks sep-

arated by a valley, mutually beneficial cooperation can be attained or

prevented according to three key parameters: the height of the coop-

erative peak, a, the size of phenotypic deviations, and the statistical

association between players.

The conclusions are simple. Transitions are easier when a is higher,

phenotypic deviations are larger, initial frequencies are closer to the

saddle point, and associations between players are greater. Transient

statistical associations can play an important role in transitions. Once

the valley is crossed, the associations are not required for maintenance

of the new behaviors.

These results are comparative statements about dynamics, and might

be thought of as comparative dynamics (Samuelson 1983). This ap-

proach has both costs and benefits. On the positive side, the results

emphasize a few simple, biologically meaningful parameters. These

parameters could potentially be measured, allowing comparative pre-

dictions to be tested. The statistical associations can be influenced by

many complex processes, such as migration, recombination and selec-

tion. The simplification here shows that these diverse processes influ-

ence the probability of transition through their effect on the statistical
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association between partners. Thus, rather than specifying exactly how

migration influences transitions, we conclude that when limited migra-

tion enhances statistical associations, it simultaneously increases the

probability of transition. Put another way, I have used the statistical as-

sociations as parameters rather than dynamic variables that will change.

On the negative side, we lack the certainty of a full dynamical model.

Given explicit parameters for migration, competition, population regu-

lation, genetics, and so on, how exactly do frequencies of phenotypes

change over time? Such an analysis is tedious but easy enough to do.

One then has exact results in terms of many parameters. The results

will not be so simple, but they can be interpreted, usually in terms of

the same summary factors in the simplified model of comparative dy-

namics.

The problem is that the available data and the possibility of testing

often do not warrant the extra detail, and one may fall into the trap

of trying to fit a complex model rather than to compare alternative hy-

potheses (see The Importance of Comparison, p. 31). Also, there is no

a priori reason to believe that migration, competition, and genetic con-

trol of phenotypes are themselves fixed parameters rather than dynamic

variables. So one must carve between variables and parameters where

the most useful insight is provided.

I continue to make the simplest cuts. The benefit is a broad and un-

derstandable overview of the logic of social evolution. The cost is that,

for each problem, the theory is not fully developed into realistic models

that apply to detailed cases.

5.3 Strategy Set

In the prior sections I showed how relatedness interacts with constraints

on phenotype. There was, in particular, an interesting contrast between

small and large phenotypic deviations. I discuss another kind of phe-

notypic contrast in this section—the difference between “mixed” and

“pure” strategies (Maynard Smith 1982). With mixed strategies, player I

has the phenotype p, which is to play the strategy C with probability p
and to play the strategy D with probability 1 − p. Player II has pheno-

type q, playing C with probability q and D with probability 1− q. With

pure strategies, each individual always plays the same strategy; that is,

p must be either zero or one. But the population may be a mixture of
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C D

C          a            b

D          c            d

II

I

C D

C          a            0

D          c            1

II

I

(a) (b)

Figure 5.6 Game matrix for the general two-player, symmetric game. The cells
show the payoff to player I given strategies by two players in an encounter.
The game is symmetric; that is, the payoff depends only on the strategies of an
individual and its partner and not on any extrinsic condition. Thus the payoff
to player II can be obtained by transposing the matrix. For example, in panel
(a), if player I uses C and player II uses D, then player I receives b and player
II receives c. In panel (a), I assume d > b; that is, when an opponent is selfish
(plays D), a player gets more when responding selfishly (playing D) rather than
cooperatively (playing C). The game in panel (b) is normalized by starting with
panel (a), subtracting b from all entries, and dividing all entries by d − b. In
panel (b), the parameters are â = (a − b)/(d − b) and ĉ = (c − b)/(d − b). The
hats are dropped for convenience. I use the matrix in (b) in all analyses.

individuals of the two types, with an average frequency, p, of strategy

C.

In each example I have transcribed a game situation into an expression

for fitness. The game matrix by itself is not important, except that it

provides a convenient way to classify problems. I continue to use game

matrices, but the approach applies generally whenever one can write an

expression for fitness.

My new problem is the pairwise game in Fig. 5.6. The fitness function

for player I is

w1 (p, q) = apq + (1− p) (1− q)+ c (1− p) q (5.4)

and the fitness function for player II is w2(p, q) = w1(q, p).

MIXED STRATEGIES

Suppose each individual can express either strategyC orD, playing each

strategy with a particular probability. As before, let player I’s probability

be p, and player II’s probability be q. If we assume the populations are
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at (p, q), and only small deviations in p and q are present, then we

can proceed by differentiation. The differentials are evaluated at the

population averages and set to zero to obtain the values of no change

dw1

dg1
= f (q)+ r1f (p)+ r1c = 0 (5.5a)

dw2

dg2
= f (p)+ r2f (q)+ r2c = 0 (5.5b)

f (y) = ay − (1− y)− yc,

where r1 is the slope of player II’s phenotype on player I’s genotype, and

r2 is the slope of player I’s phenotype on player II’s genotype. These

derivatives can be matched to the marginal version of Hamilton’s rule.

For example, the first equation is written equivalently as

dw1

dg1
= −Cm + r1Bm = 0,

where Cm = −f (q) and Bm = f (p)+ c.

I discuss below the case for two species or two loci, with p and q and

the r ’s (regressions) taking on different values for the two populations.

For the one-species case, in which p = q and r1 = r2 = r , the solution is

q∗ = r (c − 1)− 1
(1+ r) (c − 1− a)

, (5.6)

where c > (1+ r)/r is required for q∗ > 0 and c > a(1+ r) is required

for q∗ < 1 (Grafen 1979). From the second derivative, c > 1 + a is

required for the internal equilibrium to be stable, otherwise the point is

an unstable saddle, and the analysis follows the discussion of the earlier

section on simple games with a saddle.

The regression coefficient, r , is

r = Cov
(
P, g
)

Var
(
g
) ,

where g is the breeding value of an individual and P is the phenotype

of its partner. This is the coefficient for kin selection models first pro-

posed by Orlove and Wood (1978), and developed by Queller (1992a,

1992b) in his quantitative genetics formulation. The statistical associ-

ation between partners does not, however, require that partners be kin

or share a common genotype, although kinship is the most likely cause

of association in this model.
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PURE STRATEGIES

The mixed strategy assumes that a player can adopt a probabilistic phe-

notype, randomly expressing one strategy or another. Alternatively, the

genotype may fix a player’s strategy, but different genotypes may ex-

press different strategies. In the latter case, individuals are pure, but

the population is mixed.

The game theory analogy is perhaps a hindrance with respect to the

distinction between mixed and pure. For example, we may be interested

in how an individual divides resources between sons and daughters,

or dispersing and nondispersing offspring. A mixed allocation may be

favored without using random expression. A pure strategy prevents an

individual from splitting its allocation into two or more strategies.

A mixed-strategy equilibrium occurs when the marginal values of the

different strategies are equal. A mixture of pure strategies is stable

when the fitness of each hereditary particle is equal. This must be so,

because if the effect of the hereditary particles is constant and the parti-

cles change in frequency, then the distribution of phenotypes changes.

The solution for the pure strategies begins with the regressions for

each phenotype on breeding value

p = g1 + εp

q = g2 + εq,

where p and q always take values zero or one when the player is the

focal individual. For convenience, I assume εp = εq = 0 so that I can use

phenotype equivalently for breeding value.

The regressions for partner’s phenotype on an individual’s breeding

value predict the strategy of partners

p = p+ r2δ2 + ε2

q = q + r1δ1 + ε1,

where δ1 = p − p and has value 1 − p or −p when p is zero or one.

Similarly, δ2 = q − q has value 1− q or −q when q is zero or one.

The regressions can be used in Eq. (5.4) to obtain expected fitness

under the assumption that the ε’s are uncorrelated with each other and

with breeding values. In particular, player I has expected fitness w1(p+
δ1, q + r1δ1), and player II has expected fitness w2(p + r2δ2, q + δ2),
where w2(p, q) = w1(q, p).
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Equilibrium can occur when the fitnesses for the zero and one phe-

notypes are the same

w1 (1, q + r1 (1− p))−w1 (0, q − r1p) = 0

w2 (p+ r2 (1− q) ,1)−w2 (p− r2q,0) = 0.
If the players are drawn from the same population, then p = q and

r1 = r2 = r , yielding

q∗ = ar − 1
(1− r) (c − 1− a)

, (5.7)

with q∗ = 0 when ar − 1 < 0 and q∗ = 1 when a > r + (1 − r)c (May-

nard Smith 1982). A solution can easily be obtained when the players

are from different populations, but I skip the algebra here.

This solution differs from the marginal Hamilton’s rule under mixed

strategies. If we release the constraint that individuals express only pure

strategies, and allow individuals to express mixed strategies, then the

population would usually evolve from the pure equilibrium to the mixed

equilibrium.

TWO SPECIES, MIXED STRATEGIES

When partners are different species, associations cannot be caused by

kinship. I develop the mixed-strategies model for two species to examine

the role of statistical associations when kinship is excluded. The statis-

tical associations play a similar role here as in the one-species model,

once again showing that it is not kinship itself that determines the na-

ture of selection.

I have described interactions in game theory language. But the fitness

expression in Eq. (5.4) applies equally well to an interaction between an

insect and a plant. The alternative strategies could be two different

behaviors or phenotypes between which each individual divides its re-

sources. The payoffs, or fitness function, could be made asymmetric,

but I retain the symmetric model for simplicity.

The analysis is the mixed-strategy model described above, but allows

p and q to differ because the traits are in separate species. The re-

gressions, r1 and r2, may also differ. If we assume, for simplicity, that

breeding value and phenotype are identical, g1 = p and g2 = q, then

r1 = Cov (q, p)
Var (p)

r2 = Cov (q, p)
Var (q)

,
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where I assume variances are small because I use the maximization

method. The solution from Eqs. (5.5) is

p∗ = (A+ cr2) /B

q∗ = (A+ cr1) /B,

where
A = r1r2 (1− c)− 1

B = (c − 1− a) (1− r1r2) .

The solution reduces to Eq. (5.6) when r1 = r2.

The equilibrium traits for the two species differ only through r1 and

r2. If, for example, r2 > r1, then p∗ > q∗ . From Eq. (5.4), the species

with lower trait value has the higher average payoff.

Why do asymmetries in the r coefficients lead to a higher average

payoff for one species than for the other? This can be understood in

a generic way for symmetric fitness functions, that is, when w1(p, q) =
w2(q, p). As above, I assume that breeding values fully determine phe-

notype, p = g1 and q = g2. Marginal fitnesses are

dw1

dp
= ∂w1

∂p
+ r1

∂w1

∂q

dw2

dq
= ∂w2

∂q
+ r2

∂w2

∂p
,

where r1 = dq/dp and r2 = dp/dq, which, for small variance, are equiv-

alent to the statistical forms given above. If we evaluate the derivatives

at p = q, then, because of symmetry,

∂w1

∂p
= ∂w2

∂q
= −Cm

∂w1

∂q
= ∂w2

∂p
= Bm.

Thus, at the point p = q, the marginal fitness of species 1 is r1Bm −Cm,

and the marginal fitness of species 2 is r2Bm − Cm. The species with

the larger regression coefficient gains a greater marginal benefit. This

occurs because in the species with larger r , small increases in altruism

correspond to partners with relatively larger increases in altruism. One

might say that the species with the larger regression coefficient has more

information, or better prediction, about its partner. This leads to an

equilibrium in which the species with greater information has a higher

payoff.



6 Relatedness as
Information

Correlated equilibrium is viewed as the result of Bayesian ra-

tionality; the equilibrium condition appears as a simple max-

imization of utility on the part of each player, given his in-

formation.

—R. J. Aumann, “Correlated Equilibrium as

an Expression of Bayesian Rationality”

Statistical associations between different loci or between different spe-

cies often influence behavior in the same way as associations caused

by common genealogy. Genealogical relatedness is the most important

cause of associations in many problems of social evolution. But relat-

edness coefficients must be interpreted statistically to develop a proper

theory.

The common causal chain is: genealogy → statistical association →
evolutionary consequences. If a process other than genealogy causes

the same statistical associations, then that process will have the same

evolutionary consequences. The term relatedness coefficient is perhaps

unfortunate because it confuses the most common cause for associa-

tions with a more general problem.

Suppose, for example, that one insists on a strictly genealogical the-

ory. Then it would not be possible to understand why a factor, formally

equivalent to the regression coefficient of relatedness, arises in ecologi-

cal interactions between species. Overly narrow focus unduly limits the

potential to understand the evolutionary process in a coherent way. But

a purely statistical description is not satisfactory either. How can one

have a theory of kin selection without a special role for genealogy?

There is no single answer because these concepts can be used for

different purposes. One may, for example, wish to predict behavior for

a particular genealogical structure among neighbors. Or one may wish

to predict coevolution between species, given measured values for the

statistical association between partners. These are different problems,

but they are also problems with a close logical affinity.
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I show in this chapter that information about partners is frequently a

useful interpretation of statistical associations. These associations may

be caused by common genealogy or by other processes.

I begin by using path analysis to clarify the meaning of statistical as-

sociations in evolutionary problems. I then turn to conditional behavior,

in which each individual adjusts its phenotype in response to informa-

tion about its own condition and the condition of partners. This sets the

stage for the final section on kin recognition. Without kin recognition,

each individual implicitly has information about the expected behavior

of partners, where this expectation is summarized by the relatedness

coefficient. With kin recognition, an individual actively assesses cues

about the expected behavior of each particular partner. The individ-

ual then adjusts its behavior conditionally for each partner based on its

assessment.

6.1 Interpretation of Relatedness Coefficients

Assume that players I and II in a game have phenotypes p and q, respec-

tively. Then we can write the regression as in Eq. (5.3)

q = q + r (p− p)+ ε,

= q + rδ+ εq,

where r = rqδ is the regression of q on p or, equivalently, the regression

of q on δ, and εq and δ are independent. I define δ here as deviation of

the breeding value of p,

p− p = δ+ εp.

Breeding value can be thought of in this context as the genetic com-

ponent of phenotypic variability that is transmissible from parent to

offspring (Falconer 1989). I also assume that average changes in breed-

ing value between parent and offspring are zero, E(w∆δ) = 0, from the

Price Equation.

Fig. 6.1 describes these relations in a path diagram. The standard

relatedness coefficient is the regression of q on δ, rqδ = r , the slope of

partner phenotype on recipient genotype. This regression is shown by

the line from δ to q. All of the relations in the diagram are summarized

in the regression equations for p and q, and the regression equations
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p q

δ

εp εq
rqδ

Figure 6.1 Path diagram describing the phenotypes for players I and II, p and
q, and the breeding value of player I, δ. The unexplained causes, εp and εq , are
independent of δ by the theory of regression analysis. I also assume that εp
and εq are uncorrelated.

and assumptions about correlations among variables define the path

diagram (Li 1975).

The diagram in Fig. 6.1 shows only the direct relation between δ, the

breeding value of player I, and q, the phenotype of player II. It is often

useful to partition this relation into parts that can be interpreted as

causal components of the total association. Fig. 6.2 adds g, the breeding

value of player II, so that the set of regression equations is

p = p+ δ+ εp

g = rgδδ+ εg

q = q + rqδ·gδ+ rqg·δg + εq,

where rqδ·g is the partial regression of q on δ when g is held constant,

and rqg·δ is the partial regression of q on g when δ is held constant.

The regression for g can be used to expand the regression for q as

q = q +
(
rqδ·g + rqg·δrgδ

)
δ

= q + rqδδ,

where I have dropped the ε terms.

This algebra shows that the standard relatedness regression can be

partitioned into multiple causes

rqδ = rqδ·g + rqg·δrgδ

where rqδ is the total regression of q on δ, from Fig. 6.1, and the right

side shows the partition in Fig. 6.2. For example, in Fig. 6.2, the genotype
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p q

g

εp εq

δ

εg
rgδ

rqδ·g

r
qg·δ

Figure 6.2 Path diagram as in Fig. 6.1, with the addition of g, the breeding value
of player II. Variables not connected by a path are uncorrelated. The average
values of the breeding values, δ and g, are normalized to zero.

of player I may have no direct effect on the phenotype of player II, in

which case rqδ·g = 0. Instead, both players are directly affected by their

own genotypes, and there is an association between the genotypes of

players I and II, rgδ > 0. Thus the total association of player I’s genotype

with player II’s phenotype is rqδ = rqg·δrgδ. Only when rgδ is caused by

shared genealogy at common genetic loci is rqδ the genealogical measure

of relatedness frequently used in the kin selection literature.

The regression of player I’s genotype on player II’s phenotype, rqδ·g, is

an interesting pathway. There are several ways in which this term may

be positive. For example, player I might be able to coerce player II to

change its phenotype. If the genotypes of player I vary in their expressed

power to coerce partners, then rqδ·g > 0. Alternatively, player I might be

able to choose a partner based on its phenotype, independently of the

partner’s genotype. For example, if there is a predictable environmental

feature that influences player II’s phenotype, then player I may exploit

that information to choose partners. If player I’s ability to exploit such

information has a heritable component, then rqδ·g > 0.

Regression coefficients predict the value of one variable based on the

given value of a second, predictor variable. Put another way, regres-

sion coefficients describe conditional information: given the predictor,

a more accurate estimate of the outcome is possible. The typical pre-

dictors are alleles, but the theory can be extended easily to use any

predictors that provide information.

The models I have described show how information, measured by re-

gression coefficients, influences evolutionary dynamics. The predictors
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are the genotype of an actor. The phenotypes of partners are the out-

come variables that are estimated with improved accuracy.

The behaviors favored by selection are those that maximally use the

information available. The information is implicitly accumulated by

evolving genotypes.

Sometimes additional information is available to each individual. For

example, an individual may be able to assess that it is the stronger of the

two partners. I consider in the next section how behavior evolves when

additional information is combined with implicit information about re-

latedness. In the following section I discuss how individuals may use

additional information about relatedness. For example, an individual

may be able to distinguish partners as full or half siblings. I analyze

how direct information on relatedness can be combined with implicit

information accumulated by evolving genotypes.

6.2 Conditional Behavior

Suppose each of two females starts her own nest. Label this nesting be-

havior N. A female may quit her nest, join the other, and contribute as a

nonreproductive helper. Call this helping strategy H. The sterile worker

does not reproduce and has a direct fitness of zero. Darwin noted that

sterile workers posed a difficulty for his theory of natural selection. How

can selection favor a trait in an individual that does not reproduce? His

solution was that the workers enhanced the reproduction of individuals

that carry the latent, nonexpressed tendency for sterility.

The distinction between pure and mixed strategies illustrates one type

of latent expression. The game illustrated in Fig. 5.6b can be matched

to the sterile worker problem. Let the Cooperate strategy, C, be equiv-

alent to helping, and Defect, D, be equivalent to nesting alone. The

payoff to player I when cooperating is always zero because cooperation

is equivalent to sterility, thus a = 0. Player I’s payoff, c > 1, describes

its reproductive success when it reproduces with its partner helping.

Nesting alone provides a payoff of one.

If strategies are pure, then an inherited tendency to be sterile causes

the bearer always to be sterile. Such a trait cannot be favored, as Dar-

win noted. This fact is formalized by the solution for the pure-strategy

equilibrium in Eq. (5.7), where the frequency of sterility is q∗ = 0 when

a = 0.
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H N

H

N

II

I

1

d

c1

0

0

c2

a1

a2

Figure 6.3 Game matrix for a two-player, asymmetric game with conditional
behavior. Player I’s payoff is in the lower part of each cell; player II’s payoff is in
the upper part of each cell. If both individuals help (play H), then there are two
helpers and no reproductives. This paradox may be resolved in various ways; for
example, the pair may form a helper-nester group with each individual equally
likely to be in either role. This resolution yields a1 = c1/2 and a2 = c2/2.

When strategies are mixed, an inherited tendency to be sterile will

sometimes be expressed, and sometimes not, according to the pheno-

type p. The equilibrium in Eq. (5.6) shows that, even with a = 0, sterility

is expressed when c > (1+ r)/r . This can be seen by starting in a pop-

ulation in which no sterility is expressed. An individual that expresses

a low level of sterility, δ, has partners with a level of sterility rδ. This

individual gains rδ(1−δ)(c−1) for situations in which it nests and has

a helping partner, and loses δ for the times in which it acts as a helper.

The benefit is greater than the cost when rδ(c−1) > δ, or c > (1+ r)/r ,

where terms of order δ2 are ignored because δ is small.

HELP ONLY WHEN WEAKER OF PAIR

The mixed-strategy model assumes that individuals are symmetric with

respect to payoff when nesting alone, helping or receiving help. It may

be that the payoffs for leaving one’s own nest and helping another de-

pend on an individual’s current condition and the condition of the part-

ner. Suppose, for example, that the conditions of the players are one and

d > 1 for the weaker and stronger players, respectively. The payoffs for

nesting alone are equal to the condition, as shown in Fig. 6.3, with player

II as the stronger individual. The success of the stronger when joined

by a weaker helper is c2, and the success of the weaker when joined by
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a stronger helper is c1. If both individuals help, then payoffs are a1 and

a2 for players I and II, respectively.

Suppose, in this first model, that the stronger individual never helps.

The phenotype of interest is the conditional probability, p, that an in-

dividual joins another nest as a helper, given that this individual is the

weaker of the pair. If the focal individual is the stronger of the pair,

then its partner helps with probability q. This assumes that individuals

can assess their relative condition. As before, fitness will depend on the

phenotype of our focal individual, p, and the phenotype of the partner,

q. Fitness is

w (p, q) = (1/2) [fitness if weaker of pair]

+ (1/2)
[
fitness if stronger of pair

]
,

(6.1)

where I assume that there is no correlation between genotype and con-

dition, and each individual has an equal chance of being in each role.

By the methods in the previous section, the direct fitness of the focal

individual can be written as

w (p, q) = (1/2) [p (0)+ (1− p) (1)]+ (1/2) [qc2 + (1− q) d] .

Suppose there are only small deviations in δ, the breeding value for p.

We can find a candidate equilibrium with mixed strategies by study of

dw/dδ, and interpreting dq/dδ = r as the slope of partner phenotype

on the genotype of the focal individual. This method shows that an

individual is favored always to help when weaker, p∗ = 1, if

r (c2 − d)− 1 > 0.

Here, c2−d is the benefit and one is the cost, so we have a simple form of

Hamilton’s rule. The same result holds if we allow only pure strategies.

Natural selection combines the direct information on condition with

implicit information about relatedness, r . Implicit information accu-

mulates in genotypes according to whether p is favored to increase or

decrease, which is equivalent to whether r is greater than or less than

1/(c2 − d).
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BOTH WEAKER AND STRONGER CAN HELP

The prior section assumed that the stronger individual never helps.

When both players are potential helpers, we must track the probabil-

ity that the focal individual helps when stronger or weaker, ps and pw ,

respectively, and the probability that the partner helps when stronger or

weaker, qs and qw , respectively. Then, from the game matrix in Fig. 6.3

and the fitness expression in Eq. (6.1), the fitness of an individual is

w (pw,ps, qw , qs) =
(1/2) [a1pwqs + c1 (1− pw)qs + (1− pw) (1− qs)]

+ (1/2) [a2psqw + c2 (1− ps) qw + d (1− ps) (1− qw)] .

(6.2)

Here I assume that both players are drawn from the same population,

so that ps = qs and pw = qw . This reduces the problem to studying

the average values of two traits, qs and qw . It is possible to study an

interaction in which each player is drawn from a separate population,

requiring attention to the mean values of four traits, the probability of

helping when weaker or stronger for each population.

There are two approaches for analysis. Behavioral response for each

condition, in this case stronger or weaker, may be controlled by a sepa-

rate trait that can potentially evolve independently of other traits. Alter-

natively, each individual may have a response surface; that is, behavior

may be controlled by intrinsic characters that determine the quantita-

tive response for a particular set of extrinsic conditions. I discuss these

two approaches in turn.

ONE TRAIT FOR EACH CONDITION

Suppose one trait controls behavior when an individual is the stronger

of a pair, and a second trait controls behavior when an individual is

the weaker of the pair. The problem reduces to the joint analysis of qs
and qw , the average probabilities of helping when stronger and weaker,

respectively.

The statistical associations are shown in the path diagrams of Fig. 6.4.

The g’s are heritable predictors of the traits, with average effects that

do not change between parent and offspring. The g’s are normalized so

that the slope of the trait on g is one. The uppercase R’s are measures of
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Figure 6.4 Causal pathways for two traits. (a) The stronger genotype, gs . (b)
The weaker genotype, gw . Each variable has a single, additional ε cause for
unexplained variation (not shown). Each ε is assumed to be uncorrelated with
the other ε’s and with variables besides the single variable directly affected by
that ε. The g’s are standardized so that the slope of phenotype on g is one.

association between traits within an individual. This measure is similar

to the genetic covariance of traits within individuals from population

genetic models. To simplify the model, I assume that Rws = Rsw = R.

The associations between the same trait in different individuals are

rww and rss . These are the standard kin selection coefficients, but, as

always, other factors besides common genealogy may cause association.

To simplify the model, I assume that rss = rww = r .

The association of the stronger genotype with the weaker phenotype,

rws , includes direct manipulation and associations caused by correlated

genetic values. I ignore manipulation and assume that these cross-

associations are approximately the product of direct association and

within-individual association, rws = rsw ≈ rR.

If variations in breeding values, gs and gw , are small, we can differen-

tiate and replace slopes of phenotype on genotype by the appropriate

coefficients. This is the direct fitness method of Eq. (4.11) with a single

class. There is only one class because all genotypes have an equal chance

of being stronger or weaker in an encounter. I assume transmitted and

parental breeding values are equal, g′ = g.

Differentiation is expanded by the chain rule

dw
dgs

= ∂w
∂ps

dps
dgs

+ ∂w
∂pw

dpw
dgs

+ ∂w
∂qs

dqs
dgs

+ ∂w
∂qw

dqw
dgs

dw
dgw

= ∂w
∂pw

dpw
dgw

+ ∂w
∂ps

dps
dgw

+ ∂w
∂qw

dqw
dgw

+ ∂w
∂qs

dqs
dgw

,
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and substitution of the regressions for the slopes yields

dw
dgs

= ∂w
∂ps

+ ∂w
∂pw

R + ∂w
∂qs

r + ∂w
∂qw

rR

dw
dgw

= ∂w
∂pw

+ ∂w
∂ps

R + ∂w
∂qw

r + ∂w
∂qs

rR,

where dw/dg > 0, evaluated at ps = qs = qs and pw = qw = qw , gives

the condition for the increase or decrease in the associated character.

This approach takes the regression coefficients as parameters rather

than dynamic variables that also change. Thus, in population genetics

language, the results describe the direction of change given particular

levels of relatedness and correlation of traits within individuals.

The method provides an easy way to see the shape of the dynam-

ics as influenced by the implicit information in the coefficients, r and R,

and the explicit information about condition. Specification of additional

details is required to determine the complete dynamics. (Large pheno-

typic deviations can be studied by the methods outlined in the previous

chapter.)

CONDITIONAL RESPONSE SURFACE

The previous model assumed that the response to each possible condi-

tion is encoded by a separate character. That is plausible if the number

of alternate conditions is small. In the prior model the conditions were

stronger or weaker, so two characters were sufficient.

Often it makes sense to describe phenotype as a functional response

to condition. For example, the probability of helping, p, may be written

as a function of condition, x,

p (x) =
n−1∑
i=0

αixi,

where there is a set of n characters, {αi}, that determines the functional

response to condition. In a pairwise interaction, the probability that a

partner with condition y helps is

q (y) =
∑

βiyi.

If the fitnesses of player I and II are w1[p(x), q(y)] and w2[p(x), q(y)],
then the dynamics of small deviations can be studied from dw1/dgi for
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i = 0, . . . , n − 1, where gi is breeding value for αi , and from dw2/dhi
for i = 0, . . . , n − 1, where hi is breeding value for βi . This will lead to

consideration of the statistical associations among the {αi} and {βi}.

6.3 Kin Recognition

The previous models described associations by regression coefficients.

Those models were sometimes vague about which individuals interacted.

Instead, the coefficients were the average similarities over the set of in-

dividuals that interact in a particular context.

Suppose, for example, that siblings interact within a nest. Let a partic-

ular pair of parents have diploid genotypes at a locus, AB and CD, where

each of the alleles is rare in the population. Each offspring is equally

likely to be one of AC, AD, BC, or BD. An individual offspring, with

two alleles at this locus, has full siblings with an average number of one

matching allele. The average match frequency is one-half, which is also

the average genetic relatedness in this case. But one-quarter of siblings

will have two matches, with perfect identity to the focal individual, and

one-quarter will have no matches.

If the focal individual cannot discriminate the number of matches,

then behavior evolves according to the average relatedness. The aver-

age relatedness, given the context of the nest, is one-half. The context,

in the absence of further discrimination, provides a prior distribution

of genetic similarities. The standard models of kin selection assume

average relatedness based on the context-dependent distribution.

What if an individual can discriminate the number of matches, and

therefore the exact similarity at this particular locus? The problem of

kin recognition is a natural extension of relatedness as information. The

problem can be restated as follows. The context of the interaction pro-

vides prior information on the expected similarity between partners.

Expected similarity is often one-half within a nest, and zero when there

is random mixing of partners in the population. Does an exact match at

a particular locus change the expected similarity between partners? If

so, an individual can adjust its behavior conditionally based on a direct

estimate of relatedness.

The matching locus presumably codes for a chemical or visual cue

that can be detected. But this locus itself does not directly influence

the behavior under study, such as the tendency to be altruistic. How
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Figure 6.5 Information about statistical associations of behavioral characters
provided by matching indicator traits. The only link between the indicators
and behaviors is the association (linkage) within individuals, α. The variables p
and q are the phenotypes of the focal individual and partner, respectively, with
breeding values δ and g. Each individual has associated indicator traits, Tp and
Tq . The breeding values and codings for the indicator trait are standardized
to have a mean of zero and variance of one, and the slope of phenotype on
breeding value is one. The statistical association between the focal individual’s
genotype, δ, and the partner’s phenotype, q, is α2β, where α2 is the association
within individuals between behavioral and indicator traits, and β is the associ-
ation between indicator traits of partners. A small association, α, between the
behavior and the indicator trait, provides essentially no information because
the overall association depends on α2.

much information does a sensory match provide about similarity of the

behavioral traits?

The problem can be split into two ways in which the match provides

information about behavioral similarity (Crozier 1987; Grafen 1990).

First, the match provides information when there is a statistical asso-

ciation between the indicator characters and the behavioral characters.

Second, the match provides information when there is a common, ex-

trinsic process that determines similarity between partners in matching

characters and in behavioral characters. For example, common geneal-

ogy may cause similarity at all loci.

INDICATOR AND BEHAVIORAL TRAITS

Suppose individuals express indicator traits, such as distinctive odors

or colors. If an individual and its partner match for rare indicator traits,

how much information does this match provide about statistical asso-

ciations of behavioral traits? The information depends on the degree to

which matching indicators imply matching behavioral traits. In partic-

ular, the information about a behavioral match depends on the square

of the association between the indicator and behavior (Fig. 6.5).
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The association between indicator traits and behavioral traits is prob-

ably low in most cases. Statistical associations between developmentally

unrelated traits occur only when there is an association, or linkage dis-

equilibrium, between genes at different loci. Disequilibrium is low be-

cause recombination breaks up associations among loci. Association is

preserved only when some extrinsic force directly maintains the dise-

quilibrium.

Matching of behavioral traits occurs by a sequence of associations in

Fig. 6.5. An alternative mechanism is commonly discussed in the kin

recognition literature. Suppose an indicator trait, such as a green beard,

is associated with the behavioral tendency to be cooperative (Dawkins

1982). Then, in the sort of games discussed earlier, individuals are fa-

vored to recognize cooperative partners by their green beards, and re-

ciprocate the cooperative behavior. This is an unstable situation. Un-

cooperative individuals would often gain by expressing a green beard,

taking advantage of mistaken recognition by partners. This would de-

stroy the association between green beards and cooperative behavior

(but see Haig 1996).

COMMON GENEALOGY

Matches at indicator loci provide information about associations of be-

havioral traits when a common process creates association at all loci

(Grafen 1985). The standard cause of genetic similarity is common ge-

nealogy. All parts of the genome that are inherited in the same way are

drawn from the same distribution of shared genealogical ties. Between

a pair of individuals that share recent ancestors, the average associa-

tion of traits is the same for all traits. Indeed, the correlation of traits

is the standard way to estimate the genealogical relationship of individ-

uals, under the assumption that the traits are not affected by selection

(Fig. 6.6).

Consider a haploid dominant life cycle in order to keep the problem

simple. Cells from haploid adults act as gametes. These fuse to pro-

duce a diploid zygote, which undergoes standard meiotic processes to

produce haploid adults. Thus two siblings, produced from the parental

zygote, inherit the same copy of an allele with probability one-half.

Let there be n indicator loci. Each locus has 1/p different alleles of

frequency p. For a pair of individuals, a match occurs at a locus if both

individuals have the same allele. The total number of matches across
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Figure 6.6 Information about statistical associations of behavioral characters
provided by matching indicator traits. Common descent from an ancestor, A,
provides the only link between the indicators and behaviors. Otherwise, the
diagram is the same as Fig. 6.5. The association between indicator traits, Tp
and Tq , is a2, which is equal to the association between the behavioral traits, p
and q. Data that provide an estimate of the association between indicator traits
also provide an estimate of the association between behavioral traits.

the n loci is m. The problem is to estimate, for a pair of individuals,

the statistical association between alleles at a behavioral locus, given

that there are m matches at the indicator loci. Assume no association

between indicator loci or between an indicator locus and the behavioral

locus.

The probability of a match at any locus is

q = f + (1− f ) p, (6.3)

where f is the correlation coefficient between alleles at the locus, which,

in the context of this haploid model, is the coefficient of relatedness. It

is also useful to note that

f = q − p
1− p

. (6.4)

The correlation is caused by shared ancestry. The probability of m
matches follows a binomial distribution with parameters n and q

P (m) =
(
n
m

)
qm (1− q)n−m . (6.5)

If m matches are observed, the best (maximum likelihood) estimate for

q is q̂ =m/n. Since p is a fixed parameter, the best estimate for f , from

Eq. (6.4), is

f̂ = q̂ − p
1− p

. (6.6)

The variance of f̂ is, from the standard statistical theory for binomial

estimators

Var
(
f̂
)
= Var

(
q̂ − p
1− p

)
= q (1− q)

n (1− p)2 , (6.7)
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Figure 6.7 Information about common genealogy based on matches at indi-
cator loci. The height in each graph is twice the standard deviation of the es-
timator, f̂ , calculated from Eq. (6.7). The variation depends on the number of
indicator loci, n, the allele frequency at these loci, p, and the true value of cor-
relation caused by common genealogy, f . Each panel is arranged to emphasize
conditions under which twice the standard deviation of the estimator is less
than the true value.

where q can be expressed in terms of f and p from Eq. (6.3). The graphs

in Fig. 6.7 show the amount of information about f that can be obtained

from n indicator loci.

CONTEXT AND INDICATORS: BAYESIAN ANALYSIS

Consider behavioral interactions among chicks in a bird’s nest. A chick

might interact with full siblings, half siblings that have a different fa-

ther, and unrelated chicks. Nonrelatives may be placed in the nest by

unrelated mothers or by cuckoo (parasitic) species. If a chick cannot dis-

criminate different degrees of relatedness to particular nestmates, then

its behavior will evolve according to the average relatedness in nests. Put

another way, the context of sharing a nest provides prior information

about expected relatedness.

An adult bird, after it disperses away from its parents, will encounter

mostly nonrelatives. Perhaps rarely it will encounter, by chance, a cousin

or more distant relative. The context of distance from birthplace pro-

vides prior information about the probability of meeting relatives of

different degree.

Typical kin selection models use expected relatedness based on con-

text. The assumption is that individuals cannot discriminate particular

relatives based on kin recognition. In contrast, a typical kin recognition

model assumes no prior information from context. The assumption is

that each individual conditionally adjusts its behavior for each partner
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based on estimated relatedness from matching loci. The model of kin

recognition in the previous section is of this type.

It seems plausible that an animal would combine prior information

from context with additional recognition information from matching

loci. For example, Getz (1982) studied discrimination between full and

half siblings. He implicitly assumed that the probability is one-half for

encountering each type of sibling. Often, from context, there is a greater

degree of prior information about the probability of encountering each

type of relative.

How can prior information be combined with matching data for each

partner? The standard analytical approach is to use the rules of con-

ditional probability. When these rules are used to combine prior in-

formation with new data, the method is called Bayesian inference (e.g.,

Lindgren 1976).

The key rule of conditional probability can be expressed by consider-

ing two events, X and Y , as

P (XY) = P (X|Y)P (Y) ,

which is read as: the joint probability that two events occur, X and

Y , is equal to the probability that X occurs given that Y has occurred,

multiplied by the probability that Y has occurred. Using this same rule,

we can also write

P (XY) = P (X|Y)P (Y) = P (Y |X)P (X)

which can be rearranged into Bayes’s theorem

P (Y |X) = P (X|Y)P (Y)
P (X)

.

This is a general statement about how to combine information. Suppose,

for example, that Y is the event that a partner is a brother, and X is a

particular number of matches at indicator loci. The prior probability

from context that Y is a brother is P(Y). The probability of observing

X matches, given the assumption that Y is a brother, is P(X|Y). The

posterior probability that Y is a brother, given that one has observed

X matches, is P(Y |X). The denominator on the right side is simply the

sum over all possibilities in the numerator, so that the right side is a

proper probability

P (X) =
∑
Y
P (X|Y)P (Y) .
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Figure 6.8 Discrimination between full and half siblings by combining prior
expectations from context with observed matches at indicator loci. The height
of each plot shows the posterior probability that a partner is a full sibling,
calculated from Eq. (6.8). The prior probabilities are a = 0.1 for full sibs, f = 0.5,
and a = 0.9 for half sibs, f = 0.25. The observed matches, m, are expressed
in terms of the estimated relatedness, f̂ , under the assumption of no prior
information (see Eq. (6.6)).

The interpretation of Bayes’s theorem for kin recognition can be re-

stated as follows, using m = X for number of matches, and f = Y for

genetic correlation between partners (relatedness). The new estimate for

the probability that a partner is a brother, f = 1/2, given m matches at

the indicator loci, is the prior probability from context, P(f ), multiplied

by the probability of observing m matches under the assumption that

the partner is a brother, P(m|f = 1/2). This product is normalized by

P(m) over all prior probabilities for relatedness obtained from context.

I illustrate the combination of prior and current information with the

following setup. Let the prior distribution for relatedness be

P (f = f1) = a

P (f = f2) = 1− a.

The probability of m matches, given a value for f , is, from Eq. (6.5),

P (m|f ) =
(
n
m

)
qm (1− q)n−m ,

where q was defined in Eq. (6.3) as

q = f + (1− f ) p,
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Figure 6.9 Bayesian discrimination between full sibs and nonrelatives. The
height of the plot shows the posterior probability that a partner is a full sibling,
calculated from Eq. (6.8). The prior probabilities are a = 10−6 for full sibs,
f = 0.5, and 1 − a for nonrelatives, f = 0. See Fig. 6.8 for comparison and
details.

and the binomial parameters, n, for number of loci, and p, for allele fre-

quency at each locus, are set extrinsically. Thus, from Bayes’s theorem

P (f = f1|m) = P (m|f = f1) P (f = f1)∑
f P (m|f )P (f )

. (6.8)

Discrimination between full and half siblings is often discussed with

respect to social insect colonies, in which a worker might discriminate

between siblings that have the same or different fathers. For example, in

honey bee colonies, the single queen typically mates many times. Most

interactions among workers are between half siblings, but some pairs

are full siblings (Breed and Bennett 1987).

Discrimination between full and half siblings in a haploid organism

is illustrated in Fig. 6.8. The data from matches are often sufficient to

provide an estimate of relatedness, f̂ , that is close to one-half, and sig-

nificantly different from zero, according to Fig. 6.7. Yet, given the prior

probability of 0.1 that a partner is a full sibling, the posterior probability

from the matching data is often below 0.5, indicating an inference that

the partner is likely to be a half sibling. This shows the powerful role

played by context in the discrimination of kin.

The problem of discriminating full and half siblings in a family is

often more difficult than picking a full sibling from a crowd of unrelated

individuals. Fig. 6.9 shows that picking one sibling among one million

nonrelatives is easier than the nestmate recognition problem in Fig. 6.8.
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Another problem, emphasized by Grafen (1985), is the discrimination

of distantly related individuals from a crowd of mostly nonrelated in-

dividuals. Suppose, for example, that the probability of encountering a

partner related by 0.05 is about one in a million in a randomly mixing

population. Calculations along the lines above show that it is, indeed,

very difficult to recognize a relative with f = 0.05 when among unrelated

individuals, even when many matching loci are used.

POLYMORPHISM AT MATCHING LOCI

Recognition by matching alleles is improved when alleles are rare, that

is, when p is small. Recognition systems, where they occur, probably

use polymorphisms that are maintained for other reasons, such as the

vertebrate MHC alleles involved in immunity.

Can polymorphisms be maintained if they are only used in kin recog-

nition systems? Grafen (1990) suggested that polymorphism for match-

ing is maintained by selection on the recognition system. The argument

is easiest to describe when matching loci have only one common allele

and one rare allele. Suppose that individuals use information about the

number of matches independently of how many common and rare alle-

les they possess. Those individuals with more rare alleles than average

will obtain more accurate information about relatedness from the num-

ber of matches with a partner. If information improves fitness, then

rare alleles will increase in frequency. Continual selection favoring rare

alleles will lead to the maintenance of many rare alleles at each locus.

Does more accurate information about relatedness of partners im-

prove fitness? Suppose an individual interacts equally frequently with

partners related by r1 and partners related by r2, with average related-

ness r = (r1+r2)/2. Let fitness be determined by the generic two-player

game in Fig. 5.6. Assume, initially, that there is no discrimination, so

that all players use the prior estimate of r . Then, if mixed strategies are

allowed, the equilibrium behavior evolves to the frequency of coopera-

tion given in Eq. (5.6).

Consider a rare individual that discriminates relatives of class r1 from

those of class r2. Can this individual increase its fitness by conditional

behavior when compared with the population that tends not to discrim-

inate and behaves uniformly according to the average relatedness, r ?

Grafen (1990) has argued that discrimination does allow this individual

to increase its fitness. If it did not, then kin recognition would be of
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no value. It seems likely that Grafen’s argument is correct, simply be-

cause conditional behavior based on additional information is likely to

increase fitness. But no one has yet written down a full model to ana-

lyze this problem, and the associated consequences for polymorphism

of matching alleles.

6.4 Correlated Strategy and Information

The payoffs in social interactions change when partners have correlated

behaviors. The measure needed turns out to be the regression coeffi-

cient of partner on individual. This regression measures information

about the behavior of partners or the transmissible genotype of part-

ners. Shared genealogy is a common cause of association between part-

ners, but other factors can cause association.

Information is accumulated by the evolution of genotypes based on

a repeated context for social behavior. Additional information about

likely payoffs is available when an individual can assess factors such

as resources or the attributes of specific partners. This conditional in-

formation may be combined with the implicit information from context.

Bayesian inference is a natural method for combining prior and context-

dependent information.

The notions of correlated strategy and information in social evolution

have a close affinity to game theory models with correlated behaviors

(Aumann 1974, 1987; Skyrms 1996). The goals of the game theory lit-

erature differ from those presented here. That literature is particularly

concerned with the philosophical interpretation of rationality and in-

ference. But the relationship to my analysis can be seen by repeating

the quote from Aumann’s classic paper with which I began this chapter:

“Correlated equilibrium is viewed as the result of Bayesian rationality;

the equilibrium condition appears as a simple maximization of utility

on the part of each player, given his information” (1987, 1).



7 Demography and
Kin Selection

The marginal costs and benefits of social acts depend on the demo-

graphic context. For example, if total reproduction in a group is strictly

limited to a fixed number, then increasing one’s own reproduction nec-

essarily reduces the reproduction of neighbors. By contrast, dispersing

away from the local group reduces local pressure on resources and en-

hances the reproduction of neighbors.

I describe the role of demography with four examples. The first two

address the problem of strictly limited local reproduction. In the third

example, the evolution of a character influences the availability of re-

sources. The fourth model has separate fitness components, which are

affected differently by changing demography. This prepares the way

for the following chapter on reproductive value, the formal theory for

assigning weights to different fitness components.

7.1 Viscous Populations

The spatial scale of population regulation influences the evolution of

altruism in a general way. Consider, for example, the expression for

fitness

w (y, z, z) = bz − cy
az (b − c)+ (1− a)z (b − c)

, (7.1)

in which an individual invests y in altruistic acts, at cost cy to itself.

The average level of altruism in the neighborhood is z, with beneficial

effect bz on fitness. The focal individual’s reproduction is therefore

proportional to bz − cy , which is the numerator.

The denominator is the intensity of competition for scarce resources,

which increases as the average reproductive success rises. The average

reproduction in the neighborhood is the local average ofbz−cy , which is

z(b−c) because the local average of y is z. The average in the population

is z(b − c).
The parameter a is the spatial scale of density-dependent competi-

tion. An increase in the reproductive success of neighbors by a pro-



DEMOGRAPHY AND KIN SELECTION 115

portion δ increases local competition by a factor aδ. An increase in

the average reproductive success of the population by a proportion γ
increases global competition by a factor (1− a)γ.

Eq. (7.1) can be analyzed by the usual direct fitness method, dw/dg′,
where g′ is a small deviation in transmitted breeding value. If we replace

the phenotypic derivatives by the appropriate coefficients, the condition

for the altruistic character to increase is

dw
dg′

= ∂w
∂z

dz
dg′

+ ∂w
∂y

dy
dg′

= rBm − Cm

= r [b − a (b − c)]− c > 0,

where Bm = ∂w/∂z and Cm = −∂w/∂y are the marginal benefit and cost

for an increase in altruistic behavior. The term r = dz/dg′ is a type

of kin selection coefficient. The usual assumption, g′ = g, yields the

standard coefficient r = Cov(z, g)/Vg .

When population regulation is completely local, a = 1, then altruism

cannot spread (Wilson et al. 1992; Taylor 1992a, 1992b; Queller 1994).

Altruistic behavior cannot enhance the reproduction of neighbors in this

case because neighborhood reproduction is strictly limited by resources.

When population regulation is global, a = 0, then the condition for in-

crease is rb− c > 0. The distinction between local and global regulation

emphasizes the need to consider marginal costs and benefits in the full

context of behavior and demography (Goodnight 1992; Kelly 1992). The

direct effects on reproduction, b and c, are often different from the

marginal effects on net reproduction.

Sex ratios provide a particularly interesting example of local and glob-

al regulation. In some cases, males compete locally against other males

for access to mates (local mate competition), whereas females disperse

and compete globally for resources. This tends to diminish the marginal

gain for allocation to males relative to females, and thus to bias the sex

ratio toward females.

In other cases, males disperse and compete in the mixed population,

whereas females compete locally for resources (local resource competi-

tion). This tends to diminish the marginal gain for allocation to females

relative to males, and thus to bias the sex ratio toward males. I discuss

these examples in Chapter 10.
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7.2 Dispersal in a Stable Habitat

Local regulation increases competition among relatives and reduces the

potential benefits of cooperation. This tension may be partly resolved

if individuals disperse away from their relatives and compete with non-

relatives. The key parameter is the scaling of dispersal compared with

competition, in particular, the average dispersal distance compared with

the average distance between individuals that compete for a limited re-

source.

This interaction between competition and dispersal is now well un-

derstood in terms of kin selection. The development of these concepts

played an important role in the study of demography and kin selection.

I summarize the history in four stages.

HAMILTON AND MAY’S MODEL

Hamilton and May (1977) asked: why do many organisms disperse from

their site of birth even though the probability of death during dispersal

is high? Their setup is simple. Assume a habitat has a large number

of discrete sites that can support a particular species. In each year, the

parents die after producing babies. Each baby has a trait that determines

the probability, d, that it disperses from its natal patch. Those that stay

at home, with probability 1−d, compete for one of N available breeding

sites. Dispersers die with probability c, and with probability 1− c they

find a patch in which to compete for one of the local breeding sites.

All sites are occupied in the simple model discussed here. Hamilton

and May (1977) analyzed the case in which one (N = 1) breeding site is

available in each patch.

Hamilton and May (1977) assumed, in their first model, that the or-

ganism is asexual. They found the Evolutionarily Stable Strategy (ESS)

dispersal rate, d, to be

d∗ = 1
1+ c

, (7.2)

where c is the cost of dispersal. Their paper contained few analytical

details. A reconstruction and extension of their method is given below.

Their second model analyzed a sexual organism. This raises diffi-

culties because in the patch structure of the model, the organism is

likely to be inbred to some extent. Inbreeding was not easily handled by

Hamilton and May’s (1977) methods. If the males disperse freely before
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mating, so that the population is outbred, then the ESS dispersal rate

for females is

d∗ = 1− 2c
1− 2c2 0 < c < 1/2

= 0 1/2 < c < 1.
(7.3)

MENDELIAN ANALYSIS

Motro (1982a, 1982b, 1983) used a fully recursive genetic model to study

the same problem. He wrote equations for the fitness of each genotype

as a function of the biological assumptions outlined above and the fre-

quencies of other genotypes. Motro also specified whether the dispersal

trait of offspring is controlled by the mother or by the offspring itself.

This model has fully explicit assumptions about genetics and dynamics.

ESS models, such as Hamilton and May’s, require fewer assumptions but

are sometimes more difficult to interpret.

Motro found that, in an asexual model, his result agreed with Hamil-

ton and May, d∗ = 1/(1 + c). Motro obtained two additional results.

First, in a sexual model in which the mother controls the dispersal trait

of offspring, the same d∗ = 1/(1 + c) result occurs. By contrast, when

Motro tried to match the assumptions of Hamilton and May for offspring

control of phenotype, he obtained

d∗ = 1− 4c
1− 4c2

0 < c < 1/4

= 0 1/4 < c < 1,
(7.4)

which differs from Hamilton and May’s result in Eq. (7.3). Motro drew

two conclusions. First, in sexual models, the equilibrium depends on

whether offspring phenotype is controlled by the mother or by the off-

spring. Second, under offspring control, explicit population genetic

models failed to confirm Hamilton and May’s result, which Motro at-

tributed to a failure of the simplified ESS method.

ANALYSIS BY KIN SELECTION

Motro’s different results for parent versus offspring control suggested

parent-offspring conflict over dispersal. Such differences between par-

ent and offspring typically arise because a parent is equally related to
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each offspring, whereas an offspring is more closely related to itself than

to its siblings. Thus a parent will tend to treat all offspring equally,

whereas an offspring will be inclined to favor itself over its siblings

(Trivers 1974).

The hint of parent-offspring conflict in this dispersal model suggested

a role for kin selection. But the prior models did not use kin selection

as an analytical tool. At that time it was not clear how to incorporate

kin selection into such models; instead, kin selection was often invoked

after the fact to explain the outcome of an analysis.

I developed a Price Equation method of analysis (Frank 1986a). Rather

than using kin selection as an explanation for results of complex mod-

els, this method allowed kin selection to be used as an analytical tool.

The method reduces complex breeding systems and demographies to

a simple problem of maximization. Here I summarize Frank (1986a)

but use the direct fitness maximization method (see Section 4.3), which

provides a simpler approach. The first step is to write the fitness of

an individual in terms of its dispersal probability d, the average pheno-

type of individuals in its patch, dp , and the average phenotype in the

population, d, as

w
(
d, dp, d

)
= (1− d)p

(
dp
)+ d (1− c) p

(
d
)
,

where

p (α) = 1

N
(
1−α+ d (1− c)

)
is the probability that an offspring competing on a z patch will win a

breeding spot. Each parent produces a large number of progeny.

Using the direct fitness maximization method, we obtain a solution

by assuming the population is at an equilibrium and studying the fit-

ness effect of variants in transmitted breeding value, g′. If variations

in breeding value are small, then the equilibrium is found by solving

dw/dg′ = 0 and defining r as the derivative ddp/dg′. The candidate

equilibrium occurs when the marginal cost for investing a little more

in dispersal equals the marginal benefit for the reduced competition at

home, that is, when

dw
dg′

= −Cm + rBm = 0
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where, for this dispersal model

Cm = c
1− cd

Bm = 1− d
(1− cd)2 ,

yielding the ESS

d∗ = r − c
r − c2 0 < c < r

= 0 r < c < 1.
(7.5)

Here the equilibrium condition is consistent with the marginal version

of Hamilton’s rule. But the solution itself was obtained by writing a

biological expression for direct fitness, and then using r as an exchange

rate for value to combine direct and indirect fitness effects on the same

scale. It would have been difficult to start with the marginal version of

Hamilton’s rule and derive the equilibrium result.

This solution for dispersal polymorphism subsumes the prior results

of Motro and of Hamilton and May. All of their results are for only one

breeding site per patch, N = 1. If the organism is asexual, then the co-

efficient of relatedness among individuals in the patch is one, and we

recover the result in Eq. (7.2). If the organism is sexual, and offspring

phenotype is controlled by the mother, then r = 1, and we again have

Eq. (7.2). The reason r = 1 with parental control is that we are consid-

ering parental phenotype, and when N = 1, the parent competes only

with itself, to which it is related by one. This can be seen formally by

noting that, from the methods outlined in Section 3.5,

r = Cov
(
dp, g

)
Cov
(
d, g
) = Cov

(
dp, g

)
Vg

,

where I have assumed that g′ = g. Here d is individual phenotype and

dp is group phenotype. If the phenotype of interest is the mother’s and

there is N = 1 mother in each patch, then d = dp.

If, by contrast, offspring control their own phenotypes and are out-

bred, then relatedness among competitors is r = 1/2 because competi-

tors are siblings, and we recover Eq. (7.3). In this case, d is the phenotype

of an offspring, and dp is the average phenotype of that offspring’s full

siblings. Motro implicitly assumed that the mother mated several times
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Figure 7.1 ESS dispersal when the coefficient of relatedness among competi-
tors on a patch, r , is used as a parameter.

and offspring in a patch were only half sibs, so in his model r = 1/4,

leading to Eq. (7.4). Thus the single kin selection model explains the

parent-offspring conflict and the difference between Motro’s analysis

and Hamilton and May’s model.

With the kin selection model, we are not limited to one breeding site,

N = 1, or to an outbreeding system. Rather, we can treat r as a parame-

ter and express the ESS dispersal fraction in terms of the coefficient of

relatedness (Fig. 7.1). Higher relatedness increases dispersal. The rea-

son is that an allele competing with close relatives gains little by winning

locally against its relatives (Frank 1986a). Even a small chance of suc-

cessful migration and competition against nonrelatives can be favored.

DEMOGRAPHIC ANALYSIS

The solution d∗ = (r − c)/(r − c2) presents an interesting puzzle. Dis-

persal depends on the coefficient of relatedness, r , and r depends on

dispersal probability, d. This coupling occurs because the relatedness

among individuals in a patch depends on the frequency of successful

migration. The assumption here is that shared genealogy is the only

cause of correlation among social partners.

Taylor (1988a) showed that r can be expressed in terms of d and other

demographic parameters. This allows the solution to be “unwound” and

expressed so that d depends only on independent demographic param-

eters. Taylor’s methods are important because the coupling between

relatedness and demography is common in models of social behavior.

Taylor began with standard genealogical calculations from population

genetics to obtain allelic correlations within groups. These correlations
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Figure 7.2 ESS dispersal for a haploid, asexual model, given explicitly in terms
of the demographic parameter N.

depend on the genetics, mating system and migration scheme. The sim-

plest case is haploid, asexual genetics, such that the allelic correlation

among breeding females on the patch is given by the recursion

F′ = (1/N)+ F [(N − 1) /N] (1−m)2

where the correlation at a particular time, F′, has two components. The

first is the probability, 1/N, that two alleles sampled randomly from the

group come from the same breeding female. The second component is

the probability, (N−1)/N, that the alleles come from different individu-

als who, with probability (1−m)2, were both born in that patch, and that

those different alleles sampled from the same patch were correlated in

the previous time period by F . The value of m is the effective migration

rate, so 1 −m is the probability that an adult was born in the patch in

which it breeds. The effective migration rate is

m = (1− c) d∗

1− cd∗
. (7.6)

The equilibrium for the allelic correlation is obtained by setting F′ = F ,

yielding

F = 1

N − (N − 1) (1−m)2 .

In a haploid model, the kin selection coefficient is, at equilibrium, equal

to the allelic correlation between individuals, r = F . Taylor (1988a)

showed that one can use this equilibrium value of r in the solution for

the ESS dispersal rate in Eq. (7.5). Since r depends on dispersal, d∗, the
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ESS condition from the substitution of r into Eq. (7.5) is a polynomial in

d∗ that depends on the cost of dispersal, c, and the number of breeding

adults per site, N. Thus the coefficient of relatedness, r , is eliminated,

and the solution for d∗ can be expressed entirely in terms of the demo-

graphic parameters c and N (Fig. 7.2).

The calculation and interpretation of genealogical coefficients is sim-

ple in haploid, asexual models. The structure of the problem is the

same for complex genetic systems and patterns of competition, disper-

sal, and mating, but the calculations are more tedious (Frank 1986b,

1986c, 1987c; Taylor 1988b).

SUMMARY OF DISPERSAL ANALYSIS

The solution for dispersal in Eq. (7.5) in terms of the coefficient of relat-

edness, r , applies to many kinds of genetic systems. For example, one

may assume haploidy or diploidy and various mating patterns. Other

forces besides shared genealogy may also cause correlations among so-

cial partners. The generality is gained by leaving the genetic details

unspecified and expressing the association among competitors on each

site by a generalized relatedness coefficient. This coefficient is a statis-

tical association that, in turn, depends on the unspecified genetic and

demographic details.

If one wishes to obtain a solution for specific demographic and ge-

netic assumptions, then the equilibrium kin selection coefficient can be

obtained by standard techniques of genetic recursion. This allows the

statistical associations of kin selection to be expressed in terms of ge-

nealogy. The genealogical calculations provide an accurate description

of the statistical kin selection coefficients only when selection is very

weak. This weak selection condition is satisfied by analyzing the pop-

ulation at its genetically monomorphic equilibrium and by considering

the selection of mutations that deviate from this equilibrium by small

amounts.

The solution of dispersal in terms of relatedness is also a useful result

in itself, rather than solely a point of departure for further demographic

analyses. Suppose, for example, that we have estimates of relatedness in

different populations. The solution can be used to predict the direction

of change in the dispersal rate as a function of relatedness. Here the

nature of the data allows relatedness to be used as a parameter that

predicts changes in dispersal.
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PRIMACY OF COMPARATIVE STATICS

The dispersal result is given as an exact numerical prediction for equi-

librium. The equilibrium depends on parameters affecting relatedness

and the cost of dispersal. Such numerical predictions for equilibrium

are common in the theoretical literature. This often leads to testing and

inference following from the mistaken notion that the goal is to obtain

a fit between theory and observation: if one measures the parameters,

does the observed dispersal rate match the predicted dispersal rate?

If the match is not good enough, by whatever criteria, one must ask

whether parameters as complex as cost of dispersal or benefit of social

interaction were measured with sufficient accuracy. Usually little confi-

dence can be placed on the definition or measurement of such complex

terms.

The proper use of the theory is comparative. Among populations

with different r , the theory predicts that dispersal will increase with

relatedness. In symbols, ∂d∗/∂r > 0, which expresses the formal notion

of comparative statics by analysis of how an equilibrium is expected to

change as a parameter changes.

The kin selection coefficient, r , summarizes many demographic pro-

cesses. For any demographic parameter, α, the influence of that param-

eter on dispersal can be understood via its effect on relatedness. For-

mally, if the parameter does not influence the cost of dispersal, ∂c/∂α =
0, then the sign of ∂d∗/∂α equals the sign of ∂r/∂α.

Comparative predictions for change in equilibrium value form an ap-

proach called comparative statics. Comparative expressions do not re-

quire that all populations be at equilibrium. Rather, if the simplified

theory properly distills crucial processes of the system, then the com-

parative prediction describes how the system tends to change as a single

parameter changes, holding other parameters constant. Comparative

predictions have the advantage that one need only measure the direc-

tion of change in parameters and characters.

7.3 Joint Analysis of Demography and Selection

The statistical association between actor phenotype and recipient geno-

type captures in a fundamental way the causal processes of selection.

When correlated phenotypes interact, any formulation that does not
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summarize succinctly those statistical associations will turn out to be

analytically cumbersome and difficult to interpret.

The dispersal problem is relatively easy because the demographic con-

dition, the number of breeding females in each patch, is a fixed param-

eter. However, demographic properties, such as density, often vary in

response to the character under study. A joint analysis of selection and

demography is required.

I illustrate these issues with a model of cytoplasmic incompatibility

caused by bacterial infection (Frank 1997a). Cytoplasmic incompatibil-

ity influences the fertility of mating between different kinds of individ-

uals. The demographic character of the population is the frequency of

host individuals infected by the bacteria. The bacterial character under

selection is the reduction in host fertility for particular kinds of pairings.

CYTOPLASMIC INCOMPATIBILITY

Wolbachia are maternally inherited infections found in many insects.

These bacteria sometimes cause incompatibility between infected and

uninfected mates. A cross between an infected male and an uninfected

female is sterile, whereas all other crosses are fertile. This form of

sterility is commonly called cytoplasmic incompatibility (for reviews, see

Rousset and Raymond 1991; Werren et al. 1995; Clancy and Hoffmann

1996).

To analyze the evolution of incompatibility, the first step is to write

a fitness function that describes how biological assumptions influence

reproduction

w (y, z) = (1− a− by) (1− µ)
(1− q)2 + q (1− a− bz)+ q (1− q) (1− z)

, (7.7)

where the fitness of a parasite in a female, w , depends on the parasite’s

trait value, y , and the average value of this trait among neighbors with

which the infected female interacts, z.

The parasite trait under study, when in a female host, reduces fecun-

dity by an amount by . All infected females have their reproductive rate

reduced by a; thus the focal female’s reproductive rate is proportional

to 1−a−by , as in the numerator. The parasite is vertically transmitted,

and there is only one parasite genotype in each host. The probability of

transmission is 1−µ; that is, an infected mother has a fraction µ of her

offspring uninfected. Thus the reproductive rate of a parasite is equal
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to the reproductive rate of its host female multiplied by 1−µ. Transmis-

sion probability, 1−µ, is uncorrelated with the level of incompatibility,

y .

I assume that population regulation occurs within neighborhoods.

Our focal female’s fecundity must therefore be compared with the aver-

age fecundity in the neighborhood, given in the denominator of Eq. (7.7).

The frequency of infected individuals is q, and I assume that this fre-

quency is the same in both males and females.

Given those assumptions about frequency of infection, the frequency

of matings between an uninfected male and an uninfected female is

(1 − q)2, and the relative fecundity of the uninfected female is one.

Mating pairs with an infected female occur with frequency q, and the

relative fecundity of infected females in the neighborhood is 1−a−bz.

Matings between infected males and uninfected females occur at fre-

quency q(1 − q). The trait under study causes incompatibility in these

matings. The average value of the trait in the neighborhood is z, so the

average fecundity of uninfected females mating with infected males in

the neighborhood is 1− z.

DEMOGRAPHY INDEPENDENT CASE

If b = 0, incompatibility has no correlated effect on female fecundity.

The direction of change in incompatibility favored by selection can be

determined by the sign of dw/dg′ evaluated at the population average

y = z = z. I assume throughout that the bacterial population has only

small variants in phenotype about z. Fitness, w , is given in Eq. (7.7),

and g′ is transmitted breeding value. For this model, I assume trans-

mitted and parental breeding values are equal, g′ = g. Differentiation

is straightforward, and the condition for dw/dg > 0 is

rq (1− q) > 0, (7.8)

which shows that selection favors an increase in incompatibility when-

ever r > 0 and there is some polymorphism in infection status (q �=
0, q �= 1). Here r is the relatedness coefficient, r = Cov(z, g)/Vg .

The result in Eq. (7.8) shows that kin selection favors an increase in

the level of incompatibility when population regulation occurs at the

neighborhood level. The reason can be seen by inspection of Eq. (7.7).

An increase in the incompatibility trait, y , by an amount δ, is associated
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with an increase in the average incompatibility of neighbors, z, by an

amount rδ. If b = 0, a rise in z increases fitness whenever there is any

polymorphism in infection status.

The frequency of infection, q, depends on the level of incompatibility

(see below). However, Eq. (7.8) is sufficient to show the direction of

evolutionary change in incompatibility whenever there is polymorphism

in infection status.

FIXED DEMOGRAPHY

Incompatibility causes a correlated decrease in the fecundity of infected

females when b > 0. This case is interesting because the beneficial

effects of incompatibility, proportional to the coefficient of relatedness

in the neighborhood, r , must be compared to the direct reduction in

female fecundity, b. The condition for selection to favor an increase in

the average value of the incompatibility trait, z, is obtained by the same

methods as above, yielding

rq (b + 1− q) > b (7.9)

when the values of a and b are small relative to one, as expected in real

situations.

The frequency of infection, q, is the demographic context for selec-

tion. I have treated q as a fixed parameter in this case. This makes

sense for the following examples of comparative statics. Given mea-

sured values of q that differ among populations, what is the compara-

tive prediction for incompatibility among populations? What change in

incompatibility would be predicted within a population if some extrinsic

force changed demography?

VARIABLE DEMOGRAPHY

Suppose one wishes to make comparative predictions as the pleiotropic

effect of incompatibility, b, changes. Then one must account for the

joint effects of the parameter b on both incompatibility and demogra-

phy.

To put the matter formally, changes in incompatibility, z, will influ-

ence the infection frequency, q. Simultaneously, q influences the natural

selection of z. The effect of q on z is expressed in Eq. (7.7). The effect
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Figure 7.3 Joint dynamics of the frequency of infected individuals, q, and the
average level of incompatibility, z. These plots were made from Eq. (7.11) and
Eq. (7.12). The parameters used are a = 0, b = 0.005, and r = 0.07. The two
vertical lines separate regions in which z is favored to increase or decrease. The
curve separates regions in which q is increasing or decreasing.

of z on q can be expressed as the condition for an increase in q

(1− a− bz) (1− µ) > (1− q)2 + q (1− a− bz)+ q (1− q) (1− z) .
(7.10)

The left side is the number of infected progeny produced by an infected

female, and the right side is the average number of progeny produced

by all females. The left and right sides are, respectively, the numerator

and denominator from Eq. (7.7), ignoring genetic variation in the incom-

patibility trait so that y = z = z. I ignore genetic variation because I

assume throughout that the population is genetically monomorphic ex-

cept for rare variants of small effect. I also assume that the frequency

of infection, q, is the same in all subpopulations.

Let a = 0 to highlight the relative roles of b and r . Assuming that b
and µ are small relative to one, Eq. (7.9) and Eq. (7.10) can be written as

q2 − q (1+ b)+ b/r < 0 (7.11)

q2 − q (1+ b)+ b + µ/z < 0, (7.12)

where the top inequality sets the condition for an increase in z and

the bottom inequality sets the condition for an increase in q. These

inequalities allow one to sketch a phase plane for the joint dynamics of

z and q (Fig. 7.3).

The equilibrium z∗ = q∗ = 0 is locally stable. An internal, locally

attracting point may also exist when r > 4b. There are two cases. If
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Figure 7.4 Internal equilibrium values of the frequency of infected individuals,
q∗ and the level of incompatibility, z∗.

r < b/(b + µ), then there is an internal equilibrium at

z∗ = rµ
b (1− r)

q∗ ≈ 1+ √1− 4b/r
2

.

This situation is shown in the left panel of Fig. 7.3. If r > b/(b+µ), then

z∗ = 1

q∗ ≈ 1− b − µ.

This type of equilibrium is shown in the right panel of Fig. 7.3. Com-

parison of the left and right panels of Fig. 7.3 shows that equilibrium

incompatibility, z∗, increases as the transmission efficiency of the bac-

teria, 1−µ, decline. As the bacteria are lost more frequently from hosts,

higher µ, the polymorphism in infection status, q∗(1 − q∗), increases.

Incompatibility is advantageous only in matings between infected males

and uninfected females; thus an increase in the polymorphism of infec-

tion enhances the benefit of high incompatibility.

The internal equilibrium, when it exists, is shown in Fig. 7.4. The

infection tends to be absent or at high frequency, as shown for the equi-

librium value, q∗. The level of incompatibility varies over a wide range,
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influenced by all three parameters, b, r , and µ. The transmission effi-

ciency, µ, appears to cause the most pronounced effects on the level of

incompatibility. This analysis is intended only as a rough, qualitative

guide to the complex dynamics of this system. The main point is that

relatedness, r , can strongly influence the selection of incompatibility.

COMPARATIVE PREDICTIONS: VARIABLES AND PARAMETERS

Often one is interested in how given changes in demography influence

the direction of change in the selected character. In that case, demogra-

phy can be treated as a fixed parameter, and the analysis is relatively

simple. In other cases, the comparative predictions of interest con-

cern a parameter, such as the pleiotropic effect of incompatibility, that

influences jointly the selected character and demography. Then one

must treat demography as a variable and conduct a joint analysis. The

method of small variations often allows simple treatment of selection

(Charlesworth 1994).

Large variations in phenotype are important when the question con-

cerns peak shifts—the movement from one stable equilibrium to an-

other. In this case, the regression method for Large Deviations, p. 84, is

often sufficient. The goal would be to predict changes in the likelihood

of peak shifts as some underlying parameter changes.

7.4 Components of Fitness

Many social problems are conveniently described by separating two dis-

tinct components of fitness. The first is the relative success of an indi-

vidual compared with its social partners. The second is the average suc-

cess of the group of social partners. An individual’s total success is the

product of these two components. I describe this separation formally.

I then apply the theory to a model of individual versus group success

and to a model of parasite virulence. The latter model shows how de-

mography influences the relative weighting of fitness components. The

proper weighting, called reproductive value, is the topic of the following

chapter.

Suppose fitness can be written as

w (y, z) = I (y, z)G (z) ,
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where y is the phenotype of the focal individual, z is the phenotype of

that individual’s social partners, I is individual fitness relative to the

average fitness of social partners, and G is the average fitness of social

partners.

I study this model with the standard approach of setting transmitted

breeding value to parental breeding value, g′ = g, and then examining

small variations in g. The value of g is normalized so that dy/dg = 1.

Thus r = dz/dg is the slope of average partner phenotype on individual

breeding value, and is a common form of the kin selection coefficient.

Evaluating dw/dg at y = z = z∗ yields

dw
dg

= IyG + r (IzG + IGz) (7.13a)

= −Cm + rBm, (7.13b)

where the subscripts denote partial differentiation with respect to that

variable. From the marginal version of Hamilton’s rule, the result shows

that marginal costs are Cm = −IyG and marginal benefits are Bm =
IzG + IGz .

An individual is part of its social group in this formulation. If there

are n individuals in a group, and the individuals are mutually unrelated,

then r = dz/dg = 1/n. This association occurs because an individual

is perfectly correlated with itself and uncorrelated with the other n− 1

members. In general, the total value of r can be partitioned into r =
1/n+r ′[(n−1)/n], where r ′ is the average pairwise relatedness between

the focal individual and the other n− 1 members of the group.

TRAGEDY OF THE COMMONS

Suppose there is a common pool of resources available to a social group.

Each individual increases its own reproduction relative to neighbors

by taking more resources. However, as each individual takes more re-

sources for itself, the average productivity of the group declines.

The model

w (y, z) = y
z
(1− z)

is perhaps the simplest example of this tension between individual and

group success (Frank 1994b). In this model I = y/z, showing that an

individual’s relative success depends on its relative phenotypic value.
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This term can be thought of as competitiveness compared with neigh-

bors. The group term, G = 1−z, shows that average success declines as

average competitiveness in the group rises. Low values of z correspond

with prudent use of resources and high sustainable yield.

The general solution in Eq. (7.13a) can be applied to obtain a candidate

equilibrium, yielding

dw
dg

= 1− z∗

z∗
− r
(

1
z∗

)
= 0,

and the solution is z∗ = 1− r .

Equilibrium fitness is 1−z∗. Both individual and group do best when

trait values are low. Low competitiveness and prudent use of resources

are not stable, however, unless there is a strong coupling between indi-

vidual and group success, measured by r .

The instability of cooperation illustrates the famous “tragedy of the

commons,” apparently first described in formal economic terms by Wil-

liam Forster Lloyd (1833; see Hardin 1993). The tragedy is that each

individual gains by pursuing interests that increase returns relative to

neighbors and decrease the value of common goods. Shared resources

tend to be overexploited, to the detriment of both individual and group.

The tragedy can be overcome only when individual and group success

are tightly coupled.

PARASITE VIRULENCE

A parasite’s fitness depends on the rate at which it transmits progeny to

new hosts and on how long its current host survives. The transmission

component is influenced by the availability of susceptible hosts. Host

availability is, in this case, a demographic variable, because it describes

the distribution and abundance of the parasite.

I analyze this model in three steps. First, I describe the dynamics

of host availability. Second, from this demographic model, I write an

expression for parasite fitness in terms of individual and group compo-

nents. Fitness depends on a character that enhances individual trans-

mission rate but decreases host (group) survival. Third, I analyze this

model with standard kin selection tools to find the joint evolutionary

and demographic equilibrium.
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A common demographic model for host availability is

dU/dt = θ − δU − β(y)US

dS/dt = S (β (y)U − δ− z − c)

where U and S are, respectively, the number of uninfected hosts avail-

able and the number of sick hosts that cannot be infected again (An-

derson and May 1991). The total population is maintained by new, un-

infected hosts that are recruited at a rate θ. For each contact between

uninfected and sick hosts, an individual parasite transmits progeny at

a rate β(y), where y is the transmission character of the individual par-

asite. Parasites die in a sick host when the host dies or the infection is

cleared. The clearance rate is c. The natural host death rate is δ. The

parasites increase this death rate by the virulence level, z, where z is the

average value of y within the host. When variation in character values

is small, so that y ≈ z ≈ z, then the demographic equilibrium occurs at

U∗ = (δ+ z + c) /β (z) .

The fitness of an individual parasite can be extracted from this demo-

graphic model as

w (y, z) = I (y, z)G (z) ,

where
I (y, z) = β(y)U

G (z) = 1/ (δ+ z + c) ,

where I is the fecundity per time unit of an individual parasite, and G
is the expected survival time of that parasite. There is a “tragedy of

the commons” tradeoff between fecundity and survival (Frank 1996b).

Higher values of y enhance transmission from one host to another be-

cause β(y) is an increasing function of y . Virulence, z, is the average

value within a host of the individual parasite’s transmission character.

Thus the greater the fecundity of each individual, the more quickly the

host resources are depleted. Host death causes parasite death.

The equilibrium condition for the parasite character is obtained di-

rectly from Eq. (7.13a)

dw
dg

= IyG+ rIGz = 0
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evaluated at y = z = z∗, with Iz = 0. Candidate equilibria occur at the

solution for z∗ in

β′ (z∗)
δ+ z∗ + c

− r
(

β(z∗)
(δ+ z∗ + c)2

)
= 0, (7.14)

where β′(z∗) is the partial derivative of β(y)with respect to y evaluated

at z∗. Particular solutions and applications of this model are discussed

in Frank (1996b) and further developed in Section 8.3.

The equilibrium does not depend on the demographic variable, U , the

number of uninfected hosts available. This is surprising at first glance.

It would seem that the more hosts available, the greater weight would

be placed on transmission over survival. This would increase transmis-

sion and virulence. However, in this model the joint demographic and

evolutionary equilibrium occurs at the point that equalizes the rate of

return on the fecundity and survival components of fitness (Bull 1994;

Lenski and May 1994; Frank 1996b).

If there were an oversupply of uninfected hosts, with the infection

spreading in epidemic fashion, then the fecundity component of fitness

would be given extra weight (May and Anderson 1990). This accounts for

the value of capturing a larger share of the new resource by enhancing

transmission at the expense of survival. If the supply of infected hosts

were below equilibrium, then the survival component of fitness would

be given extra weight. In this case, it pays to maintain current resources,

the current host, rather than invest in the exploitation of new resources

by transmission to rare, uninfected hosts.

The proper weights for different fitness components is called repro-

ductive value. The next chapter shows how to use reproductive value in

models of social evolution.



8 Reproductive Value

[I]f we regard the birth of a child as the loaning to him of a

life, and the birth of his offspring as a subsequent repayment

of the debt . . . at what rate of interest are the repayments the

just equivalent of the loan?

—R. A. Fisher, The Genetical Theory of Natural Selection

A behavior often affects more than one individual. We have seen that the

coefficient of relatedness provides the proper exchange rate with which

to measure multiple consequences in a single currency. This standard-

ized measure of valuation allows one to use simple tools of maximiza-

tion.

Coefficients of relatedness are sufficient when all individuals value

themselves equally. But an old, sick individual may have essentially no

chance of future reproduction, whereas its child may be in the prime of

life. Similarly, a newborn has many dangers to pass before it can expect

to reproduce, whereas its mother is usually in her reproductive prime.

How should one weight these differences in expected reproduction?

The common currency in evolutionary studies must always be the

magnitude of change caused in the future composition of the popula-

tion. Thus one should weight each individual by its expected contribu-

tion to the future of the population. Fisher (1958a) defined this weight-

ing as reproductive value.

Kin selection and reproductive value provide the currency transla-

tions needed to measure behavioral consequences on a single scale. This

has been recognized for many years. But, just as with the simple kin se-

lection models, the full power of maximization techniques has not been

used to study the combined effects of kin selection and reproductive

value. This chapter summarizes the basic tools.

8.1 Social Interactions between Classes

The simplest use of reproductive value provides an extended Hamilton’s

rule

rBvp − Cva > 0, (8.1)
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where B and C have their usual interpretations as marginal changes in

reproductive success. The reproductive value of the social partner is vp;

the reproductive value of the actor is va.

In one sense, it is obvious that this extended Hamilton’s rule is true.

The valuation of a benefit to a partner must always account for related-

ness, and we have seen that r provides the proper currency. In addition,

there is no gain to benefit an individual who will not contribute to the

future of the population. So net benefit must be valued by the degree

of future contribution. That value is, by definition, vp. Likewise, a cost

to the actor must be rendered into a common currency measured by

contribution to the future population. The proper exchange is va.

The problem with this extended rule is that the definitions are vague.

Consider, for example, a population divided into age classes. Suppose

the partner is a juvenile, with reproductive value vp. This valuation

accounts for several distinct processes. The juvenile’s expected contri-

bution to the future population depends on its survival to the age of

reproduction, its fecundity as an adult, and when it reproduces.

But how should the net benefit, Bvp, be measured? Suppose that the

benefit reduces the amount of time required for the juvenile to mature

into a reproductive adult, without changing net lifetime survival and

fecundity. Then net benefit could be measured by the marginal change

in the reproductive value of the future offspring born earlier as a result

of the change in reproductive schedule. Here, it is not obvious how to

separate the benefit, B, from the reproductive value weighting, vp.

Real behaviors typically have multiple consequences. It is often diffi-

cult to account for all these consequences in terms of proper marginal

costs and benefits and proper choice of reproductive value weightings.

The only method available, if one begins with a rule such as Eq. (8.1), is

to use intuition with no formal check.

Alternatively, the joint effects of kin selection and reproductive value

can be accounted for within a standard procedure of maximization. I

showed earlier that kin selection and coefficients of relatedness emerge

from simple maximization methods (Section 4.3). Those methods begin

with a function that expresses fitness. When the function is maximized

with respect to changes in the effect of breeding value, the derivative

(slope) of actor phenotype on recipient genotype emerges naturally as

the relatedness coefficient for direct fitness.
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The same approach works when recipients have different reproduc-

tive values. We begin with standard life history methods, which express

the fitness function as a sum of fitness components, each weighted by re-

productive value. Optimal trait values are found by maximizing fitness

with respect to changes in the trait. Once again, direct fitness coeffi-

cients of relatedness emerge as derivatives (slopes) of actor phenotype

on recipient genotype. Alternatively, we can use the slope of recipient

genotype on actor genotype as the inclusive fitness coefficient of relat-

edness (Section 4.3).

To use this method it is first necessary to review life history theory.

This theory provides the form of the fitness function needed for the

maximization procedure.

REPRODUCTIVE VALUE OF EACH CLASS

Each individual must be valued according to its expected contribution

to the future population, its reproductive value. One typically does not

calculate reproductive value separately for each individual. Instead, in-

dividuals are separated into classes defined by some key attribute, such

as sex, size, or age.

Three attributes of each class are important: number of individuals,

reproductive value of each individual, and class reproductive value. A

class j constitutes numerically a fraction uj of the total population. The

reproductive value of each class, cj , is the fraction of all the genes in the

distantly future population that come from individuals of class j . It

follows that the reproductive value of each individual in class j is in

proportion to

vj = cj/uj . (8.2)

It is important to distinguish the cj from the vj . For example, if the

classes are the two sexes, male (m) and female (f ), then in a population

with haploid males and diploid females, a gene in the distant future has

twice the probability of being in a female today as in a male today, so that

cf = 2/3 and cm = 1/3 (Price 1970). By contrast, when we are working

with age classes, we typically use the individual reproductive values, vj ,
defined by Fisher (1958a, 27). In models of social behavior, the vj are

used as relative weights to compare fitness benefits to individuals of

different classes.
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The direct fitness method of maximization can be used in class-struc-

tured populations. First, as in Eq. (4.3), express total fitness in the pop-

ulation by

W =
∑

cjWj (8.3)

where the fitness of each class, Wj , is weighted by its class reproductive

value, cj . Each Wj has the same value in a normal population, where

normal denotes a population without genetic variation. The method is

to perform standard direct fitness maximization with respect to trans-

mitted breeding value through each fitness component, g′j , as

dW
dg′

=
∑

cj
dWj

dg′j
.

If, for example, fitness is affected by characters y and z, then the deriva-

tive of each fitness component is expanded as

dWj

dg′j
= ∂Wj

∂y
dy
dg′j

+ ∂Wj

∂z
dz
dg′j

,

replacing all derivatives (slopes) of characters on transmitted breeding

values by coefficients of regression or relatedness.

The fitness components, Wj , must be defined properly. Suppose, for

example, that the effect of a behavior on a class-j female is not to alter

her overall fitness, but to modify different components of her fitness in

different ways. If the recipient is a mother, her production of daughters

may be affected differently from her production of sons, or perhaps her

fecundity is affected but not her survival. We treat these components as

different classes of offspring, and write the mother’s fitness in terms of

these components. For example, an age-2 mother who has five offspring

surviving to next year and herself survives with probability s to age 3,

would be regarded as dying and having five class-1 offspring and s class-

3 offspring.

LIFE HISTORY: TECHNICAL DETAILS

I review standard life history theory in this section (Charlesworth 1994),

using the notation in Taylor and Frank (1996). Let wij be the number

of class-i offspring of a class-j individual. The count here is made ac-

cording to genetic representation; that is, if an individual furnishes only
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one-half of the genes of an offspring, then that offspring is counted as

one-half. The offspring matrix

A =
[
wij

]
records in the jth column the fitness components of a class j individual.

The matrix A depends on variation in trait values. Define a normal pop-

ulation as one with no genetic variation and constant breeding value g∗,

and normal fitness matrix A∗. The dominant eigenvalue λ of A∗ is the

factor by which the normal population size is multiplied in each gener-

ation. The vector v of individual reproductive values is the dominant

left eigenvector of A∗,

λv = vA∗

λvj =
∑
i
viw∗

ij (8.4)

and the vector u of equilibrium class frequencies is the dominant right

eigenvector of A∗
λu = A∗u

λui =
∑
j
w∗
ijuj .

The eigenvalue has a natural interpretation as a rate of increase. The

stable distribution of class frequencies, u, has elements summing to

one. In a population of size n, the numbers in each class are un. One

time period of growth is defined as one application of the fitness matrix

A∗; that is, the numbers in each class after one period are λun = A∗un.

After t periods, by repeated application of the fitness matrix A∗, the

numbers in each class are λtun.

The fitness of a class-j individual is defined as the weighted sum

Wj =
∑
i

(
vi/vj

)
wij, (8.5)

where the weight vi/vj is the relative reproductive value of a class-i off-

spring. Essentially the weights can be thought of as factors converting

the fitness components into common units, which can then be added. A

comparison of Eq. (8.4) and Eq. (8.5) shows that in a normal population,

the Wj are all equal to λ. The conditions for Eq. (8.3) hold, so the total

sum of fitness components with proper weights can be written as

W =
∑
j
cjWj =

∑
ij
viwijuj = vAu, (8.6)
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where the last term uses vector notation. Our goal is to study how a

change in the transmitted breeding value, g′, affects fitness, expressed

as
dW
dg′

=
∑
ij
vi

dwij

dg′i
uj = v

dA
dg′

u. (8.7)

This differentiation treats the vi and uj as constant, calculated from the

normal g∗ population, even though reproductive value and class fre-

quency are often affected by the behavior. This is related to a standard

result of life history optimization (Taylor and Frank 1996), as shown in

the following paragraphs.

The standard measure of fitness for a rare mutant allele is not W but

the dominant eigenvalue of λ of the matrix A. This eigenvalue expresses

the rate of growth of copies of the allele when the allele is in its equilib-

rium proportions among the classes.

The use of dW/dg′ = 0 for maximization can be defended as follows.

Write all terms as functions of g′ to show their dependence on variants

in (transmitted) breeding value. Then, by the definition of eigenvalues

and eigenvectors

v
(
g′
) [

A
(
g′
)− λ

(
g′
)

I
]

u
(
g′
) = 0,

where I is the identity matrix. Denote differentiation with respect to g′

by “˜”, and evaluate the derivatives at g′ = g∗, yielding

ṽ
[
A∗ − λI

]
u+ v

[
Ã− λ̃I

]
u+ v

[
A∗ − λI

]
ũ = 0.

Since u and v are eigenvectors, the first and last terms vanish, giving

dW
dg′

= vÃu = (v · u) λ̃,

as in Eq. (8.7), where everything is evaluated at g′ = g∗. Since v and u are

positive, dλ/dg′ and dW/dg′ have the same sign. Thus, the derivative

dW/dg′ gives the correct direction of evolutionary change.

EXAMPLE ONE:  DIRECT AND INCLUSIVE FITNESS

Evaluating dW/dg′ automatically provides the proper coefficients of re-

gression and relatedness. I illustrate these coefficients with a simple ex-

ample (Taylor and Frank 1996). The purpose is to clarify various aspects
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of notation and method. I show the correspondence of the maximiza-

tion procedure to standard inclusive fitness arguments, as in Eq. (8.1),

and to the new direct fitness methods described in previous chapters. I

present a more realistic example in the following section, to demonstrate

the benefits of the formal maximization procedure over the commonly

used inclusive fitness heuristic.

In this example there are three classes: (1) juvenile males, (2) juvenile

females, and (3) adult females. Suppose the actors are the adult females,

and all three classes are recipients. Each individual is affected by two

phenotypes, y and z. For each individual, the trait y is the phenotype of

the particular adult female with which the individual is associated. For

juveniles, y is the mother’s phenotype, and for an adult female, y is her

own phenotype. The trait z is the average phenotype among an adult

female’s neighbors in the local group, excluding her own phenotype. If

an adult female is in a group with her sisters, then from a juvenile male’s

point of view, z would be the phenotype of a randomly chosen aunt.

According to Eq. (8.3), the average direct fitness of recipients is

W = c1W1 (y, z)+ c2W2 (y, z)+ c3W3 (y, z) .

The direct fitness derivative is

dW
dg′

= c1
dW1

dg′1
+ c2

dW2

dg′2
+ c3

dW3

dg′3
.

The derivatives on the right side can be expanded. For example, the

derivative in the first term, for juvenile males, is

dW1

dg′1
= ∂W1

∂y
dy
dg′1

+ ∂W1

∂z
dz
dg′1

= ∂W1

∂y
r̃1 + ∂W1

∂z
R̃1. (8.8)

The direct fitness coefficients, r̃ and R̃, are the slopes of actor phenotype

on recipient genotype. These coefficients were explained earlier (Chap-

ter 4). For most problems, we could move quickly from this general

expression for the derivative to a solution for the equilibrium pheno-

type favored by selection, as shown in the following section. My goal

in the remainder of this section is to show the correspondence of the

direct fitness form to the commonly used inclusive fitness expression.
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Table 8.1 The Inclusive Fitness Effect of an Adult Female Actor

Recipients Number Effect Relatedness RV

Class 1
Sons n1 a1 r1 v1
Nephews N1 A1 R1 v1

Class 2
Daughters n2 a2 r2 v2
Nieces N2 A2 R2 v2

Class 3
Self 1 a3 1 v3
Sisters N3 A3 R3 v3

RV in the last column is reproductive value. The second column lists the num-
bers of recipients of each type for a single actor. The effects in the third column
are the rates at which recipient fitness increases with changes in the actor phe-
notype, where fitness is normalized to unity. Thus, a1 is the rate at which a
male’s fitness changes with respect to his mother’s phenotype. The inclusive
fitness effect, ∆WIF , is the sum of the effects on different recipients:

∆WIF = v1 [n1a1r1 +N1A1R1]+ v2 [n2a2r2 +N2A2R2]+ v3 [a3 +N3A3R3] .

The first step is to replace direct fitness coefficients by inclusive fit-

ness relatedness coefficients. For example, we assume that r1 = r̃1,

where the inclusive fitness coefficient r1 is the slope of recipient geno-

type on actor genotype—in this case, the slope of the juvenile male’s

breeding value on the mother’s breeding value. Use of this inclusive

fitness coefficient requires that we include only that part of the direct

fitness coefficient caused by shared breeding value and that the direc-

tion of the slope be reversed (Section 4.2).

For many problems, we can simply substitute the inclusive fitness co-

efficients for the direct fitness coefficients, because the problems con-

cern a single phenotype with a common genetic basis in all individuals.

But it is important to remember that the direct fitness coefficients are

much more general. The inclusive fitness coefficients can be used only

for a common, but restricted set of problems.

The remaining steps to obtain a classical accounting of inclusive fit-

ness are tedious. I continue along to demonstrate the formal connection

between the maximization method and the classical accounting shown

in Table 8.1. I assume that each adult female is in a group with her sis-

ters. This provides the convenient labels shown in Table 8.1 when the

problem is examined from an adult female’s point of view. She has sons
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and nephews among the juvenile males, daughters and nieces among

the juvenile females, and herself and sisters among the adults. Any pat-

terns of relatedness could be used. These labels simply make it easier

to describe groups.

I continue expanding the first term for juvenile males in Eq. (8.8)

c1

[
∂W1

∂y
r1 + ∂W1

∂z
R1

]
= v1u1 [k1a1r1 +K1A1R1] ,

where k1 and K1 are the average number of mothers and aunts, respec-

tively, of a juvenile male (e.g., k1 is the probability that the mother of

a juvenile male will be alive), and a1 and A1 are the rates at which a

phenotypic change in a mother or an aunt affects juvenile male fitness.

If we divide by u3, the number of adult females, we get the first com-

ponent of the inclusive fitness effect in Table 8.1. This follows because

(u1/u3)k1 = n1, is the average number of sons that a mother affects,

and (u1/u3)K1 = N1, is the average number of nephews affected by each

aunt. To illustrate these last equations, if there were four juvenile males

per adult female (u1/u3 = 4), and a male had on average three aunts,

K1 = 3, then an adult female would have on average 4×3 = 12 nephews.

The full correspondence to Table 8.1 can be shown by continuing in this

way for classes 2 and 3.

EXAMPLE TWO:  SEX RATIO

The previous example is the typical sort of abstract problem used when

discussing methods of analysis. The fitness effects are neatly summa-

rized as parameters, so that the inclusive fitness condition is a simple

accounting of weighted costs and benefits. In a real application the final

answer must take the same form; that is, the properly weighted benefits

must be greater than the weighted costs if the behavior is to spread.

However, it is often quite difficult from the biology to see, in advance of

the answer, what all of these effects are.

The maximization procedure has the advantage of leading from the

biological assumptions to a proper answer, without having to guess in

advance the form of the answer. I illustrate this distinction with a model

of sex allocation that extends the example of Section 4.4. I discuss this

problem at length in Chapter 10. Here my only goal is to study the

technique, so I describe the problem briefly.
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Consider a sexual population with N mated females breeding on each

patch. Mating is random among the patch offspring, followed by partial

dispersal of mated females at a rate µ, with cost c. Immigrant females

compete for the N breeding sites with the nonmigrant females on each

patch. This is the patch structure of the dispersal example in Section 7.2,

in which we found the ESS dispersal rate. Here we want to calculate the

ESS sex ratio (for a similar model, see Crespi and Taylor 1990).

Each mother splits her investment in offspring into fractions y sons

and 1−y daughters. An average neighbor of the female has phenotypes

z and 1− z, where each female contributes 1/N to her patch’s average

phenotypes.

Adult females control phenotypes. The two recipient classes are the

components of fitness of each adult female through male and female

offspring. The female component is

Wf (y, z) = (1− y) [(1− µ)p (z)+ µ (1− c)p (z)] ,

where y is the female’s mother’s sex ratio, z is the average sex ratio on

her native patch, and z is the average population-wide sex ratio. Here

p (z) = 1
N

[
1

(1− z) (1− µ)+ (1− z)µ (1− c)

]

is the breeding probability of a female who competes on a z-patch. Note

that the normalized value of p is

p (z) = 1
N

[
1

(1− z) (1− cµ)

]
.

It follows that the normal value of Wf is 1/N. Similarly, the male fitness

component is

Wm (y, z) = y
(

1− z
z

)
[(1− µ)p (z)+ µ (1− c)p (z)] ,

where the female : male mating ratio among offspring is (1− z)/z. The

normalized value of Wm is 1/N, the same as the normal value of Wf .

These equations provide a full description of the biology. It is, in

principle, possible to apply the inclusive fitness heuristic to obtain the

ESS sex ratio. But most people would, I think, find it quite challenging

to keep track of all the interactions and to combine them correctly.
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Maximization allows the standard rules of differentiation to be ap-

plied in an automatic way. We begin with the average recipient fitness

W = cmWm + cfWf .

The equilibrium equation dW/dg′ = 0, evaluated at y = z = z∗, yields

the ESS sex ratio. The direct fitness regressions, r̃ and R̃ follow as

usual from the slopes of actor phenotype on transmitted breeding value

through each fitness component. We can, in many cases, replace the di-

rect fitness coefficients by the inclusive fitness coefficients, r and R (see

Example: Sex Ratio, p. 74). The ESS can be written as a ratio of number

of males to females, z∗ : 1− z∗, yielding

cmrm − cmRm : cf rf + cmRm − k2 (cfRf + cmRm
)
, (8.9)

where k = (1 − µ)/(1 − cµ) is the probability that a mated female is

native to her breeding patch (Eq. (7.6)). The terms rj are the inclusive

fitness relatedness coefficients of a mother to her own sex-j offspring,

and the Rj are the relatedness coefficients of the mother to a random

patch offspring of sex j (including her own). One can interpret this

result by realizing that it must follow the marginal theory of inclusive

fitness, with additional reproductive value weights cm and cf . I take this

up in Section 10.2.

SUMMARY OF MAXIMIZATION METHOD

The maximization method is, in practice, quite easy. Start with an ex-

pression for the fitness of each recipient class as a function of actor

phenotypes. Weight each recipient class by its class reproductive value,

maximize the weighted sum of recipient fitnesses with respect to varia-

tions in breeding value, replace slopes of recipient breeding values rel-

ative to actor phenotypes by appropriate relatedness coefficients, and

solve for the equilibrium behavior.

Sometimes realistic problems work out neatly, such as the sex ra-

tio examples. An application can, however, be quite challenging when

different classes have multiple components of fitness. In this case, max-

imization of the demographic matrix, A, provides a simple, formal pro-

cedure. The difficulties that arise are mainly technical. For example, a

common problem focuses on a social group that contains various age
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classes, in which the behavior of each class affects the fitness of rela-

tives in other classes. If each age class potentially takes on different

values for a trait, then we must consider the simultaneous optimization

of many different kinds of behaviors, each influencing several different

classes of recipients.

Simultaneous optimization does not, in principle, create special diffi-

culties. But there are two problems. First, this type of optimization can

be technically difficult. Second, the methods outlined above are still

rather new, and there are few good examples of applications.

In short, the subject of life history in social groups has not been devel-

oped very well. The basic outline of the techniques seems to be in place,

but other issues are likely to arise in application. The following sections

are a collection of preliminary analyses. They are constructed to high-

light interesting conceptual and technical problems, and to suggest a

few applications that could be developed.

8.2 Child Mortality in Social Groups

Fisher (1958a) noted that age-specific reproductive values of humans

increase up to the age of first reproduction, and then decline through-

out adult life. The lower reproductive value of children is explained

by the fact that a child must first survive to reproductive age before it

contributes to future generations. The declining reproductive value of

adults is explained by the fact that age-specific survival and fecundity

decline with age. An older adult therefore has a lower expectation of

future reproduction than a younger adult (Fig. 8.1).

The human mortality curve follows inversely the trend of the repro-

ductive value curve (Fig. 8.1). Periods of high mortality occur early and

late in life, when reproductive value is low. Minimum mortality occurs

just before the age of peak reproductive value.

Fisher suggested that the shape of the mortality curve could be ex-

plained by the reproductive value curve. The problem of age-specific

mortality (senescence) has subsequently received much attention (Rose

1991; Charlesworth 1994). I focus here on the high level of juvenile

mortality observed in some species.

Hamilton (1966) emphasized that a simple model of natural selection

never predicts higher mortality early in life. The essence of his argument

can be written as follows. Let fitness, w , be the expected number of
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Figure 8.1 Comparison of human mortality and reproductive value, based on
data from Taiwan around 1906. Figures redrawn from Hamilton (1966).

offspring produced in a lifetime, which is the sum of the fecundity, fi ,
at each age, i, weighted by the probability, pi , that the organism lives to

age i

w =
∞∑
i=0

fipi =
∞∑
i=0

fi
i∏

j=0

sj ,

where sj is the probability of survival during the jth age period.

To study the effect on fitness of a change in survival at a particular

age, k, let ŝk = sk(1+ δ), yielding the new fitness

ŵ =
k−1∑
i=0

fi
i∏

j=0

sj + (1+ δ)
∞∑
i=k

fi
i∏

j=0

sj .

The change in fitness for a change in survival at age k is

ŵ −w = δ
∞∑
i=k

fi
i∏

j=0

sj .
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It is clear that a change at an earlier age (smaller k) always has an effect

that is greater than or equal to a change imposed at a later age.

This simple theory predicts that age-specific mortality should be a

nondecreasing function of age. But mortality actually decreases sharply

from birth to the early teens in humans. Hamilton (1966) suggested

various kin selection processes to explain this discrepancy. Perhaps the

simplest scenario, not mentioned by Hamilton, is to imagine a stressful

event in the family, such as a temporary shortage of food. In a severe

case, where some offspring can be protected and others must be put at

risk of mortality, what is the optimal allocation of resources by a parent?

The answer is simply to favor those offspring with higher reproductive

value. Such a process would likely lead to a mortality curve that is ap-

proximately the inverse of the reproductive value curve.

The parental control explanation is not satisfactory, however, because

the mortality rates seem to be intrinsic to the offspring under uniformly

good conditions. Thus Hamilton mentioned how selection might act

directly on the offspring to increase mortality and enhance the survival

of siblings or parents. I use this problem to motivate some models of

reproductive value and kin selection. My main purpose is to consider

conceptual and technical issues, rather than the problem of offspring

mortality.

SIMPLEST MODELS

I begin with a simple model of family altruism (extending Taylor and

Frank 1996). Let a population consist of progeny (class p) and adults

(class a). Individuals are hermaphroditic, reproducing as both male and

female. Adults mate in each year, and the resulting progeny become

juveniles in the following year. Each adult expects 2n offspring to sur-

vive to the juvenile stage, n of its own (it is the “mother” of these) and

n through mating with other adults. An adult is credited with one-half

of each offspring for its gametic contribution. Thus each adult receives

credit for n = 2n/2 offspring. Juveniles do not reproduce, and they sur-

vive to the next year with probability s. Adults of any age survive to the

following year with probability t.
The two classes form a normal fitness matrix

A∗ =
[

0 n
s t

]
.
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The dominant eigenvalue λ of A∗ is the larger root of the characteristic

equation

λ2 − tλ− sn = 0.

Following standard life history theory, the present value of all juvenile

offspring of a current juvenile is set to unity

1 = λ−2sn+ λ−3stn+ λ−4st2n+ . . . = sn
λ (λ− t)

. (8.10)

Here λ is the time discount rate, such that the λ−2 accounts for the fact

that a juvenile’s first set of offspring will be juveniles two years into the

future. At that time, the population will have changed size by a factor

λ2; thus the proportion of the total population represented by those

future juveniles is weighted by λ−2.

Standard calculations yield the stable class frequencies and reproduc-

tive values
u ∝ [n λ]

v∝ [s λ] ,

where u is a column vector, and v is a row vector. The symbol∝ means

proportional to; that is, multiplicative constants can be chosen arbitrar-

ily. If one follows Fisher’s (1958a) normalization of reproductive value

as the total number of expected offspring discounted to present value,

then vp = 1, as in the sum in the middle of Eq. (8.10), and adult value is

va = λ/s.
This demographic analysis focuses on whole individuals—progeny

and adults. Later it will be necessary to consider the success of the

hermaphroditic adults separately via male and female fitness compo-

nents. In this case we need to follow gametic success in the formation

of progeny, with normal matrix

A∗ =
0 0 n/2

0 0 n/2
s s t

 , (8.11)

where columns and rows are, from top to bottom and left to right, male

gametes, female gametes, and adults. For example, the n progeny pro-

duced by an individual via its mating success as a male are weighted by

1/2 to account for gametic contribution to each offspring. This matrix
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has a dominant eigenvalue described by the same characteristic equa-

tion as the whole individual matrix. The stable class frequencies and

reproductive values are

u∝ [n/2 n/2 λ]

v∝ [s s λ] .

The role of the various components is best shown by three exam-

ples. In the first, the behavior affects all fitness components in the

same way, so detailed separation by components is unnecessary. The

second model assumes that the behavior affects fitness components dif-

ferently, so it is necessary to pay attention to class-specific properties

in the whole individual matrix. In the third model, male and female

components of fitness are affected in different ways; thus the analysis

requires the full gametic matrix.

MODEL 1. ALL FITNESS COMPONENTS AFFECTED THE SAME WAY

The problem here is altruistic behavior of progeny toward their adult

mother, given that the mother has survived. The average fitness of re-

cipients is

W =
∑

cjWj = upvpWp + uavaWa ∝ nsWp + λ2Wa, (8.12)

where, in this case, I use the 2× 2 whole individual matrix for progeny

and adults.

Suppose that a single altruistic interaction increases the mother’s fit-

ness by a factor of b but decreases the juvenile’s fitness by a factor of

c. Let x be the phenotype of a juvenile, and let y be the average pheno-

type of a mother’s juvenile offspring. The fitnesses of the two recipient

classes, normalized to unity for x = y = 0, are

Wp = 1− tcx (8.13)

Wa = 1+ (t/λ)nby, (8.14)

where t in Eq. (8.13) is the probability that the mother of the juvenile

is alive, and t/λ in Eq. (8.14) is the probability that a random adult was

an adult of the previous year. An adult who bred in the previous year

can expect ny altruistic interactions from her offspring. Differentiating

fitness, W , as given in Eq. (8.12)

dW
dg′

= nt
[
−sc dx

dg′p
+ λb

dy
dg′a

]
.
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The derivative dx/dg′p is the slope of a progeny’s phenotype on its trans-

mitted breeding value. A progeny transmits to the next time period by

surviving, thus its transmitted and current breeding values are the same,

g′p = gp, and dx/dg′p = 1. Let r̃ = dy/dg′a be the slope of a randomly cho-

sen juvenile’s phenotype, y , on its mother’s transmitted breeding value,

g′a. I will clarify the interpretation of r̃ and the assumptions of this anal-

ysis in model 3 below. For now, I simply note that under random mating,

the direct fitness coefficient r̃ can be replaced by the inclusive fitness

coefficient r , in which r measures the juvenile’s (actor’s) relatedness to

its mother.

The behavior is favored when dW/dg′ > 0, which gives

sc < λbr. (8.15)

Offspring are favored to increase their mortality if that increase provides

sufficient benefit to mothers. The offspring suffers a cost, c, for the act,

and the mother gains b. This c : b ratio must be weighted by individual

reproductive values, s : λ, and by the ratio of relatedness coefficients,

1 : r , taken from the actor’s (offspring’s) point of view. Thus this result

can be obtained by a standard application of Hamilton’s rule, simply

adding the appropriate reproductive value weightings. Charlesworth

and Charnov (1981) were perhaps the first to construct a formal model

of kin selection with reproductive value weightings in an age-structured

population.

MODEL 2. DIFFERENT FITNESS COMPONENTS AFFECTED DIFFERENTLY

Suppose that an altruistic behavior by the juvenile increases the moth-

er’s current fecundity by a factor of b but does not affect her survival.

Because the fitness components are affected differently, we must work

directly with the fitness matrix

A =
[

0 n(1+ tnby/λ)
s (1− tcx) t

]
,

where, in this case, we are still using the whole individual matrix. Dif-

ferentiating as in Eq. (8.7)

dW
dg′

= v
dA
dg′

u = [s λ]
[

0 n2tbr̃/λ
−stc 0

][
n
λ

]
= nst

[−λc + bnr̃
]
,
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Table 8.2 Inclusive Fitness Calculation for a Model of Juvenile Mortality

Method 1: count “offspring” in the next year for each recipient

Recipient Offspring RV Relatedness

Mother 2nb s r/2
Juvenile −sc λ 1∆WIF = nbsr − scλ = s(nbr − cλ)

Method 2: measure fitness effects in terms of juveniles

Juvenile
Recipient offspring Time discount Relatedness

Mother 2nb λ r/2
Juvenile −c 1 1∆WIF = nbr/λ− c = (nbr − cλ)/λ

There are two different ways one might construct the inclusive fitness argument
leading to Eq. (8.16). Method 1 follows the matrix approach of the text. The two
components of fitness are treated as next year’s “offspring,” and the class of
the offspring must be noted and weighted by the class reproductive value (RV).
However, all these “offspring” belong to next year, so no weighting by time is
required. Method 2 measures all fitness effects as “juvenile” units, either this
year or next year. Then RV weights are not required, but next year’s juveniles
must be discounted by the population growth factor, λ. Note that the mother’s
future offspring have relatedness to the actor of r/2, assuming the mother’s
mate is unrelated to the actor. This conforms to the assumptions that r is
the relatedness of the juvenile actors to their mother, and that mothers remate
randomly in each year.

where, as before, dx/dg′p = 1 and dy/dg′a = r , in which r is the re-

latedness of juveniles to their hermaphroditic mother. The behavior is

favored when dW/dg′ > 0 is positive, yielding the condition

c <
bnr
λ

. (8.16)

Two different ways to formulate a modified Hamilton’s rule are shown

in Table 8.2. The key is that a current offspring values an increase in its

mother’s fecundity by comparing its own reproductive value, s, relative

to the reproductive value of next year’s offspring, s/λ. Here 1/λ is the

time discount for future offspring (Rogers 1993; Taylor and Frank 1996).

In a stable population, the time discount is λ = 1, and the weighting

vanishes.
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MODEL 3. FULL GAMETIC MODEL

Nonrandom mating affects in different ways a hermaphroditic moth-

er’s male mating success, female fecundity, and survival. This requires

attention to the full gametic matrix in Eq. (8.11). Expanding the matrix

to include fitness effects of juvenile altruism, we obtain

A =
 0 0 nβ(bm, y)B

(
bf , z

)
/2

0 0 nB
(
bf , y

)
/2

sC (x) sC (x) tB (bs, y)

 , (8.17)

where the beneficial effect of juveniles with phenotype γ on fecundity

or survival of their parents is

B
(
α,γ
) = 1+ (t/λ)nαγ,

and the beneficial effect of the juveniles on the mating success of the

male attached to their mother is

β
(
α,γ
) = 1+ (t/λ)nαγ

1+ (t/λ)nαγ
.

The mating success term is normalized by the average phenotype, γ, in

the local population in which male gametes compete. This constrains

the average number of mates to one. This constraint is imposed because,

in hermaphroditic populations, there is always one female per male.

Finally, the cost of altruism to a juvenile with phenotype x is

C (x) = 1− tcx,

as in the prior models.

The upper-right term in the matrix, nβB/2, is the success of male ga-

metes. The function β gives the increase in the expected number of mat-

ings. Mating success benefits from altruism of the juveniles produced

by the attached mother, an outcome of hermaphroditism. The mates of

the male have juveniles with phenotype z, which increases the fecundity

of the male’s mates by B(bf , z). The second row in the last column is

the success of female gametes of the mother. The lower-right entry is

the survival of the mother and the male gametes that she receives from

her mates.

The condition for an initial increase in juvenile altruism is obtained

in the usual way
dW
dg′

= v
dA
g′

u > 0,
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evaluated at x∗ = y∗ = z∗ = 0, yielding

nsbf
(
r̃f + r̃µ

)
/2+ tλbs

(
r̃f + r̃m + r̃µ

)
/2+ nsbm

(
r̃m − R̃m

)
/2 > sλc.

(8.18)
The three terms on the left represent the effects of the juveniles on the

fecundity, survival, and male mating success of the mother.

Fecundity

The relatedness coefficient, r̃f = dy/g′f , is the slope of the juveniles’

average phenotype in a brood, y , relative to the breeding value of the

mother’s transmitted female gametes. The coefficient r̃µ is dz/dg′m. The

term z is the phenotype of juveniles produced by the mates of a male.

This phenotype influences the transmission of the male’s gametes, g′m,

to next year’s brood.

The combined relatedness coefficient weighting for the female fecun-

dity component is (r̃f + r̃µ)/2. When a juvenile actor influences the fe-

male fecundity of its mother, the proper direct fitness coefficient uses

the mother’s transmitted breeding value as the recipient. The mother’s

transmitted breeding value is the average of her own breeding value and

the breeding value of her mate. This is equivalent to the breeding value

of the mother’s future progeny produced as a female.

Survival

Increased survival of the mother affects the transmission of three

gametic components. Survival carries forward the female and male ga-

metes of the mother to the next generation. The juvenile’s relatedness

to female gametes is r̃f , given above, and its relatedness to male ga-

metes is r̃m = dy/dg′m. The mother’s male and female gametes have the

same breeding value, thus the relatedness between juvenile and mother

is r̃ = r̃f = r̃m.

The surviving mother will also transmit the genes of her mates when

she reproduces as a female. The relatedness between juveniles and

mother’s future mates was defined above as r̃µ . This term is weighted

by one-half because it is a gametic effect. Put another way, the juveniles

influence the male fecundity of their mother’s mates, but not the female

fecundity of the mates.

Male mating success

The term r̃m = dy/dg′m is the slope of offspring phenotype on the

transmitted breeding value through male gametes of the mother. The
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coefficient r̃m/2 is the relatedness between a juvenile and the half of fu-

ture offspring produced by male gametes of the juvenile’s mother. The

one-half arises because the juvenile influences only the male parent’s

mating success, not the fecundity of the male’s mates.

An increase in the average progeny phenotype in the local breeding

group, y , raises the number of competing male gametes. This reduces

the success of male gametes transmitted by an adult. The relatedness

of a random offspring in the local breeding group to a male gamete is

R̃m = dy/dg′m. This term arises as a negative factor because it reduces

the success of relatives. Division by one-half is for the same reason

given in the prior paragraph.

INCLUSIVE FITNESS COEFFICIENTS

The direct fitness coefficients can be replaced by inclusive fitness co-

efficients. The condition in Eq. (8.18) can be rewritten, using inclusive

fitness coefficients, as

nsbf
(
r + rµ

)
/2+ tλbs

(
r + rµ/2

)+ nsbm (r −Rm) /2 > sλc, (8.19)

where coefficients are taken from the juvenile actor’s point of view. The

coefficient r is the juvenile’s relatedness to its mother, rµ is the juvenile’s

relatedness to its mother’s mates, and Rm is the juvenile’s relatedness to

neighboring hermaphrodites that contribute male gametes to the local

breeding pool.

COMPARISON OF MODELS

The results of models 1 and 2 can be obtained directly from Eq. (8.19).

This exercise illustrates the formal relations among the models and how

the different methods should be interpreted.

The first model assumed that all fitness components of the mother

were influenced in the same way. Thus the third column of the matrx

in Eq. (8.17) must be affected by the same fitness term. If we assume

that the benefit coefficients are the same, bi = b, and mating is random

so that rµ = Rm = 0, then the general condition in Eq. (8.19) reduces to

the conclusion from model 1 in Eq. (8.15). Demonstrating equivalence

requires one to use the identity λ2 = λt + sn from the characteristic

equation.

For model 2, the only effects are on the fecundity and mating success,

bf = bm = b, and bs = 0. The result in Eq. (8.16) follows.
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Finally, the general model in Eq. (8.19) can be reduced in a variety of

ways. For example, when the benefits are all equal, bi = b, then

b
[
λ
(
r + rµ/2

)− n(s/λ)Rm/2
]
> sc.

The term λ(r + rµ/2) is the product of the reproductive value of the

mother, λ, and the juvenile’s relatedness to mother’s transmitted breed-

ing value through all her fitness components, survival, fecundity, and

male mating success. The mating competition discount is n(s/λ)Rm/2.

The number of progeny through mating is n, the reproductive value of

next year’s offspring is s/λ, and the juvenile’s relatedness to male ga-

metes that compete with its mother’s male gametes is Rm. The one-half

arises because the juvenile influences only the male parent’s mating suc-

cess, not the fecundity of the male’s mates.

CRITIQUE

These models clarify the forces that act on altruistic behavior. But

they may be too simple, as is often the case in formulations that end

up in Hamilton-rule form. For example, Eq. (8.15) suggests that when

survival of offspring, s, is already low, then offspring are favored to

reduce their survival more, in order to aid their mothers. As offspring

survival declines, there would seem to be an accelerating benefit from

even lower survival. Surely survival will not be favored to decrease to

zero. A similar lack of clarity occurs in Eq. (8.16). If the condition is

satisfied, then offspring are favored to decrease their survival in order

to increase the fecundity of their mothers. But when does the decrease

in survival stop?

The problem with these formulations is that, in simplifying so much,

the marginal changes in cost and benefit are hidden within the model.

There is, of course, nothing wrong with these formulations. But almost

the entire literature of social evolution is formulated in terms of these

vague inequalities, without any hint about how to extract more meaning-

ful statements. When explicit statements about comparative statics are

desired, authors often turn to a variety of ad hoc methods or computer

simulations. The methods outlined above suggest that a slightly modi-

fied procedure of standard maximization may be the right approach. I

explore some problems and examples in the following sections.
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POPULATION GROWTH: VARIABLE OR PARAMETER?

I described in the previous section the standard optimization technique

for life history analysis, with modifications to handle social interactions.

That method has the virtue of a clear formalism, with techniques to

translate survival and fecundity schedules into reproductive values, v,

and the rate of population growth, λ. Thus all demographic assumptions

and consequences are fully integrated into the formulation and analysis.

A result with the full life history analysis, such as Eq. (8.16), may seem

to take population growth, λ, as a fixed parameter. But that problem

was constructed with the normal value of the character, x = y = y∗ = 0;

thus one can only examine the direction of evolutionary change. As the

normal value of y∗ changes from zero, survival and fecundity change,

and hence λ changes. That analysis could be extended by allowing nor-

mal character value y∗ �= 0, adjusting normalizations for class fitness,

and making explicit the dependence of λ on y∗. The extended analysis

would be messier, but easy enough to complete.

The difficulty with an extended analysis is that survival and fecun-

dity are likely to be influenced by forces other than social interaction.

One would have to make such density-dependent factors explicit, fur-

ther complicating the details of the model. But one may then lose the

original goal of focusing simply on the evolution of a social character.

Alternatively, one can take population growth, λ, as an extrinsic param-

eter. This assumption is valid if extrinsic forces regulate population

growth and those forces do not influence the marginal costs and bene-

fits of the social character under study. An example follows.

CYCLE FITNESS

The net reproductive rate of a female is commonly used as a measure

of fitness in complex demographies (Charlesworth 1994). This measure,

often labeled R0, takes on various forms depending on the biology. For

example, Charnov (1993) makes extensive use of

R0 = S (α)F (α) ,

where S(α) is survival to the age of first reproduction, α, and F(α) is

the expected lifetime fecundity of an individual who survived to age α.

In the study of parasite life history, S is often taken as the expected time
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a parasite survives within a host, and F is the number of new hosts that

parasite infects per time unit (Anderson and May 1991). Caswell (1985)

developed a measure of fitness over complex life cycles, which is similar

to the approach I take here.

For social behavior, I prefer to use my standard notation of w for the

expected value of individual fitness, and measure w over a life cycle. For

example, fitness for the model leading to Eq. (8.16) can be written as

w = s (1− tcx)
(
nt/λ+ n(t/λ)2 (1+ nby)+ n(t/λ)3 (1+ nby)+ . . .

)
,

where s(1 − tcx) is the probability of survival to the adult stage. The

first tn/λ in the sum is the probability, t, of survival during the first

adult season, in which case n offspring are produced and discounted by

the population growth rate, λ. The probability of survival to the second

adult season is t2, the discount is λ2, and fecundity is n multiplied by

1 + bny , the benefit of altruism from the n juveniles of the prior year.

Remaining terms are calculated in a similar way. If we use the standard

simplification for geometric series, this fitness is

w (x, y) = (1− tcx) (1+ nbyt/λ)
(
stn
λ− t

)
. (8.20)

This function tracks the fitness of a single individual who expresses

phenotype x as a juvenile and later, as an adult, interacts with juveniles

who have average phenotype y . Thus the individual is an actor when a

juvenile and is a recipient when a juvenile and when an adult.

By our standard method, we evaluate dw/dg′ = 0 at x = y = y∗. The

direct fitness coefficient, r̃ = dy/dg′, is replaced by the inclusive fitness

coefficient, r , the slope of mother’s (recipient’s) transmitted breeding

value on an average juvenile’s (actor’s) breeding value. I assume mating

is random; thus r is the juvenile’s relatedness to its mother. This yields

the solution

y∗ = nbr − cλ
cnbt (1+ r)

. (8.21)

Note that the numerator presents the same condition as Eq. (8.16) for

y∗ > 0, but we now have the scaling effect of various parameters in the

denominator. This provides the full information needed to calculate the

equilibrium if we set λ as a parameter. The usual approach for this is

to set the normal value of the net reproductive rate at w(y∗, y∗) = 1,

which implies λ = 1. This constraint must be absorbed by adjusting one
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of the remaining parameters. The proper choice depends on the biology.

A common assumption is to impose density-dependent mortality on ju-

venile survivorship, s, by expressing s in terms of the other parameters

to satisfy w = 1 (e.g., Charnov 1993, assuming the other parameters

have magnitudes that allow this expression). This form of density de-

pendence has no effect on the equilibrium trait value in Eq. (8.21), which

is independent of juvenile survivorship.

MATERNAL CONTROL

What if the mother controls the phenotype of the juveniles in her group?

The fitness function is now

w (y, x) = (1− tcy) (1+ nbxt/λ)
( stn
λ− t

)
,

where the only difference from Eq. (8.20) is that x and y have been

switched. This switch occurs because the offspring behave according

to the expected phenotype of their mother, y , and a mother has off-

spring that behave according to her own phenotype, x. The equilibrium

is

y∗ = nb − rcλ
cnbt (1+ r)

,

where r is the inclusive fitness relatedness of the mother to her progeny,

that is, the slope of juveniles (recipients) on mothers (actors). As r de-

clines, the mother causes the juveniles to sacrifice more, reducing their

survival and increasing her fecundity. For r < 1, the mother causes the

juveniles to sacrifice more than they would of their own accord.

ACTORS IN MORE THAN ONE CLASS

The simple kin selection models show how increased offspring mortal-

ity can be favored. Those models assume a single juvenile age class.

How do mortality schedules evolve when there are several juvenile age

classes? The comparative statics problem is to find the optimum con-

ditional behavior for each class, given that all other classes are also

behaving optimally.

This is a standard type of problem in life history (Charlesworth 1994)

and behavior (Oster and Wilson 1978; Mangel and Clark 1988). Simul-

taneous optimization is conceptually simple, but technically difficult.

I avoid the technical issues here, which are typical aspects of applied
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mathematics. My goal is to show, once again, that kin selection can be

studied easily in such optimization problems. The extended kin selec-

tion method is important, because nearly all realistic models of social

groups require analysis of different classes. Each class has the potential

to adjust its own behavior and to influence the fitness of other classes

within the group.

I assume a stable population, so that we can use cycle fitness. As

before, the fitness of a life cycle can be divided as

w = S (m)F (m) ,

where S(m) is survival to age of maturity, m, and F(m) is expected

lifetime fecundity of a mature individual of age m. The juveniles are

labeled by age, 0,1, . . . ,m. The socially independent survival of each

individual of age i is τyi . Our goal is to find the optimal set {y∗i }. The

average survival of each age class within the social group, ignoring social

interactions, is τzi . The individual and average group phenotypes can

be written in vector notation as y and z, respectively, with fitness as

w(y,z) to emphasize the nature of the optimization problem.

Survival through age i is the product of survivals at each age k

S (i) =
i∏

k=0

τyk

1−
m∑
j=0

akjnj

 , (8.22)

where nj is the number of juveniles of age j , and akj is the effect of

a juvenile of age j on the survival of an individual of age k. I assume

akj > 0, so that each juvenile has a negative effect on the survival of

all other juveniles, a form of density-dependent competition within the

social group. If the older juvenile classes were helpers, then a < 0,

and those helpers would increase the survival of other juvenile classes.

The formulation is therefore a general description for social interactions

within a complex group. To simplify the problem, I have assumed that

each new social group begins its cycle with a stable age distribution of

juveniles. It would be more realistic to follow the development of each

social group from the production of its first brood through the end of

its cycle.

The number of juveniles in the group of age j is

nj = nS
(
j
)
,
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the number of juveniles born in each period, n, multiplied by S(j), av-

erage survivorship to age j . The total number of juveniles of all age

classes is

π = n
m∑
j=0

S
(
j
)
.

The average group survivorship, S(j), depends on average phenotypes,

z, and can be obtained from Eq. (8.22), replacing yk with zk. The expected

lifetime fecundity of a mature female of age m is

F (m) = n
∞∑
i=0

γ
1−

m∑
j=0

bjnj

i = n
1− γ

(
1−∑m

j=0 bjnj
) ,

where bj is the effect of juveniles of age j on the survival of their mother,

and the right term is obtained by the standard geometric series simpli-

fication.

The full expression for cycle fitness is therefore

w (y,z) =
nτm+1

∏m
k=0 yk

(
1−∑m

j=0 akjnj
)

1− γ
(
1−∑m

j=0 bjnj
) ,

where the nj are functions of z.

My purpose is to show the structure of the problem rather than to

analyze all possible solutions. To simplify the analysis, I assume that

juveniles do not influence the survival of their mother, bj = 0 for all j ,

and that each age class has the same effect on other age classes, akj = a.

The fitness function can then be written, dropping constants, as

w (y,z) =
 m∏
k=0

yk

 (1− aπ)m+1 .

Maximizing log(w) is equivalent to maximizing w because log(w) in-

creases with w . The form of log(w) is

log [w (y,z)] =
 m∑
k=0

log (yk)

+ (m+ 1) log (1− aπ) .

The problem is to find the set of equilibrium trait values, y∗, such that

for each age class, i, small variants in the transmitted breeding value, g′i ,
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for the trait, yi , cause lower fitness. I assume throughout that individual

and transmitted breeding values are equal, gi = g′i .
The optimum must occur within the region 0 ≤ yi ≤ 1 for each i.

Finding a local maximum in this region is not always easy because the

maximum may occur on the boundary, where at least one yi is zero or

one. Thus, solving the simultaneous set of equations, d log(w)/dgi = 0

for i = 0,1, . . . ,m, will often fail to yield a candidate equilibrium within

the search region. Nonetheless, we can often learn something about the

system by examining the derivatives. In this case, for each age i, we are

interested in how fitness changes with a small change in breeding value,

gi , evaluated at a point without allelic variation, z = y

d
[
log (w)

]
dgi

= 1
yi

dyi
dgi

− α(m+ 1)πi

(1−απ)
dzi
dgi

,

where πi = ∂π/∂zi . Note that πi decreases as i increases, because a rise

in survivorship at a later age has a smaller effect on the sum of average

survivorships over all ages. It may be that, in a social group, the total

number of juveniles, π , is regulated to a constant by density effects. The

termπi is really a measure of “partial or instantaneous pressure” caused

by a change in the ith age class, rather than a measure of net change in

survivorship and juvenile numbers. This structure of selective forces is

typical of density-dependent selection (Charlesworth 1994).

As usual, we normalize gi so that dyi/dgi = 1 and thus dzi/dgi = r̃i .
The derivative can now be written as

d
[
log (w)

]
dgi

= 1
yi
− r̃ia (m+ 1)πi

(1− aπ)
. (8.23)

Differentiation allows three simple conclusions. First, if r̃i = 0, then

the derivative is always positive, so that selection always favors yi → 1.

In words, if an act affects only unrelated individuals, then survival is

favored to increase to a maximum. However, r̃i = 0 is an unlikely case

because, in this model, an actor is also part of the group of recipients,

so with n unrelated individuals, r̃i = 1/n, showing the contribution of

the actor to the group average.

The second interesting conclusion from differentiation is that only

relatedness among individuals of the same age class matters. It is ir-

relevant that the fitnesses of recipients in other age classes, who may

be related to the actor, are strongly affected by the actor’s behavior.
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The reason is that survival in each age class, yi , is assumed to be a sep-

arate trait uncorrelated with survival in other age classes, yj ; that is,

dyj/dgi = dzj/dgi = 0. The way in which correlated characters affect

simultaneous selection on multiple traits was discussed in Section 6.2.

The third point is that selection favors a reduction in survival more

strongly as age decreases. This can be seen by noting that in Eq. (8.23),

the derivative declines with decreasing age, i, because πi increases as i
becomes smaller. This makes sense because reduced survival at a par-

ticular age provides survival benefits to relatives in the cohort at all later

ages. Thus, if selection favors reduced survival in any age class, then

survival in the youngest age class must be reduced such that y0 < 1. In-

deed, it seems plausible that survival would be reduced only in the ear-

liest age class—a single demographic adjustment that would increase

colony throughput at later ages. However, overall colony throughput

would likely be maximized only when r̃ = 1.

To sum up, this section provided tools to study the life history of so-

cial groups. It is not easy, without a formal approach, to understand the

many complex selective forces in social insects, cooperatively breeding

birds, lions, chimpanzees, or humans. Although I focused on a simple

model of mortality, one can readily extend the analysis to both harmful

and beneficial social acts by different classes. The classes themselves

can be defined by variables other than age, such as condition or caste.

This mortality model suggests ways in which to expand the analyti-

cal tools and concepts of social evolution. For example, Hamilton (1966)

mentioned that earlier age classes might have elevated mortality thresh-

olds. The lives of the young would give out when the combination of

condition and age drops the juvenile’s expected reproductive value be-

low that of the reproductive value of a replacement sibling, weighted

by relatedness to the later sibling. This suggests an expanded model of

conditional behavior, combining the tools outlined in Section 6.2 with

the class structure of this section.

Juvenile mortality may also be influenced by risk control in the face of

uncertain conditions (Godfray et al. 1991). More juveniles may be started

out in life than, on average, can be raised. If conditions prove to be

harsh, then age-structured mortality thins the family by concentrating

the mortality on the young. If resources are plentiful, then more young

than average could be raised. Perhaps stochastic dynamic programming

(Mangel and Clark 1988), with extensions to handle reproductive value
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and kin selection, could be developed to analyze this type of problem.

Other tools from economic analysis may also prove valuable (Samuelson

1983).

8.3 Parasite Virulence

I previously described an epidemiological model of parasite transmis-

sion. I repeat that model here and show how it can be analyzed with stan-

dard life history methods. Once abstracted, the model demonstrates the

essential features of the “tragedy of the commons” problem of social be-

havior, where there is a conflict between individual success relative to

neighbors and the overall success of the group. The abstract form leads

immediately to a family of related models for interactions between de-

mography and kin selection.

The standard epidemiological model, used in Section 7.4, is

∆U = θ − δU − β(y)US

∆S = S (β (y)U − δ− z − c) ,

where U and S are, respectively, the number of uninfected hosts avail-

able and the number of sick hosts that cannot be infected again. The

total population is maintained by new, uninfected hosts, which are re-

cruited at a rate θ. For each contact between uninfected and sick hosts,

an individual parasite transmits a progeny at a rate β(y), where y is the

transmission character of the individual parasite. Parasites die in a sick

host when the host dies or the infection is cleared. The clearance rate

is c. The natural host death rate is δ. The parasites increase this death

rate by the virulence level, z, where z is the average value of y within

the host.

The parasite demography can be described in standard life history

form as

A =
 0 β(y)/ D

1− t 1− δ− z

 , (8.24)

where class 1 members are newborn infections and class 2 members

are productive parasites in an infected host. The lower-right term is

the survival of the parasite to the next time period, where I have taken

the clearance rate, c = 0. The upper-right term is the fecundity of the

parasite, which is given by the transmission rate per new available host
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(habitat), β(y), divided by the term D. The denominator is the effect of

density-dependent competition on fecundity (the number of newborns).

In the parasite model, density dependence is tied to the number of avail-

able hosts, U . As the infection spreads, U declines, and there are fewer

open habitats for colonization. The final term, 1− t, is the survivorship

of newborn infections to the productive stage. This is the latent period

of infection. This effect does not occur in the epidemiological model I

used, but it is a common part of more complex epidemiological models.

The standard way to handle density dependence is to assume that at

equilibrium, λ = 1. Then, in the normal matrix A∗, with y = z = z∗, it

is easy to show that

D = (1− t) β (z∗)
δ+ z∗

. (8.25)

Thus the normal matrix is

A∗ =
 0 (δ+ z∗) / (1− t)

1− t 1− δ− z∗

 .
The normal reproductive values have proportions

v∝ [1− t 1] ,

and the frequencies have proportions

u ∝
 (δ+ z∗) / (1− t)

1

 .
The derivative of A, evaluated at y = z = z∗, shows how components of

fitness change

dA
dg′

=
0 β′ (z∗) / D

0 −r̃

 ,
where β′ = ∂β/∂y and, as usual, r̃ = dz/dg′. Solving

v
dA
dg′

u = 0

yields

(1− t) β′
(
z∗
)
/D − r̃ = 0,

which, from D in Eq. (8.25), is equivalent to (Frank 1992)(
δ+ z∗

)
β′
(
z∗
)− r̃β

(
z∗
) = 0. (8.26)
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This matches the condition presented earlier in Eq. (7.14). A common

assumption is to let β(y) = ys , with s < 1, causing diminishing fe-

cundity returns with increasing virulence. This allows solution of the

equilibrium value of the parasite trait

z∗ = sδ
r̃ − s

r̃ > s. (8.27)

The same solution can be obtained by analyzing cycle fitness, R0, in a

stable population, λ = 1, with equilibrium demography. The product of

survival to reproductive age and expected adult fecundity can be seen

readily from Eq. (8.24) to be

w (y, z) = (1− t) (β (y)/D)
∞∑
i=0

(1− δ− z)i

= (1− t) β (y)
D (δ+ z)

.

Average fitness in a normal population, w(z∗, z∗), is one when D is

given by Eq. (8.25). Analysis of dw/dg′ = 0 yields the same equilibrium

as in Eq. (8.26).

The essential features of this model are defined in the A matrix in

Eq. (8.24). The matrix contains nothing in particular about parasites.

Rather, it is a general summary of demography and selection on sur-

vival and fecundity components of fitness. The interesting evolutionary

tradeoff comes from the fact that an individual’s fecundity depends on

its own trait, y , whereas the individual’s survivorship depends on the

average trait value in the local group, z. This tradeoff is also expressed

in the cycle fitness, w(y, z).
What if an individual’s survival and fecundity depend only on its own

trait, y? Analysis of w(y, y) yields the solution in Eq. (8.27) with r̃ = 1.

The same result obtains when survival and fecundity depend only on

average trait values, w(z, z). In both cases there is no tension between

individual and group interests. What if fecundity depends on z, and

survival on y? Analysis of w(z, y) yields

z∗ = sr̃δ
1− sr̃

1 > sr̃ .

In this model, declining relatedness increases individual survival and

reduces group fecundity. The opposite pattern occurs in Eq. (8.27), in
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which declining relatedness reduces group survival and increases in-

dividual fecundity. These analyses, taken together, provide a simple

family of models that can be applied to different biological interactions

(Frank 1996b).

8.4 Social Evolution in Two Habitats

The prior models of survival and fecundity assume that all individuals

live in the same kind of habitat. Often, however, some individuals will

live in relatively rich habitats, whereas others may find themselves in

marginal habitats. Survival and fecundity parameters will, of course, be

affected by habitat differences. The different habitats can be thought

of as distinct classes, each with its own reproductive values (Holt 1996).

For example, a parasite may attack two kinds of hosts. Suppose, in

one host, the infection is highly virulent, and kills the host so quickly

that the parasite is rarely transmitted to a new host. The reproductive

value of parasites in this host is low; thus selection in this kind of host

will have little influence on the parasite’s trait values.

Different coefficients of relatedness in the two habitats may inter-

act with demography to determine character evolution. For example,

marginal habitats may have low reproductive value and, because indi-

viduals are distributed sparsely, relatedness may be high. Crowded,

high-quality habitats may have high reproductive value and low related-

ness. The net effect is that a certain degree of prudence may be favored

by the contribution of lone individuals in marginal areas, balancing the

selfish traits favored in the main arena.

This type of problem is simple to formulate with the tools we have

developed, but is challenging to analyze completely. The new technical

point is how to handle cases in which actors occur in different classes,

when there is no conditional adjustment of traits based on class. In this

case, the degree of prudence in resource usage is intrinsic to individuals

independently of the type of habitat in which they live.

The assumptions are a simple extension of the prior section, with the

biology described in the matrix

A
(
yq, zq, ym, zm

) =


0 βqq
(
yq
)
/D 0 βqm (ym) /D

1− tq 1− δ− zq 0 0
0 βmq

(
yq
)
/D 0 βmm (ym) /D

0 0 1− tm 1− δ− dzm

 ,
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where the four classes, given in the columns, are, respectively, juveniles

in the high-quality habitat, adults in the high-quality habitat, juveniles

in the marginal habitat, and adults in the marginal habitat. The upper-

left and lower-right 2 × 2 blocks show the same demography within

habitats as in the one-habitat model in Eq. (8.24). The subscripts on the

β’s describe where an individual is born and where it lands to begin its

life cycle; for example, βmq is a newborn in the high-quality habitat that

migrates to the marginal habitat. The parameter d > 1 in the lower-right

term describes the greater survival penalty that accrues to individuals in

marginal habitats. This may be extreme virulence in a secondary host, or

a greater reduction in survival when using resources for reproduction.

The normal matrix is A∗ = A(z∗q , z∗q , z∗m, z∗m). I take up below whether

the character has the same value in the two habitats, that is, whether

z∗q = z∗m.

There are a few conditions that all solutions must satisfy. First, we

may take D as a parameter and solve for the population growth, λ, by

finding the largest value of λ that satisfies

|A∗ − λI| = 0,

where this equation is the standard definition of eigenvalues. Alterna-

tively, we can assume a stable population size, set λ = 1, and solve for

D as in the previous section. Next, we have the class frequencies and

reproductive values
λu = A∗u

λv = vA∗.

This model can be analyzed in terms of either conditional or uncondi-

tional behavior.

CONDITIONAL BEHAVIOR:  DIFFERENT TRAITS IN DIFFERENT HABITATS

I provide the steps toward solution, but I do not solve the problem ex-

plicitly. The fitness function is

w
(
yq, zq, ym, zm

) = vAu.

We need a simultaneous optimum at yq = zq = z∗q and ym = zm = z∗m,

for the two independent traits, z∗q and z∗m. This bivariate optimum can
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be studied by the gradient

dw
dg

= v
dA
dg

u

dw
dh

= v
dA
dh

u,

along with the constraints above. The two traits are controlled by sepa-

rate predictors; that is, g is the breeding value for the trait expressed in

high-quality habitats, and h is the breeding value for the trait expressed

in marginal habitats. I have assumed that individual and transmitted

breeding values are equal, g = g′ and h = h′. A local optimum, if it

exists, occurs where both derivatives are zero.

In this case, we have several coefficients of correlation. Two terms

correspond to standard relatedness coefficients. The value of r̃q =
dzq/dgq is the slope of the average phenotype expressed in the high-

quality habitat, zq , on the breeding value for this trait in the high-quality

habitat, gq. The coefficient r̃m = dzm/dhm is the slope of the average

phenotype expressed in the marginal habitat, zm, on the breeding value

for this trait in the marginal habitat, hm. By convention, dyq/dgq = 1

and dym/dhm = 1.

Four coefficients of association between characters may also be in-

volved. The coefficients dym/dgq and dyq/dhm are the associations be-

tween different traits within individuals, typically caused by pleiotropy

or linkage disequilibrium. For example, the coefficient dmq = dym/dgq
is the effect, within an individual, that the breeding value for the char-

acter in the high-quality habitat has on the expression of the character

in the marginal habitat.

The other two coefficients are dzm/dgq and dzq/dhm. These are

cross-associations. For example, dzm/dgq is the association between

the breeding value for the character in the high-quality habitat, gq , and

the average trait value expressed by neighbors within the marginal habi-

tat, zm. These cross-associations are often the product of associations

between neighbors for a single character, and associations between char-

acters within individuals, as dzm/dgq = r̃mdmq .

UNCONDITIONAL BEHAVIOR:  SAME TRAIT IN DIFFERENT HABITATS

In many cases, an organism may not adjust its behavior conditionally

on habitat type. The “behavior” may be a biochemical trait of a simple
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organism, such as a virus. An insect or vertebrate may fail to perceive

habitat differences, or may lack the machinery to adjust some traits in

response to limited information.

Here, y = yq = ym is the same trait, controlled by the same breeding

value, g. Thus we use the same A matrix as before, but with y = yq = ym
and z = zq = zm. The required derivative is

dw
dg

= v
dA
dg

u,

evaluated at y = z = z∗. Expanding the derivative, we follow the

usual procedure of labeling breeding value by class of recipient. The

terms corresponding to kin selection coefficients are r̃q = dz/dgq and

r̃m = dz/dgm. It is useful to write the derivative explicitly, using the

following labels for classes: the columns of A, as 1,2,3,4, are, respec-

tively, γ, q, µ,m, for juveniles and adults of the high-quality habitat, and

juveniles and adults of the marginal habitat. Then

dw
dg

= (uq/D) (vγβ′qq + vµβ′mq

)
+ (um/D)

(
vγβ′qm + vµβ′mm

)
− (cqr̃q + dcmr̃m

)
.

(8.28)

The β′ terms are the rate of increase in fecundity with increasing trait

value, and the terms with relatedness coefficients are the properly scaled

reductions in group survival. The standard demographic terms are u,

for class frequency; v , for individual reproductive value; and c = uv
for class reproductive value. I comment briefly on three aspects of this

derivative.

First, a decrease in the trait is prudent in the following sense. Lower

trait values reduce the rate of fecundity and increase the rate of survival.

If fecundity increases at a diminishing rate with the trait, β′′ < 0, then

individual and group fitness are increased by lower trait values. Put

another way, the most efficient use of resources is achieved by lowered

fecundity and longer survival. This explains why group efficiency rises

and equilibrium trait value declines with increasing r̃ in Eq. (8.27). The

same trend occurs here in Eq. (8.28), because the derivative is diminished

by rising r̃ , which implies weaker selection to increase the trait value.

Second, a marginal habitat is, by definition, less productive. If the

habitats are equally abundant, then cm < cq . Thus trait evolution will
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typically be dominated by selection in the quality habitat (Holt 1996).

However, if relatedness is low in the crowded habitat relative to the

sparse habitat, r̃q < r̃m, then the marginal habitat can be the dominant

force in favoring a degree of prudence.

Third, the relatedness coefficients may be treated as variables or pa-

rameters depending on the application. The r̃ coefficients are extrinsic

parameters if one has independent data on their values, or if the pattern

by which individuals settle into the different habitats and interact with

neighbors is independent of survivorship and its consequences. Alter-

natively, the r̃ ’s may change with survivorship and demography, as with

the density-dependent variable, D. In this case, some constraints must

be established to complete the analysis. For example, r̃ in each habitat

could be inversely related to numerical abundance in that habitat, or

one could use an explicit scheme of migration, settling, and interaction

in each habitat.

8.5 Review of the Three Measures of Value

This ends my outline of economic tools required for the study of social

evolution. The approach is classical comparative statics. Find a mea-

sure of value that is optimized by the processes of interest, and use the

powerful mathematical tools of optimization. The currency for natural

selection is contribution to the future of the population. Three exchange

mechanisms are required.

First, social partners may have correlated trait values. The relation

between trait value and contribution to the future population is influ-

enced by such correlations. Maximization of individual reproduction is

recovered when one uses the derivative (slope) of partner trait value on

the focal individual’s predictor value. This direct fitness slope measures

consequences of social partners on an individual’s reproduction.

Other interpretations of correlation are often used in the biological lit-

erature, such as common genealogy or inclusive fitness coefficients. But

only a general measure of individual (direct) reproduction influenced by

correlated partners can cover all known phenomena without paradox. I

described an interesting relationship between slopes that arise naturally

in differentiation and the statistical measures of prediction and cause

that arise in regression and path analysis (Chapter 4). Maximization by
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use of differentials turns out to be a limiting case near equilibrium of a

general, statistical analysis that follows from the Price Equation.

The second exchange is reproductive value. This measures the ex-

pected contribution of each individual to the future of the population.

It is often convenient to measure an individual’s components of fitness

separately. For example, survival and fecundity often require separate

reproductive value weightings. From an individual’s point of view, sur-

vival must be weighted by the individual’s reproductive value in the next

time period. Current fecundity must be weighted by the reproductive

value of offspring in the next time period. Future fecundity must be

weighted by the reproductive value of future offspring, multiplied by

the probability of survival to produce those offspring.

The final exchange system is marginal valuation. This provides a com-

mon currency to measure changes in reproductive value, cost to self,

and benefit to partner. Thus the evolution of a social character is not

influenced by the reproductive value of the actor and partner, but by

the marginal changes in each. Marginal changes require continuity; sim-

ilar principles can be used for discrete characters (see Large Deviations,

p. 84).

I apply these economic principles in the following chapters. The topic

is sex allocation, the division of resources between sons and daughters.

I chose this topic because it illustrates most clearly the simple, economic

nature of many problems in social evolution.



9 Sex Allocation:
Marginal Value

I formerly thought that when a tendency to produce the two

sexes in equal numbers was advantageous to the species, it

would follow from natural selection, but I now see that the

whole problem is so intricate that it is safer to leave its solu-

tion for the future.

—Charles Darwin, The Descent of Man

Sex allocation is the division of resources between male and female. In

many animals the problem is how a parent divides its resources between

sons and daughters. A hermaphrodite must split resources between the

production and transmission of sperm versus the production and nur-

turing of eggs. Similarly, plants allocate resources separately to pollen

and seed.

Consider the structure of the problem from a mother’s point of view.

She may increase her allocation to sons only by decreasing her alloca-

tion to daughters or to future offspring. The gain is measured by the

marginal increase in reproduction by sons. This increase depends on

how those sons succeed in competition with other males to become the

fathers of the next generation. Competition may be against related or

unrelated males, requiring correction for value by kin selection. The cost

of male investment is measured by the marginal decrease in the success

of daughters or of future offspring. These values must be scaled to

account for reproductive value among the different classes.

This allocation problem has played a central role in the theory of

social evolution. If measures of value work, then one should be able

to predict how sex allocation shifts toward male or female with chang-

ing demographic and social conditions. The opportunity for compari-

son is ideal, because predictions take simple forms: more males, larger

females, fewer seed-producing flowers, lower production of sperm in

some hermaphrodites. These quantities of sex allocation are relatively

easy to measure.

The crucial parameters include social interactions among kin, the

marginal values of return for male and female investment, and the distri-



SEX ALLOCATION: MARGINAL VALUE 173

bution of limiting resources among individuals. The allocation strategy

of each individual may be fixed by genotype, or adjusted conditionally

in response to information about resources or relatedness coefficients

among social partners. In social groups, there can be conflict among

members over how shared resources are allocated to the production of

males and females.

Sex allocation has been central to understanding economic principles

of social evolution, and to the limits of this theory when applied to real

organisms. Many critical summaries of theory and application have been

published. Here I emphasize concepts and methods of analysis, with

only brief comments on previous theory and application. Good starting

points for the literature are Charnov (1982), Frank (1990a), Wrensch and

Ebbert (1993), Bourke and Franks (1995), and Crozier and Pamilo (1996).

9.1 Fisher’s Theory of Equal Allocation

If we consider the aggregate of an entire generation of . . . off-

spring it is clear that the total reproductive value of the males

in this group is exactly equal to the total value of all the fe-

males, because each sex must supply half the ancestry of all

future generations of the species. From this it follows that

the sex ratio will so adjust itself, under the influence of Nat-

ural Selection, that the total parental expenditure incurred in

respect of children of each sex, shall be equal.

—R. A. Fisher, The Genetical Theory of Natural Selection

Fisher’s theory of equal investment in the sexes is one of the most widely

cited in evolutionary biology. In spite of its popularity, the theory turns

out not to apply in the way generally believed. I have discussed this

theory extensively in Frank (1990a). In this section I show the standard

derivation of Fisher’s theory. I then develop in the next section a proper

economic framework, in which one can easily see the general features

and the limitations of Fisher’s idea. I formulate the problem with respect

to a mother’s division of resources between sons and daughters, but the

same conclusions apply to the other types of problems listed above. I

use sex allocation to refer to the division of resources between males and

females. The number of males and females produced is the sex ratio.
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Shaw and Mohler (1953) developed an expression for the fitness of a

mother as a function of her investment in sons and daughters

w (y) = y
Ny∗

+ 1− y
N (1− y∗)

,

where y is the fraction of a mother’s resources invested in sons, 1 − y
is the fraction invested in daughters, and y∗ is the normal value of the

trait in the population.

The number of mothers in the population is N. Thus the fraction of

the grandprogeny generation derived from a mother through her sons is

given by the first term on the right, and the fraction through daughters is

given by the second term. If we solve dw/dy = 0, then the equilibrium

occurs when y∗ = 1 − y∗, or y∗ = 1/2. Thus selection favors equal

allocation of resources to the two sexes.

9.2 The Three Measures of Value

The Shaw–Mohler equation contains implicit assumptions about repro-

ductive value, marginal value and kin selection. It is useful to recast the

problem to make explicit these three aspects of value.

In the simplest formulation, phenotypes are controlled by the mother,

and the recipients are the male and female components of the mother’s

fitness. The equation for average recipient fitness is

W (y) = cmWm + cfWf , (9.1)

where cm and cf are the class reproductive values for males and females.

The Wm and Wf terms are the recipient fitnesses for a mother’s male and

female components of reproductive success. These terms are standard-

ized to the same value in a normal population with phenotype y = y∗.

Thus a change in behavior that causes a change in recipient fitness, Wi ,

can be interpreted as causing a change in the proportion of the total

reproductive value of class i attained by the particular recipients of the

behavior.

Following along with our standard method, consider variations in the

transmitted breeding value, g′, of the trait y . The change in fitness with

respect to g′ is

dW
dg′

= cm
∂Wm

∂y
dy

dg′m
+ cf

∂Wf

∂y
dy
dg′f

. (9.2)
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We must, as usual, specify the proper interpretation for g′ (see Transmit-

ted Breeding Value, p. 77). In this case, marginal changes in the mother’s

success through sex-i offspring, ∂Wi/∂y , are the same as the mother’s

mates’ marginal changes in their corresponding fitness components.

Thus we can treat the mother as transmitting both her own genes and her

mates’ genes to each offspring. This is conveniently handled by defin-

ing g′i as the breeding value for y in sex-i offspring, because offspring

are composites of mother’s and mother’s mates’ transmitted breeding

value.

The slopes of actor phenotype on recipient’s transmitted breeding

value are r̃m = dy/dg′m for the association between mother’s phenotype

and sons’ breeding value, and r̃f = dy/dg′f for the association between

mothers and daughters. The r̃ terms are direct fitness coefficients. It is

traditional to use the inclusive fitness coefficients, which regress recip-

ient (offspring) breeding value on actor (mother) breeding value. I use

the inclusive fitness coefficients in the following analysis, although, as I

discussed in Comparison of Direct and Inclusive Fitness, p. 68, the direct

fitness coefficients are more general.

The above substitutions lead to the equilibrium condition dW/dg′ = 0

as

cmrm
∂Wm

∂y
= −cf rf ∂Wf

∂y
,

where the derivatives are evaluated at the normal values y = y∗. A

neater expression can be obtained by first defining W ′
m(y∗) as ∂Wm/∂y ,

evaluated, at its equilibrium value, y∗. Similarly, define W ′
f (y

∗) as the

partial of Wf , evaluated at its equilibrium value. This yields

cmrmW ′
m
(
y∗
) = −cf rfW ′

f
(
y∗
)
.

On the right side, investment in females declines with y∗, the equilib-

rium investment in males. I prefer to make the relation between male

and female investment explicit by defining α = 1 − y as the fraction of

resources invested in females. This allows the substitution

∂Wf (y)
∂y

= −∂Wf (α)
∂α

,

so that we can use the equality W ′
f (y) = −W ′

f (α), where the right side is

differentiated with respect to α, leading to the final expression

cmrmW ′
m
(
y∗
) = cf rfW ′

f
(
1− y∗

)
. (9.3)
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REPRODUCTIVE VALUE

Fisher pointed out that, in symmetric inheritance systems, one-half of

the genes come from the mother and one-half come from the father.

Thus the class reproductive values of males and females are equal, cm =
cf . The class reproductive value can be expressed as a product of the

value of each individual in the class multiplied by the number of indi-

viduals in the class, c = vu, where v is the value per individual and u is

the number in the class (see Reproductive Value of Each Class, p. 136).

Thus vmum = vfuf , or
vm
vf

= uf
um

.

The average reproductive value of a male compared with that of a fe-

male is equal to the number of females per male. For example, if there

are twice as many females as males, then each male must, on average,

have twice as many offspring as each female. This relation shows the

powerful frequency dependence of selection affecting sex ratios. This

frequency dependence provides an advantage to the rarer sex and tends

to equalize the numbers of males and females.

The class reproductive values of males and females are not always

equal. For example, in many species the females inherit equally from

mother and father, and have two sets of alleles (diploidy), whereas the

males inherit a single set of alleles from their mother without paternal

input (haploidy). This haplodiploid system occurs in many social organ-

isms, such as bees, ants and wasps. The X chromosome of mammals

has the same inheritance pattern. In these systems, two-thirds of the

future alleles in the population come from females, and one-third come

from males. Thus females have twice the class reproductive value of

males, cf = 2cm.

KIN SELECTION COEFFICIENTS

The kin selection coefficients, rm and rf , are the second measure of value

in Eq. (9.3). A mother values male and female progeny in proportion

to her relatedness to each. With symmetric inheritance, rm = rf for

sons and daughters. Under haplodiploidy, if mother and father have

uncorrelated genotypes, then a mother’s relatedness to her son is twice

her relatedness to her daughter, rm = 2rf . This can be understood by

noting that a change in the mother’s breeding value will have twice as
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much influence on a son’s breeding value as on a daughter’s breeding

value, because a daughter’s genotype is diluted by one-half with uncorre-

lated alleles from the father. When mother and father are uncorrelated,

cmrm = cf rf for haplodiploidy, as for symmetric systems. Correlation

between mother and father breaks the equality for haplodiploidy but

not for symmetric systems (see Chapter 10).

MARGINAL VALUE

The third measure is marginal value. For many problems, cmrm = cf rf ,
and Eq. (9.3) reduces to

W ′
m
(
y∗
) =W ′

f
(
1− y∗

)
. (9.4)

The equilibrium occurs when the marginal increase in male investment

provides returns that equal those obtained with a marginal increase in

female investment. This type of marginal result was first derived by

Charnov et al. (1976); see Frank (1990a) for additional references.

The next step is to consider the form of Wm and Wf . These functions

can be written as

Wm = µ (y)
µ (y∗)

and

Wf = φ(α)
φ(α∗)

= φ(1− y)
φ(1− y∗)

,

where y = 1 − α. The normal values of these functions are one when

evaluated at y = y∗, satisfying the requirement that recipient classes

have equal values in a normal population. The equilibrium condition

from Eq. (9.4) is
µ′ (y∗)
µ (y∗)

= φ′ (1− y∗)
φ(1− y∗)

, (9.5)

where µ is differentiated with respect to y , and φ is differentiated with

respect toα = 1−y . This condition shows that equilibrium occurs where

the marginal changes in market share are equal for changing investment

in males and females (see Phenotypes and Market Share, p. 26).

The equilibrium condition in Eq. (9.5) has been studied for various

assumptions about the male and female return functions, µ and φ.

Analysis and summary of prior work is in Charnov (1982) and Frank

(1987b). Perhaps the simplest forms assumeµ(z) = azs andφ(z) = bzt ,
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with 0 < s, t < 1, and a,b arbitrary positive constants. This yields the

male : female investment ratio, y∗ : 1− y∗, as s : t.
Equal allocation is favored only when the shapes of the return curves

are the same for male and female investment. Thus Fisher’s argument

about equal reproductive value of males and females explains the strong

frequency dependence in sex allocation but fails to account for marginal

returns when the sexes differ in response to investment.

9.3 Variable Resources and Conditional Adjustment

The prior model assumed that every individual making an allocation de-

cision had the same total amount of resource. The problem changes

significantly when individuals vary in their resource level (Trivers and

Willard 1973). For example, in some fish species an individual can func-

tion as either a male or a female, but not both. Similarly, some plants

can, in each year, produce either seeds or pollen, but not both. Finally,

a mother can, in some cases, choose to produce a son or daughter de-

pending on the available resources. Many examples are given in Charnov

(1982).

In this scenario, each actor has a different resource level, k. Total

allocation to males and females is kyk + k(1 − yk) = k, where yk is the

fraction of resources allocated to males by an individual with resource

level k, and αk = 1−yk is the fraction of resources allocated to females.

Each resource level, k, defines a distinct class of actor. Each actor has

two recipient classes, males derived from class k actors and females

derived from class k actors. Thus total recipient fitness is

W =
∫
cmkWmk f (k)dk+

∫
cfkWfk f (k)dk

where f (k) is the probability distribution function for individuals with

resource level k. I will assume that an actor’s relatedness to male and

female recipients is the same, rm = rf ; thus we can ignore relatedness

coefficients when differentiating. The recipient fitnesses are

Wmk = µ (kyk)
µ
(
ky∗k
)

and

Wfk = φ(kαk)
φ
(
kα∗k
) = φ[k(1− yk)]

φ
[
k
(
1− y∗k

)] .
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In a normal population, with phenotypes {y∗k }, the normalized recipi-

ent fitnesses are Wmk = Wfk = 1. The reproductive values in a normal

population are

cmk = cm
µ
(
ky∗k
)

Eµ

cfk = cf
φ
[
k
(
1− y∗k

)]
Eφ

,

where

Eµ =
∫
µ
(
ky∗k
)
f (k)dk

Eφ =
∫
φ
[
k
(
1− y∗k

)]
f (k)dk.

If we let cm = cf , then total recipient fitness is in proportion to

W =
∫
µ (kyk) f (k)dk

Eµ
+
∫
φ[k(1− yk)] f (k)dk

Eφ
.

The maximization problem can now be stated explicitly. What is the

optimal set of values {y∗k } under the assumption that each class has

information about its own resource level, and can adjust its own value of

y∗k independently of other classes? It is useful to separate the problem

into three cases.

ALL MALE OR ALL FEMALE BY CONSTRAINT

The allocation may be forced to either all male or all female, that is,

y∗k may be zero or one (Charnov 1982). For example, certain parasitoid

wasps can produce one male or one female offspring in a single host.

Each host is a separate resource item, requiring a separate decision

about sex allocation. The distribution of resources, f (k), is the distri-

bution of host sizes encountered by mothers. For convenience, confine

k to the interval [0,1]. The solution is simple if the male and female

valuations are equal exactly once, at k = λ on the interval [0,1], that

is, if cmkWmk = cfkWfk only at k = λ. If we write M(z) = cmzWmz , and

F(z) = cfzWfz , then the problem can be summarized by

M (z) = F (z) z = λ

> F (z) z < λ

< F (z) z > λ,
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where

M (z) = µ (z)∫ λ
0 µ (k) f (k)dk

and

F (z) = φ(z)∫ 1
λ φ(k) f (k)dk

.

Thus males are favored in low-resource classes and females are favored

in high-resource classes: y∗k = 1 for k < λ and y∗k = 0 for k > λ. The

limits and inequalities are easily switched when males are favored in

high-resource classes. Frank (1987b) presented convenient functional

forms for µ, φ, and f , along with numerical analysis to show how allo-

cation patterns change with changing parameters.

Under the assumption that males are made in the lower classes, and

each actor produces only one offspring, the proportion of individuals

that are male (numerical sex ratio) is S = ∫ λ0 f (k)dk. Frank and Swing-

land (1988) extended a model by Charnov (1982) to show that the sex

produced in the lower classes is always numerically more abundant at

equilibrium. The proof is simple. The condition M(λ) = F(λ) implies

φ(λ)
∫ λ

0
µ (k) f (k)dk = µ (λ)

∫ 1

λ
φ(k) f (k)dk.

If we make the reasonable assumptions that µ(λ) > µ(z) for z < λ, and

φ(λ) < φ(z) for z > λ, then

φ(λ)µ (λ)
∫ λ

0
f (k)dk > φ(λ)µ (λ)

∫ 1

λ
f (k)dk.

Since the integral on the left side is the sex ratio, S, and the integral on

the right side is 1− S, we have S > 1/2. Thus the sex developing under

relatively poor conditions will be numerically more abundant.

What about the proportion of resources allocated to males and fe-

males? Sometimes that question does not make sense, because the vari-

able, k, that determines sex may be temperature, as in some turtles,

crocodiles, and other species (Bull 1983). When k can be interpreted as

a resource, the proportion of total resources allocated to males is

Λ = ∫ λ0 kf (k)dk∫ 1
0 kf (k)dk

.
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This allocation ratio may be biased toward either sex, even though the

numerical sex ratio is always biased toward the sex of the lower classes

(Frank 1987b; Frank and Swingland 1988).

Another pattern that appears to be common is a positive association,

across species, between the female : male size ratio and the total fe-

male : male allocation ratio. This trend has been observed among some

ants, bees, and wasps (Boomsma 1989; Helms 1994). I used numerical

analysis of the models outlined in this section to show that a positive as-

sociation between female : male size ratios and female : male allocation

ratios is expected to be common (Frank 1995d).

ALL MALE OR ALL FEMALE FAVORED BY SELECTION

In the previous section, each actor was constrained to invest only in

males or only in females. This constraint applies to each independent

investment decision. For example, a mother wasp may lay a male on one

host and a female on a different host. If each host defines an indepen-

dent decision, then the mother is constrained to produce either son or

daughter for each decision, but may produce any sequence of the sexes

over time. I will discuss the factors that determine the independence of

investment decisions in Section 9.4.

What if an actor is free to mix male and female investment? In some

cases, selection favors each actor to invest only in one sex, and the re-

sults match the analysis in the previous section. This typically occurs

when the returns are accelerating for at least one sex. Then high-class

actors are favored to invest in the sex with returns that accelerate at a

faster rate. At some intermediate resource level, λ, returns are equal

for the two sexes. Below that point, the lower-class individuals are fa-

vored to invest only in the sex not favored for the high-class actors (see

examples in Frank 1987b).

MIXED ALLOCATION FAVORED IN SOME CLASSES

Mixed investment by some actors may be favored when returns are not

uniformly accelerating. A class with k resources is favored to mix in-

vestment between the sexes if, for some value 0 < yk < 1, the marginal

returns on male and female investment are equal. If a stable internal

point for yk does not exist for a particular class, then that class invests

entirely in males or entirely in females. From the previous sections, the
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Figure 9.1 Schematic description of all male investment for k < γ, and con-
stant male investment for k > γ. Return on male investment increases at a
diminishing rate; return on female investment increases at a constant (linear)
rate. Up to γ, the marginal return (slope) of the male investment curve is greater
than the return on female investment. Past γ, the marginal return is greater on
female investment. The best total return for k > γ is shown by the dashed line,
which is mixture of γ invested in males and k− γ invested in females.

fitness of a class with k resources is

Wk = µ (kyk)
Eµ

+ φ[k(1− yk)]
Eφ

.

Our usual procedure is to analyze dWk/dg′k for each k, where g′k is the

transmitted breeding value of yk. The condition for mixed investment

is obtained from dWk/dg′k = 0, yielding

µ′
(
ky∗k
)

Eµ
= φ′ [k (1− y∗k

)]
Eφ

,

where µ is differentiated with respect to yk, and φ is differentiated with

respect to αk = 1 − yk. We can write the general condition for mixed

investment as D = C, where D = µ′/φ′, the relative rate of return on

male investment compared with female investment, and C = Eµ/Ef . If,

for a class with k resources, D > C for all values of 0 ≤ yk < 1, then

the class is favored to produce only males. Similarly, if D < C for all yk,
then the class is favored to produce only females.

I summarize the case in which there is linear return on female invest-

ment and diminishing return on male investment (Fig. 9.1; Frank 1987b).

In this case we must solve the simultaneous optimization problem of

finding {y∗k } for each class defined by its resource level, k. Linear re-

turn on female investment implies φ[k(1−yk)] = ak(1−yk), where a is
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an arbitrary, positive constant. Diminishing return on male investment

can be represented by µ(kyk) = b(kyk)s , where 0 < s < 1 and b > 0.

Using these return functions, differentiation yields

D = s
(
ky∗k
)s−1 .

Noting that s < 1, the general form of the solution can be described.

When k is very small, D is large and greater than C. Thus classes with

few resources are favored to produce only males, y∗k = 1. All male

investment is favored for k ≤ γ < 1, where γ is such that sγs−1 = C. For

γ < k ≤ 1, a mixture of male and female investment is favored. Male

investment for each class is ky∗k = γ, which implies that D = C. Thus

total male investment is kept constant with increasing k, and female

investment is k − γ. To summarize, for 0 < k < γ, all male investment

is favored. For γ < k < 1, constant male investment of γ and increasing

female investment of k − γ are favored (Yamaguchi 1985; Frank 1985,

1987b, 1987c). The switch point γ decreases as the parameter s declines.

9.4 Returns per Individual Offspring

I have described returns on male and female investment by the functions

µ and φ, respectively. From a technical point of view, this is sufficient

to solve the problem of sex allocation. But how does an actor separate

resources into individual packages? For example, a mother must divide

resources into individual sons and daughters. Similarly, some plants

divide resources into separate male (staminate) and female (pistillate)

flowers.

The division of resources into separate offspring is generally known

as the size-number problem (Smith 1974). A parent can make fewer large

offspring or more small offspring. Sex allocation extends this problem

to consider size, number, and sex. The third factor makes the problem

more interesting and more difficult, because the choice of sex introduces

frequency dependence. The returns for a particular number and size of

males depend on the numbers and sizes of males produced by other

members of the population. The returns on female offspring depend in

a similar way on the size and number of competitors.

The size-number-sex problem can be handled by a two-stage opti-

mization (Frank 1987b). First, take the division between male and female

as a parameter fixed extrinsically, and study the size-number problem
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separately for each sex. Second, under the assumption that each individ-

ual follows the optimal size-number split, solve for the optimal division

between male and female.

DEFINITION OF INVESTMENT PERIOD

These optimizations depend on the amount of resource available in each

investment period. Consider, for example, a parasitoid wasp that lays

a single egg on each host that it encounters. If the fitness of offspring

depends on the size of its host, then each egg-laying event is a separate

investment period for the mother. Whether she makes a son or daughter

in one period does not influence her fitness in later periods.

By contrast, the mother may begin the egg-laying sequence with a

fixed supply of a crucial resource. The amount she places in each egg

may be the primary determinant of offspring fitness. In this case, the

entire egg-laying sequence is one investment period.

A proper analysis of investment periods requires study of reproduc-

tive value. This allows comparison of the value a mother places on cur-

rent sons and daughters versus her own survival and future production

of offspring. I take this up in Chapter 11. Here I simply assert a certain

level of resource for an investment period. I assume the mother is able

to divide that resource into any number of sons and daughters, subject

to some constraints outlined in the following sections.

FISHERIAN EQUAL ALLOCATION FOR HIGH FECUNDITY

PER INVESTMENT PERIOD

The importance of the size-number tradeoff for sex allocation can be

shown with a simple example. Suppose that the production of each

offspring requires a packaging cost, d, such that investment of d or

less provides no return. For example, we can write the return per male

offspring as

m(δmi + d) = δsmi, (9.6)

where δmi is the investment in the ith male produced during the invest-

ment period, after the packaging cost d is paid. The parameter s < 1

is a parameter that defines diminishing return on investment. Total in-

vestment in males during this period is

ky = km =
nm∑
i=1

(δmi + d) ,
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where nm is the number of males, km is the total male investment, k is

the resources available for the investment period, and y is the fraction

of those total resources that are provided to males. If we take km as

fixed, then the problem is to determine the optimal size and number of

males that maximizes

µ (ky) =
nm∑
i=1

m(δmi + d) ,

where one is free to vary both the number of males, nm, and the invest-

ment per male, δmi . If returns per male diminish with δmi , as in Eq. (9.6),

then it is optimal to invest equally in each male, which implies

δmi + d = km
nm

for all i. The problem is to determine the optimal number of males that

maximizes the total return

µ (ky) = nmδsmi = nm
(km
nm

− d
)s

.

This maximization is accomplished by solving dµ/dnm = 0, yielding

n∗m =
km (1− s)

d
. (9.7)

The problem with this solution is that the number of offspring must be

an integer. For example, if n∗m < 1, then it is best to make one male; if

1 < n∗m < 2, then some algebra can determine if one or two is better,

and so on. When n∗m is small, this constraint of discrete packaging has a

strong influence on return. As n∗m becomes large, the difference in total

return caused by changing nm into a nearby integer has vanishing effect.

Thus, when km/d is large, and consequently n∗m is large, the total return

for total investment in males is

µ (km) =
(km (1− s)

d

)( d
1− s

− d
)s
= akm. (9.8)

In words, when the number of males produced is large, return on male

investment, km, is linear in km, with slope a. Fig. 9.2 shows how number
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Figure 9.2 Linearization of returns with increasing fecundity per investment
period. The maximum of µ(km) was calculated by finding the optimum integer
value for number of offspring, n∗m, which was 2,4,7, moving from the left to the
right panel. Decreasing d increases the number of offspring, n∗m, and linearizes
the total returns on total investment. The return per offspring was calculated
with s = 0.25 for all panels.

(fecundity) per investment period influences the shape of the return

curve.

The same argument can be applied to females. Suppose, for example,

that return per individual female is diminishing, as for males, but with

parameter t instead of s. Then, if the number of females per investment

period, n∗f , is large, the total return on total female investment is

φ(ky) = φ
(
kf
) = bkf

where b is a constant similar to a in Eq. (9.8). I proved in Section 9.1

that when returns are linear on total male investment and on total female

investment, then Fisher’s theory of equal allocation follows.

COMPLEXITIES OF LOW FECUNDITY PER INVESTMENT PERIOD

Return scales linearly with number of offspring when fecundity per in-

vestment period is high. Linear return leads to Fisher’s theory of equal

allocation. By contrast, when there is a single offspring per investment

period, returns on male and female investment will typically differ. Pre-

dicted sex allocation patterns can be derived from the return curves

on single male and female offspring and the distribution of resources

invested per offspring (see Section 9.3).

Many organisms, such as birds and mammals, have a small number

of offspring per investment period. In this case, we have neither the

simplification of linear scaling for high fecundity nor the option of using

directly the return curves per male and female offspring. The returns

per investment period must be constructed from returns per offspring
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Figure 9.3 Returns on investment when a brood contains two males and two
females at birth. The sex ratio is constrained, but subsequent investment in
each offspring is under parental control. Returns on female investment are
assumed to be linear (lower dashed line). Thus separation of resources between
the two daughters has no effect on total return. Return for each son follows
an S-shaped curve. A parent is favored to use one of five strategies, depending
on its resource level, k: for k < λ, all resources to daughters; for λ < k < δ, all
resources to one son; for δ < k < γ, invest δ in one son and k− δ in daughters
(constant male, shown in dot-dash line); for γ < k < 2δ, split resources between
sons, with none to daughters; and for k > 2δ, allocate δ to each son and k− 2δ
to daughters. Details in Frank (1987b).

and the distribution of resources available. In addition, the numbers

of males and females born in each period is often constrained by the

genetic system. A parent has control of investment after birth, but not

of the sex ratio itself.

The solution under these complexities is a bit tedious. But we have

already used all the required steps. First, solve the size-number prob-

lem for each sex, given a fixed amount of resource for that sex. If the

birth sex ratio is fixed extrinsically, then the size-number problem is

to distribute the limited resources among a fixed number of newborns.

The size-number solution yields total return curves for total investment

in each sex. Those curves can then be used as in Section 9.3.

Frank (1987b) analyzed an example in detail to illustrate how sex al-

location evolves in low fecundity organisms with fixed sex ratio. That

example is summarized in Fig. 9.3.

9.5 Critique of the Costs of Males and Females

A common method of empirical study for sex allocation is to compare

the “costs” of an individual male versus female offspring and the num-
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bers of males and females (sex ratio). I develop the relevant theory in

this section. I show that the comparison by costs is useful when applied

to organisms with high fecundity per investment period, but does not

make sense for organisms with low fecundity per investment period.

For high fecundity per period, the total male : female allocation is 1 : 1

by Fisher’s theory. If the investment per individual offspring is c : 1 for

male : female, then the ratio of total numbers of males to females in the

population (sex ratio) is 1 : c.

The relation between the cost ratio and sex ratio can be illustrated

by the particular example given earlier. The investment per male is ob-

tained by rearranging Eq. (9.7) as

km
n∗m

= d
1− s

.

If the same theory is applied to females, with female returns scaled ac-

cording to the parameter t instead of s, then the investment per female

is d/(1−t). Thus we can define c as the ratio of investment in each male

relative to the investment in each female

c = 1− t
1− s

.

We then have the total male : female population allocation ratio as 1 : 1

by Fisher’s theory, the male : female cost ratio as 1 − t : 1 − s, and the

male : female sex ratio as 1 − s : 1 − t. Equivalently, the cost ratio is

c : 1, and the sex ratio is 1 : c. This provides a number of interesting

comparative predictions as s, t, and c change.

The situation is different when there is a single offspring per invest-

ment period. One sex is often produced under low-resource conditions,

whereas the other sex is produced under high-resource conditions (see

Section 9.3). Suppose, for example, that males are produced when re-

sources are relatively scarce. Then it may make sense to speak of males

as less costly than females. But the investment per male will vary as the

resources available vary. Thus there is no single cost value that char-

acterizes males relative to females, but one could use the average cost

per sex. I have shown that there is often a positive association between

the ratio of average costs and the allocation ratio (Frank 1995d) . For

example, as the male : female ratio of average costs increases, the total

male : female population allocation ratio increases. This is the opposite

of the pattern under Fisherian equal allocation.
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Finally, there may be a small number of offspring per investment pe-

riod. Here the size-number problem is closely associated with the prob-

lem of sex allocation. No one has yet shown any clear relation of average

investment per male and female to the population allocation ratio or the

population sex ratio.

9.6 Multiple Resources

Several different kinds of resources are needed to produce offspring.

Only a few theoretical studies have considered the multidimensional na-

ture of sex allocation (reviewed in Rosenheim et al. 1996). Those studies

concluded that multiple resources can, in some circumstances, signifi-

cantly change the pattern and interpretation of sex allocation.

Rosenheim et al. (1996) used solitary bees and wasps as an example

of multidimensional sex allocation. When food is abundant, the repro-

duction of these organisms is often limited by the rate at which they can

mature new eggs. Food or nest sites may be the crucial limiting resource

at other times and places. Rosenheim et al. (1996) showed that multiple

resources combined with temporal and spatial heterogeneity can lead to

interesting and testable comparative predictions about shifts in sex al-

location. I illustrate this conclusion with an approach that matches the

development of the theory in this chapter and differs from the particular

models of Rosenheim et al. (1996).

Suppose that a wasp searches for caterpillar hosts. When she finds

one, she lays a single egg. That egg develops into an adult by consuming

and eventually killing the host. Each host produces a single wasp off-

spring. Host sizes vary. A daughter gains more in her future fecundity

from developing in a large host than a son gains in future mating suc-

cess. Thus the mothers tend to lay daughters on large hosts and sons

on small hosts. Many solitary wasps follow this pattern (Charnov 1982).

When hosts are relatively scarce, a mother’s reproductive success is

limited by the size and number of hosts she can find. Each egg-laying

event is an independent choice because the mother’s decision to pro-

duce a son or daughter on that host does not affect her future ability to

produce additional sons or daughters. The theory of Section 9.3 applies

directly. Without particular assumptions, we know that the sex pro-

duced on smaller hosts is predicted to be more abundant. From some

cases studied numerically, it appears that the total allocation in the pop-
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ulation may often be biased toward the sex developing on larger hosts

(Frank 1987b, 1995d). Here allocation is measured by host size.

When hosts are very abundant, then a mother’s reproduction is lim-

ited by the number of eggs she can produce. Because hosts are not

limiting, she may use the largest hosts for both sons and daughters. In

this case, her return on male investment scales linearly with the num-

ber of males she produces. Similarly, she obtains linear return on female

investment. Fisher’s theory of equal allocation applies.

Suppose hosts are abundant, but a mother has a limited supply of

some crucial biochemical product. She starts her reproductive life with

a fixed amount of this product, and cannot obtain more during reproduc-

tion. If this product limits reproductive success, and lifetime fecundity

is high, then she is favored to allocate this resource to sons and daugh-

ters according to the theory of costs under Fisherian equal allocation.



10 Sex Allocation:
Kin Selection

The males . . . usually complete their life cycle, and die, before

they are born.

—W. D. Hamilton, “Extraordinary Sex Ratios”

Hamilton’s males are mites—small spiderlike organisms. In Acarophe-

nax tribolii, mothers carry eggs in their bodies until the eggs hatch and

the offspring develop. Sons emerge within the mother’s body, mate with

sisters, and die. The sisters are then released.

Hamilton (1967) noted two common traits associated with extreme

inbreeding in insects and mites. First, most species have very female-

biased sex ratios. For example, A. tribolii females typically produce just

one son and 14 daughters in each brood. Second, many species with in-

breeding and biased sex ratios have a haplodiploid genetic system. The

sons are asexually produced from the haploid gametes of the mother.

A male does not have a father. The diploid daughters are produced by

typical mixing of equal haploid gametes from mother and father.

I discuss haplodiploidy in the first section of this chapter. I then

consider the sex ratio consequences when related males and females

interact in competitive and cooperative ways. The theory explains why

biased sex ratios are common with inbreeding species and expands the

subject to a wide array of social interactions. I then turn to gamelike

interactions between competing mothers who vary the numbers of sons

and daughters contributed to a local mating arena. I close by connecting

sex ratio and haplodiploidy to the evolution of cooperative societies in

insects.

The kin selection aspect of sex ratio has contributed greatly to the

concepts and analytical methods of social evolution. The rich array of

theoretical predictions is particularly suited to simple experimental and

comparative tests. Thus the subject has provided insight into the po-

tential successes and limits of economic analysis in social evolution.

Good starting points for the literature include Hamilton (1972, 1979),

Trivers and Hare (1976), Charnov (1982), Grafen (1986), Antolin (1993),
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Wrensch and Ebbert (1993), Bourke and Franks (1995), and Crozier and

Pamilo (1996).

10.1 Haplodiploidy

RELATEDNESS AND REPRODUCTIVE VALUE

Early formulations of sex allocation commonly combined relatedness

and reproductive value into a single measure of total value (Hamilton

1972). Taylor (1988b) showed that it is essential to split these com-

ponents because they measure independent dimensions of value. Tay-

lor also showed that patterns of genetic transmission, such as diploidy

and haplodiploidy, can be described by the matrix formulations given

in Chapter 8. For example, a diploid system has movement of genes

described by

A = 1
2

[
uf αuf
um αum

]
,

where contribution of sex-j parents to sex-i offspring is given by aij .
I adopt the convention that females are in row 1 and column 1, and

males are row 2 and column 2. The terms uf and um are proportional to

the numbers of daughters and sons produced by each mother. The sex

ratio, measured as number of females per male, is α = uf /um, which is

also the average number of mates per male. Thus each male produces,

on average, αuf daughters and αum sons. The one-half in front of the

matrix accounts for the fact that, in this diploid genetic system, each

offspring receives one-half of its genes from its mother and one-half

from its father.

I use the methods of Chapter 8 to analyze the properties of this A

matrix. First, note that the growth rate of the population is the number

of daughters born to each mother, λ = uf , so Au = ufu. Thus, to stabi-

lize the size of the population, assume that each mother produces one

surviving daughter (divide A by uf ), yielding

A = 1
2

[
1 α

1/α 1

]
.

We now have Au = λu, with dominant eigenvalue λ = 1. We find the

individual reproductive values of females and males, vf and vm, by solv-

ing vA = λv. The outcome is vfuf = vmum. Recall that the reproductive
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value of a class is ci = viui , the product of the reproductive value per

individual, vi , and the relative frequency of individuals of that class, ui .
Thus, vfuf = vmum implies that the total (class) reproductive values of

females and males are equal in a diploid genetic system, cf = cm.

In haplodiploid systems, the diploid daughters are produced by typi-

cal mixing of equal haploid gametes from mother and father. The sons

are asexually produced from the haploid gametes of the mother. Thus

a father gets zero credit for sons. A mother gets twice the credit for a

son as in a diploid system, because haplodiploid sons are assigned fully

to the mother, rather than splitting credit between mother and father.

A stable haplodiploid population is described by

A = 1
2

[
1 α

2/α 0

]
,

which yields a ratio of class reproductive values, cm : cf , as 1 : 2 (Price

1970). Thus an allele in the distant future has a 1/3 probability of re-

siding in a male today.

Asymmetric genetics, such as haplodiploidy, often cause different re-

productive value weightings for the sexes. Taylor (1988b) emphasized

that symmetric genetics with asymmetric parenting can also cause a bias

in reproductive value. For example, suppose that diploid males and fe-

males reproduce in each generation. The females die, and the males

survive to the following generation with probability s. The ratio of sur-

viving to newborn males is s : 1 − s. Assume, among newborns, that

the ratio of females to males is 1 : 1 − s. The s surviving males com-

plement the 1 − s newborn males, so that there is a stable sex ratio of

α = uf /um = 1.

A male’s average contribution to the females of the following gen-

eration is 1/2. The males’ expected contribution to the males of the

following generation is s+ (1− s)/2 = (1+ s)/2; that is, they contribute

directly by surviving to form a fraction s of the next generation, and they

contribute one-half of the genes to the fraction of newborn males, 1− s.
Similarly, a mother’s expected contribution to females of the next gen-

eration is one-half, and her expected contribution to males is one-half of

the fraction of newborns, for a total of (1− s)/2. The parent-offspring

matrix is therefore

A = 1
2

[
1 1

1− s 1+ s

]
.
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The ratio of reproductive values is

cm
cf
= 1

1− s
= 1+ s + s2 + . . .

The extra reproductive value of males comes from their direct contribu-

tion to future generations by surviving to reproduce at a later time.

This last example demonstrates the need to separate reproductive

value weightings from the genetic system, such as diploidy or haplodip-

loidy. In the remainder of this chapter I present only simple demo-

graphics, so that cm : cf is 1 : 1 for diploidy and 1 : 2 for haplodiploidy.

I analyze complex demography and reproductive value in the following

chapter.

MECHANISM OF CONDITIONAL SEX RATIO ADJUSTMENT

Haplodiploidy gives the mother the potential to control the sex of each

offspring (Bull 1983). If she lays an unfertilized egg, it develops into a

haploid son. If she fertilizes an egg, it develops into a diploid daughter.

By contrast, diploid systems rarely seem to allow precise control over

the sex of each offspring (but see Yamaguchi 1985). Nagelkerke (1993)

describes some complexities of haplodiploid genetics and sex ratio con-

trol.

The haplodiploid groups of insects and mites often have spatially lo-

calized breeding structures in which male and female relatives compete

or cooperate (Wrensch and Ebbert 1993). Kin selection models of sex al-

location have been developed with considerable success for this group.

The next section describes the basic structure of sex allocation theory

for competitive and cooperative interactions among relatives. The fol-

lowing section analyzes individual mothers who use information about

the correlated strategies of neighbors to adjust their own sex allocation.

10.2 Competitive and Cooperative Interactions
among Relatives

The basic equation for recipient fitness is

W (y, z) = cmWm + cfWf

which extends Eq. (9.1) by making fitness a function of both the actor’s

allocation, y , and the average allocation of actors in the local group,
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z. The actor’s allocation to males is y , and its allocation to females is

1− y . The average allocation by actors in the local group is z to males

and 1− z to females. Differentiating with respect to small variations in

transmitted breeding value, as in Eq. (9.2), yields

dW
dg′

= cm

(
∂Wm

∂y
dy

dg′m
+ ∂Wm

∂z
dz

dg′m

)

+ cf

(
∂Wf

∂y
dy
dg′f

+ ∂Wf

∂z
dz
dg′f

)
.

Replacing phenotypic derivatives by direct fitness relatedness coeffi-

cients yields

dW
dg′

= cm

(
r̃m

∂Wm

∂y
+ R̃m

∂Wm

∂z

)
+ cf

(
r̃f
∂Wf

∂y
+ R̃f

∂Wf

∂z

)
. (10.1)

I drop the “˜” over the relatedness coefficients and use the inclusive

fitness coefficients in the following discussion. The inclusive fitness co-

efficients have the advantage that causal interpretations can be made

consistently from the actor’s point of view. These coefficients are, how-

ever, less general than the direct fitness form (see Section 4.4).

In Eq. (10.1), the terms rm and rf are the relatedness coefficients of the

actor (mother) to its own components of male and female fitness (sons

and daughters). The terms Rm and Rf are the relatedness coefficients of

an actor to the sons and daughters of a randomly chosen mother whose

fitness is affected by the actor’s sex ratio. Note that a mother’s fitness

components are affected by her own sex ratio, so the actor is included

in the potential set of random recipients.

The model is clarified by first deriving the classic Hamilton (1967)

result for local mate competition, and then by expanding the explanation

for the model given earlier in Eq. (8.9).

The Hamilton model assumes that a mother lands on a patch and

makes some sons and daughters. A few mothers lay eggs in each of

the many discrete patches in the population. Offspring emerge in each

patch, mating occurs locally by competition among the males, and the

females do not compete for resources. After mating, the females dis-

perse to find a new patch and start the cycle again. Investment in sons

and daughters is measured by numbers of offspring of each sex; thus y
is the fraction of a mother’s offspring that are male, and z is the fraction
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of the local group’s offspring that are male. A mother’s fitness through

sons is

Wm = y
(

1− z
z

)
= y

z
(1− z) ,

where the average number of mates per male in the local group is (1 −
z)/z, and the number of sons produced by the actor is proportional

to y . Alternatively, one can think of y/z as the competitive success of

a mother through males, y , compared to the average competitive suc-

cess of neighboring mothers (including herself), z. Thus, y/z is relative

fitness through sons that compete locally for mates, and 1 − z is pro-

portional to the total number of mates available. Note the equivalence

of fitness through sons, Wm, with models in Tragedy of the Commons,

p. 130.

A mother’s fitness through females is simply proportional to the num-

ber of female offspring because there are assumed to be no competitive

or cooperative interactions among females, thus

Wf = 1− y.

From Eq. (10.1), dW/dg′ = 0 evaluated at y = z = z∗ yields

z∗ = cm (rm −Rm)
cmrm + cf rf

. (10.2)

This result is very general because it applies to any genetic system and

pattern of migration for which we can calculate the class reproductive

values, cm and cf , the relatedness of mother (or other actor) to male and

female offspring, rm and rf , and the relatedness of the actor to males in

the local breeding group, Rm (Taylor 1988b).

Hamilton (1967) did not have access to this analytical technology.

He was forced to assume, as for diploidy, that cm = cf and rm = rf .
He did not analyze the problem in terms of kin selection. Instead, he

assumed that in each patch there are N unrelated mothers, so that a

mother’s relatedness to male offspring in the group is Rm = rm/N; that

is, she is related to the fraction 1/N of the offspring that are hers, by

rm, and unrelated to the others. These substitutions in Eq. (10.2) yield

Hamilton’s (1967) classic formula for local mate competition

z∗ = N − 1
2N

.
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Eq. (10.2) is easier to understand when it is expressed, from the actor’s

point of view, in terms of the value of each unit investment in male and

female fitness components (Frank 1986b, 1986c, 1987c). If we define

the equilibrium ratio of females and males as F/M = (1− z∗)/z∗, then

we can rearrange any equilibrium for z∗ and express it as

(F/M)
(
Marginal value per male

) = Marginal value per female,

where male value is adjusted by F/M because the breeding success of

each male depends on this ratio. Thus the equilibrium sex ratio M : F
can be derived and expressed as

Marginal value per male : Marginal value per female.

For example, Eq. (10.2) can be rearranged into this ratio form as

cmrm − cmRm : cf rf + cmRm. (10.3)

An actor obtains marginal value for producing an extra male as follows.

The term cmrm is the direct value of that male. This direct value must

be diminished by the cost the extra male imposes on the mating success

of neighboring males, cmRm, when competing for the fixed number of

females in the local group. All marginal benefits and costs are scaled

for reproductive value and relatedness. The marginal value of an extra

female can be read similarly. The direct value of the female is cf rf . In

addition, the extra female increases the average mating success of the

males in the local group, providing a benefit to those males in proportion

to cmRm when analyzed from the actor’s point of view.

The valuation form shows that the model combines mating compe-

tition and mating benefits between male and female relatives. This is

easy to see by comparing with a model in which females disperse before

mating (Frank 1986c). In this case male fitness depends on the number

of mates available, determined by the population average 1− z∗, rather

than the local number 1− z, so that

Wm = y
z
(
1− z∗

)
,

and the equilibrium valuation is

cmrm − cmRm : cf rf .
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This is a result for pure local mate competition.

It may also be that female relatives compete for limited resources, for

example

Wf = 1− y
1− z

.

For males, I use the prior model in which mating is local, and the number

of mates is proportional to 1− z. Because we have changed the scaling

for Wf , we must also rewrite Wm as

Wm =
(y
z

)(
1− z
1− z

)
= y

z
.

This yields the relative valuation

cmrm − cmRm : cf rf − cfRf .

The effect of female competition among relatives,−cfRf , is referred to as

local resource competition (Clark 1978). With this form of local resource

competition, the value that an extra female provides to male relatives

has disappeared because each additional female mate is matched by a

decline in productivity per female.

The combined effect of local mate competition, local resource compe-

tition, and mating bonus can be seen from the earlier example in Eq. (8.9).

The life cycle began with mating on the local patch, followed by partial

dispersal of mated females and competition among females for breeding

sites. The male and female fitnesses were

Wf (y, z) = (1− y)
[
(1− µ)p (z)+ µ (1− c) p

(
z∗
)]
,

where

p (z) =
[

1
(1− z) (1− µ)+ (1− z∗)µ (1− c)

]

is the breeding probability of a female who competes on a z-patch, with

µ as the dispersal rate and c as the cost of dispersal. Similarly, the

fitness of a male offspring is

Wm (y, z) = y
z
(1− z)

[
(1− µ)p (z)+ µ (1− c) p

(
z∗
)]
.

The ESS in ratio form is

cmrm − cmRm : cf rf + cmRm − k2 (cfRf + cmRm
)
,
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where k = (1 − µ)/(1 − cµ) is the probability that a mated female is

native to her breeding patch. We have the same terms as in previous

models, but now the effect of local resource competition is −k2cfRf .

The term k2 is the probability that an actor’s daughter and a random

female offspring remain in the patch and compete, and Rf is the actor’s

relatedness to a random female offspring in the patch before dispersal.

A similar explanation applies to the mating bonus term on the female

value side, cmRm. An extra female provides a mating bonus of cmRm

during the mating phase, but reduces the mating bonus provided to a

related male by k2, the probability that related males’ gametes and the

extra female are competing in the same patch after dispersal.

All of these solutions are given with relatedness coefficients as pa-

rameters. The underlying system of dispersal and genetics can be used

to calculate the relatedness coefficients, as explained in Section 7.2. The

calculations are tedious but simple for complex migration schemes and

asymmetric genetic systems, such as haplodiploidy. Several examples

are given in Frank (1986b, 1987c) and Taylor (1988b).

10.3 Sex Ratio Games

Suppose two mothers lay their eggs in an isolated patch, with local mat-

ing among offspring. The number of grandchildren produced by each

female depends on her own sex ratio and the sex ratio and relative brood

size of her partner. Hamilton (1967) noted the explicit, two-player-game

structure of this interaction. The situation becomes particularly inter-

esting when the paired females have different information about each

other and can adjust their sex ratio in response to that information.

Sex ratio interactions between isolated females often arise in certain

kinds of parasitic wasps. A female finds a host and lays some male

and female eggs. A second female comes along and is able to detect

that the host has already been parasitized. This second female can then

adjust her sex ratio given the information that another brood is already

present.

This sex ratio problem is important because predictions can be tested

by experimental and comparative study. Once again, sex ratio provides a

touchstone for understanding the processes that influence social behav-

ior, with unique opportunities to test the limits of applicability in nature.

Variations of these sex ratios games have been analyzed by Hamilton
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(1967), Suzuki and Iwasa (1980), Werren (1980, 1983), Charnov (1982),

Frank (1985), Herre (1985), Stubblefield and Seger (1990), and Nagelk-

erke (1993).

SIMULTANEOUS GAME

I begin with two simple extensions of the standard local mate competi-

tion model that led to Eq. (10.2). First, brood sizes vary, but each female

is unable to assess her own relative contribution to her group. Second,

each female is able to assess her relative contribution to the local group

and adjust her sex ratio in response to this information.

In the first, unconditional model, we can separate the actors (mothers)

into distinct classes based on their relative contribution to the group.

Define βi = ki/(nk) as the relative contribution of the ith female in a

group with n females, where ki is the brood size of the ith female and

nk is the total brood size of all females. In this model, each female in

an equilibrium population produces the same sex ratio. Thus an i-type

female’s contribution to future generations is directly proportional to

βi . The fitness that must be maximized is therefore proportional to

W =
n∑
i=1

βi (w |βi) , (10.4)

where w |βi is the fitness of a female given that her relative contribution

is βi . This fitness is

w |βi = cm (Wm|βi)+ cf
(
Wf |βi

)
.

Let the actor’s sex ratio be y for frequency of males, and let the average

sex ratio of all other females, excluding the actor, be z. Use similar

definitions subscripted by f when the recipient class is female. Then

Wm|βi =
(

y
βiy + (1− βi) z

)
(1− βiy − (1− βi) z)

and

Wf |βi = 1− y.

All recipient fitnesses are 1 − y in a normal population in which y = z.

Differentiating Eq. (10.4) with respect to small deviantions in transmit-

ted breeding value, setting dW/dg′ = 0, and solving at y = z = z∗ yields

the ratio z∗ : 1− z∗ as

cmrm − cmRm : cf rf + cmRm
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which is identical to the standard local mate competition result given

previously in Eq. (10.3). The only difference is that the relatedness of

an actor to a random male offspring on the patch is

Rm = rm + (n′ − 1)R′m
n′

(10.5)

where R′m is the average relatedness of an actor to a male offspring that

is not her own, and n′ is an effective size of the local group defined as

(Frank 1985)

1/n′ =
n∑
i=1

β2
i .

If mothers are unrelated to the sons of the other n− 1 females who lay

eggs in the same patch, then R′m = 0, and we can write the equilibrium

frequency of males as

z∗ = cmrm
cmrm + cf rf

(n′ − 1
n′

)
.

The specific calculations for rm and rf under haplodiploidy and this

mating system are given in Frank (1985).

In the second case, each female has knowledge of her own βi and can

adjust her sex ratio conditionally on this information. Here we optimize

simultaneously w |βi by solving d(w |βi)/dg′i = 0 for i = 1, . . . , n. If

mothers are unrelated to the sons of the other n − 1 females who lay

eggs in the same patch, then

nβiz∗i = z∗ = cmrm
cmrm + cf rf

(n− 1
n

)
,

where z∗i is the sex ratio of the ith mother with relative contribution

βi , and z∗ is the average sex ratio of all mothers. This result requires

that βi > z∗ for all i. Derivations can be found in Frank (1985) and

Yamaguchi (1985), with extensions by Stubblefield and Seger (1990).

The interesting point in this conditional model is that each female

produces the same number of males independently of her brood size.

Constant male behavior occurs because local mate competition causes

diminishing returns on male investment, whereas the lack of resource

competition among females leads to linear returns on female invest-

ment. This pattern was illustrated in Fig. 9.1. If there were local resource

competition among females and no competition among related males,
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then the equilibrium would be a constant number of females produced

independently of brood size (Frank 1987c). The reason is the same in

the constant female case: diminishing returns on female investment and

linear returns on male investment.

SEQUENTIAL GAME

Suppose a wasp parasitizes a host, and a second wasp parasitizes the

same host at a later time with probability p (Hamilton 1967). I discuss

two cases. The first assumes that neither wasp is able to assess whether

a host has been parasitized previously. The second case assumes each

female is able to detect whether it is first or second and adjust its sex

ratio based on this information.

All mating occurs on the host, so there is local mate competition

among males. The mated females fly off to find new hosts. I assume that

there is no resource competition among females during development.

I begin with the unconditional case. The sum of recipient fitnesses

is taken over the different classes. Here, one type of class division is

whether a female is alone or together with another female. The weights

are the probability that a future allele comes from a class in the present,

that is, the class reproductive values. Thus the total recipient fitness

can be written as

W = (1− q)Wa + qWt ,

where Wa is a female that is alone in a host, and Wt is a female together

in a host with another female. There are 1−p and p hosts with females

alone or paired, respectively, and two females in each paired host, so the

relative weights are 1− q = (1− p)/(1 + p) and q = 2p/(1+ p). In this

unconditional model the fitness of females in the normal population is

the same in the two types of hosts.

The recipient fitness for a lone female is

Wa = cmWam + cfWaf

= cm (1− y)+ cf (1− y)

because male fitness depends on the number of available mates, 1− y ,

and daughter fitness is the number of daughters produced, 1−y . When

a female is together with another female, the recipient fitness is

Wt = cmWtm + cfWtf

= cm

(
y

y + z

)
(1− y + 1− z)+ cf (1− y) ,
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where the y ’s are the actor’s phenotypes and the z’s are the partner’s

phenotypes. The equilibrium is obtained by solving dW/dg′ = 0 at y =
z = z∗. I drop the “˜” on the relatedness coefficients and use inclusive

fitness coefficients, yielding

z∗ = qcm
(
rm −R′m

)
2
(
cmrm + cf rf

)
where R′m is the relatedness of a mother to the sons of its partner when

paired with a partner in a host. We can replaceR′m byRm, the relatedness

of a female to a randomly chosen male offspring when paired with a

partner. From Eq. (10.5) with n′ = 2, the replacement is R′m = 2Rm− rm.

Using this substitution and writing the result as the male : female ratio,

z∗ : 1− z∗, yields

qcm (rm −Rm) : cf rf + (1− q) cmrm + qcmRm.

This result can be read as follows. On the left, the marginal value of an

extra son when a mother is paired, with probability q, is the standard

local mate competition valuation of cm(rm − Rm). When the mother is

alone, with probability 1− q, additional sons provide no value because

they only compete with sons already present. On the right, we have

the standard value of a daughter, cf rf , plus the value an extra daughter

provides to her mates, cmrm, when the mother is alone, with probability

1−q, and the value an extra daughter provides to a random male in the

group, cmRm, when the mother is paired, with probability q. The equi-

librium result ignores the complications that arise when the expected

number of surviving sons is less than one (for an overview, see Nagelk-

erke 1993).

In the second model, the females can assess whether another female

has already laid eggs on a particular host. I study two traits, which

I assume to be uncorrelated within each individual. The first trait is

the sex ratio produced in a host given that it has not been previously

parasitized. The second trait is the sex ratio produced in a previously

parasitized host. The method is to solve for a simultaneous equilibrium

for the two traits.

For the first female who finds an unparasitized host, total fitness is

W1 = cmW1m + cfW1f

= cm

[
(1− p) (1− y)+ p

(
y

y + z

)
(1− y + 1− z)

]
+ cf (1− y) ,
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where y is the sex ratio of the first female, and z is the sex ratio of

the second female who parasitizes the host, with probability p. For the

second female total fitness is

W2 = cmW2m + cfW2f

= cm

(
z

y + z

)
(1− y + 1− z)+ cf (1− z) .

Each parasitized host has a first female, and p parasitized hosts have

a second female. Thus total recipient fitness is

W =W1 + pW2

= cm (W1m + pW2m)+ cf
(
W1f + pW2f

)
= cmWm + cfWf .

It is easy to show from the above definitions that Wm = Wf in a normal

population with y = y∗ and z = z∗. This provides a check on the

method.

The solution is obtained by solving for y∗ and z∗ from dW1/dg′1 =
dW2/dg′2 = 0. The breeding value, g1, affects the sex ratio, y , of the first

female to parasitize a host. The breeding value, g2, affects the sex ratio,

z, of the second female to parasitize a host.

The direct fitness coefficients for offspring to their own mother are

r̃m = dy/dg′1m = dz/dg′2m and r̃f = dy/dg′1f = dz/dg′2f , where I have as-

sumed that these coefficients are the same for first and second females.

The direct fitness coefficient for a female’s sons to the sex ratio of her

partner is R̃′m = dz/dg′1m = dy/dg′2m. I assume that the two traits are

uncorrelated, thus R̃′m = 0 even if the paired mothers are related in a ge-

nealogical sense. Note that there is no corresponding inclusive fitness

coefficient for R̃′m. For example, this coefficient measures association

between breeding value for sex ratio as first female and the phenotype

of partners who lay as second females. This association is between two

different characters.

Replacing the direct fitness coefficients by their matching inclusive

fitness forms, the equilibrium trait value for first females is

y∗ =
(

2cmrm
cmrm + cf rf

)(
p2

(1+ p)2

)
,

and the equilibrium trait value for second females is

z∗ = y∗/p.
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Figure 10.1 Sex ratios of the first female to parasitize a host, y∗, and the
second female to parasitize a host, z∗. Females can assess whether a host has
been parasitized previously.

This solution was first given by Hamilton (1967). I have extended Hamil-

ton’s formulation here to handle the asymmetric class reproductive val-

ues and relatedness coefficients, c and r , that arise in haplodiploids

with this type of breeding system. The approach here can also handle

correlations between partners and the potential for kin recognition by

keeping track of the R′m terms.

If we assume that the organism has a symmetric genetic system, such

as diploidy, then cmrm = cf rf , and the solutions for y∗ and z∗ are given

in Fig. 10.1.

SEQUENTIAL GAME WITH VARIABLE BROOD SIZE AND DISPERSAL

The brood size of a second (or later) female influences her favored sex

ratio (Werren 1980). For simplicity, let us assume that cmrm = cf rf , so

that we can drop the m and f subscripts. Let the sex ratio of the all prior

females be fixed at y∗, the sex ratio of the last female to lay on a host be

a variable, z, and k be the brood size of the last female on a host relative

to all prior females. The last female’s fitness is

w =
(

kz
y∗ + kz

)[
1− y∗ + k (1− z)

]+ k (1− z) . (10.6)

We obtain the equilibrium sex ratio of the last female, given the sex ratio

of the prior females and the relative brood size, k, by solving dw/dg′ =
0, and assuming, as usual, that the slope of an individual’s phenotype
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Figure 10.2 The sex ratio of the last female on the patch, z∗. This sex ratio
depends on the sex ratio of the earlier females, y∗, and the brood size of the
last female compared with the total brood of earlier females, k. From Eq. (10.7).

on its own transmitted breeding value is dz/dg′ = 1. This yields

z∗ = −y∗ +
√
y∗2 + y∗ (1+ k− 2y∗) /2

k
. (10.7)

Suppose the prior females’ sex ratio is biased toward daughters, y∗ <
1/2, because of local mate competition. Then the last female is favored

to make mostly sons if she lays a relatively small brood, and to increase

her allocation to daughters with increasing brood size (Fig. 10.2; Werren

1980). The first few sons gain the mating advantage provided by the bi-

ased sex ratio, each expecting (1−y∗)/y∗ > 1 successful matings. With

a small brood, the female’s sons will compete mostly against sons of

the prior females rather than against each other. As the female’s num-

ber of sons increases, the mating advantage caused by the biased sex

ratio declines, and competition among sons partially offsets the mating

advantage. Thus she is favored to increase her allocation to daughters.

Nagelkerke (1994) emphasized that for the last female laying on a

patch, the fitness per offspring is higher for small brood sizes (Fig. 10.3).

This occurs because the early sons gain the mating advantage described

above while avoiding local competition against brothers. A female is

therefore favored to lay a small number of males in many different

patches. Spreading eggs among patches allows sons to avoid compe-

tition with their brothers, and is similar to the dispersal model in Sec-

tion 7.2 (see also Crespi and Taylor 1990). When there is a cost for

moving between patches, then a female faces the tradeoff between the
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Figure 10.3 Fitness per offspring for the last female on the patch. Fitness was
calculated by w/k from Eq. (10.6), using the values of z∗ in Eq. (10.7).

costs of search and dispersal and the benefits of small brood size. A

simple extension of Eq. (10.6) describes this tension

w = n
[(

kz
y∗ + kz

)[
1− y∗ + k (1− z)

]+ k (1− z)
]
,

where n is the number of patches visited, and the total brood size over

all patches is

nk = K − (n− 1) c,

with K as the maximum brood size when all eggs are placed in a single

patch, and c as the cost of travel between patches. With these defini-

tions, one can maximizew to obtain the simultaneous maximum for sex

ratio, y∗, and number of patches to visit, n∗.

10.4 Social Topics

Most social insects have a haplodiploid genetic system. The social hap-

lodiploid species include bees, ants, and wasps (Hymenoptera). Other

complex social species have symmetric, diploid inheritance, including

termites and naked mole rats. There is an extensive literature on the bi-

ology of these social groups (Wilson 1971; Sherman et al. 1991). I briefly

summarize two topics concerning sex allocation in the haplodiploid so-

cial insects (Crozier and Pamilo 1996). First, there is a conflict between

the workers and the queen over the allocation of resources to male and

female reproductives. Second, variation in sex allocation among fam-

ilies may have played an important role in the evolutionary origins of
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complex sociality. I cover aspects of reproductive value and sociality in

Chapter 11.

CONFLICT BETWEEN QUEEN AND WORKERS

Queens lay most of the eggs in social insect colonies. A haplodiploid

queen can control the sex ratio of offspring by adjusting the frequency

of eggs that are fertilized and develop into diploid daughters and the

frequency of unfertilized eggs that develop into haploid sons. The work-

ers tend the eggs and raise the offspring. The workers’ control over

investment in eggs may allow them to adjust subsequent allocation of

resources into male and female offspring.

The queen and workers differ over the favored split between male

and female investment (Trivers and Hare 1976). In the simplest case,

with equivalent marginal returns on male and female investment, and

no local mate competition or local resource competition, the favored

ratio of male : female investment is

cmrm : cf rf .

For haplodiploidy and simple life cycles, 2cm = cf , so the equilibrium

allocation ratio is rm : 2rf . The r coefficients are regressions between

actor and recipient. The important point is that the r coefficients differ

depending on whether the queen or the workers control sex allocation.

The different r coefficients cause a conflict between the queen and work-

ers over the allocation of resources to male and female reproductives.

The queen is the actor and the recipients are son and daughter when

the queen controls allocation of resources. Alternatively, the workers

are the actor class and the recipients are the queen’s offspring when the

workers control the allocation to males and females. The workers are

typically the queen’s daughters, and the subsequent male and female

offspring are the workers’ brothers and sisters.

The equilibrium sex allocation is calculated from rm : 2rf . The cal-

culation of relatedness coefficients is simplest when we use inclusive

fitness coefficients based on genealogy. The genealogical calculation is

given in Fig. 10.4. When the queen is in control, and there is no inbreed-

ing (f = 0), then her favored male : female investment ratio is 1 : 1.

By contrast, the workers’ favored allocation ratio is 1 : 3 when new off-

spring are full siblings. The difference occurs because the asymmetric
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Figure 10.4 Calculation of inclusive fitness coefficients for a haplodiploid ge-
netic system. Each letter is the average effect of an allele. The different let-
ters are random variables drawn from the same population, that is; they are
alleles at the same genetic locus. The variance of each variable is the same,
and can be taken as standardized to one. The relatedness of an actor, a, to
a recipient, b, is rba, written in this way to emphasize that the relatedness
is a regression of recipient on actor. Specifically, relatedness was defined in
Eq. (3.9) as r = Cov(G, g)/Var(g), where g is the actor’s breeding value, and G
is the recipient’s breeding value. In the diagram, breeding value is the average
value of the allelic effects. Thus the queen’s breeding value is τ = (α + β)/2,
which is also the average value of a gamete she transmits to offspring. If we
define the correlation between any pair of the three parental alleles, α,β, γ, as
F , the inbreeding coefficient, then it is easy to calculate the relatedness coef-
ficients by working out the appropriate covariances (see Section 3.5; Hamilton
1972, makes these same calculations based on pedigree analysis). The relat-
edness of a queen to a male (son) is rmq = 1, and of a queen to a daughter,
rfq = (1+3F)/(2+2F). A worker is a female offspring of the queen. Her relat-
edness to a sister is rfw = (3+5F)/(4+4F), and her relatedness to a brother is
rmw = (1+ 3F)/(2+ 2F). These calculations all assume that the mother mates
only once, and that the average effects of alleles do not change between gen-
erations. With these coefficients, we have, from the queen’s point of view, the
favored allocation ratio cmrm : cf rf as 1 + F : 1+ 3F . With no inbreeding, this
ratio is 1 : 1 with no inbreeding. From the worker’s point of view, the favored
ratio is 1+ 3F : 3+ 5F , and, with no inbreeding, this ratio is 1 : 3.

genetics of haplodiploidy cause relatively high relatedness of females to

their sisters (Fig. 10.4).

The different allocation ratios favored by the queen and her daughter-

workers cause conflict within colonies (Trivers and Hare 1976). Many

studies have measured allocation ratios to determine which of the fol-

lowing prevails: queen control, with 1 : 1, or worker control, with 1 : 3

(Crozier and Pamilo 1996). Several studies suggest worker control, but
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there are many difficulties of measurement, uncontrolled factors, and

interpretation.

The essential problem is that the prediction of worker control requires

a fit: do the observed sex allocation ratios fit 1 : 3 better than 1 : 1? I

have mentioned many times that fit is nearly impossible to interpret. It

is much easier to test a comparative prediction. For example, how does

one expect the sex allocation to change with some parameter? How does

the pattern of change differ between queen and worker control?

Boomsma and Grafen (1990, 1991) developed an interesting compar-

ative hypothesis that distinguishes between worker and queen control.

They argue as follows. Suppose that the number of mates per queen

varies among colonies. From the queen’s point of view, her relatedness

to sons and daughters is unaffected by her number of mates. Thus

her favored allocation ratio, rmq : 2rfq, does not change with multiple

mating. The subscript q in the relatedness coefficients emphasizes that

these coefficients are taken from the point of view of the queen as actor.

From the workers’ point of view, the favored ratio of male to female

offspring, rmw : 2rfw , varies with the number of matings by the queen.

The relatedness coefficients from the workers’ point of view vary for

the following reasons. The haploid males inherit only from the mother;

thus the workers’ relatedness to brothers is not affected by multiple

mating. The diploid females inherit from both mother and father; thus

the workers’ relatedness to sisters depends on whether they are full or

half siblings. With multiple mating, the probability that a female is a half

sibling increases, which decreases rfw and skews the workers favored

sex ratio, rmw : 2rfw , toward males.

Suppose the workers can assess whether they are in a full-sibling

or half-sibling colony. Then, under worker control, the distribution

of colony sex allocation ratios is predicted to be bimodal. The full-

sibling colonies are favored to produce relatively more females than do

the mixed-sibling colonies because the workers value the females more

highly when they are full siblings. If the queen is in control, the relat-

edness asymmetry from the workers’ point of view has no influence on

predicted sex ratios. A few studies suggest that sex ratios change with

number of matings by the queen in the manner predicted under worker

control (Boomsma and Grafen 1990; Sundström 1995; Sundström and

Keller 1996).
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This idea emphasizes the importance of studying variation among

colonies. A complementary prediction about colony variation has also

received preliminary support. In Frank (1987c), I analyzed the relative

effects of local competition for mates among male relatives and local

resource competition among female relatives. I showed that if local

mate competition is stronger than local resource competition, smaller

colonies are favored to invest a relatively greater portion of their re-

sources in males than that invested by larger colonies. By contrast,

stronger local resource competition than local mate competition favors

small colonies to invest relatively more in female offspring than do large

colonies (see Simultaneous Game, p. 200).

Sundström (1995) found that some ant colonies in her study fol-

lowed the prediction of relatively stronger local resource competition.

Hasegawa and Yamaguchi (1995) observed mating competition among

male relatives and sex ratio variation among colonies matching the pre-

diction of stronger local mate competition. However, several studies do

not show the trends predicted by the local competition models, appar-

ently because sex-biased competition among relatives does not occur in

many species (Bourke and Franks 1995, 194–195).

SPLIT SEX RATIOS AND THE ORIGINS OF SOCIAL BEHAVIOR

Worker-queen conflict over sex allocation occurs in established colonies.

Another problem concerns the evolutionary origin of workers: daugh-

ters who forgo their own reproduction to aid the reproduction of their

mother. Suppose, for example, that we start with lone mothers who

produce offspring without aid from daughters. What aspects of sex al-

location could favor a daughter to stay with her mother and help to raise

siblings, rather than to nest alone and raise her own offspring?

The relatedness asymmetries of haplodiploidy cause a female to gain

more by raising her sisters than by raising her own offspring (Hamilton

1972; Trivers and Hare 1976). This can be shown by following through

the details of relatedness, reproductive value, and marginal value. But

the essential process can be illustrated by simply examining the class

reproductive value and relatedness weightings for offspring, using the

case of outbreeding and the coefficients in the caption of Fig. 10.4. From
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a mother’s (queen’s) point of view, her value for sons and daughters is

cmrmq = 1/2

cf rfq = 1/2,

where the relatedness coefficients use the q subscript to emphasize

that they are taken from the queen’s point of view, as in the caption

of Fig. 10.4. From a sister’s (worker’s) point of view

cmrmw = 1/4

cf rfw = 3/4,

with the w subscript emphasizing the workers’ point of view. Thus a

female can gain more per offspring by working to raise sisters than by

directly producing sons and daughters, but she gains less per brother

than for an offspring of her own. Daughters are increasingly favored to

help as the sex ratio of the mother’s brood becomes more female-biased.

Factors that predictably cause relatively female-biased broods may

have contributed to the origin of workers in some species (Trivers and

Hare 1976). This has led to a few theories that match female-biased

broods with worker behavior. I briefly mention four ideas.

The first workers may have directly manipulated the sex ratio of their

mothers by killing male eggs or by investing more in female offspring.

Two factors make this idea unlikely: the workers would have to be able

to detect offspring sex early in development, and the reduction of broth-

ers’ fitnesses might not be sufficiently compensated by production of

additional female eggs.

The second idea is Seger’s (1983) analysis of overlapping generations.

Some species produce two broods per year, with differential survival of

males and females over the two generations. Seger showed that reg-

ular alternations in sex ratio are predicted in this life cycle. In some

cases, mothers producing a second brood are favored to make a rel-

atively female-biased sex ratio. This life history satisfies two require-

ments for the evolution of workers. First, older daughters are avail-

able when the mother produces her second brood, and could help their

mother produce offspring. Second, the later broods are relatively female

biased. Thus older daughters may gain more by raising sisters than by

producing sons and daughters. The theory requires matrix analysis of

reproductive value, which I develop in the next chapter.
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The third model describes a synergism between sib-rearing and sex

ratio (Frank and Crespi 1989). The hypothesis depends on three con-

ditions. First, daughters that help cause more food to be provisioned

per offspring, which in turn causes larger offspring. Second, females

gain more than males by being large, which favors mothers with helpers

to produce a higher proportion of daughters. Third, a female worker’s

fitness rises as her mother’s brood becomes increasingly female biased

because a female worker is more closely related to her sisters than to her

brothers. Boomsma (1991) and Boomsma and Eickwort (1993) describe

preliminary evidence supporting this model.

The final idea is an extension of the constant male hypothesis (see

Fig. 9.1). Under local mate competition, mothers that produce relatively

more offspring are favored to make extra offspring into daughters. If

workers increase the number of offspring reared, then the mother is

favored to make daughters for most of those additional offspring. This

creates an association between sib-rearing and female-biased sex ratios.

I am not aware of any previous discussion of this model in the context

of worker behavior.



11 Sex Allocation:
Reproductive Value

Sex allocation is the division of resources between male and female

reproduction. The optimal split depends on the relative reproductive

value of these two fitness components. Sex allocation may, in addi-

tion, influence survival, fecundity, and other components of fitness. An

actor’s division of resources into male and female can affect neighbors’

fitnesses. The proper weighting of all these fitness components requires

attention to reproductive value. In this chapter, I survey the main con-

cepts and methods of analysis.

11.1 Current versus Future Reproduction

The prior sex allocation models analyzed the division of resources into

male and female components. An actor may also reserve resources for

the future.

The question is: does the split between current and future reproduc-

tion influence the ratio of resources devoted to males and females? The

answer turns out to be no if returns on male and female investment are

linear (Leigh 1970; Charlesworth 1977; Charnov 1982). However, the

split between survival and reproduction does influence the sex alloca-

tion ratio when the relative slopes of male and female returns differ with

scale. The models in this section clarify these conclusions.

I begin with a simple marginal value model. I assume that diploid

mothers control sex allocation. The returns on investment are given by

µ(x) for sons, andφ(y) for daughters, with total investment of k = x+y .

If k is constant among mothers, then the usual analysis shows that the

equilibrium in a randomly mating population, (x∗, y∗), is given by

µ′ (x∗)
µ (x∗)

= φ′ (y∗)
φ(y∗)

, (11.1)

where µ′ denotes differentiation with respect to x, and φ′ denotes dif-

ferentiation with respect to y .

Now suppose that a mother can enhance her own survival by with-

holding resources from current sons and daughters. Let a mother’s sur-
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vivorship to the next reproductive season be ψ(z). Total allocation to

sons, daughters, and survivorship sums to one, x+ y + z = 1.

Current and future reproduction must be assigned proper weights for

reproductive value, using the methods of Chapter 8. The first step is to

describe the contribution of each class to other classes in a demographic

matrix

A =


0 nα 0 n

µ (x) t 0 0
0 nα 0 n
0 0 φ(y) ψ(z)

 , (11.2)

where the columns and rows are, from first to last, juvenile males, adult

males, juvenile females, and adult females. Thus a mother (last column)

has 2n sons and 2n daughters, of which one-half are credited to her

and one-half are credited to her mates. She survives to the following

season with probability ψ(z). Her juvenile sons survive to reproductive

age with probability µ(x), given in the first column. In this formulation,

nµ(x) can be thought of as the mother’s fecundity through sons, or one

can consider µ(x) as the survival a mother gives to each of her sons.

Similarly, juvenile daughters survive to reproductive age with probabil-

ity φ(y). An adult male expects credit for nα sons and nα daughters,

where α is the number of mates per male, given by the ratio of the

number of adult females to adult males in the population. Adult males

survive each season with probability t.
Demographic properties of the population are influenced by the pop-

ulation growth rate, given by the largest eigenvalue of the normal matrix

A∗. For this step it is convenient to rewrite the matrix by assigning all

juveniles to the adult females

F∗ =


0 0 0 2n

µ (x∗) t 0 0
0 0 0 2n
0 0 φ(y∗) ψ (z∗)

 .
The dominant eigenvalue is the largest value of λ that satisfies the char-

acteristic equation

λ2 − λψ∗ − 2nφ∗ = 0,

where ψ∗ = ψ(z∗) and φ∗ = φ(y∗) are the functions evaluated at their

equilibrium arguments.

The next step is to obtain the equilibrium class frequencies, u =
(û0, û1, u0, u1), where u is a column vector, û and u denote male and
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female classes, respectively, and the subscripts 0 and 1 denote juvenile

and adult, respectively. This calculation and the ones that follow all use

the original matrix in Eq. (11.2), evaluated at x∗, y∗ and z∗. The values

for u are obtained from A∗u = λu, yielding

û0 = 2n/λ

û1 =
(
λ−ψ∗) / (λ− t)

u0 = 2n/λ

u1 = 1,

where u1 is arbitrarily set to one, and the other values are given as num-

ber of individuals per adult female in the population.

The individual reproductive values are obtained from vA∗ = λv, yield-

ing
v̂0 = φ∗/λ

v̂1 = φ∗/µ∗

v0 = φ∗/λ

v1 = 1.

Each mother has three characters: investment in males, x, investment

in females, y , and investment in survival, z. The constraint x+y+z = 1

reduces the number of characters to two, x and y , and the constrained

character z = 1− x− y .

The next step, by the standard methods of Chapter 8, is to write total

recipient fitness as W = vAu, differentiate with respect to transmitted

breeding value for each of the two characters, and attempt to find a local

equilibrium. I take g as breeding value for x, and h as breeding value for

y . I also assume that under random mating, transmitted breeding values

equal individual breeding values. I take the two traits as uncorrelated

by setting dx/dh = dy/dg = 0.

The conditions dW/dg = 0 and dW/dh = 0 yield, respectively

r̃ û0v̂1µ′
(
x∗
)−ψ′ (1− x∗ − y∗

) = 0

r̃ u0v1φ′ (y∗)−ψ′ (1− x∗ − y∗
) = 0,

where primes denote differentiation with respect to the standard argu-

ment for each function, and r̃ is the coefficient of relatedness for direct

fitness between offspring and mother. Replacing this coefficient with
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the inclusive fitness coefficient, r , and expanding the u and v terms

yields

r
(
λ−ψ∗) µ′

µ∗
−ψ′ = 0 (11.3a)

r
(
λ−ψ∗) φ′

φ∗ −ψ′ = 0. (11.3b)

These equations show that the standard marginal value result holds

µ′ (x∗)
µ (x∗)

= φ′ (y∗)
φ(y∗)

,

as in Eq. (11.1). Given this marginal value result, we can return to the

original question. Does the split between current and future repro-

duction influence the ratio of resources devoted to males and females,

x∗ : y∗? Briefly, the answer is yes, whenever the relative slopes of µ and

φ differ with scale. A few examples clarify this conclusion.

The first example sets the relative slopes of male and female return

independently of scale by using power functions

µ (x) = xsm

φ(y) = ysf

ψ (z) = tzsz ,

with 0 < sm, sf , sz ≤ 1. The sex allocation ratio x∗ : y∗ is given by sm : sf .
If we set s = sm = sf and sz = 1, then the equilibrium allocations can be

solved for directly

x∗ = y∗ = sr (λ− t)
t (1− 2sr)

z∗ = t − 2srλ
t (1− 2sr)

.

Some general comparative predictions follow. First, as sm and sf de-

cline, larger allocations to sons and daughters provide low marginal

returns; thus allocation to survival increases. Second, as λ increases,

population expansion enhances the reproductive value of offspring rel-

ative to parents, which tends to reduce the value of allocation to sur-

vival. Third, as t decreases, larger allocation to survival provides lower

marginal returns, which reduce survival in favor of reproduction. Fi-

nally, an increase in parent-offspring relatedness, r , favors greater allo-

cation to reproduction.
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Figure 11.1 Change in the sex allocation ratio with a change in the split be-
tween investment in reproduction and investment in survival. The sex allocation
ratio is the fraction of reproductive resources invested in males, δ = x/(x+ y).
The solution is based on the conditions in Eqs. (11.3), with functional forms
given in Eqs. (11.4). Parameters are α = 0.1, s = 0.5, r = 0.5, and λ = 1.

The second example compares male and female return functions in

which the ratio of slopes differs with scale. It is convenient to give the

derivatives of the return functions

µ′ (x) = xα (1− x) (11.4a)

φ′ (y) = sys−1 (11.4b)

ψ′ (z) = t, (11.4c)

where the constants of integration are zero. A numerical example, based

on the equilibrium conditions in Eqs. (11.3), is shown in Fig. 11.1. The

fraction of reproductive allocation given to males is δ∗. In this case,

greater allocation to survival is associated with an increase in the relative

allocation to males.

11.2 Shifts in Sex Allocation with Age

Reproductive allocation may increase with age for a variety of reasons

(Charnov 1982; Charlesworth 1994). Older individuals may be larger

and have more resources available. Or, the probability of survival may

decrease with age (senescence), favoring an increase in reproductive al-

location. When the relative slopes of male and female returns differ

with scale, then shifts in total reproductive allocation cause shifts in

the proportion of resources invested in males and females.

I present a model in which mating is random, and mothers die af-

ter the Nth reproductive season. In prior years, a mother divides re-

sources among sons, daughters, and survival. This simplified form of
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senescence may favor a shift with age in relative allocations to males,

females and survival (Charnov 1982; Charlesworth 1994). I illustrate the

methods of analysis. Modified assumptions will be required for many

applications.

I begin with the transition matrix

A =



m0 m1 f0 f1 f2 · fN
0 M/2û1 0 nµ (x1) nµ (x2) · nµ (xN)
k t 0 0 0 · 0
0 F/2û1 0 nφ(y1) nφ(y2) · nφ(yN)
0 0 k 0 0 · 0
0 0 0 ψ1 0 · 0
0 0 0 0 ψ2 · 0
· · · · · · 0
0 0 0 0 0 ψN−1 0


.

The top row defines each column. The first two, m0 and m1, are ju-

venile and adult males, respectively. The fi are females of age i. The

survival probability of juveniles to the adult stage is k. Adult males sur-

vive each season with probability t. Each mother of age i > 0 produces

2nµ(xi) males and 2nφ(yi) females, of which one-half are credited to

the mother and one-half to the father. The total numbers of male and

female juveniles in each generation are proportional to

M = 2n
∑
i
µ
(
x∗i
)
ui

F = 2n
∑
i
φ
(
y∗i
)
ui,

where ui is the number of adult females of age i per juvenile female

(see below). Each adult male is credited with M/2û1 sons and F/2û1

daughters, where û1 is proportional to the total number of adult males.

Mothers of age i < N survive to the next breeding season with probability

ψi = ψ(zi). All mothers die after the Nth season.

The matrix can be rearranged by assigning all progeny to the mothers.

Thus, a mother of age i produces 2nµ(xi) sons and 2nφ(yi) daughters,

and adult males are assigned values of zero for contribution to juvenile

classes. The female-dominant matrix allows easy calculation of the char-

acteristic equation for population growth (Charlesworth 1994), yielding

λ = 2n
N∑
i=1

φiui = F,
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where φi = φ(y∗i ), and the definition is given below for ui , the number

of females of age i. I will also use the abbreviations µi = µ(x∗i ) and

ψi = ψ(z∗i ).
The next step is to calculate, for each class, the number of individuals

per juvenile female
û0 =M/F

û1 = kû0/ (λ− t)

u0 = 1

ui =
i∏

j=1

ψj−1/λi,

where ψ0 = k.

The individual reproductive values for each class, relative to a juvenile

female, are
v̂0 = F/M

v̂1 = v̂0 (λ/k)

v0 = 1

λvi = n
N∑
j=i

[(
v̂0µi + v0φi

)] j−1∏
s=i

(ψs/λ) .

The solution must be given in terms of two allocation decisions at

each age: the mother’s split between reproduction and survival, and her

division of reproductive allocation between sons and daughters. Thus

we seek the equilibrium trait values (x∗i , y
∗
i , z

∗
i ) for i = 1, . . . ,N. I as-

sume that the trait values for each time period are independent of past

and future trait values. If we focus on the variable traits in each time

period, then from the transition matrix A, the recipient fitnesses influ-

enced by characters at time i are proportional to

Wi = v̂0nµ (xi)+ v0nφ(yi)+ vi+1ψ(zi) ,

where vN+1 = 0.

Total allocation is, of course, limited in each time period. Two types

of constraint must be distinguished. On the one hand, total resources

allocated to both survival and reproduction are limited. On the other

hand, given a fixed amount allocated to reproduction, there is a tradeoff

between male and female allocation.

The division between survival and reproduction can be expressed, for

example, by the constraint on allocation to survival, zi = 1 − γxi − yi
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for all time periods except the last. Here male and female investment

have different effects on survival according to the parameter γ. Death is

imminent in the Nth time period; thus allocation to survival is zero, and

the constraint concerns the split between male and female allocation,

βxN + yN = 1.

The usual methods yield two sets of conditions for candidate equilib-

ria. The first describes the split between male and female allocation in

each time period

µ′i
M
= γφ′

i
F

i = 1, . . . ,N − 1

µ′i
M
= βφ′

i
F

i = N.

This is the standard marginal value result for sex allocation, with the ad-

dition of the γ and β factors. The term γ is a linear scaling for the cost

to survival per unit of male and female allocation, from the constraint

zi = 1−γxi−yi . The term β is a linear scaling factor for the tradeoff be-

tween male and female allocation in the Nth period, from the constraint

βxN + yN = 1. If male allocation is more costly to survival than to fe-

cundity, γ > β, then mothers will tend to shift their allocation toward

males later in life, as the marginal gains of allocation to survival de-

cline (Charnov 1982; Charlesworth 1994). The argument can, of course,

be generalized for arbitrary constraints to account for the partial effect

of male allocation on female allocation, holding constant allocation to

survival. In the general case, the scaling factors are −∂yi/∂xi .
The second set of equilibrium conditions determines the split be-

tween allocation to current reproduction and survival

rnφ′
i = δvi+1ψ′

i i = 1, . . . ,N − 1.

The left side is the marginal return on investment in daughters, weighted

by the mother’s relatedness to daughters, r . The right side is the margin-

al return for shifting a unit of investment from daughters to survival,

where δ = −dzi/dyi is the scaling between investment in daughters and

investment in survival. The term ψ′ is the marginal change in survival

probability, and the term vi+1 is the value of surviving to the next time

period.

Suppose that returns on additional investment in daughters increase

at a diminishing rate, φ′′
i < 0. As a mother ages, her future reproductive
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value, vi+1, declines. Thus an aging mother is favored to increase her al-

location to daughters until marginal returns decline to match marginal

gains for future reproductive value via survival. An increased alloca-

tion to daughters may be associated with a change in the split between

daughters and sons. This split is determined by the marginal gains for

additional investment in each sex given in the first set of equilibrium

conditions.

11.3 Perturbation of Stable Age Structure

Fisherian allocation of one-half to each sex holds in the prior models

when returns are equivalent for male and female investment. Those

models assumed stable age structure. Werren and Taylor (1984) showed

that a perturbation of the stable age structure shifts the favored al-

location ratio toward the sex with the lower variation of age-specific

fitnesses. The shift occurs because an increase in age-specific fitness

follows a diminishing-return curve; thus lower variation across years

provides higher lifetime fitness.

Let age-specific fitness, pi , be the contribution of individuals of age

i to newborns in the current year, with
∑
pi = 1. Suppose exceptional

recruitment of newborns occurs in a particular year. The size of this

cohort is 1+α relative to a typical cohort. Such perturbations are suffi-

ciently rare that, among living age classes, there is never more than one

age class of exceptional size.

The reproductive value of an individual born into an exceptional age

class is

v =
∑
i

pi
1+αpi

.

The denominator accounts for the increased number of competitors

added by the exceptional cohort.

The effect of exceptional recruitment can be studied by considering

the properties of v . When α is small, the return for investment in the

exceptional cohort in each year is β(p) = p/(1+αp) ≈ p(1−αp). Thus

return for investment increases at a diminishing rate as p increases.

The total return over the n age classes can be written as n multiplied

by the expected return in each year

v = nE [β (p)] .
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We can think of p as an intermediate measure of success in a sequence of

investments. The investment is to add an individual to the exceptional

cohort at each age. The intermediate measure of success is the age-

specific fitness at each age, p. The actual return at each age is β(p). The

total return over all ages is v .

The problem can be restated as follows. How can one relate variation

in an intermediate measure of success, p, to the expected value of total

success? The standard approach from economic theory is to expand

β(p) by the Taylor series (for behavioral applications in biology, see

Real 1980; Stephens and Krebs 1986; Frank and Slatkin 1990b), yielding

E [β (p)] = β(p)+ β′′(p)σ 2
p/2+ ε,

where σ 2
p is the variance in p, the second derivative of β is β′′, and ε is

the remainder term.

When α is small we have, from above, β(p) ≈ p(1 − αp). Using the

fact that p = 1/n, the reproductive value of an individual added to the

exceptional cohort is

v ≈ 1−α/n− nασ 2
p .

The favored sex allocation in the exceptional cohort may deviate from

the norm when the age-specific fitnesses differ between the sexes. Con-

sider a diploid population, with linear returns on investment in each sex.

Then Fisher’s theory holds, and the allocation ratio in a stable popula-

tion is one-half to each sex. Let the allocation ratio during the year of

exceptional recruitment be x = (1/2)(1 + δ), where x is the fraction of

resources invested in males.

The reproductive value of an extra male added to the exceptional co-

hort is

vm =
∑
i

mi

1+αmi + δ(1+α)mi
,

where mi is the age-specific fitness of males, and δ(1 + α) is the pro-

portional increase in the number of males in the exceptional cohort as

the allocation ratio, x, changes from one-half. If, as above, α is small,

then the deviation in the allocation ratio, δ, will also be small, and we

can ignore terms of order δα. Thus

vm ≈
∑
i

mi

1+ (α+ δ)mi

≈ 1− (α+ δ) /n− n(α+ δ)σ 2
m,
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where σ 2
m is the variance in age-specific fitnesses of males. A similar

calculation for females yields

vf ≈ 1− (α− δ) /n − n(α− δ)σ 2
f .

The equilibrium sex allocation for a diploid population with linear re-

turns on each sex occurs when vm = vf . The equilibrium allocation

ratio, expressed as δ, the proportional increase in the fraction of males

relative to one-half, is

δ =
αn2

(
σ 2
f −σ 2

m

)
2+ n2

(
σ 2
f +σ 2

m

) ,
showing that the allocation ratio is biased toward the sex with lower

variance in age-specific fitness. This is equivalent to the result given by

Werren and Taylor (1984). West and Godfray (1997) have shown that

allocation ratios in cohorts after the exceptional year are also favored to

deviate from the norm. These later deviations influence the allocation

ratio in the exceptional year.

11.4 Cyclical Age Structure with Male–Female Asymmetry

Asymmetry in sex-specific life schedules can bias the reproductive val-

ues of the sexes. Consider, for example, Seger’s (1983) model of insect

life history (extending Werren and Charnov 1978). There are two gener-

ations per year, spring and summer. Males and females are born in the

spring, mate, and reproduce. The females die, and a portion of the males

survives to mate again in the summer generation. Some offspring from

the spring matings emerge in the summer generation; others overwinter

in a pre-adult form and emerge the following spring. All offspring from

the summer mothers emerge in the spring.

Males born in the spring reproduce in both the spring and summer

generations. By contrast, males born in the summer reproduce only in

the generation in which they are born. Thus the reproductive value of

the spring males is higher than that of the summer males, and conse-

quently the sex ratio is biased toward males in the spring and females

in the summer. I recast Seger’s (1983) analysis into the framework pre-

sented in this book; Grafen (1986) provided a similar method based on

reproductive value.
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ALTERNATIVE DEMOGRAPHIC MATRICES

Complex demographies do not present any conceptual difficulties for

the standard method. The fitness matrices and expressions for repro-

ductive value can, however, be complex. It is often convenient to work

with alternative forms of the standard matrix of individual fitnesses.

This matrix is A = [wij], where wij is the contribution of an individual

of class j to class i in the following time period. The abundance of each

class is uj in our standard notation. Thus the class fitness matrix is

B = [wijuj], where each entry is the total contribution of class j to class

i. Abundances in the next time period are u′ = Au = B1, where 1 is the

n× 1 vector of ones.

The definition of total recipient fitness in the theory is W = vAu,

where each vj is the reproductive value of an individual of class j (see

Eq. (8.2)). We can also write total fitness as W = vB1.

Finally, a matrix based on female reproduction is useful for studying

class abundances and population growth. This matrix is obtained by

starting with B∗, the normal matrix of class fitnesses. Next, assign all

newborn offspring entirely to mothers, creating a normal matrix D∗.

This does not change the numbers in any class if female fecundity is

independent of the numbers of males. The abundances in the next time

period are u′ = D∗1. Thus D∗ is a useful matrix to define aspects of

population dynamics and the abundances of classes.

ABUNDANCE

The population biology of this model is given by

D∗ =


m0 m1 f0 f1
0 0 tû0 (1− t) û0

sû0 0 ωx∗1 0
0 0 t 1− t
0 0 ω

(
1− x∗1

)
0

 ,

where the first row gives the class definitions, m0 and m1 for spring

and summer males, and f0 and f1 for spring and summer females. In

this D∗ matrix, all newborns are assigned to the mother and entries give

the total contributions of each class to other classes. As noted above,

abundances in the next time period are given by u′ = D∗1. Put another

way, the abundance of class i is the sum of entries in the matrix across
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row i. I use the notation u = (û0, û1, u0, u1) for class abundances, with

the hats denoting males. I normalize abundances so that the number of

females in the spring generation is u0 = 1.

Consider the third row, the contribution of other classes to female

offspring in the spring generation. A fraction t of the spring females

comes from the prior spring, and a fraction 1− t of the spring females

comes from the prior summer. The total number of spring females is

regulated to a constant multiple of u0 = t + (1− t) = 1.

The fourth row is the number of summer females. These are produced

only by spring mothers. Each spring mother hasω surviving progeny, of

which 1− x∗1 are daughters. Here, x1 is the fraction of progeny that are

males when contributed to the summer generation, and x0 is the fraction

of progeny that are males when contributed to the spring generation.

The total number of summer females is u1 =ω(1− x∗1 ).
The first row is the number of spring males. A fraction t comes from

the prior spring, and a fraction 1− t comes from the prior summer. The

class abundance, û0 = x∗0 /(1 − x∗0 ), is the number of males per female

in the spring generation. Because the total number of females in the

spring is regulated to one, the total number of males in the spring is û0.

The second row is the number of summer males. A fraction s of the

û0 males survives from the spring to the summer. The spring females

produce ωx∗1 sons. Thus the abundance of summer males is û1 = sû0+
ωx∗1 .

From these definitions, it is clear that class abundances are stable,

u′ = D∗1 = u. Thus the dominant eigenvalue is λ = 1. Stability arises

because the number of females born in the spring is regulated to a con-

stant, and all adult individuals die after the summer. The dominant

eigenvalue can also be calculated in the usual way, first recovering the

standard fitness matrix A∗, and then solving the characteristic equation.

In summary, the stable class abundances are

û0 = x∗0 /
(
1− x∗0

)
û1 = sû0 +ωx∗1
u0 = 1

u1 =ω
(
1− x∗1

)
.
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REPRODUCTIVE VALUE

The normal matrix, D∗, assigns all progeny to mothers. To obtain re-

productive values, we need the gametic contributions of males and fe-

males. I assume a haplodiploid genetic system, to match the applica-

tion of this model to haplodiploid bees and wasps (Seger 1983). Under

haplodiploidy, males do not contribute to male progeny, and thus male

offspring are credited entirely to mothers. The female progeny are split

equally between male and female parents. This division leads imme-

diately to the normal matrix, B∗, the gametic contributions from each

class

B∗ =


0 0

tx∗0
(1−x∗0 )

(1−t)x∗0
(1−x∗0 )

sx∗0
1−x∗0 0 ωx∗1 0
t
2

1−t
2

t
2

1−t
2

ω(1−x∗1 )
2 0

ω(1−x∗1 )
2 0

 .

The individual fitness matrix, A, is obtained from the definitions above,

B = [wijuj] and A = [wij]. Individual reproductive values are obtained

from vA∗ = λv, where in this model λ = 1. Normalizing the reproduc-

tive value of spring females to one yields

v̂0 = sv̂1 + t
2û0

v0 + ω
(
1− x∗1

)
2û0

v1

v̂1 = 1− t
2û1

v0

v0 = 1

v1 = 1− t
u1

(
v̂0û0 + v0/2

)
.

These valuations can be read in a meaningful way. For example, the

value of a spring male, v̂0, has three components. His value by surviving

to the summer is the probability of survival, s, weighted by the value of

summer males, v̂1. In the second term, value for contribution to females

of the following spring is the proportion of next spring’s females from

the current spring, t, which is split among the û0 males. This term

is divided by 2 for the male’s gametic contribution, and weighted by

the reproductive value of next spring’s females, v0. Finally, the spring

generation produces a total of ω(1 − x∗1 ) summer females, one-half of

which are credited to the spring males. Each spring male will be the
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father of 1/û0 of the summer females. The weighting for the summer

females is v1.

An explicit solution for individual values can be obtained by rewriting

the reproductive value equations above as

v̂0 = 2s
1+ t

v̂1 + 1
2û0

v̂1 = 1− t
2û1

v0 = 1

v1 = 1− t
u1

(
v̂0û0 + 1/2

)
.

FITNESS

The standard method of solution is to write total fitness as W = vAu

and differentiate with respect to transmitted breeding value. As men-

tioned above, an equivalent form of total fitness is W = vB1, where

B is the fitness matrix of total class contributions. The normal matrix

B∗ is transformed into the variant fitness matrix B by making explicit

how variant phenotypes of actors influence recipient fitness. I assume

that mothers control the sex ratio and that mating is random. Thus the

fitness matrix is

B =



0 0 tx0

(1−x∗0 )
(1−t)x0

(1−x∗0 )
sx∗0

1−x∗0 0 ωx1 0
t
2

1−t
2

t(1−x0)
2(1−x∗0 )

(1−t)(1−x0)
2(1−x∗0 )

ω(1−x∗1 )
2 0 ω(1−x1)

2 0

 ,

where unstarred values of sex ratios in the third and fourth columns are

the variant behaviors. There are two phenotypes, x0 and x1, controlled,

respectively, by breeding values g and h. I assume that the traits are un-

correlated in the sense that cross-derivatives with respect to transmitted

breeding value are zero, dx1/dg′ = dx0/dh′ = 0.

Candidate equilibria are obtained by simultaneous solution of

dW/dg′ = dW/dh′ = 0.

This yields the two conditions

v̂0r̂ = v0r

v̂1r̂ = v1r ,
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where I have used inclusive fitness coefficients r̂ and r for relatedness

of mothers to sons and daughters, respectively. In randomly mating

haplodiploids, the coefficients are r̂ = 1 and r = 1/2 (see Section 10.4).

These conditions lead to the solution, given in the same form presented

by Seger (1983) for his “sphecid” model

x∗1 =
3− 4x∗0 − t

2
(
2− 2x∗0 − t

) (11.5)

s
ω
=
(
1− x∗0

) (
2x∗0 − 1

)
(1+ t)

2x∗0
(
2− sx∗0 − t

) .

An alternative form for the first equation clarifies the result

x∗1 =
1
2
− (s/ω)x∗0(

1− x∗0
)
(1+ t)

.

If the spring males do not survive to the summer, s = 0, there is no

male-female asymmetry, and the summer sex ratio is x∗1 = 1/2. From

Eq. (11.5), one can also show that x∗0 = 1/2.

The proportion of spring males that compete in the summer mating

season is s/ω. An increase in this ratio decreases the reproductive value

of males born in the summer. The proportion of males born in the

summer, x∗1 , therefore declines with a rise in s/ω. This decline in the

birth of summer males is matched by a increase in the proportion of

males born in the spring, x∗0 .

In summary, the sex ratio of offspring born in the spring is biased

toward males. The sex ratio of offspring born in the summer is biased

toward females. Mothers of the summer generation contribute only to

the following spring. These summer mothers produce male-biased sex

ratios. Mothers in the spring generation contribute to both the following

summer and spring. These spring mothers make a mixture of male-

biased and female-biased broods.

ALTERNATIVE LIFE HISTORIES AND BIOLOGICAL CONSEQUENCES

The life history above is based on the biology of sphecid wasps. Seger

(1983) also studied an alternative life cycle based on halictid bees. In the

halictid model, three distinct generations of adult females occur in each

year. The spring adults are born and mate in the fall, then survive the

winter to reproduce in the spring. The spring mothers each produce ω
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offspring that mature and reproduce in the summer. The spring moth-

ers also produce some progeny that do not mature until the autumn. Of

the autumn adults, a fraction t comes from the spring mothers and a

fraction 1− t comes from the summer mothers.

The males do not survive the winter; thus there are no males in the

spring season. The spring mothers, who mated in the fall, produce both

males and females for the summer generation. The summer males mate

with the summer females. A fraction s of the summer males survives to

mate with the autumn females. These surviving males from the summer

compete with males that mature in the autumn.

The biology is summarized in a B matrix, which gives the total con-

tribution of each class to other classes

B =



m1 m2 f0 f1 f2
0 0 ωx1 0 0
sû1 0 tx2

1−x∗2
(1−t)x2
1−x∗2 0

0 0 0 0 1
0

ω(1−x∗1 )
2

ω(1−x1)
2 0 0

1−t
2

t
2

t(1−x2)
2(1−x∗2 )

(1−t)(1−x2)
2(1−x∗2 )

0


.

The number of adult females in the autumn is normalized to one. The

top row defines the classes, with subscripts 0, 1 and 2 for the spring,

summer, and autumn generations, respectively. The sex ratios x1 and

x2 are for the fraction of males produced in the summer and fall genera-

tions. Solving for the equilibria is, as always, purely mechanical once the

biology has been clearly specified by a fitness matrix. Seger (1983) gives

the explicit solution. Here I simply summarize Seger’s conclusions.

The generation 1 (summer) males survive with probability s to mate

again in the fall. Thus generation 1 males have added reproductive

value, and the sex ratio is biased toward males in the summer gener-

ation, x∗1 > 1/2. The surviving summer males reduce the reproductive

value of males born in the autumn, causing a female-biased autumnal

sex ratio, x∗2 < 1/2.

A few spring generation females may survive to reproduce again in the

summer. Their daughters, born in the summer, could either reproduce

by themselves or help their mothers raise siblings. Summer mothers,

who contribute to the fall generation, are favored to produce a female-

biased sex ratio, x∗2 < 1/2. A summer daughter, if she nested alone,

would raise mostly her own daughters. If she helped her mother, she
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would raise mostly sisters. A haplodiploid female who mates randomly

is related to her daughters by 1/2. She is, by contrast, related to her

sisters by 3/4 if her mother does not remate (see Section 10.4). Thus,

if her contributions to reproduction have the same value to siblings or

progeny, then she may be favored to help her mother rather than to nest

alone.

The same potential exists in the sphecid model for daughters to help

their mothers. In that case, the spring mothers (generation 0) may sur-

vive to reproduce again in the summer (generation 1). Daughters that

mature in the summer could help their mothers raise offspring for the

following spring. The mother’s favored sex ratio for the spring, x∗0 , is,

however, male biased in that model. A daughter that helps her mother

would be raising mostly brothers. A haplodiploid female is more closely

related to her sons than to her brothers (Section 10.4). Thus the sphecid

life history favors a female to nest alone rather than to aid her mother.

11.5 Transmission of Individual Quality

Variation in individual quality can affect sex expression. For example,

when males compete directly for mating, large males often gain a dispro-

portionate share of reproductive success. Individuals of high quality are

therefore favored to be male, and those of low quality are favored to be

female (Trivers and Willard 1973). I discussed the theory of conditional

sex expression in Section 9.3.

The biological assumptions vary from case to case. But it is conve-

nient to describe the problem from a mother’s point of view with respect

to allocation to sons and daughters. A mother has quality level k, which

influences the quality of offspring she can produce. The quality level

varies among mothers.

The problem is typically formulated by writing reproductive returns

as a function of investment. The returns on investing y in males may

be written as µ(y). Similarly, the returns on investing z in females may

be written as φ(z).
The quality level, k, is a limited resource that can be split between

sons and daughters. A mother with resource level k must therefore

split her resource into a fraction, xk, given to sons, and 1− xk given to

daughters. The functions µ and φ are offspring viability or fecundity.
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The allocation problem is to find x∗k by comparing properly normalized

values of µ(kxk) and φ[k(1− xk)], as outlined in Section 9.3.

Leimar (1996) pointed out that, in some cases, quality is a nondivisible

property that affects all offspring. For example, social status of the

mother may provide a benefit to all offspring, or the quality of the family

territory may equally affect all offspring.

Nondivisible quality does not, by itself, change the main conclusions.

A high-quality mother is favored to produce more of the sex that gains

the most from a quality environment.

Leimar’s (1996) contribution concerns the inheritance of quality. Sup-

pose that a mother with high social status has two effects on her prog-

eny. First, her status provides more resources to her offspring. Second,

status is transmitted to daughters but not to sons.

These two effects may favor opposite patterns of sex allocation. For

example, additional resources to offspring may provide higher fecundity

to sons than to daughters. This difference occurs because with direct

male competition, a few large males may obtain most of the matings in

a group. In terms of offspring fitness, high-quality mothers are favored

to produce sons.

But simply counting the fitness of sons and daughters is not suffi-

cient. The sons will have progeny of average quality, that is, of average

reproductive value. The daughters, who inherit maternal quality, will

themselves have offspring of high quality. Thus daughters produce off-

spring of relatively higher reproductive value. The fitnesses of sons and

daughters must be weighted by these differences in reproductive value.

Leimar (1996) provided an excellent analytical treatment of this prob-

lem. He used the matrix methods of reproductive value (Taylor 1990;

McNamara 1991) that I have developed in Chapter 8. Here I outline one

simple problem to clarify the assumptions. I then show the result ob-

tained by Leimar.

In this case there are only two quality levels, high and low. A mother

produces sons and daughters with the same quality level as her own with

probability α and offspring of opposite quality with probability 1 − α.

Matrilineal inheritance of quality occurs with α > 1/2. For values of

α just above one-half, transmission of quality is weak. As α → 1, the

fidelity of inheritance increases to perfection. Quality affects a son’s

mating success, but he does not transmit his quality to offspring.
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Let µ1 be the mating success of a high-quality son, and µ0 be the

success of a low quality son. The ratio µ = µ1/µ0 is the improvement in

the reproductive success of sons attributable to an increase in quality.

Similarly, let φ1 be the fecundity of a high-quality daughter, and φ0 be

the fecundity of a low-quality daughter. The ratio φ = φ1/φ0 is the

improvement in the reproductive success of daughters attributable to

an increase in quality. Assume µ > φ; that is, assume an increase in

quality provides greater benefit to sons than to daughters. This factor

favors high-quality mothers to produce sons.

High-quality mothers produce a fraction x1 of sons among their prog-

eny. Low-quality mothers produce a fraction of x0 sons. The problem is

to measure how the reproductive advantage of high-quality sons, µ > φ,

compares with the advantage that daughters gain by matrilineal inheri-

tance of quality.

The assumptions are, as always, fully determined by the fitness matrix

A. Once this matrix is specified, the analysis is mechanical, although

perhaps difficult technically. It is convenient to split the matrix into

the contribution of male parents, Am, and the contribution of female

parents, Af , with A = [Am Af ]. First, the contribution of female parents

of low and high quality, f0 and f1, is

Af = 1
2


f0 f1

αφ0x0 (1−α)φ1x1

(1−α)φ0x0 αφ1x1

αφ0 (1− x0) (1−α)φ1 (1− x1)
(1−α)φ0 (1− x0) αφ1 (1− x1)

 ,

where the recipients are, in the order of the rows, sons of low and high

quality, and daughters of low and high quality. The model is diploid,

and the contribution of each parent is weighted by one-half.

The male half of the matrix is

Am = 1
2U


m0 m1

µ0M0 µ1M0

µ0M1 µ1M1

µ0F0 µ1F0

µ0F1 µ1F1

 ,

whereU is the total mating success of all males; thus µi/U is the fraction

of the total mating success by a male of quality i. The terms Mi and Fi
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Figure 11.2 Conditions under which high-quality females are favored to pro-
duce daughters. The surface shows the minimum value of α required to favor
an excess of daughters among high-quality females, from Eq. (11.6). The pa-
rameter α− 1/2 is a measure of matrilineal inheritance. The term µ1/µ0 is the
ratio of reproductive success (RS) for high-quality relative to low-quality males.
The term φ1/φ0 is the same ratio for females.

are the total number of male and female progeny of quality i produced

in the population. The explicit definitions for these terms are

U = µ0û0 + µ1û1

M0 = αφ0x∗0 u0 + (1−α)φ1x∗1 u1

M1 = (1−α) f0x∗0 u0 +αφ1x∗1 u1

F0 = αφ0
(
1− x∗0

)
u0 + (1−α)φ1

(
1− x∗1

)
u1

F1 = (1−α)φ0
(
1− x∗0

)
u0 +αφ1

(
1− x∗1

)
u1,

where u = (û0, û1, u0, u1) are the numbers of males and females of qual-

ity 0 and 1.

Leimar (1996) proceeded by finding the vector of reproductive val-

ues, v, and then calculating the conditions under which high-quality

mothers are favored to produce more daughters than sons, x∗1 < 1/2.

High-quality mothers are favored to produce an excess of daughters only

when matrilineal inheritance, defined by α, is sufficient to offset the fe-

cundity advantage of high-quality sons relative to high-quality daugh-

ters. The fecundity advantage is given by above by µ > φ.

Leimar (1996, Eq. 8) provided the condition on matrilineal inheritance,

α, required to offset the male fecundity advantage. When the following
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condition is satisfied, high-quality mothers are favored to produce an

excess of daughters

α >
1
2
+
(
µ −φ

)
(µ + 1)

2
(
µ +φ

)
(µ − 1)

. (11.6)

The result is illustrated in Fig. 11.2.

11.6 Juveniles of One Sex Help Parents

Offspring sometimes remain with their parents to help raise siblings.

Helpers may stay through the early part of their lives, and then repro-

duce when older. Or the helpers may be a sterile caste, never reproduc-

ing on their own.

In several bird species, the helpers are mostly of one sex. The helpers

typically remain during their first few years of life, and attempt to repro-

duce later. The helpers in many species are male, and the adult sex ratio

is often male biased (Brown 1978; Emlen 1978, 1984). In red-cockaded

woodpeckers, the juvenile males help, and the juvenile sex ratio is male

biased (Gowaty and Lennartz 1985).

The helpers are mostly female in the Seychelles warbler. Juvenile fe-

males that remain on the parental territory increase parental fecundity

when food is plentiful, but reduce fecundity when food is scarce. Moth-

ers bias their sex ratio toward daughters when resources are abundant,

but produce an excess of sons when the food supply is low (Komdeur

et al. 1997).

It appears that the helping sex is more valuable to a mother because

of the return in future fecundity (Trivers and Hare 1976). A few models

have been developed (Emlen et al. 1986; Lessells and Avery 1987). I

present my own version in this section.

The model is, as always, fully described by the fitness matrix A. Let

there be four classes, juveniles and adults for each sex. This model has

the same structure as the earlier analysis of juvenile effects on parental

survival and fecundity (see Simplest Models, p. 147). But here the pheno-

type of interest is the sex ratio controlled by the mother, and the effects

are confined to the influence of daughters on maternal fecundity, given

as

F (x) = n [1+ 2n(1− x)bt/λ] .

A mother has 2n offspring when she has no help, of which she receives

credit for one-half in this diploid model. Her fecundity in the following
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year is increased by interaction with her 2n(1 − x) daughters, where

x is the fraction of sons in each brood, and 1 − x is the fraction of

daughters. Each daughter has an effect b on maternal fecundity. Finally,

the probability that a mother was an adult in the previous year and had

interactions with her daughters is t/λ.

The fitness matrix is

A =


m0 m1 f0 f1
0 x∗F (x∗)α 0 xF (x)
s t 0 0
0 (1− x∗) F (x∗)α 0 (1− x) F (x)
0 0 s t

 .

The parameter s is survival from juvenile to adult stage, and t is adult

survival. I assume random mating; thus male contributions depend on

the normal value of fecundity in the population, F(x∗). A male’s ex-

pected mating success is the number of females per male, α = u1/û1.

The abundance of classes is given by u = (û0, û1, u0, u1), with the hats

denoting male classes.

The population growth rate, λ can be obtained from the characteristic

equation,

λ2 − tλ− 2sF
(
x∗
) (

1− x∗
) = 0.

which, as usual, is most conveniently obtained by assigning all offspring

to adult females. I assume that population growth is controlled to a

constant value λ by adjustment of juvenile survivorship, s.
The class reproductive values are

v̂0 = s
(
1− x∗

)
/x∗

v̂1 = λ
(
1− x∗

)
/x∗

v0 = s

v1 = λ.

The solution is obtained in the usual way

dW
dg′

= v
dA
dg′

u = 0,

which yields

u1v̂0
∂ [xF (x)]

∂x
dx

dg′m
+ u1v0

∂ [(1− x) F (x)]
∂x

dx
dg′f

= 0, (11.7)
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Figure 11.3 Sex ratio produced by mothers when daughters influence future
fecundity. The sex ratio, x∗, is the fraction of sons per brood. The effect of
daughters is T = 2nbt/λ, where 2n is brood size, b is the benefit per newborn
daughter on maternal fecundity in the next year, and t/λ is the probability that
a newborn daughter’s mother will survive to reproduce in the next year. When
b is negative, a daughter reduces maternal fecundity. Note the asymmetry: the
male bias created by negative effects is greater than the female bias created by
positive effects.

where g′m and g′f are the mother’s transmitted breeding values through

male and female offspring. Relatedness between mother and son is r̂ =
dx/dg′m, and relatedness between mother and daughter is r = dx/dg′f .
The model is diploid; therefore r̂ = r , and these terms drop out.

Continuing with the differentiation focuses attention on the change

in maternal fecundity as a function of sex ratio, x∗, which is

F′
(
x∗
) = −nT,

where the prime is differentiation with respect to x, and

T = 2nbt/λ.

Substituting into the condition given in Eq. (11.7) yields the solution as

1− 2x∗ + T
(
1− x∗

) (
1− 4x∗

) = 0.

The solution is illustrated in Fig. 11.3.

The relative reproductive value of male and female offspring in this

model is v̂0/v0 = (1 − x∗)/x∗. This is simply the expected number

of mates per male, an effect that arises in all sex ratio models. Thus

the demographic context does not alter reproductive values and sex ra-

tios in this particular model. Rather, the marginal gains from sons and
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daughters depend on how daughters enhance or retard future maternal

fecundity. These marginal values are the partial derivatives with respect

to x in Eq. (11.7).

Discussions of helpers in birds emphasize demography (e.g., Emlen

1984; Brown 1987). For example, juveniles, living on parental territories,

influence juvenile and adult survivorship as well as parental fecundity.

One must, in addition, consider the evolution of the helping phenotype

in the juvenile. This behavior depends on the opportunities for breeding

alone and the coefficients of relatedness among the various actors and

recipients. The methods outlined in this book provide the opportunity

for formal analysis.

11.7 Multigeneration Colonies

Individuals of some species aggregate into isolated colonies. These colo-

nies last for many generations. Individuals within the colonies compete

for resources or cooperate in the acquisition of new resources. Some

juveniles remain in the colony; others migrate to join another group

or start a new colony. Mating typically occurs within the colony, but

migrants can also mate outside their natal group.

Colonial demography poses many interesting problems for sex alloca-

tion. The maximum growth rate of the colony depends on the number of

females produced in each generation. Colony growth affects the inten-

sity of local competition for resources. In cooperative colonies, group

size affects colony efficiency, survivorship and fecundity.

The first models of colonial structure analyzed demography, mating

pattern, and competition for resources within colonies (Bulmer and Tay-

lor 1980; Wilson and Colwell 1981; Frank 1986c; van Tienderen and

de Jong 1986). The models were then extended to cooperative interac-

tions, in which colony survivorship and fecundity increase as the colony

grows larger (Aviĺes 1986, 1993; Frank 1987a). These cooperative mod-

els were based on social spiders, which form multigeneration colonies

with highly female-biased sex ratios.

Finally, Nagelkerke and Sabelis (1996) extended the theory and ap-

plied their work to the sex ratios of mites. These small arthropods,

which have a variety of colonial structures and patterns of sex ratio

variation, provide an excellent system for tests of colonial sex ratio the-

ory.
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GENERAL FORMULATION

There are many potential demographic and social processes in colo-

nial populations. Several aspects of sex allocation can, however, be ex-

pressed by a simple formulation of cycle fitness.

Assume that a colony is formed by a few individuals of generation

0. These generation 0 mothers reproduce to form the first-generation

progeny. The sex ratio of an individual mother in generation j , produc-

ing the j + 1st generation, is xj , and the average colonial sex ratio in

generation j is yj .
The fitness consequences of individual and colony sex ratios, xj and

yj , can be expressed by three factors. First, the individual and colony

sex ratios in generation j determine the fraction of future progeny that

descend from a generation j female. Second, future progeny must be

discounted by the population growth rate, λ. Finally, the number of

future progeny depends on the fecundity of the colony at each age mul-

tiplied by the probability that the colony will survive to that age. These

factors combine to give the total reproductive value of future progeny

that emigrate to form new generation 0 colonies

wj = f
(
xj, yj

) ∞∑
k=j

λ−jS
(
yk
)
F
(
yk
)
.

The cycle fitness of a female in generation j , with sex ratio xj and colony

sex ratio yj , is given bywj . The function f is the fraction of future colony

offspring that descend from a female with sex ratio xj . The survivorship

of the colony to produce generation k is S(yk), where yk is the vector

of all colony sex ratios for j = 0, . . . , k. The fecundity of the colony in

generation k is F(yk).
If the sex ratio produced in each generation is an independent trait,

then the direction of selection on the sex ratio in the jth generation is

given by dwj/dg′j . Because there are three functions, f , S, and F , this

derivative has three parts by application of the chain rule

dwj

dg′j
= P1 + P2 + P3

where the first part differentiates f , holding S and F constant

P1 =
[
r̃ fxj
(
y∗j , y

∗
j

)
+ R̃fyj

(
y∗j , y

∗
j

)] ∞∑
k=j

λ−jS
(
y∗k
)
F
(
y∗k
)
.
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The terms fxj and fyj are, respectively, the partial derivatives of f with

respect to individual and group sex ratio, evaluated at the normal sex ra-

tio, y∗j . The relatedness coefficient r̃ = dxj/dg′jx is the slope of mother’s

phenotype on her transmitted breeding value to offspring. This is equiv-

alent to the relatedness between mother and offspring. I assume a

diploid model, with symmetric relatedness to sons and daughters. The

coefficient R̃ = dyj/dg′jy is the slope of a randomly chosen mother’s sex

ratio, yj , on the breeding value transmitted to a random offspring in the

group, g′jy . This is equivalent to the relatedness between a mother and

a randomly chosen offspring in the group.

The second and third terms are

P2 = R̃f
(
y∗j , y

∗
j

) ∞∑
k=j

λ−jSyj
(
y∗k
)
F
(
y∗k
)

P3 = R̃f
(
y∗j , y

∗
j

) ∞∑
k=j

λ−jS
(
y∗k
)
Fyj
(
y∗k
)
.

The subscript yj on S and F denotes partial differentiation with respect

to yj . These partial derivatives summarize the viability and fecundity

effects on all future generations for a deviation in the sex ratio in gen-

eration j .

SOCIAL SPIDER EXAMPLE

The method of the prior section is easy to apply once the biology and

associated functional forms are specified. I follow the example given by

Frank (1987a, 1273–1274) for social spiders.

I assume that all mating occurs within the colony. Let the fraction of

the colony that descends from a particular female, with sex ratio xj , in

a colony with sex ratio yj , be proportional to

f
(
xj, yj

)
= xj

yj
+ 1− xj

1− yj
,

which is a form of the Shaw–Mohler equation introduced in Section 9.1.

With this definition, the partial derivative term in P1 is

r̃ fxj + R̃fyj =
(
r̃ − R̃

) 1− 2y∗j
y∗j
(
1− y∗j

) .
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The colony is assumed to grow without sending out emigrants up to

generation g − 1, and then to maintain a stable size and send out emi-

grants in proportion to F(yk) in the following generations. In this partic-

ular example, colony fecundity increases linearly with colony size; that

is, the number of neighboring females neither increases nor decreases

the fecundity per individual. Thus colony fecundity is zero through the

first g − 1 generations. Colony size and fecundity in the following gen-

erations, k ≥ g, are proportional to

F
(
y∗k
) =
N g−1∏

i=0

n
(
1− y∗i

)n (1− y∗k
)
,

where N is the number of founding females in generation 0, and n(1 −
y∗i ) is the number of female offspring in the ith generation of a normal

colony. The term in square brackets is the size that the colony has

achieved during the growth phase, and 1− y∗k is the number of females

produced for dispersal during the reproductive phase. When the sex

ratio deviates from normal only in generation j , then

F
(
yk
) = F

(
y∗k
) 1− yj

1− y∗j
,

and the partial of F with respect to the deviant group sex ratio is

Fyj
(
y∗k
) = −F

(
y∗k
)

1− y∗j
.

Colony survival is also divided into two periods. For colony growth,

during generation k < g, survival in each generation is a function of the

current colony size relative to the size of a mature, normal colony

σ
(
yk
) = δ

 ∏k−1
i=0 n (1− yi)∏g−1
i=0 n

(
1− y∗i

)
ϑ ,

with σ(yk) = δ for k ≥ g. Survival through generation k is therefore

S
(
yk
) = k∏

i=0

σ
(
yi
)
.

When the sex ratio deviates from normal only in generation j < g − 1,

then survival in each generation with k > j is

σ
(
yk
) = σ

(
y∗k
)[ 1− yj

1− y∗j

]ϑ
,
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and survival in generations k ≤ j is σ(y∗k ). Cumulative survival over

generations for k > g − 1 is

S
(
yk
) = S

(
y∗k
)[ 1− yj

1− y∗j

]ϑ(g−1−j)
.

The partial of S with respect to deviant group sex ratio is

Syj
(
y∗k
) = −ϑ (g − 1− j

)
S
(
y∗k
)

1− y∗j
.

The partial derivative is zero for generations j ≥ g − 1.

These terms are used in dwj/dg′j = 0 to solve for the equilibrium sex

ratio produced in generation j . To match the result in Frank (1987a),

define ρ = R̃/r̃ as the value (relatedness) of a mother to a random off-

spring in the group compared with her relatedness to her own offspring.

Using this normalization and solving yields the equilibrium fraction of

sons in each generation

y∗j =
1− ρ

2
(
1+ ργj

) ,
where γj = ϑ(g−1− j) for j < g−1, and zero for j ≥ g−1. This result

can also be written in ratio form as the allocation to males relative to

the allocation to females

1− ρ : 1+ ρ + 2ργj.

The terms 1 − ρ : 1 + ρ match the standard model of local mate com-

petition and inbreeding (see Section 10.2). The value to a mother for

an additional son is discounted by ρ. Here ρ measures the association

between the mother’s phenotype and the transmitted breeding value of

competing mothers who add sons to the local breeding group. The value

for an additional daughter is augmented by ρ. In this case ρ measures

the association between the mother’s phenotype and the transmitted

breeding value of neighboring mothers whose sons gain an extra mate.

The additional term is 2ργj . The term γj measures the increased

survival of the local group provided by an extra daughter in the jth

generation. This increased survival is worth 2ρ, the “2” because the

increase affects the value of both sexes, andρ is a measure of association

(relatedness) that translates marginal gain into net benefit.

See Frank (1987a) for several other assumptions about sex ratio con-

trol and colony fecundity and viability.



12 Conclusions

Now, an observer fresh from Mars might excusably think that

the human mind, inspired by experience, would start analysis

with the relatively concrete and then, as more subtle relations

reveal themselves, proceed to the relatively abstract, that is

to say, to start from dynamic relations and then proceed to

the working out of the static ones. But this has not been so in

any field of scientific endeavor whatsoever: always static the-

ory has historically preceded dynamic theory and the reasons

for this seem to be as obvious as they are sound—static the-

ory is much simpler to work out; its propositions are easier

to prove; and it seems closer to (logical) essentials.

—Joseph A. Schumpeter, History of Economic Analysis

My study of the foundations of social evolution was forced on me by my

empirical interests. Time and again, when analyzing a problem in the

evolution of sex ratio, dispersal, conflict or cooperation, I came across

technical difficulties in building a model and understanding the essen-

tial process. Eventually it became clear that the difficulties were of the

same form. When statics is appropriate, solutions depend on proper

measures of value for use in maximization. When statics fail, the dy-

namics of conflict must be developed.

12.1 Statics

MAXIMIZATION AND MEASURES OF VALUE

The best way to solve static models is to find a measure that is maxi-

mized at equilibrium. The proper metric for natural selection is genetic

market share (fitness). The problem is to determine how traits influ-

ence their own future representation in the population. The effect of

changing traits can be measured by three aspects of value.

Marginal value has its typical economic interpretation, the rate of

change in components of success as a trait changes.
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Reproductive value is similar to the time discount rate for money un-

der the accrual of interest. In biology, discount by time is generalized

to any fitness component with a distinct contribution to future market

share. Fitness components include different kinds of progeny, nonde-

scendant kin, survival, and fecundity.

Value by relatedness turns out to be two separate phenomena (Chap-

ter 4). The first is the role of correlation among social partners. As

the trait of an individual changes, its partners’ traits change at a rate

given by regression coefficients. Thus we can calculate how a change

in individual trait value is associated with changing social environment

and how social environment affects an individual’s fitness. The regres-

sion (kin selection) coefficients summarize statistical information about

partners.

The second aspect of relatedness concerns the fidelity of transmis-

sion. The value of each fitness component must be weighted by the

fidelity by which traits are inherited. This is necessary to measure the

way in which current trait value is associated with future market share.

STATICS IS A METHOD

When a lady visiting [Matisse’s] studio said, “But surely, the

arm of this woman is much too long,” the artist replied po-

litely, “Madame, you are mistaken. This is not a woman, this

is a picture.”

—E. H. Gombrich, Art and Illusion

Perhaps the most common mistake about statics is to assume that it

describes an unchanging, stationary world. Statics is, in fact, a method

for building models and making comparative predictions (Schumpeter

1954; Samuelson 1983). A model clarifies process and exposes to empir-

ical test hypotheses about relations among variables. The assumption

of equilibrium is a gambit—it provides a way forward (Grafen 1991).

12.2 Dynamics

TECHNICAL ISSUES

To solve static models, one constructs a measure perpetually increased

by natural selection. The direction of evolutionary change is described

by a gradient that is (locally) maximized at equilibrium. Equilibrium pro-
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vides an opportunity for comparison—how traits change as particular

parameters are varied.

The gradient formulation, which provides the direction of evolution-

ary change away from equilibrium, invites speculation about dynamics.

Technical issues intrude, however. A model is a partial analysis, not an

accurate description of reality. At equilibrium, the parts excluded often

diminish to zero in their effect, so that statics has a relatively secure log-

ical basis near fixed points. Many problems concerning the shift from

one equilibrium to another can also be studied in this way (Chapter 5).

Away from equilibrium, one has a description of dynamics that is ex-

act for a partial set of factors, but the excluded set is often significant.

One can give up the gambit of perpetual increase for a particular mea-

sure, include more factors, and obtain increased realism. The result is

often technically difficult, harder to understand, and impractical to test

empirically. Hence the enduring role of statics.

CONFLICT AND POWER

Equilibrium analysis fails to capture the essentials of certain problems.

Consider, for example, the conflict between two individuals, or two pop-

ulations. An increase in fitness of one entity requires a decline in fitness

of the other. Fitness gradients define the intensity of the conflict—how

much one side loses when the other gains. The gradients also specify the

equilibria that would occur if one side wholly dominated the interaction.

The crux of the problem is entirely in the dynamics. Toward whose

favor will the system evolve? Will power fluctuate, causing continual

motion? Or can one side gain permanent control, maintaining its opti-

mum (e.g., Trivers and Hare 1976; Krebs and Dawkins 1984; Frank 1989;

Hurst et al. 1996)?

The methods of this book identify the conflict but provide no way

to proceed. To study this problem, I turned my attention for several

years to the coevolution of hosts and parasites (Frank 1993, 1994c). The

conflict is clear. The parasites gain by eating the host; the host gains by

preventing attack. The traits are simple—biochemical recognition and

physical barriers of defense. Data are relatively abundant because of

the biomedical and economic importance of disease.

This is no place to launch a detailed analysis of conflict and its dy-

namics. But my work did provide one conclusion that is perhaps of

general significance (Frank 1997f). I summarize this briefly, both for its
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potential interest in studies of social evolution and as a counterpoint to

the relentlessly static analyses of this book.

The outcome of an interaction between host and parasite often de-

pends on recognition. The host can usually rout a parasite if it can

identify invasion. The parasite succeeds if it escapes detection.

The parasite trait may, for example, be the shape of a surface molecule

that exists in two forms. One form is invisible to the host, but renders

the molecule less useful in its normal, biochemical function. The other

form, improved functionally, is more easily detected. Hosts sometimes

have matching variability. One molecular form is better at recognizing

the visible parasite shape. A different form is better in other biochemical

functions or in recognizing other invaders.

Such a system often lacks a stable equilibrium. Fluctuations depend

on the frequency of the traits in the host and parasite populations, and

the associated rise and fall in the density of surviving hosts and para-

sites. Here the power struggle is over cost in a matched pair of traits.

The less costly the better recognition form is to the host, the more the

parasite is favored to carry its costly, invisible form.

Recognition systems rarely depend on a single matched pair of traits

when there is conflict. The defender scans many independent channels;

the evader flees across this spectrum.

How does the number of channels influence the dynamics of conflict?

The struggle occurs over the entire spectrum when there are few chan-

nels. There may be fluctuations in frequency of traits and density of

defenders and evaders. But the qualitative nature of the battle, defined

by the active spectrum, remains constant over time.

The dynamics change as the number of channels increases. Defenders

can scan effectively only a subset of channels. Evaders avoid the locally

scanned channels; defenders pursue over the spectrum.

The gain and loss of locally novel detection and escape traits control

the dynamics. In host-parasite systems with molecular recognition, the

biochemistry sets the width of the spectrum and the frequency at which

new mutations arise in each channel. Spatial processes influence local

loss by extinction and reintroduction by migration. The biochemistry

and the demography are the attributes of power that determine the out-

come of the struggle. I have supported this view with explicit models of

several host-parasite systems and with a wide range of circumstantial

evidence (Frank 1994c, 1997f).
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Animal communication may often be a coevolutionary arms race anal-

ogous to a host-parasite battle (Dawkins and Krebs 1978; Krebs and

Dawkins 1984). Conflict in communication occurs when the sender and

the receiver of signals have different interests. The type of dynamics

suggested by Dawkins and Krebs seems to depend on the width of the

communication spectrum. But this idea was not developed explicitly.

Guilford and Dawkins (1991) emphasized that the nature of a signal-

ing arms race depends on the physical properties of the signal and the

psychology of the receiver. I would put the matter slightly differently, to

match the host-parasite example. The mechanisms of communication

determine the costs and benefits of alternative traits within each channel

and the width of the communication spectrum. The mechanisms also

set the rate for loss and reintroduction of particular traits, and therefore

the tendency for evolutionary dynamics to be a game of pursuit across

the communication spectrum.

The arms race theory of communication has not been developed by

explicit models. It is difficult to see exactly what is required for the

theory to work. Analogy to the host-parasite models may provide a

broader understanding of the evolutionary dynamics of conflict.
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