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I wish I had the voice of Homer
To sing of rectal carcinoma,
Which kills a lot more chaps, in fact,
Than were bumped off when Troy was sacked.

—J. B. S. Haldane
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1 Introduction

Through failure we understand biological design. Geneticists discover

the role of a gene by studying how a mutation causes a system to fail.

Neuroscientists discover mental modules for face recognition or lan-

guage by observing how particular brain lesions cause cognitive failure.

Cancer is the failure of controls over cellular birth and death. Through

cancer, we discover the design of cellular controls that protect against

tumors and the architecture of tissue restraints that slow the progress

of disease.

Given a particular set of genes and a particular environment, one can-

not say that cancer will develop at a certain age. Rather, failure happens

at different rates at different ages, according to the age-specific inci-

dence curve that defines failure.

To understand cancer means to understand the genetic and environ-

mental factors that determine the incidence curve. To learn about can-

cer, we study how genetic and environmental changes shift the incidence

curve toward earlier or later ages.

The study of incidence means the study of rates. How does a molec-

ular change alter the rate at which individuals progress to cancer? How

does an inherited genetic change alter the rate of progression? How does

natural selection shape the design of regulatory processes that govern

rates of failure?

Over fifty years ago, Armitage and Doll (1954) developed a multistage

theory to analyze rates of cancer progression. That abstract theory

turned on only one issue: ultimate system failure—cancer—develops

through a sequence of component failures. Each component failure,

such as loss of control over cellular death or abrogation of a critical

DNA repair pathway, moves the system one stage along the progression

to disease. Rates of component failure and the number of stages in

progression determine the age-specific incidence curve. Mutations that

knock out a component or increase the rate of transition between stages

shift the incidence curve to earlier ages.

I will review much evidence that supports the multistage theory of

cancer progression. Yet that support often remains at a rather vague
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level: little more than the fact that progression seems to follow through

multiple stages. A divide separates multistage theory from the daily

work of cancer research.

The distance between theory and ongoing research arose naturally.

The theory follows from rates of component failures and age-specific

incidence in populations; most cancer research focuses on the mecha-

nistic and biochemical controls of particular components such as the

cell cycle, cell death, DNA repair, or nutrient acquisition. It is not easy

to tie failure of a particular pathway in cell death to an abstract notion

of the rate of component failure and advancement by a stage in cancer

progression.

In this book, I work toward connecting the great recent progress in

molecular and cellular biology to the bigger problem: how failures in

molecular and cellular components determine rates of progression and

the age-specific incidence of cancer. I also consider how one can use

observed shifts in age-specific incidence to analyze the importance of

particular molecular and cellular aberrations. Shifts in incidence curves

measure changes in failure rates; changes in failure rates provide a win-

dow onto the design of molecular and cellular control systems.

1.1 Aims

The age-specific incidence curve reflects the processes that drive dis-

ease progression, the inheritance of predisposing genetic variants, and

the consequences of carcinogenic exposures. It is easy to see that these

various factors must affect incidence. But it is not so obvious how

these factors alter measurable, quantitative properties of age-specific

incidence.

My first aim is to explore, in theory, how particular processes cause

quantitative shifts in age-specific incidence. That theory provides the

tools to develop the second aim: how one can use observed changes in

age-specific incidence to reveal the molecular, cellular, inherited, and

environmental factors that cause disease. Along the way, I will present

a comprehensive summary of observed incidence patterns, and I will

synthesize the intellectual history of the subject.

I did not arbitrarily choose to study patterns of age-specific incidence.

Rather, as I developed my interests in cancer and other age-related dis-

eases, I came to understand that age-specific incidence forms the nexus
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through which hidden process flows to observable outcome. In this

book, I address the following kinds of questions, which illustrate the

link between disease processes and age-related outcomes.

Faulty DNA repair accelerates disease onset—that is easy enough to

guess—but does poor repair accelerate disease a little or a lot, early in

life or late in life, in some tissues but not in others?

Carcinogenic chemicals shift incidence to earlier ages: one may rea-

sonably measure whether a particular dosage is carcinogenic by whether

it causes a shift in age-specific incidence, and measure potency by the

degree of shift in the age-incidence curve. Why do some carcinogens

cause a greater increase in disease if applied early in life, whereas other

carcinogens cause a greater increase if applied late in life? Why do many

cancers accelerate rapidly with increasing time of carcinogenic expo-

sure, but accelerate more slowly with increasing dosage of exposure?

What processes of disease progression do the chemicals affect, and how

do changes in those biochemical aspects of cells and tissues translate

into disease progression?

Inherited mutations sometimes abrogate key processes of cell cycle

control or DNA repair, leading to a strong predisposition for cancer.

Why do such mutations shift incidence to earlier ages, but reduce the

rate at which cancer increases (accelerates) with age?

Why do the incidences of most diseases, including cancer, accelerate

more slowly later in life? What cellular, physiological, and genetic pro-

cesses of disease progression inevitably cause the curves of death to

flatten in old age?

Inherited mutations shift incidence to earlier ages. How do the par-

ticular changes in age-specific incidence caused by a mutation affect the

frequency of that mutation in the population?

How do patterns of cell division, tissue organization, and tissue re-

newal via stem cells affect the accumulation of somatic mutations in cell

lineages? How do the rates of cell lineage evolution affect disease pro-

gression? How do alternative types of heritable cellular changes, such

as DNA methylation and histone modification, affect progression? How

can one measure cell lineage evolution within individuals?

I will not answer all of these questions, but I will provide a compre-

hensive framework within which to study these problems.

Above all, this book is about biological reliability and biological fail-

ure. I present a full, largely novel development of reliability theory that
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accounts for biological properties of variability, inheritance, and multi-

ple pathways of disease. I discuss the consequences of reliability and

failure rates for evolutionary aspects of organismal design. Cancer pro-

vides an ideal subject for the study of reliability and failure, and through

the quantitative study of failure curves, one gains much insight into

cancer progression and the ways in which to develop further studies of

cancer biology.

1.2 How to Read

Biological analysis coupled with mathematical development can pro-

duce great intellectual synergy. But for many readers, the mixed lan-

guage of a biology-math marriage can seem to be a private dialect un-

derstood by only a few intimates.

Perhaps this book would have been an easier read if I had published

the quantitative theory separately in journals, and only summarized the

main findings here in relation to specific biological problems. But the

real advance derives from the interdisciplinary synergism, diluted nei-

ther on the biological nor on the mathematical side. If fewer can im-

mediately grasp the whole, more should be attracted to try, and with

greater ultimate reward. Progress will ultimately depend on advances

in biology, on advances in the conceptual understanding of reliability

and failure, and on advances in the quantitative analysis and interpre-

tation of data.

I have designed this book to make the material accessible to readers

with different training and different goals. Chapters 2 and 3 provide

background on cancer that should be accessible to all readers. Chapter

4 presents a novel historical analysis of the quantitative study of age-

specific cancer incidence. Chapter 5 gives a gentle introduction to the

quantitative theory, why such theory is needed, and how to use it. That

mathematical introduction should be readable by all.

Chapters 6 and 7 develop the mathematical theory, with much original

work on the fundamental properties of reliability and failure in biologi-

cal systems. Each section in those two mathematical chapters includes a

nontechnical introduction and conclusion, along with figures that illus-

trate the main concepts. Those with allergy to mathematics can glance

briefly at the section introductions, and then move along quickly before
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the reaction grows too severe. The rest of the book applies the quan-

titative concepts of the mathematical chapters, but does so in a way

that can be read with nearly full understanding independently of the

mathematical details.

Chapters 8, 9, and 10 apply the quantitative theory to observed pat-

terns of age-specific incidence. I first test hypotheses about how inher-

ited, predisposing genotypes shift the age-specific incidence of cancer.

I then evaluate alternative explanations for the patterns of age-specific

cancer onset in response to chemical carcinogen exposure. Finally, I an-

alyze data on the age-specific incidence of the leading causes of death,

such as heart disease, cancer, cerebrovascular disease, and so on.

I then turn to various evolutionary problems. In Chapter 11, I evaluate

the population processes by which inherited genetic variants accumu-

late and affect predisposition to cancer. Chapters 12 and 13 discuss

how somatic genetic mutations arise and affect progression to disease.

For somatic cell genetics, the renewal of tissues through tissue-specific

adult stem cells plays a key role in defining the pattern of cell lineage

history and the accumulation of somatic mutations. Chapter 14 finishes

by describing empirical methods to study cell lineages and the accumu-

lation of heritable change.

The following section provides an extended summary of each chap-

ter. I give those summaries so that readers with particular interests

can locate the appropriate chapters and sections, and quickly see where

I present specific analyses and conclusions. The extended summaries

also allow one to develop a customized reading strategy in order to fo-

cus on a particular set of topics or approaches. Many readers will prefer

to skip the summaries for now and move directly to Chapter 2.

1.3 Chapter Summaries

Part I of the book provides background in three chapters: incidence,

progression, and conceptual foundations. Each chapter can be read in-

dependently as a self-contained synthesis of a major topic.

Chapter 2 describes the age-specific incidence curve. That failure

curve defines the outcome of particular genetic, cellular, and environ-

mental processes that lead to cancer. I advocate the acceleration of

cancer as the most informative measure of process: acceleration mea-

sures how fast the incidence (failure) rate changes with age. I plot the
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incidence and acceleration curves for 21 common cancers. I include

in the Appendix detailed plots comparing incidence between the 1970s

and 1990s, and comparing incidence between the USA, Sweden, England,

and Japan. I also compare incidence between males and females for the

major cancers.

I continue Chapter 2 with summaries of incidence of major child-

hood cancers and of inherited cancers. I finish with a description of

how chemical carcinogens alter age-specific incidence. Taken together,

this chapter provides a comprehensive introduction to the observations

of cancer incidence, organized in a comparative way that facilitates anal-

ysis of the factors that determine incidence.

Chapter 3 introduces cancer progression as a sequence of failures

in components that regulate cells and tissues. I review the different

ways in which the concept of multistage progression has been used in

cancer research. I settle on progression in the general sense of devel-

opment through multiple stages, with emphasis on how rates of failure

for individual stages together determine the observed incidence curve.

I then describe multistage progression in colorectal cancer, the clearest

example of distinct morphological and genetical stages in tumor de-

velopment. Interestingly, colorectal cancer appears to have alternative

pathways of progression through different morphological and genetic

changes; the different pathways are probably governed by different rate

processes.

The second part of Chapter 3 focuses on the kinds of physical changes

that occur during progression. Such changes include somatic mutation,

chromosomal loss and duplication, genomic rearrangements, methy-

lation of DNA, and changes in chromatin structure. Those physical

changes alter key processes, resulting, for example, in a reduced ten-

dency for cell suicide (apoptosis), increased somatic mutation and chro-

mosomal instability, abrogation of cell-cycle checkpoints, enhancement

of cell-cycle accelerators, acquisition of blood supply into the develop-

ing tumor, secretion of proteases to digest barriers against invasion of

other tissues, and neglect of normal cellular death signals during mi-

gration into a foreign tissue. I finish with a discussion of how changes

accumulate over time, with special attention to the role of evolving cell

lineages throughout the various stages of tumor development.

Chapter 4 analyzes the history of theories of cancer incidence. I start

with the early ideas in the 1920s about multistage progression from
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chemical carcinogenesis experiments. I follow with the separate line of

mathematical multistage theory that developed in the 1950s to explain

the patterns of incidence curves. Ashley (1969a) and Knudson (1971)

provided the most profound empirical test of multistage progression.

They reasoned that if somatic mutation is the normal cause of progres-

sion, then individuals who inherit a mutation would have one less step

to pass before cancer arises. By the mathematical theory, one less step

shifts the incidence curve to earlier ages and reduces the slope (accel-

eration) of failure. Ashley (1969a) compared incidence in normal indi-

viduals and those who inherit a single mutation predisposing to colon

cancer: he found the predicted shift in incidence to earlier ages among

the predisposed individuals. Knudson (1971) found the same predicted

shift between inherited and noninherited cases of retinoblastoma.

I continue Chapter 4 with various developments in the theory of multi-

stage progression. One common argument posits that somatic mutation

alone pushes progression too slowly to account for incidence; however,

the actual calculations remain ambiguous. Another argument empha-

sizes the role of clonal expansion, in which a cell at an intermediate

stage divides to produce a clonal population that shares the changes

suffered by the progenitor cell. The large number of cells in a clonal

population raises the target size for the next failure that moves pro-

gression to the following stage. I then discuss various consequences

of cell lineage history and processes that influence the accumulation of

change in lineages. I end by returning to the somatic mutation rate, and

how various epigenetic changes such as DNA methylation or histone

modification may augment the rate of heritable change in cell lineages.

Part II turns to the dynamics of progression and the causes of the in-

cidence curve. I first present extensive, original developments of multi-

stage theory. I then apply the theory to comparisons between differ-

ent genotypes that predispose to cancer and to different treatments of

chemical carcinogens. I also apply the quantitative theory of age-specific

failure to other causes of death besides cancer; the expanded analysis

provides a general theory of aging.

Chapter 5 sets the background for the quantitative analysis of inci-

dence. Most previous theory fit specific models to the data of incidence

curves. However, fitting models to the data provides almost no insight;
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such fitting demonstrates only sufficient mathematical malleability to

be shaped to particular observations. A good framework and properly

formulated hypotheses express comparative predictions: how incidence

shifts in response to changes in genetics and changes in the cellular

mechanisms that control rates of progression. This book strongly em-

phasizes the importance of comparative hypotheses in the analysis of

incidence curves and the mechanisms that protect against failure.

I continue Chapter 5 with the observations of incidence to be ex-

plained. I follow with simple formulations of theories to introduce the

basic approach and to show the value of quantitative theories in the

analysis of cancer. I finish with technical definitions of incidence and

acceleration, the fundamental measures for rates of failure and how fail-

ure changes with age.

Chapters 6 and 7 provide full development of the quantitative theory

of incidence curves. Each section begins with a summary that explains in

plain language the main conceptual points and conclusions. After that

introduction, I provide mathematical development and a visual presen-

tation in graphs of the key predictions from the theory.

In Chapters 6 and 7, I include several original mathematical models

of incidence. I developed each new model to evaluate the existing data

on cancer incidence and to formulate appropriate hypotheses for future

study. These chapters provide a comprehensive theory of age-specific

failure, tailored to the problem of multistage progression in cell lin-

eages and in tissues, and accounting for inherited and somatic genetic

heterogeneity. I also relate the theory to classical models of aging given

by the Gompertz and Weibull formulations. Throughout, I emphasize

comparative predictions. Those comparative predictions can be used

to evaluate the differences in incidence curves between genotypes or

between alternative carcinogenic environments.

Chapter 8 uses the theory to evaluate shifts in incidence curves be-

tween individuals who inherit distinct predisposing genotypes. I begin

by placing two classical comparisons between inherited and noninher-

ited cancer within my quantitative framework. The studies of Ashley

(1969a) on colon cancer and Knudson (1971) on retinoblastoma made

the appropriate comparison within the multistage framework, demon-

strating that the inherited cases were born one stage advanced relative to

the noninherited cases. I show how to make such quantitative compar-

isons more simply and to evaluate such comparisons more rigorously,
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easing the way for more such quantitative comparisons in the evalua-

tion of cancer genetics. Currently, most research compares genotypes

only in a qualitative way, ignoring the essential information about rates

of progression.

I continue Chapter 8 by applying my framework for comparisons be-

tween genotypes to data on incidence in laboratory populations of mice.

In one particular study, the mice had different genotypes for mismatch

repair of DNA lesions. I show how to set up and test a simple compara-

tive hypothesis about the relative incidence rates of various genotypes in

relation to predictions about how aberrant DNA repair affects progres-

sion. This analysis provides a guide for the quantitative study of rates

of progression in laboratory experiments. I finish this chapter with a

comparison of breast cancer incidence between groups that may differ

in many predisposing genes, each of small effect. Such polygenic in-

heritance may explain much of the variation in cancer predisposition. I

develop the quantitative predictions of incidence that follow from the

theory, and show how to make appropriate comparative tests between

groups that may have relatively high or low polygenic predisposition.

The existing genetic data remain crude at present. But new genomic

technologies will provide rapid increases in information about predis-

posing genetics. My quantitative approach sets the framework within

which one can evaluate the data that will soon arrive.

Chapter 9 compares incidence between different levels of chemical

carcinogen exposure. Chemical carcinogens add to genetics a second

major way in which to test comparative predictions about incidence in

response to perturbations in the underlying mechanisms of progres-

sion. I first discuss the observation that incidence rises more rapidly

with duration of exposure to a carcinogen than with dosage. I focus on

the example of smoking, in which incidence rises with about the fifth

power of the number of years of smoking and about the second power

of the number of cigarettes smoked. This distinction between duration

and dosage, which arises in studies of other carcinogens, sets a clas-

sic puzzle in cancer research. I provide a detailed evaluation of several

alternative hypotheses. Along the way, I develop new quantitative anal-

yses to evaluate the alternatives and facilitate future tests.

The next part of Chapter 9 develops the second classic problem in

chemical carcinogenesis, the pattern of incidence after the cessation of

carcinogen exposure. In particular, lung cancer incidence of continuing
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cigarette smokers increases with approximately the fifth power of the

duration of smoking, whereas incidence among those who quit remains

relatively flat after the age of cessation. I provide a quantitative analysis

of alternative explanations. Finally, I argue that laboratory studies can

be particularly useful in the analysis of mechanisms and rates of pro-

gression if they combine alternative genotypes with varying exposure to

chemical carcinogens. Genetics and carcinogens provide different ways

of uncovering failure and therefore different ways of revealing mecha-

nism. I describe a series of hypotheses and potential tests that combine

genetics and carcinogens.

Chapter 10 analyzes age-specific incidence for the leading causes of

death. I evaluate the incidence curves for mortality in light of the multi-

stage theories for cancer progression. This broad context leads to a

general multicomponent reliability model of age-specific disease. I pro-

pose two quantitative hypotheses from multistage theory to explain the

mortality patterns. I conclude that multistage reliability models will de-

velop into a useful tool for studies of mortality and aging.

Part III discusses evolutionary problems. Cancer progresses by the

accumulation of heritable change in cell lineages: the accumulation of

heritable change in lineages is evolutionary change.

Heritable variants trace their origin back to an ancestral cell. If the

ancestral cell of a variant came before the most recent zygote, then the

individual inherited that variant through the parental germline. The

frequency of inherited variants depends on mutation, selection, and the

other processes of population genetics. If the ancestral cell of a variant

came within the same individual, after the zygote, then the mutation

arose somatically. Somatic variants drive progression within an individ-

ual.

Chapter 11 focuses on germline variants that determine the inher-

ited predisposition to cancer. I first review the many different kinds

of inherited variation, and how each kind of variation affects incidence.

Variation may, for example, be classified by its effect on a single lo-

cus, grouping together all variants that cause loss of function into a

single class. Or variation may be measured at particular sites in the

DNA sequence, allowing greater resolution with regard to the origin of
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variants, their effects, and their fluctuations in frequency. With resolu-

tion per site, one can also evaluate the interaction between variants at

different sites. I then turn around the causal pathway: the phenotype

of a variant—progression and incidence—influences the rate at which

that variant increases or decreases within the population. The limited

data appear to match expectations: variants that cause a strong shift

of incidence to earlier ages occur at low frequency; variants that only

sometimes lead to disease occur more frequently.

I finish Chapter 11 by addressing a central question of biomedical ge-

netics: Does inherited disease arise mostly from few variants that occur

at relatively high frequency in populations or from many variants that

each occur at relatively low frequency? Inheritance of cancer provides

the best opportunity for progress on this key question.

Chapter 12 focuses on somatic variants. Mitotic rate drives the origin

of new variants and the relative risk of cancer in different tissues. For

example, epithelial tissues often renew throughout life; about 80–90%

of human cancers arise in epithelia. The shape of somatic cell lineages

in renewing tissues affects how variants accumulate over time. Rare

stem cells divide occasionally, each division giving rise on average to

one replacement stem cell for future renewal and to one transit cell.

The transit cell undergoes multiple rounds of division to produce the

various short-lived, differentiated cells. Each transit lineage soon dies

out; only the stem lineage remains over time to accumulate heritable

variants. I review the stem-transit architecture of cell lineages in blood

formation (hematopoiesis), gastrointestinal and epidermal renewal, and

in sex-specific tissues such as the sperm, breast, and prostate.

I finish Chapter 12 by analyzing stem cells divisions and the origin

of heritable variations. In some cases, stem cells divide asymmetrically,

one daughter determined to be the replacement stem cell, and the other

determined to be the progenitor of the short-lived transit lineage. New

heritable variants survive only if they segregate to the daughter stem

cell. Recent studies show that some stem cells segregate old DNA tem-

plate strands to the daughter stem cells and newly made DNA copies

to the transit lineage. Most replication errors probably arise on the

new copies, so asymmetric division may segregate new mutations to

the short-lived transit lineage. This strategy reduces the mutation rate

in the long-lived stem lineage, a mechanism to protect against increased

disease with age.
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Chapter 13 analyzes different shapes of cell lineages with regard to

the accumulation of heritable change and progression to cancer. In de-

velopment, cell lineages expand exponentially to produce the cells that

initially seed a tissue. By contrast, once the tissue has developed, each

new mutation usually remains confined to the localized area of the tis-

sue that descends directly from the mutated cell. Because mutations

during development carry forward to many more cells than mutations

during renewal, a significant fraction of cancer risk may be determined

in the short period of development early in life. Once the tissue forms

and tissue renewal begins, the particular architecture of the stem-transit

lineages affects the accumulation of heritable variants. I analyze vari-

ous stem-transit architectures and their consequences. Finally, I discuss

how multiple stem cells sometimes coexist in a local pool to renew the

local patch of tissue. The long-term competition and survival of stem

cells in a local pool determine the lineal descent and survival of heritable

variants.

Chapter 14 describes empirical methods to study cell lineages and

the accumulation of heritable change. Ideally, one would measure her-

itable diversity among a population of cells and reconstruct the cell

lineage (phylogenetic) history. Historical reconstruction estimates, for

each variant shared by two cells, the number of cell divisions back to the

common ancestral cell in which the variant originated. Current studies

do not achieve such resolution, but do hint at what will soon come with

advancing genomic technology. The current studies typically measure

variation in a relatively rapidly changing aspect of the genome, such

as DNA methylation or length changes in highly repeated DNA regions.

Such studies of variation have provided insight into the lineage history

of clonal succession in colorectal stem cell pools and the hierarchy of

tissue renewal in hair follicles. Another study has indicated that greater

diversity among lineages within a precancerous lesion correlate with a

higher probability of subsequent progression to malignancy.

I finish Chapter 14 with a discussion of somatic mosaicism, in which

distinct populations of cells carry different heritable variants. Mosaic

patches may arise by a mutation during development or by a mutation

in the adult that spreads by clonal expansion. Mosaic patches sometimes

form a field with an increased risk of cancer progression, in which mul-

tiple independent tumors may develop. Advancing genomic technology

will soon allow much more refined measures of genetic and epigenetic
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mosaicism. Those measures will provide a window onto cell lineage his-

tory with regard to the accumulation of heritable change—the ultimate

explanation of somatic evolution and progression to disease.

Chapter 15 summarizes and draws conclusions.





PART I

BACKGROUND





2 Age of Cancer
Incidence

Perturbations of the genetic and environmental causes of cancer shift

the age-specific curves of cancer incidence. We understand cancer to

the extent that we can explain those shifts in incidence curves. In this

chapter, I describe the observed age-specific incidence patterns. The

following chapters discuss what we can learn about process from these

patterns of cancer incidence.

The first section introduces the main quantitative measures of cancer

incidence at different ages. The standard measure is the incidence of

a cancer at each age, plotted as the logarithm of incidence versus the

logarithm of age. Many cancers show an approximately linear relation

between incidence and age on log-log scales. I also plot the derivative

(slope) of the incidence curves, which gives the acceleration of cancer

incidence at different ages. The patterns of acceleration provide partic-

ularly good visual displays of how cancer incidence changes with age,

giving clues about the underlying processes of cancer progression in

different tissues.

The second section presents the incidence and acceleration plots for

21 different adulthood cancers. I compare the patterns of incidence and

acceleration for 1993–1997 in the USA, England, Sweden, and Japan, and

for 1973–1977 in the USA. Comparisons between locations and time pe-

riods highlight those aspects of cancer incidence that tend to be stable

over space and time and those aspects that tend to vary. For exam-

ple, many of the common cancers show declining acceleration with age:

cancer incidence rises with age, but the rise occurs more slowly in later

years.

The third section describes the different patterns of incidence in the

common childhood cancers. The incidence of several childhood cancers

does not accelerate or decelerate during the ages of highest incidence.

Zero acceleration may be associated with a genetically susceptible group

of individuals, each requiring only a single additional key event to lead

to cancer. That single event may happen anytime during early life when

the developing tissues divide rapidly, causing incidence to be equally

likely over the vulnerable period.
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The fourth section turns to incidence patterns in individuals that

carry a strong genetic predisposition to cancer. Individuals carrying

a mutation in the APC gene have colon cancer at a rate about three to

four orders of magnitude higher than normal individuals, causing most

of the susceptible individuals to suffer cancer by midlife. Susceptible

individuals have an acceleration curve similar in shape to normal indi-

viduals, but shifted about 25 years earlier and slightly lower in average

acceleration. Individuals carrying an Rb mutation have retinoblastoma

at a rate about five orders of magnitude greater than normal individuals.

This difference is consistent with the theory that two Rb mutations are

the rate-limiting steps in transformation for this particular cancer, the

susceptible individuals already having one of the necessary two steps.

The fifth section discusses how carcinogens alter the incidence of can-

cer at different ages. The best data on human cancers come from stud-

ies of people who quit smoking at different ages. Longer duration of

smoking strongly increases the incidence of lung cancer. Interestingly,

among nonsmokers, the acceleration of cancer does not change as indi-

viduals grow older, whereas among smokers, the acceleration tends to

rise in midlife and then fall later in life. I also discuss incidence data

from laboratory studies that apply carcinogens to animals. These stud-

ies show remarkably clear relationships between incidence and dose.

Dose-response patterns provide clues about how mechanistic perturba-

tions to carcinogenesis shift quantitative patterns of incidence.

The sixth section examines the different patterns of incidence be-

tween the two sexes. Males have slightly more cancers early in life.

From approximately age 20 to 60, females have more cancers, mainly

because breast cancer rises in incidence earlier than the other major

adulthood cancers. After age 60, during the period of greatest cancer

incidence, males have more cancers than females, male incidence ris-

ing to about twice female incidence. The excess of male cancers late in

life occurs mainly because of sharp rises in male incidence for prostate,

lung, and colon cancers. Male cancers accelerate more rapidly with age

than do female cancers for lung, colon, bladder, melanoma, leukemia,

and thyroid. Female cancers accelerate more rapidly for the pancreas,

esophagus, and liver, but the results for those tissues are mixed among

samples taken from different countries.
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Figure 2.1 Age-specific cancer incidence and acceleration. (a,b) Age-specific
incidence, the number of cancer cases for each age per 100,000 population on
a log-log scale, aggregated over all types of cancer. For example, a value of 3 on
the y axis corresponds to 103 = 1,000 cancer cases per year, or 1 percent of the
population of a given age. Circles show the data, which are tabulated in five-year
intervals. I fit curves to the data with the smooth.spline function of the R statis-
tical language, using a smoothing parameter of 0.4 (R Development Core Team
2004). (c,d) Age-specific acceleration, which is the slope (derivative) of the age-
specific incidence plot at each age. I obtained the derivatives from the smoothed
splines fit in the incidence plots. (e,f) The acceleration plots in the row above
are transformed by changing the age axis to a linear scale to spread the ages
more evenly. Data are for individuals classified racially as whites in the SEER
database for USA cancer incidence, years 1973–2001 (http://seer.cancer.gov/).

2.1 Incidence and Acceleration

Age-specific incidence is the number of cancer cases per year in a

particular age group divided by the number of people in that age group.

Figure 2.1a,b shows age-specific incidence for USA males and females
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plotted on logarithmic scales. For many types of cancer, incidence tends

to increase approximately logarithmically with age (Armitage and Doll

1954), which can be represented as I = ctn−1, where I is incidence, t
is age, n − 1 is the rate of increase, and c is a constant. If we take the

logarithm of this expression, we have log(I) = log(c) + (n − 1) log(t).
Thus, a log-log plot of log(I) versus log(t) is a straight line with a slope

of n− 1.

The plots of actual cancer data rarely give perfectly straight lines on

log-log scales. The ways in which cancer incidence departs from log-

log linearity provide interesting information (Armitage and Doll 1954;

Cook et al. 1969; Moolgavkar 2004). For example, Figure 2.1a shows

the number of new cases among males per year. This is a rate, just

as the number of meters traveled per hour is a rate of motion. If we

take the slope of a rate, we get a measure of acceleration. Figure 2.1c

plots the slope taken at each point of Figure 2.1a, giving the age-specific

acceleration of cancer (Frank 2004b). If cancer accelerated at the same

pace with age, causing Figure 2.1a to be a straight line with slope n −
1, then acceleration would be constant over all ages, and the plot in

Figure 2.1c would be a flat line with zero slope and a value of n − 1 for

all ages.

Figure 2.1e takes the age-specific acceleration in Figure 2.1c and re-

scales the age axis to be linear instead of logarithmic. I do this to spread

the ages more evenly, which makes it easier to look at patterns in the

data.

The age-specific acceleration for males in Figure 2.1e shows that can-

cer incidence accelerates at an increasing rate up to about age 50; af-

ter 50, when most cancers occur, the acceleration declines nearly lin-

early. The acceleration plot for females in Figure 2.1f also shows a lin-

ear decline, starting at an earlier age and declining more slowly than

for males. The acceleration plots provide very useful complements to

the incidence plots, because changes in acceleration suggest how cancer

may be progressing within individuals at different ages (Frank 2004b).

2.2 Different Cancers

There is a vast literature on descriptive epidemiology (Adami et al.

2002; Parkin et al. 2002). Those studies examine cancer incidence at
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Figure 2.2 Age-specific incidence for different cancers. The curves were calcu-
lated with the same database and methods as the top row of plots in Figure 2.1.
Male cases are shown by solid lines, female cases by dashed lines. Abbrevia-
tions: Oral.phr for oral-pharyngeal cancer; NH.lymph for non-Hodgkin’s lym-
phoma; and Esphags for esophageal cancer.

different times, under different environmental exposures, and in differ-

ent ethnic groups. Here, I intend only to introduce the kinds of data
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Figure 2.3 Age-specific acceleration for different cancers. The curves were
calculated with the same database and methods as the bottom row of plots
in Figure 2.1. Male cases are shown by solid lines, female cases by dashed
lines. Abbreviations: Oral.phr for oral-pharyngeal cancer; NH.lymph for non-
Hodgkin’s lymphoma; and Esphags for esophageal cancer.

that occur, and to show some of the broad patterns that will be useful

in discussing the underlying molecular and cellular processes.
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Figure 2.2 plots age-specific incidence for different cancers in the USA.

Solid lines show male incidences, and dashed lines show female inci-

dences. Figure 2.3 plots the age-specific accelerations. I find it useful

to look at both incidence and acceleration: incidence describes the fre-

quency of cancer at different ages; acceleration describes how rapidly

incidence changes with age at different times of life.

The acceleration plots in Figure 2.3 show nearly universal positive ac-

celeration for these adult cancers, which means that incidence increases

with age. Interestingly, the accelerations, although positive, often de-

cline late in life (Frank 2004b). I discuss possible explanations for the

late-life decline in acceleration in the following chapters.

Cancer incidence changes over time for people born in different years,

perhaps because they have different lifestyles or environmental expo-

sures (Greenlee et al. 2000). Cancer incidence also varies in different ge-

ographic locations (Parkin et al. 2002). To illustrate patterns in different

times and locations, The Appendix compares incidence and acceleration

of the common cancers in the USA in two time periods, 1973–1977 and

1993–1997, and in England, Sweden, and Japan in 1993–1997 (Figures

A.1–A.12).

2.3 Childhood Cancers

Inherited genetic defects sometimes cause tumors in very young chil-

dren (Ries et al. 1999). For example, bilateral retinoblastoma is inherited

in an autosomal dominant manner (Knudson 1971). Nearly all carriers

develop cancer. The early incidence and the decline in incidence with age

(Figure 2.4) occur because most cell divisions in the developing retina

happen in the first few years of life, and because incidence declines as

the onset of disease depletes the number of susceptible but previously

unaffected carriers. Unilateral retinoblastoma arises mainly in geneti-

cally normal individuals. The decline in incidence with age happens in

accord with the decline in cell division in the susceptible tissue.

In testicular cancer, the early cases up to age four appear similar

in pattern to the inherited early syndromes, whereas after puberty the

number of cases accelerates at ages during which cell division greatly

increases (Figure 2.4). Osteosarcomas increase in incidence during the

ages of rapid bone elongation; these cancers decline in frequency after

the teen years, with the decline in cellular division that accompanies



24 CHAPTER 2

Figure 2.4 Age-specific incidence of childhood cancers on log-log scales. Inci-
dence is given as log10 of the number of cases per one million population per
year. Data from Ries et al. (1999) for both sexes and all races from the USA. Cir-
cles show the actual data; lines show curves fit by the smooth.spline function
of R with a smoothing parameter of 0.4 (R Development Core Team 2004).

cessation of growth. Carcinomas mostly increase in incidence through-

out life, because the epithelial cells continue to divide and renew those

tissues at all ages.

The acceleration patterns for these cancers provide an interesting

view of changes in incidence with age (Figure 2.5). The inherited syn-

dromes have accelerations near zero or below, with a tendency to decline

with age. Teen onset testicular cancer and osteosarcoma have declining
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Figure 2.5 Age-specific acceleration of childhood cancers. Calculated as the
slopes of the fitted splines in Figure 2.4.

accelerations, whereas carcinomas have increasing acceleration in the

teen years.

2.4 Inheritance

Genetically predisposed individuals develop cancer earlier in life than

do normal individuals. Ideally, we would compare age-specific inci-

dences for different genotypes to measure how genes affect the onset

of cancer.

Three problems arise in analyzing age-specific incidence curves for

particular genotypes. First, currently available sample sizes tend to be

small, so that we get only a rough idea of the age distribution of cases
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for particular kinds of genetic predisposition. Second, individuals with

genetic predisposition are often identified by their cancers or the can-

cers of family members, causing the sample of genetically predisposed

individuals to be biased and incomplete. Third, because we often do

not know the base population for individuals with particular genetic

tendencies, we usually cannot directly calculate incidence—the ratio of

cases relative to the total number of individuals with a particular genetic

predisposition over a particular time interval.

Studies vary in the extent to which they suffer from one or more of

these sampling problems. Measurements will improve as better genomic

techniques allow screening larger samples of individuals in an unbiased

way. For now, we can look at the existing studies to get a sense of what

patterns may arise.

The plots in Figures 2.4 and 2.5 use all individuals of a particular age

as the base population, measuring incidence as the number of cases di-

vided by the number of individuals in the base population. But many

of those cases arose among a small subpopulation of individuals who

carried particular genetic defects. It would be better to measure inci-

dence and acceleration against the correct base population of carriers

at risk for the disease. The following two examples show that, for high

penetrance inherited genetic defects that lead to particular cancers, one

can approximate the base population by assuming that a fixed fraction

of carriers eventually develops the disease (Frank 2005).

Familial adenomatous polyposis (FAP) occurs in individuals who carry

one mutated copy of the APC gene (Kinzler and Vogelstein 2002). This

form of colon cancer can be identified during examination and distin-

guished from sporadic colon cancers. Figure 2.6a,b compares the inci-

dence and acceleration for inherited and sporadic (nonfamilial) cases.

Retinoblastoma occurs as an inherited cancer in children who carry

one mutated copy of the Rb gene (Newsham et al. 2002). Inherited cases

often develop multiple tumors, usually at least one in each eye (bilateral).

Retinoblastoma also occurs as a sporadic cancer, usually with only a sin-

gle tumor in one eye (unilateral). Figure 2.6c,d compares the incidence

and acceleration for inherited and sporadic cases.

The comparison between inherited and sporadic forms illustrates the

role of genetics; the comparison between colon cancer and retinoblas-

toma illustrates the role of tissue development and the timing of cell

division. I will return to these data in later chapters, where I consider
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Figure 2.6 Comparison of incidence and acceleration between inherited and
sporadic cancers. Incidence is given as log10 of the number of cases per one
million population per year. Solid lines show inherited forms; dashed lines show
sporadic forms. (a,b) I calculated FAP incidence by analyzing the age distribu-
tion of 129 cases combined for males and females as summarized in Ashley
(1969a), from data originally presented by Veale (1965). Mutated APC alleles
have very high penetrance for FAP, so the incidence at each age can be measured
as the number of cases in an age interval divided by the fraction of individuals
who had not developed the disease at earlier ages and ultimately did develop
the disease. For the sporadic form, I used the incidence of colorectal cancers
from the SEER database combined for white males and females from the period
1973–1977. (c,d) Inherited and sporadic forms of retinoblastoma. For the in-
herited form, I used 221 reported bilateral cases taken directly from the SEER
database for 1973–2001. To estimate age-specific incidence, I assumed that
65 percent of carriers eventually developed bilateral tumors, based on the es-
timated penetrance for bilateral retinoblastoma given in Knudson (1971). The
incidence in each year is approximately the fraction of cases in that year di-
vided by the fraction of individuals in the sample who had not developed the
disease in earlier years. For the sporadic form, I used the reported incidence
of unilateral cases in Young et al. (1999), which is also from the SEER database.
However, the SEER data do not differentiate between sporadic and hereditary
unilateral cases. Based on Knudson (1971), about 75 percent of unilateral cases
are sporadic cancers and about 25 percent arise from carriers who inherit a
mutation. Incidence plots (a,c) from Frank (2005).
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Figure 2.7 Age of lymphoma onset in mice with different mismatch repair
genotypes: Mlh3, dashed line; Pms2, dot-dashed line; Mlh1, solid line; and
Mlh3Pms2, dotted line. For each genotype, both alleles at each locus were
knocked out. Data presented as traditional Kaplan-Meier plots, which show
the fraction of mice without tumors at each age. Figure modified from Frank
et al. (2005).

various hypotheses to explain these incidence and acceleration patterns.

The retinoblastoma data have been particularly important in under-

standing how inherited and somatic mutations influence cancer progres-

sion (Knudson 1993).

Many recent laboratory studies compare the age-onset patterns of

cancer between mice with different genotypes. These controlled exper-

iments provide a clearer picture of the role of inherited genetic differ-

ences than do the uncontrolled comparisons between humans with dif-

ferent inherited mutations. However, most of the mouse studies have

small sample sizes, making it difficult to obtain good estimates for age-

onset patterns.

Figure 2.7 compares the age-onset patterns of tumors between mice

with different DNA mismatch repair (MMR) genes knocked out. The fig-

ure presents Kaplan-Meier survival plots, the traditional way in which

such data are reported. These plots show an association between the

increase in mutation rate for defective MMR genes and a shift to earlier

ages of tumor onset, in which the ordering of mutation rate is: Mlh3 <

Pms2 < Mlh1 ≈ Mlh3Pms2 (Frank et al. 2005).

Analyses of laboratory experiments usually do not extract the quan-

titative information about age-specific incidence and acceleration from

survival plots. Thus, such experiments leave unanalyzed much of the
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information about how particular genotypes affect the dynamics of pro-

gression. In later chapters, I show how to extract quantitative informa-

tion from the traditional survival plots and use that information to test

hypotheses about how genetic variants affect the dynamics of cancer

progression (Frank et al. 2005).

2.5 Carcinogens

Carcinogens alter age-specific incidence patterns. The extent to which

incidence patterns change depends on the dosage and the duration of

exposure, and also on the age at which an individual is exposed (Druck-

rey 1967; Peto et al. 1991). The ways in which carcinogens change age-

specific incidence may provide clues about the processes that cause can-

cer.

Most of the data on carcinogens come from studies of lab animals

because, of course, one cannot apply carcinogens to humans in a con-

trolled way. In later chapters, I will provide a more extensive discussion

of the experimental data on carcinogens in relation to various hypothe-

ses about the processes that lead to cancer. Here, I continue my empha-

sis on the patterns of incidence.

Figure 2.8 shows the best data available for carcinogen exposure in

humans: the effect on lung cancer of different durations of smoking.

As expected, the later the age at which individuals quit, the higher their

mortality (Figure 2.8a). Interestingly, the acceleration of lung cancer is

fairly constant for nonsmokers, with a slope of the log-log incidence

plot for nonsmokers of about four (Figure 2.8b). For those who smoke

until an age of at least 40 years, acceleration declines later in life; the

late-life decline in acceleration becomes steeper with a decrease in the

age at which individuals quit smoking.

Carcinogens applied to lab animals allow controlled measurement of

dosage and incidence. In the largest study, Peto et al. (1991) measured

the age-specific incidence of esophageal tumors in response to chronic

exposure to N-nitrosodiethylamine (NDEA). Exposure of inbred rats be-

gan at about six weeks of age and continued throughout life. The data

fit well to

I = nbtn−1, (2.1)

where I is the standard measure of age-specific incidence, b is a constant

depending on dosage, t measures in years the duration of carcinogen
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Figure 2.8 Fatal lung cancer in males for groups that quit smoking at different
ages. The six curves defined in the legend show individuals who never smoked
(quit at age 0), individuals who quit at ages 30, 40, 50, and 60, and individu-
als who never quit (shown as age 99). (a) Age-specific mortality per 100,000
population on a log10 scale versus age scaled logarithmically. Data extracted
from Figure 2 of Cairns (2002), originally based on the analysis in Peto et al.
(2000). Most cases of lung cancer are fatal, so these mortality data provide a
good guide to incidence, advanced slightly in age because of the lag between
the origin of the cancer and death. Curves fit to the observations (circles) by
the smooth.spline function (R Development Core Team 2004), with a smooth-
ing parameter of 0.3. (b) Age-specific acceleration calculated as the derivative
(slope) of the smoothed curves fit in (a). Some of the curves in (a) are based
on only four observed points, causing the fitted curves to be sensitive to the
level of smoothing; the plotted accelerations in (b) for those curves should be
regarded only as qualitative guides to the general trends in the data.

exposure until tumor onset, and n determines the scaling of incidence



AGE OF CANCER INCIDENCE 31

Figure 2.9 Age-specific incidence of tumor onset as a function of duration of
exposure to a carcinogen. The circles show the observed median duration, the
time until one-half of the experimental rats has esophageal tumors in response
to chronic exposure to N-nitrosodiethylamine (NDEA) in drinking water (Peto
et al. 1991). Each observed median corresponds to a group of rats treated with
a different dosage, as shown in Figure 2.10. For each observed median, I calcu-
lated the incidence line from Eq. (2.2). These calculated lines matched well the
observed age-specific incidences in each experimental group (Peto et al. 1991).

with time. Peto et al. (1991) showed mathematically that the constant b
is related to m, the median duration of carcinogen exposure to tumor

onset, as

b = − ln (0.5)m−n = 0.693m−n.

Later I will show how to derive this result. From the laboratory observa-

tions, Peto et al. (1991) estimated n = 7, so we can describe age-specific

incidence for this experiment as

I = 4.85m−7t6,

and, on a log-log scale,

log (I) = log (4.85)− 7 log (m)+ 6 log (t) . (2.2)

This equation and Figure 2.9 show that the median, m, sets the pattern

of incidence.

In the study by Peto et al. (1991), the observed relation between me-

dian duration and dosage followed the classical dose-response formula

given by Druckrey (1967),

k = drmn, (2.3)
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Figure 2.10 Esophageal tumor dose-response line. The circles show the same
observed median durations as in Figure 2.9. Here, each median duration is
matched to the dosage level for that experimental group of rats. The line shows
the excellent fit to the Druckrey formula expressed in Eq. (2.4), with r = 3, n = 7,
k = 0.036, and a slope of −r/n = −1/s = −1/2.33. Data from Peto et al. (1991).

where k is a constant measured in each data set; d is dosage given in this

experiment as mg/kg/day; r determines the rate of increase in incidence

with dosage at a fixed duration; m is the median duration; and n − 1 is

the exponent on duration in Eq. (2.1) that fits the observed age-specific

incidences. The Druckrey formula is often given as k = dms , which is

equivalent to Eq. (2.3) with s = n/r and a different constant value, k.

Because median time to onset captures the patterns in the data, dose-

response experiments are usually summarized by plotting the medians

in response to varying dosage levels. We get the expected dose-response

relation by rearranging the Druckrey formula in Eq. (2.3) as

log (m) = (1/n) log (k)− (r/n) log (d) . (2.4)

Figure 2.10 shows the close experimental fit to this dose-response equa-

tion obtained by Peto et al. (1991). Figure 2.11 summarizes eight earlier

experiments that also showed a close fit to the Druckrey formula.

2.6 Sex Differences

Males and females have different patterns of cancer incidence. The

most obvious differences occur in the reproductive tissues. For example,

the breast and prostate account for a significant fraction of all cancers,

as shown in Figure 2.2.
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Figure 2.11 Dose-response lines from a variety of animal experiments. For
each experiment, I list the slope of the line, −r/n = −1/s, from Eq. (2.4): (×)
methylcholanthrene applied to mouse skin three times per week, skin tumors
with slope of −1/2.1; (+) 4-dimethylaminoazobenzene fed to rats in daily diet
(dosage multiplied by 1000), liver tumors with slope of −1/1.1; (filled circle)
3,4-benzopyrene applied to mouse skin three times per week, skin tumors with
slope of −1/4.0; (open triangle) methylcholanthrene given as a single subcuta-
neous injection to mice, duration measured as time after exposure, sarcomas
with slope of −1/4.0; (open circle) 1,2,5,6-dibenzanthracene given as a single
subcutaneous injection to mice, sarcomas with slope of −1/4.7; (filled triangle)
3,4-benzopyrene, single subcutaneous injection to mice, sarcomas with slope of
−1/4.7; (open square) diethylnitrosamine fed to rats in daily diet, liver tumors
with slope of −1/2.3; (filled square) dimethylaminostilbene fed to rats in daily
diet, ear duct tumors with slope of −1/3.0. Redrawn from Figure 9 of Druckrey
(1967).

Apart from the reproductive tissues, other distinctive patterns occur

in the incidence of cancer in males and females. The left column of

Figure 2.12 shows that, over all cancers, the relative age-specific inci-

dences follow the same curve in different time periods and in different

geographic areas. The curves show the ratio of male to female incidence

rate at each age. Early in life, males have a slight excess of cancers. From

roughly age 20 to 60, females have an excess of cancers, with a distinc-

tive valley in the male:female ratio at about 40 years of age. After age

60, during which most cancers occur, males have a significant excess of

cancers, rising to about twice the rate of female cancers.

Part of the aggregate pattern over all cancers can be explained by

breast cancer, which occurs at a relatively high rate earlier in life than

the other common cancers. The relatively high rate of breast cancer

in midlife causes a female excess in the middle years, which appears
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Figure 2.12 Ratio of male to female age-specific incidence. The y axis shows
male incidence rate divided by female incidence rate for each age, given on a
log2 scale. This scaling maps an equal male:female incidence ratio to a value of
zero; each unit on the scale means a two-fold change in relative incidence, with
negative values occurring when female incidence exceeds male incidence. Each
plot shows the Spearman’s rho correlation coefficient and p-value; a p-value of
zero means p < 0.0005. Positive correlations occur when there is an increasing
trend in the ratio of male to female incidence with increasing age. Note that the
scales differ between plots, using the maximum range of the data to emphasize
the shapes of the curves. The data are the same as used in Figures A.1–A.11.



AGE OF CANCER INCIDENCE 35

as a depression in the male:female incidence ratio in the left column

of Figure 2.12. Prostate and lung cancers also influence the aggregate

male:female ratio—these cancers rise strongly in later years and occur

only (prostate) or mostly (lung) in males.

Figures A.13–A.18 in the Appendix show the male:female ratios for

the major adult cancers. The plots highlight two kinds of information.

First, the values on the y axis measure the male:female ratio. Second,

the trend in each plot shows the relative acceleration of male and female

incidence with age. For example, in Figure 2.12, the positive trend for

lung cancer shows that male incidence accelerates with age more rapidly

than does female incidence, probably because males have smoked more

than females, at least in the past.

Figures A.13–A.18 show that positive trends in the male:female inci-

dence ratio also occur consistently for colon, bladder, melanoma, leu-

kemia, and thyroid cancers. Negative trends may occur for the pan-

creas, esophagus, and liver, but the results for those tissues are mixed

among samples taken from different countries. Simple nonlinear curves

seem to explain the patterns for the stomach and Hodgkin’s cancers, and

maybe also for oral-pharyngeal cancers.

The patterns of relative male:female incidence probably arise from

differences between males and females in exposure to carcinogens, in

hormone profiles, or in patterns of tissue growth, damage, or repair. At

present, the observed patterns serve mainly to guide the development

of hypotheses along these lines.

2.7 Summary

This chapter summarized patterns of cancer incidence. The best the-

oretical framework to explain those patterns arises from the assumption

that cancer progresses through multiple stages. Before turning to multi-

stage theory and its connections to the data on incidence, it is useful to

consider the observations on how cancer develops within individuals

with regard to stages of progression. The next chapter summarizes ob-

servations of multistage progression.
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Several checks prevent uncontrolled proliferation of cells. Normal cells

commit suicide when they cannot pass various quality control tests; a

built-in counting mechanism limits the number of times a cell can divide;

structural rigidity and physical partitions in tissues prevent expansion

of abnormal cellular clones. In this chapter, I describe how cancer devel-

ops by sequential changes to cells and tissues that bypass these normal

checks on tissue growth.

The first section defines the word progression to include all of the

changes that transform cells from normal to cancerous. Earlier litera-

ture split the stages of transformation into initiation, promotion, and

progression to metastasis. Some tumors may develop through these

particular stages, but those stages can be difficult to discern and are

not universal. So I use progression in the general sense of development

from the first to the final stages.

The second section considers the meaning of the commonly used

phrase multistage progression. I focus on how the rates of change in

progression affect the age-onset patterns of cancer. In this framework,

the multiple stages of progression describe the rate-limiting steps. I

use this framework in later chapters to formulate and test quantitative

hypotheses about how particular events affect cancer.

The third section summarizes multistage progression in colorectal

cancer. That cancer provides the clearest example of distinct morpho-

logical and genetic stages in tumor development.

The fourth section describes alternative pathways of multistage pro-

gression in colorectal cancer. The distinct morphological and genetic

pathways are probably governed by different rate processes. In general,

cancer of a particular tissue may be heterogeneous with regard to the

pathways and rate processes of progression.

The fifth section provides a transition into the second half of the chap-

ter, in which I summarize the kinds of changes that accumulate during

progression.
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The sixth section focuses on the physical changes during progression.

Such changes include somatic mutation, chromosomal loss and dupli-

cation, genomic rearrangements, changes in chromatin structure and

methylation of DNA, and altered gene expression.

The seventh section lists the key processes that change in progres-

sion. These changes include reduced tendency for cell suicide (apop-

tosis), increased somatic mutation and chromosomal instability, abro-

gation of cell-cycle checkpoints, enhancement of cell-cycle accelerators,

acquisition of blood supply into the developing tumor, secretion of pro-

teases to digest barriers against invasion of other tissues, and neglect

of normal cellular death signals during migration into a foreign tissue.

The eighth section examines the pattern by which changes accumulate

over time. The major rate-limiting changes may accumulate sequentially

within a single dominant tumor cell lineage. Alternatively, different cell

lineages may progress via different pathways, leading to a tumor with

distinct cell lines that diverged early in progression. In distant metas-

tases, the colonizing migrant cells may all derive from a single dominant

cell lineage in a late-stage localized tumor. By contrast, metastatic mi-

grants may emerge from different developmental stages of the primary

tumor or from different cell lineages within the primary tumor, causing

genetically distinct metastases. In general, cell lineage histories play a

key role in understanding the nature of progression.

3.1 Terminology

Tumors develop by progression through a series of stages. Experi-

mental studies that apply carcinogens to animals typically distinguish

initiation as starting the first stages in development and promotion as

stimulating the following stages (Berenblum 1941). The initiator chem-

icals often cause mutation; the promoter chemicals often increase cell

division (Lawley 1994). The word progression in experimental studies is

usually confined to the final developmental stages of cancer that follow

promotion.

In natural tumors, there may sometimes be stages corresponding to

initiation and promotion, but those stages can be highly variable, dif-

ficult to discern, and poor descriptors for particular stages in develop-

ment (Iversen 1995). In all cases, progression nicely describes progress
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through a sequence of developmental stages. I use the word progres-

sion in this general sense of development from the first to the final

stages. Within the broad sweep of progression, it may sometimes be

useful to distinguish stages of initiation, promotion, and final progres-

sion to metastasis.

3.2 What Is Multistage Progression?

This question has led to confusion. Some people aim for the ordered

list of necessary changes to cellular genomes and to tissues that cause

aggressive cancers. Others emphasize the controversial hypothesis that

two processes occur: initiation by somatic mutation as a first stage, and

promotion by mitotic stimulation as a second stage.

There is no single correct way to pose the question. The listing of spe-

cific changes sets a useful although perhaps rather difficult goal. The

testing of the particular two-stage hypothesis of initiation and promo-

tion has focused on experimental studies of carcinogens in laboratory

animals; the two-stage hypothesis is probably too narrow to provide a

general framework for cancer development.

I focus on how the dynamics of progression within individuals af-

fects the age-onset patterns in populations. Biochemical changes that

do not affect rates of progression can be ignored in dynamical analyses,

even though they may be very important for understanding physiologi-

cal changes and for analyzing which drugs succeed or fail in chemother-

apy.

In focusing on rate processes, I sacrifice comprehensive understand-

ing of all aspects of cancer. In return for that sacrifice, I gain a coherent

framework that gives meaning to the common but often vague asser-

tion that some particular genetic change or biochemical event causes

cancer: in the dynamical framework of multistage progression, causing

cancer means shifting the age-incidence curve. With this quantitative

framework, we can formulate and test hypotheses about how particular

events affect cancer.

My quantitative emphasis on progression and incidence, and on test-

able hypotheses, means that I will not attempt to cover all aspects of

progression in a comprehensive way (see Weinberg 2007). In this chap-

ter, I give just enough background to set the stage for formulating a

quantitative framework and testing simple hypotheses.
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Figure 3.1 Morphology of normal colon tissue. Labels show surface epithelium
(SE), colon crypts (CC), goblet cells (GC), lamina propria (LP), and muscularis
mucosa (MM). The crypts open to the surface epithelium—in this cross section,
some of the crypts appear partially or below the surface. From Kinzler and
Vogelstein (2002), original published in Clara et al. (1974).

3.3 Multistage Progression in Colorectal Cancer

Colorectal cancer provides a good model for the study of morpholog-

ical and genetic stages in cancer progression (Kinzler and Vogelstein

2002). Various precancerous morphologies can be identified, allow-

ing tissue samples to be collected and analyzed genetically. Figure 3.1

shows the morphology of normal colon tissue. The epithelium has about

107 invaginations, called crypts. Cells migrate upward to the epithelial

surface from the dividing stem cells and multiplying daughter cells at
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Figure 3.2 Morphology of colorectal cancer progression. This classical path-
way is characterized by traditional adenoma morphology, slow progression,
high adenoma:carcinoma ratio, frequent chromosomal instability and aneuploi-
dy, and rare microsatellite instability. Particular genetic changes often associate
with morphological stage, suggesting that the genetic changes play an impor-
tant role in driving progression. Approximately 50–85 percent of colorectal
cancers follow this pathway. Redrawn from Figure 3 of Fearon and Vogelstein
(1990).

the base of the crypt. Migrating cells move from the base to the sur-

face in about 3–6 days. Normal cells die at the surface, replaced by the

continuous stream of new cells from below.

Most colorectal cancers progress through a series of morphological

stages (Figure 3.2). In the first histological signs, one or more crypts

show accumulation of excess cells at the surface. The cells in these

aberrant crypt foci may appear normal, forming hyperplastic tissue, or

the cells may have abnormal intracellular and intercellular organization,

forming dysplastic tissue. As excess cells accumulate, visible polyps

grow and protrude from the epithelial surface.

If the polyp is dysplastic, the tumor is called an adenoma. Adenomas

tend to become more dysplastic as they grow. If the polyp is hyper-

plastic, it usually does not follow the classical pathway to cancer in Fig-

ure 3.2, but may occasionally follow an alternative route, as discussed

later.

EARLY STAGES

What change causes cells to accumulate at the epithelial surface and

initiate adenomatous growth? Mutation of the APC regulatory path-

way appears to be the first step (Kinzler and Vogelstein 2002). APC

represses β-catenin, which may have two different consequences for

cellular growth. First, β-catenin may enhance expression of c-Myc and

other proteins that promote cellular division. Second, β-catenin may
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play a role in cell adhesion processes, effectively increasing the sticki-

ness of surface epithelial cells. In either case, repression of β-catenin

reduces the tendency for abnormal tissue expansion.

APC expression rises and represses β-catenin as cells migrate from

the base of crypts toward the epithelial surface. Rise in APC expres-

sion and repression of β-catenin associate with increased apoptosis as

cells approach the surface. Loss of surface cells is necessary to balance

production from the base of crypt.

In tumors, mutations in APC usually include domains involved in

binding β-catenin; abrogation of APC binding releases β-catenin from

the suppressive effects of APC (Kinzler and Vogelstein 2002). Both APC

alleles are probably mutated in most tumors, consistent with the hy-

pothesis that lack of functional APC releases suppression of β-catenin

and leads to adenomatous growth.

The occasional tumors that lack APC mutations frequently have β-

catenin mutations that resist repression by APC (Jass et al. 2002b; Kin-

zler and Vogelstein 2002). β-catenin resistance requires that only one

allele mutate to escape suppression by APC.

Disruption of the APC pathway may be sufficient to start a small ade-

nomatous growth. Two lines of evidence point to disruption of the APC

pathway as an early, perhaps initiating event in carcinogenesis (Kinzler

and Vogelstein 1996, 2002). First, APC mutations occur as frequently

in small, benign tumors as they do in cancers. By contrast, mutations

in other genes commonly altered in colorectal cancers, such as p53 and

K-RAS , appear only later in tumor progression (Figure 3.2). Second, APC

mutations occur in the earliest stages of aberrant crypts, consistent with

the hypothesis that the first steps of stickiness and lack of cell death at

the epithelial surface arise from disruption of the APC pathway.

GROWTH BEYOND SMALL ADENOMAS

Mutation of a RAS gene often occurs among the next genetic events

of progression (Kinzler and Vogelstein 2002). Among early adenomas

less than 1cm, fewer than 10 percent had mutations to either K-RAS

or N-RAS, whereas more than 50 percent of adenomas greater than 1cm

and carcinomas had a mutation to one of these genes. Mutations usually

occur in K-RAS but occasionally in H-RAS. The RAS family acts oncogeni-

cally, with a mutation to a single allele sufficient to cause progression.
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The strong tendency for APC mutations to appear in early morphologi-

cal stages and RAS mutations to occur only in later morphological stages

suggests that the order of the mutational steps plays an important role

in colorectal carcinogenesis.

DEVELOPMENT OF LATE ADENOMAS

As adenomas continue to grow and begin to show great histological

disorder, they tend to lose parts of 18q, the long arm of chromosome

18 (Kinzler and Vogelstein 2002). Only about 10 percent of early and

intermediate adenomas have 18q chromosomal loss, whereas about 50

percent of late adenomas and 75 percent of carcinomas have 18q loss.

These observations suggest one or more additional genetic events asso-

ciated with continuing morphological progression through late adenoma

and early carcinoma stages.

Limited evidence points to one or more of the genes DCC, SMAD4, and

SMAD2 in 18q21 as playing a role in carcinogenesis. DCC is a surface

protein with extensive homology to other cell adhesion and surface gly-

coprotein molecules. Loss of DCC often occurs in cancers, suggesting

DCC acts as a tumor suppressor. SMAD4 and SMAD2 may interact with

the transforming growth factor beta (TGFβ) pathway. The TGFβ path-

way often suppresses normal cellular growth, so loss of response to this

pathway may release developing tumors from suppressive signals.

TRANSITION TO CANCER

Loss of functional p53 by damage to both alleles drives progression to

carcinomas (Kinzler and Vogelstein 2002). p53 suppresses cell division

or induces apoptosis in response to stress or damage. Cancerous growth

usually requires release from p53’s protective control over cellular birth

and death. p53 is on the short arm of chromosome 17, region 17p13.

Allelic losses on 17p occur in less than 10 percent of early or interme-

diate stage adenomas, increasing to about 30 percent in late adenomas

and rising to about 75 percent in cancers.

Other genetic changes probably arise during progression. During

metastasis, adaptation of cancerous tissues likely occurs as the tissues

become aggressive, migrate, and greatly alter the environment in which

they live. Such adaptations must often depend on genetic changes.
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CHROMOSOMAL INSTABILITY

About 85 percent of colorectal tumors have major chromosomal aber-

rations. Often, part of a chromosome or a whole chromosome is lost

(Rajagopalan et al. 2003). A lost chromosome is usually replaced by

duplication of the remaining chromosome from the original pair. Dupli-

cation creates two copies of the same allele at a locus, with loss of one

of the original parental alleles. This is called loss of heterozygosity, or

LOH, because the remaining duplicated pair is homozygous.

LOH accelerates the genetic changes that drive carcinogenesis (Nowak

et al. 2002). For example, a mutation to one allele of p53 leaves one

original copy intact. By itself, the single mutation to one allele often

does not cause severe problems. But the good copy may disappear if its

chromosome is lost, and the remaining chromosome duplicates leaving

two copies of the mutated allele. In chromosomally unstable genomes,

chromosomal losses causing LOH happen much more rapidly than do

typical mutations. The common genetic pathway of change is often a

mutation to one allele at a low rate followed by loss of the other allele

by LOH at a relatively rapid rate.

Chromosomal instability (CIN) arises from mutations and other ge-

nomic changes that abrogate the normal controls on chromosome du-

plication and segregation in mitosis (Rajagopalan et al. 2003). Because

CIN increases the rate at which genetic changes occur, CIN can acceler-

ate the sequence of genetic events that drive carcinogenesis. Most tu-

mors of solid tissue have CIN. But it remains controversial whether CIN

arises early in carcinogenesis and thus plays a key role in driving genetic

change, or CIN develops late in tumorigenesis as the genome becomes

increasingly disrupted by the later stages of carcinogenesis. Probably

there are pathways of progression that depend on CIN and those that

do not.

3.4 Alternative Pathways to Colorectal Cancer

MICROSATELLITE INSTABILITY

Approximately 15 percent of colorectal tumors do not have CIN or

widespread chromosomal abnormalities (Rajagopalan et al. 2003). In-

stead, these tumors usually have mutations in their mismatch repair

(MMR) system, a component of DNA repair (Boland 2002). Loss of MMR
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Figure 3.3 Genetic changes in HNPCC progression. Approximately 2–4 percent
of colorectal cancers follow this pathway.

causes increased mutation in repeated DNA sequences, such as those

in microsatellite regions. This failure to repair mismatches in repeats

causes repetitive microsatellites to change their length at a much higher

rate than normal during DNA replication. The observed fluctuations in

microsatellite length lead to the name microsatellite instability (MSI) for

defects in MMR. Genes with repetitive sequences seem to be at greater

risk for mutation in MSI tumors.

Most colorectal tumors have either MSI or CIN, but not both. Some

form of accelerated mutation may be needed for progression to aggres-

sive colorectal cancer (Jass et al. 2002a; Kinzler and Vogelstein 2002).

HNPCC PATHWAY

Individuals who inherit defects in MMR develop hereditary nonpoly-

posis colorectal cancer (HNPCC) as well as other cancers that together

make up Lynch’s syndrome (Boland 2002). Some of the genetic steps

in HNPCC progression and the rates of transition between stages differ

from the classical pathway (Figure 3.3).

Typically, individuals inherit one defective allele at a locus involved in

MMR. Heterozygous cells are usually normal for MMR. A somatic muta-

tion to the second allele at the affected locus leads to loss of function in

a component of the MMR system. The elevated rate of mutation causes

MSI and frameshift mutations in genes with repeated sequences.

Mutation to APC or β-catenin initiates adenomatous growth. With

MSI, the mutational spectrum to these genes differs from the classical

pathway, which often begins with a mutated copy of APC followed by an

LOH event to knock out both functional copies of the gene. In HNPCC,

there are more mutations to β-catenin instead of APC, and mutations to

APC more often result from frameshifts in repetitive regions caused by

failure of MMR (Jass et al. 2002a, 2002b). These differences are consis-

tent with the observation that MMR deficient tissues rarely have CIN and
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LOH. In the absence of LOH, two separate mutations to APC are needed,

whereas only one mutation to β-catenin is needed. This may explain

why there is a rise in the ratio of β-catenin to APC initiating mutations

in HNPCC.

The morphological sequence in HNPCC follows the classical pathway.

In the classical pathway, the adenoma to carcinoma ratio is about 30:1.

By contrast, HNPCC patients have an adenoma to carcinoma ratio of

about 1:1 (Jass et al. 2002b). This suggests much faster progression from

adenoma to carcinoma in HNPCC, probably driven by the high somatic

mutation rate in MSI cells.

The spectrum of later mutations in HNPCC differs from later muta-

tions in the classical pathway (Jass et al. 2002b). HNPCC tumors have

less LOH. The K-RAS mutation frequency is about the same, but HNPCC

may have fewer p53 mutations, and more mutations in various growth-

related genes with repetitive sequences, including TGFβ-RII, IGF-II, and

BAX.

In another study, Rajagopalan et al. (2002) found that 61 percent of

330 colorectal tumors had either a BRAF or K-RAS mutation, but a tu-

mor never had mutations in both genes. Mutually exclusive mutation

of these genes supports the suggestion that they have similar effects

in tumorigenesis (Storm and Rapp 1993). The ratio of BRAF to K-RAS

mutations was significantly higher in MMR deficient cancers compared

to MMR proficient cancers. This difference in mutation frequency again

supports the idea that particular aberrations in DNA repair affect the

mutation spectrum of tumors, although the functional changes caused

by different mutations may sometimes be similar.

HYPERMETHYLATION

Some colorectal cancers accumulate changes in gene expression by

hypermethylation of promoter regions, which can suppress transcrip-

tion. Commonly hypermethylated genes in colorectal cancers include

p14, p16, hMLH1, MGMPT, and HPP1 (Jass et al. 2002a; Issa 2004).

Jass et al. (2002b) proposed multiple pathways to cancer via hyper-

methylation, accounting for up to 40 percent of all colorectal cancers.

These arguments are, at present, based on limited sample sizes. But the

existing data do hint at interesting hypotheses about alternative path-

ways.
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A two-step mechanism may begin carcinogenesis in all hypermethy-

lation pathways: reduction of apoptosis followed by increase in somatic

mutation (Jass et al. 2002a). The order may be important. High somatic

mutation rate in cells with normal apoptotic processes may often lead

to increased cell death rather than accumulation of genetic change, be-

cause normal cells often undergo apoptosis if they cannot repair genetic

damage. If apoptosis is lost first, then somatic mutations can be main-

tained.

With loss of apoptosis, cells accumulate in the aberrant crypt. In typi-

cal hypermethylation pathways, cellular accumulation causes hyperplas-

tic growth with a characteristic sawtoothed or serrated morphology (Jass

et al. 2002b; Jass 2003; Park et al. 2003). Hyperplasia means that the

aberrant tissue retains a more or less orderly internal structure, whereas

dysplasia means disordered cellular organization in the aberrant tissue.

About 95 percent of aberrant crypt foci are hyperplastic and serrated

(Jass et al. 2002a). The other 5 percent are dysplastic and lack serration.

The dysplastic group may often follow the classical pathway in Figure 3.2

via mutation of the APC pathway, which may abrogate apoptosis and

cause accumulation of cells at the top of aberrant crypts (Kinzler and

Vogelstein 2002). By contrast, hyperplastic crypts seem to accumulate

cells lower down in the crypt, suggesting an alternative to APC muta-

tion as an initiating event that abrogates apoptosis (Jass et al. 2002a).

Alternative initiating events that interfere with apoptosis include K-RAS

mutation and hypermethylation silencing of HPP1/TPEF.

Most hyperplastic aberrant crypts do not progress. However, a sub-

sequent disruption of the DNA repair system leads to elevated somatic

mutation rates, and may drive the tissue through the next stages of pro-

gression. Morphologically, serrated and hyperplastic precursor lesions

sometimes show heterogeneous dysplastic outgrowths, such as serrated

adenomas. Those dysplastic outgrowths usually have some form of ele-

vated mutation, and progress relatively rapidly to cancer, causing a low

adenoma to carcinoma ratio for this pathway (Jass et al. 2002a).

Jass and colleagues describe two hypermethylation syndromes. The

two syndromes can be distinguished by the mechanism that elevates

somatic mutation rates (Jass et al. 2002b, 2002a).

In the first syndrome, promoter methylation of hMLH1 disrupts the

MMR system, leading to high somatic mutation rate and high levels of mi-

crosatellite instability (MSI-H). These cases do not have inherited hMLH1
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Figure 3.4 Morphological sequence in hypermethylated MSI-H cancers. Up to
15 percent of colorectal cancers follow this pathway.

mutations and differ significantly from the HNPCC pathway. Although

there is much variation, the sequence in Figure 3.4 may be typical for

MSI-H tumors that are not HNPCC. Many common attributes of the clas-

sical pathway are rare in this sequence. For example, these cancers have

relatively low frequencies of mutations to the APC pathway, suggesting

some other initiating event such as apoptotic loss via methylation of

HPP1/TPEF. These cancers also have fewer mutations to K-RAS and p53,

and usually do not have chromosomal instability or significantly altered

karyotypes.

The second hypermethylation syndrome follows the same morpho-

logical pathway in Figure 3.4, but has little or no MSI. The early hyper-

plastic, serrated morphology suggests an initiating event that abrogates

apoptosis and acts in the lower portion of the crypt. The genetics of

the various subsequent steps appear to be heterogeneous. The genetic

heterogeneity may arise because, in particular cases, hypermethylation

knocks out different DNA repair genes (Jass et al. 2002a). Elevated

somatic mutation rate for a particular spectrum of genes follows, the

particular spectrum depending on the DNA repair system reduced by

methylation. Increased somatic mutation can lead to rapid progression

from dysplastic serrated adenomas to carcinomas.

A high MSI pathway may begin after methylation and suppression of

the MMR gene hMLH1. By contrast, a low MSI pathway may follow after

promoter methylation and suppression of the DNA repair gene MGMT .

The enzyme MGMT removes promutagenic adducts from guanine nu-

cleotides. Several common carcinogens create such adducts, typically

in the distal colon and rectum. Loss of MGMT probably increases the
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rate of certain types of mutations, leading to a particular spectrum of

mutated genes in subsequent progression.

SUMMARY

I described four pathways to colorectal cancer: mismatch repair mu-

tations leading to microsatellite instability, HNPCC, hypermethylation

with high microsatellite instability, and hypermethylation with low mi-

crosatellite instability. I emphasized the details because colorectal can-

cer provides the greatest insight into multistage progression of disease.

The different pathways highlight the need to classify disease by pathway

rather than solely by tissue location. In particular, the various pathways

have different stages and rates of transition between stages.

In the future, it may be possible to couple better understanding of

distinct colorectal pathways with measurement of age-onset patterns

for each pathway. Of course, we will never have all the genetic details

or perfect measurement of age-onset patterns. But we should be able

to formulate and test comparative hypotheses: pathways with fewer

rate-limiting stages or faster transitions between stages will differ pre-

dictably in age-onset patterns when compared with pathways that have

more stages or slower rates of transition. In the next chapter, I dis-

cuss the great importance of formulating and testing comparative hy-

potheses. For now, I end this section by briefly summarizing the four

colorectal pathways that I have discussed.

First, initiation of the classical pathway usually requires mutation of

APC or β-catenin, leading to dysplastic crypt foci. Further mutations

lead to adenomas, a slow transition to carcinomas, and about a 30:1

ratio of adenomas to carcinomas. Chromosomal instability, loss of het-

erozygosity, and aneuploidy occur. The classical pathway accounts for

the majority of colorectal cancers.

Second, inherited mutations to mismatch repair (MMR) cause hered-

itary nonpolyposis colorectal cancer (HNPCC). This disease follows the

same morphological stages as the classical pathway, but with different

mutations and rates of progression. Mutations usually occur in repeated

regions of genes, because reduced MMR causes increased frameshift mu-

tations in repeated sequences. Progression through the middle stages

occurs more rapidly than in the classical pathway, reducing the adenoma
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to carcinoma ratio to about 1:1. The HNPCC pathway lacks chromoso-

mal instability, instead using the malfunction in DNA repair to raise the

mutation rate. This pathway accounts for only about 2–4 percent of

colorectal cancers.

Third, hypermethylation silences MMR, causing a high somatic muta-

tion rate in repeated sequences. The morphological pathway and the set

of mutated genes differ from HNPCC, even though both pathways have

MMR defects. In this hypermethylation pathway, the initiating stages

that abrogate apoptosis may focus on regulatory systems other than APC

and β-catenin. Morphologically, initiation leads to hyperplastic crypts,

followed by dysplastic outgrowths from these aberrant crypt foci. Sub-

sequent mutations and gene silencing depend both on changes to re-

peated DNA sequences and on methylation and silencing of other genes.

After initiation and progression through the early dysplastic adenoma

stage, progression may be rapid, causing a low adenoma to carcinoma

ratio. As in HNPCC, this sequence lacks chromosomal instability. About

10–15 percent of colorectal cancers follow this pathway.

Fourth, hypermethylation may silence DNA repair systems other than

MMR. The characteristics of progression roughly follow those in the

third pathway with loss of MMR by methylation. However, the partic-

ular type of DNA repair affected determines the particular genes subse-

quently mutated during progression. Jass et al. (2002b) have argued that

perhaps 20 percent of colorectal cancers follow these various routes of

progression. However, supporting data remain weaker for this pathway

than for the previous three.

3.5 Changes during Progression

Multistage progression simply means that transformation to cancer

does not happen in a single step. That vague definition leaves open what

actually happens. In the next three sections, I briefly outline some of the

details.

My ultimate goal is to formulate and test hypotheses about the pro-

cesses that shape quantitative aspects of cancer incidence. I will show

in the following chapters that, in the absence of knowing everything that

affects progression, we can still learn a great deal if we formulate and

test hypotheses in the proper way. For now, I give a brief abstract of the
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changes that occur during progression. Those facts help to guide the

formulation of appropriate hypotheses and tests.

3.6 What Physical Changes Drive Progression?

Genetic changes alter the DNA sequence composition of the genome:

mutation changes a few bases; loss of a chromosome followed by dupli-

cation of the remaining homologous copy causes loss of heterozygosity;

changes in chromosome numbers alter the number of gene copies; ge-

nomic rearrangements cause loss of genes or altered gene expression;

and epigenetic changes in methylation or chromatin structure also affect

gene expression.

Altered cells often change the signals they provide to other cells, lead-

ing to changes in gene expression, level of tissue differentiation, and

regulation of tissue growth. Changes in gene expression and tissue dy-

namics may lead to further changes in intercellular signaling and cause

successive loss of growth regulation.

Expanding tumors must acquire resources to fuel growth. This de-

mand for resources requires enhanced blood supply and an enriched

supporting connective-tissue framework, the tumor stroma (Mueller and

Fusenig 2004). Tumor growth depends on signaling between the cells in

the growing tumor and the complex, supporting stromal tissue.

Most tumors acquire many mutations and genomic alterations. Do

those genetic changes drive tumor progression, or are those genetic

changes a consequence of other processes that drive rapid mitoses and

tumorigenesis?

Several lines of evidence suggest that genetic changes drive cancer

progression (Vogelstein and Kinzler 2002). Inherited mutations lead

to cancer syndromes that often mimic sporadic (noninherited) cancers.

The inherited cases develop at a faster pace, consistent with the hypoth-

esis that pre-existing genetic alterations bypass normally rate-limiting

events in progression. In sporadic cases, certain genetic changes re-

cur in different individuals with the same tumor type. Genetic changes

sometimes happen in a more or less consistent order.

Because cancer arises in diverse ways, there will always be some ex-

ceptions to the central role of genetic change—cancer is the breakdown

of normal regulatory controls, and there are many pathways by which

complex regulation can fail. To show that alternatives to genetic change
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play a primary role, one must formulate and test quantitative hypothe-

ses about how those nongenetic changes alter age-specific incidence.

3.7 What Processes Change during Progression?

I maintain my focus on rate processes that limit progression and in-

fluence age-specific incidence. However, we do not know exactly which

processes play key roles in the dynamics of progression, and different

cancers vary widely in their characteristics. So, I will provide a sample

of potential issues to set the stage for formulating quantitative hypothe-

ses in later chapters. I emphasize processes that influence cellular birth

and death, processes that generate variation in cells and tissues, and

processes that select the successful tumor variants (Hanahan and Wein-

berg 2000).

ANTI-APOPTOSIS AND ABROGATION OF PROGRAMMED CELL DEATH

Cells kill themselves when they cannot repair genetic damage, when

they do not receive tissue-specific survival signals that match their own

cell type, or when they receive death signals from immune cells (Kroe-

mer 2004). Cellular suicide—apoptosis and alternative pathways of pro-

grammed cell death—protects tissues from uncontrolled growth. Ge-

netic changes that abrogate the normal cell death response commonly

occur in tumors.

HYPERMUTATION AND CHROMOSOMAL INSTABILITY

Cells in most tumors have widespread genomic changes in chromo-

some number and arrangement (Rajagopalan et al. 2003). Those changes

often arise from increases in double-strand DNA breaks or failure to re-

pair such breaks, causing chromosomal instability. Tumors that have

lost particular DNA repair pathways may have many mutations of the

particular kind normally fixed by the lost repair system.

DNA repair systems monitor genetic damage. Detected damage in-

duces repair or apoptosis: cell death and DNA repair are intimately as-

sociated (Bernstein et al. 2002). Increased mutation or chromosomal

instability often first requires abrogation of apoptosis; otherwise, ge-

netic damage leads to cell death rather than the accumulation of genetic

change.
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Rapid genetic change can increase the rate of progression. Some peo-

ple have argued that cancer development requires such acceleration of

progression (Loeb 1991). Others argue that normal rates of somatic

mutation are sufficient to explain progression, and widespread genetic

changes arise late in progression as a consequence of excessive cell di-

vision or other processes (Tomlinson et al. 1996).

CELL-CYCLE CHECKPOINTS AND ACCELERATORS

Cell-cycle checkpoints block progress through the cell cycle in the ab-

sence of appropriate external growth signals or in response to internal

damage (Kastan and Bartek 2004; Lowe et al. 2004). These brakes on

cell division often fall in the class of tumor suppressors—genes with

products that can suppress uncontrolled cell division. Mutation of the

tumor suppressor genes may set key rate-limiting steps in progression.

Usually, both alleles of a tumor suppressor locus must be knocked out

to release the brake, because the protein product from one functional

copy is sufficient to keep the cell cycle in check. For example, the reti-

noblastoma protein blocks transition into the S phase of the cell cycle,

during which the cell copies its DNA in preparation for splitting into two

daughter cells (Fearon 2002). Only a proper combination of other cell-

cycle controls can release the retinoblastoma block, providing a check

that the cell is ready for the complex process of DNA replication.

Tumor suppressors brake cellular proliferation. By contrast, onco-

genes stimulate cell division (Park 2002). For example, nondividing cells

express little of the myc gene (Pelengaris et al. 2002). When such cells

receive external growth signals, they quickly ramp up expression of myc,

which in turn stimulates expression of many growth-related factors. Tu-

mors often express high levels of the myc gene or similar oncogenes,

causing rapid growth even in the absence of normally required external

growth signals.

AVOIDING CELLULAR SENESCENCE

Most cells can divide only a limited number of times (Mathon and

Lloyd 2001). With each cell division, the chromosome ends (telomeres)

shorten because they are not copied by the normal DNA replication en-

zymes. After forty or so divisions, the special telomeric caps have worn

down. Normal cells will not continue to divide. If cell division continues,
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the worn chromosome ends cause double-strand DNA breaks, leading

to chromosomal rearrangements and genomic instability (Feldser et al.

2003).

Certain cells must divide many times without wearing out: the germ

cells continue on without decay; the stem cells that replenish renew-

ing epithelial tissues divide hundreds or perhaps thousands of times

over the normal human lifespan. Those cells express a special enzyme,

telomerase, that regenerates the full telomere during each replication

cycle.

Late-stage cancer cells usually express telomerase (Mathon and Lloyd

2001). Telomerase expression may occur because the original cells that

began progression were specialized to avoid senescence. Or the cancer

cell lineage may have turned on telomerase during some stage of pro-

gression. If telomerase is off during early progression, the cancer cell

lineage may develop frayed telomeres and genomic instability (Feldser

et al. 2003). That instability creates genetic variability, perhaps enhanc-

ing the opportunity to develop a more aggressive genotype. However,

the widespread chromosomal aberrations must eventually be controlled

in the cancer cell lineage by turning on expression of telomerase, oth-

erwise the lineage would probably self-destruct from genetic defects

(Frank and Nowak 2004).

RESOURCE ACQUISITION AND STROMAL ECOLOGY

Progression follows in part from genetic changes that cause loss of

control over cellular birth and death. But tumorigenesis is more complex

than just transforming particular cells by genetic change. For example,

a solid tumor cannot grow beyond 1–2mm without obtaining a blood

supply. Tumor cells acquire vasculature by angiogenesis, the process of

stimulating blood vessel growth through a tissue (Folkman 2002). Com-

plex regulatory processes control angiogenesis (Folkman 2003). In the

default state, blood vessels usually will not grow through the tissue of

a developing tumor. To progress, the tumor must overcome angiogenic

repression and stimulate the growth of a blood supply.

Signals that stimulate angiogenesis may come directly from the tu-

mor cells or by collaboration with the complex mixture of other cell

types in and around the developing tumor. Those other cells usually



54 CHAPTER 3

include fibroblasts, immune cells, and blood-vessel cells, together form-

ing the stroma (Mueller and Fusenig 2004). Signaling between tumor

and stromal cells regulates many aspects of tissue growth and differen-

tiation. Progressive changes in tumor cells lead to secretion of various

stromal-modifying signals, often disrupting tissue homeostasis in a way

that mimics wound healing with enhanced angiogenesis, inflammatory

response, and activation of nearby cells to secrete additional growth

factors (Mueller and Fusenig 2004; Hu et al. 2005; Rubin 2005; Smalley

et al. 2005).

The extracellular matrix provides another barrier to tumor expansion

(Hotary et al. 2003; Yamada 2003). A network of protein and proteo-

glycan fibers forms a three-dimensional supporting mesh through most

solid tissues. That matrix helps to keep spatial order among the cells

and to limit uncontrolled expansion of a cellular clone. Developing tu-

mors and their nearby stroma frequently secrete proteases that break

down the extracellular matrix, disrupting tissue organization and pro-

viding an opportunity for clonal expansion of tumor cells (van Kempen

et al. 2003).

INVASIVENESS AND NEGLECT OF DEATH SIGNALS

Some tumors invade nearby tissues or migrate to distant sites. In

epithelial progression, tumor cells begin to move by breaking through

the basement membrane (Liotta and Kohn 2001). That membrane walls

off the epithelial layer from neighboring tissues. Tumor cells break the

basement membrane by secreting proteases and changing their cell ad-

hesion properties.

Distant migration requires transport through the blood or lymph sys-

tems. Most cells die during migration because they require the specific

signals of their native tissue to avoid triggering their apoptotic response.

To migrate successfully, cells must evolve to ignore this default death

response (Fidler 2003; Douma et al. 2004).

Few migrating cells survive and grow in foreign tissue. But tumors

send many colonists, and a few may succeed. To survive and grow in

foreign tissue, the colonists must avoid defenses that normally kill for-

eign cells, avoid repressive anti-growth signals, and acquire resources.

Migrating tumor cells often have high mutation rates or rapid genomic
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changes, which may help them to adapt to the new conditions required

for growth.

3.8 How Do Changes Accumulate in Cell Lineages?

My goal is not to describe all changes. Rather, I seek alternative hy-

potheses about how the major, rate-limiting steps accumulate. Three

possibilities seem most promising as points of departure for further

study.

SINGLE DOMINANT CELL LINEAGE

Suppose a single original cell suffers the primary change. That cell

may, for example, obtain a mutation that weakens its apoptotic response.

Subsequent rate-limiting changes accumulate in the descendant lineages

of that original cell. The progressing lineage creates changes in nearby

tissues by signaling. At several stages, the dominant lineage expands

into a precancerous population of cells; a new change then hits one of

those cells, which subsequently expands and becomes the dominant lin-

eage.

A single, continuous line of descent can be described most easily by

the shape of cellular lineages in the historical pattern of cellular ances-

try. In evolutionary biology, the historical pattern of ancestry is called

the phylogeny or phylogenetic tree. Figure 3.5 shows an example of how

phylogenetic shape corresponds to the history of accumulated changes

in progression. The description ultimately reduces to the time to the

most recent common ancestor among extant tumor cells. This coales-

cence time describes the degree to which one or a few lineages have

dominated. In Figure 3.5d, with a single dominant lineage, the time to

the most recent common ancestor of all extant cells is short. By con-

trast, in Figure 3.5a, with no dominant lineage, the coalescence time to

a common ancestor is relatively long.

In precancerous colon crypts, the cells in the whole crypt often derive

from a recent common ancestor: a single stem cell lineage and its de-

scendants dominate the crypt (Kim and Shibata 2002). At any time, a few

stem cells may be present. Over time, one of the stem lineages survives

and the others drop out. The different stem lineages may compete, or

differential success may just be a random process in which one lineage,

by chance, takes over. With each replacement, the primary stem lineage
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(a) (b) (c) (d)

Figure 3.5 Differences in success between lineages in a phylogeny influence
the shape of the tree. All trees shown with the ancestral cell of origin on the
left. Time increases from left to right. (a) Shape when all lineages survive. (b)
Tips that stop in the middle of the tree represent lineages that have gone extinct.
Some extinctions occur in this case, but many different lineages have survived
to the present. (c) Greater differential success between lineages; however, no
single winner emerges in any time period. (d) Only a single lineage survives over
time, shown in bold. In each time period, a single lineage gives rise to all sur-
vivors a few generations into the future. If major changes in progression cause
subsequent clonal expansions, each clonal expansion arising from a particular
cell, then the phylogeny will be dominated by a single lineage as in (d).

may then split off by seeding a few new stem lineages. The cycle of co-

alescence and splitting of lineages repeats. If early genetic changes in

cancer progression do not alter the normal pattern of cellular lineages,

then such changes accumulate in a dominant cell lineage of a crypt. A

different cell lineage usually dominates in each crypt (Kim and Shibata

2004). A tumor usually arises from a single crypt, so a single lineage

dominates early tumor evolution.

Only a few studies provide indirect information on cell lineages in

a growing primary tumor. Leukemias have been analyzed more than

solid tumors, because one can easily sample over time the evolving cells

in the blood. Among later-stage leukemias, only a small fraction of can-

cer cells have the ability to regenerate a tumor (Reya et al. 2001). These
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cancer stem cells may form the main long-term line of tumor evolution.

Some evidence suggests that cancer stem cells also occur in solid tu-

mors (Singh et al. 2004; Dean et al. 2005). Phylogenetic analyses will

eventually provide a clearer picture of cell lineage history and evolution

in tumors.

MULTIPLE LINEAGES

Figure 3.5c shows the ancestry splitting into two groups soon after

the initial change that started progression. Two or more distinct lin-

eages could occur if the different lineages followed independent path-

ways in progression, and the cells from the distinct lineages did not

compete directly. Alternatively, the two lineages may provide synergis-

tic stimulation in progression; for example, each lineage could provide

complementary growth signals to its partner.

Distinct lineages may also arise independently, for example, one mu-

tation originating in a stromal cell and a second mutation originating in

an epithelial cell. Synergistic signaling between the progressive stromal

and epithelial lines could play an important role in some cases. Mueller

and Fusenig (2004) review several examples in which genetic changes

in stromal cells appear to play a key role in progression. See Kim et al.

(2006) for a recent demonstration of how progression in gastrointestinal

epithelial tissue depends on interactions with stromal cells.

PHYLOGENETIC POSITION OF MIGRANT CELLS AND METASTASES

Consider two contrasting patterns. Migrant cells may arise only from

the dominant cell lineage in late-stage localized tumors. In this case,

different colonists and the primary tumor would have a common cel-

lular ancestor a short time back. Alternatively, migrant cells may arise

at different stages of tumor development or from different lineages in

late-stage tumors. In this case, the time back to common ancestors

for colonist cells and the cells in the primary tumor would be variable;

metastases derived from colonists would be genetically heterogeneous.

Other phylogenetic patterns are possible: for example, a cancer stem cell

lineage in the primary tumor may be numerically rare but nonetheless

be the progenitor of both local and distant cell lines.

Although much has been written about which cells give rise to metas-

tases, few data exist with regard to lineage history (e.g., Bonsing et al.
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2000; Weiss 2000). Recent technological advances should make it pos-

sible to get more genomic data on various tumor and metastatic cells,

so perhaps phylogenetic analyses will be available in the future.

3.9 Summary

This chapter presented evidence that cancer progresses through mul-

tiple stages. To connect those biological details on multistage progres-

sion to quantitative theories of cancer incidence, we need a way to mea-

sure the shifts in incidence caused by particular genetic and physiologi-

cal changes. The early history of multistage theory provided such a con-

nection between genetics and incidence; however, some of the insights

of those early studies have been lost amid the great recent progress

in genetics and biochemistry. The next chapter reviews the history of

multistage theory to set the background for later chapters, in which I

build the tools needed to develop quantitative analyses of the causes of

cancer.



4 History of Theories

In this chapter, I discuss the history of theories of cancer incidence. I

focus only on those aspects of history that remain relevant for current

research on progression dynamics and incidence. More details about the

history and the literature can be obtained from the many published ar-

ticles that review theories of cancer incidence (Armitage and Doll 1961;

Druckrey 1967; Ashley 1969b; Cook et al. 1969; Doll 1971; Nowell 1976;

Peto 1977; Cairns 1978; Whittemore and Keller 1978; Scherer and Em-

melot 1979; Moolgavkar and Knudson 1981; Forbes and Gibberd 1984;

Stein 1991; Tan 1991; Knudson 1993, 2001; Lawley 1994; Iversen 1995;

Klein 1998; Michor et al. 2004; Moolgavkar 2004; Beckman and Loeb

2005).

The first section introduces the original theories of multistage pro-

gression. Starting in the 1920s, several experimental programs applied

chemical carcinogens to animals. Two different carcinogens applied in

sequence often yielded a higher rate of cancer than did application of

a single carcinogen over the same time period. This synergistic effect

between two carcinogens led to the idea that each carcinogen stimulated

a different stage in progression: the two-stage model of carcinogenesis.

A separate line of multistage theories began in the 1950s by analysis

of the observed rates of cancer at different ages. For most of the com-

mon adult cancers, the age-specific incidence curves rise with a high

power of age, roughly proportional to tn−1, where t is age and, from the

data, n ≈ 6. Mathematical models showed that such incidence curves

would occur if cancer follows after progression through n rate-limiting

steps. This analysis led to the hypothesis of multistage progression.

The second section turns to the most profound empirical tests of

multistage theory. The mathematical theory predicted that the greater

the number of rate-limiting steps, n, the faster incidence rises with age.

Ashley (1969a) and Knudson (1971) reasoned that if somatic mutation is

the normal cause of progression, then individuals who inherited a muta-

tion would have one less step to pass before cancer develops. Multistage

theory makes the following prediction: inherited cases with a smaller
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number of steps to pass have a slower rise of incidence with age than

noninherited cases. Data comparing inherited and noninherited cases

in colon cancer (Ashley 1969a) and retinoblastoma (Knudson 1971) sup-

ported this prediction.

The third section takes up the kinds of changes that cause progres-

sion. Many authors have emphasized genetic changes by somatic muta-

tion. However, critics have argued against the somatic mutation theory,

favoring instead alternative mechanisms of genomic and physiological

change. For understanding the kinetics of progression, the alternative

mechanisms of change set different constraints on the rate parameters

of progression but do not alter the basic understanding of multistage

theory.

The fourth section highlights a puzzle about somatic mutation rates

and progression. Commonly cited values for the normal rate of somatic

mutation typically fall near 10−6 mutations per gene per cell division.

Mutations to six particular genes in a cell lineage would occur with prob-

ability 10−36 multiplied by the number of cell divisions in that lineage.

Historically, calculations of this sort with various assumptions about

the number of cell divisions and the number of cells at risk have sug-

gested that normal somatic mutation does not occur fast enough to

explain observed cancer incidence by progression through numerous

stages. That conclusion has led to various alternative theories about hy-

permutation, selection, clonal expansion of precancerous cell lineages,

and fewer numbers of mutations required for progression.

The fifth section reviews the theory of clonal expansion. Suppose a

mutation arises in a cell and that cell proliferates into a large clone. The

probability of a second mutation in a cell rises as the number of target

cells carrying the first mutation increases. Thus, clonal expansion can

greatly increase the rate at which mutations accumulate in cell lineages.

The sixth section continues discussion of cell lineages and mutation

accumulation. The rate at which cells divide is important because mu-

tations happen mostly during cell division. Tissues that grow early in

life and then slow to a very low rate of cell division predominantly suf-

fer childhood cancers rather than adult cancers. By contrast, epithelial

tissues with continual cell division throughout life suffer mostly adult

cancers and account for about 90% of human cancers. Cairns (1975)

emphasized that certain epithelial tissues renew from stem cells, a tis-

sue architecture that greatly reduces competition between lineages and
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reduces opportunities for clonal expansion. Without clonal expansion,

mutations must arise solely within a lineage of single cells.

The seventh section follows with theories for how multiple mutations

accumulate in cell lineages. Some authors emphasize hypermutation, in

which an early step of carcinogenesis reduces DNA repair efficacy or

promotes chromosomal aberrations during cell division. Once the care-

takers of genomic integrity have been damaged, subsequent changes

may accumulate relatively rapidly. Other authors emphasize competi-

tion between genetically variant cell lineages. Such selection between

variants favors clonal expansion of more aggressive cell lines. Tissue

architectures that reduce cell lineage competition provide some protec-

tion against cancer.

The eighth section extends the topic of the mutation rate. I mentioned

that, with regard to kinetics, any heritable genomic change that alters

gene expression can influence cancer progression. Recent work on epi-

genetic processes shows that heritable genomic changes often accumu-

late by DNA methylation and histone modification. Tumors frequently

have elevated rates of epigenetic change, providing another pathway to

increase the rate of progression.

4.1 Origins of Multistage Theory

Two different lines of thought developed the idea that cancer pro-

gresses through multiple stages. The first line arose from the observa-

tion that, in experimental animal studies, cancer often followed after se-

quential application of different chemical carcinogens. The second line

arose from observations on the age-onset patterns of cancer, in which

incidence often accelerates with age in a manner that suggests multiple

stages in progression.

EXPERIMENTAL CARCINOGENESIS

In the 1920s, several laboratories began to apply chemical carcinogens

to experimental animals. Deelman (1927) summarized observations in

which repeated applications of tar to skin led to a small number of tu-

mors, after which tarring was stopped. A few days later, the skin was cut

where no tumors had appeared. Most incisions developed tumors in the

scars; most such tumors were very malignant. Two distinct processes,

tarring and wounding, combined to cause aggressive cancers.
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Twort and Twort (1928, 1939) described several experimental proto-

cols in which sequential application of different chemicals was much

more carcinogenic than either agent alone. In the early 1940s, several

others, notably Rous and Berenblum, reported similar observations on

the co-carcinogenic interaction between two different treatments when

applied sequentially (MacKenzie and Rous 1940; Berenblum 1941; Rous

and Kidd 1941).

Friedewald and Rous (1944) described the first treatment as an ini-

tiator, because it seemed to initiate the carcinogenic process but was

usually not sufficient by itself to cause cancer. They called the second

treatment a promoter, because it caused progression of previously initi-

ated cells but by itself rarely led to cancer. In a series of papers, Beren-

blum and Shubik (1947b, 1947a, 1949) synthesized the experimental

studies and thinking on co-carcinogenesis into the two-stage theory of

initiation and promotion.

The mechanistic action of initiators and promoters has been widely

debated. In some cases, it was thought that the initiator is mutagenic,

causing latent DNA lesions in some cells, and the promoter is mitogenic,

stimulating cell division and providing favorable conditions for tumor

formation. However, no simple mechanistic explanation fits all cases.

Indeed, many observations from experimental carcinogenesis do not fit

with a simple two-stage explanation (Iversen 1995).

The initial theory provided a useful framework for the early experi-

mental studies, but hardened too much into “two-stage” and “initiator-

promoter” slogans that probably hindered as much as helped to un-

derstand the actual mechanisms of carcinogenesis (Iversen 1995). Re-

cent emphasis has moved closer to the actual molecular mechanisms

involved, aided by the great technical advances now underway. Aspects

of initiation and promotion may play a role, but the older dominance

of the rigid two-stage theory has naturally faded. For our purposes, the

two-stage theory is important because it provided the first evidence and

thinking with regard to multiple stages in cancer progression.

AGE-SPECIFIC INCIDENCE

Two observations about cancer incidence in epithelial tissues have led

to multistage theories. First, cancer incidence often increases rapidly
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with age. Second, what happens to any particular individual appears to

be highly stochastic, yet simple patterns emerge at the population level.

In a rarely cited paper, Charles and Luce-Clausen (1942) developed

what may be the first quantitative multistage theory. They analyzed

observations on skin tumors from mice painted repeatedly with ben-

zopyrene. They assumed that benzopyrene causes a mutation rate, u,

and that cancer arises by knockout of a single gene following two mu-

tations, one to each of the two alleles. If t is the time since the start

of painting with the carcinogen, then the probability of mutation to a

single allele is roughly ut , and the probability of two hits to a cell is

(ut)2. They assumed that painting affects N cells, so that N(ut)2 cells

are transformed, and that the time between the second genetic hit and

growth of the transformed cell into an observable papilloma is i.
From these assumptions, the number of tumors per mouse after the

time of first treatment is n = N[u(t − i)]2. This formula gave a good

fit to the data with reasonable values for the parameters. Thus, Charles

and Luce-Clausen (1942) provided a clearly formulated multistage the-

ory based on two genetic mutations to a single locus and fit the theory

to the age-specific incidence of tumors in a population of individuals.

They assumed that both genetic hits must happen to a single cell, after

which the single transformed cell grows into a tumor.

Muller (1951, p. 131) mentioned the need for multiple genetic hits:

“There are, however, reasons for inferring that many or most cancerous

growths would require a series of mutations in order for the cells to

depart sufficiently from the normal.” However, Muller did not connect

his statement about multiple genetic hits to age-specific incidence.

The next theoretical developments followed directly from the obser-

vation that several cancers increase in incidence roughly with a power of

age, tn−1, where t is age and the theories suggested that n is the number

of rate-limiting carcinogenic events required for transformation. Fitting

the data yielded n ≈ 6–7 distinct events.

Whittemore and Keller (1978) usefully separate explanations for the

exponential increase of incidence with age between multicell and multi-

stage theories.

The multicell theory assumes that the distinct carcinogenic events

happen to n ≈ 6–7 different cells in a tissue (Fisher and Hollomon 1951).

If the carcinogenic events occur independently in the different cells, then

this process would yield an age-specific incidence proportional to tn−1,
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matching the observations. In particular, this theory leads to an ex-

pected incidence of

I (t) ≈ (Nu)n tn−1/ (n− 1)!, (4.1)

where N is the number of cells at risk for transformation, and u is the

transformation rate per cell per unit time; thus, Nu is the rate at which

each transforming step occurs in the tissue.

The multistage theory assumes that changes to a tissue happen se-

quentially. Charles and Luce-Clausen (1942) explicitly discussed and

analyzed quantitatively two sequential mutations to a particular cell;

Muller (1951) discussed in a general way sequential accumulation of

mutations. Nordling (1953) introduced log-log plots of incidence data

to infer the number of steps. Nordling (1953) assumed that the steps

were sequential mutations to a cell lineage, and he suggested that a log-

log slope of n − 1 implied n mutational steps in carcinogenesis. From

data aggregated over various types of cancer, he inferred n ≈ 7.

Stocks (1953) followed Nordling (1953) with a mathematical analysis

to show how sequential accumulation of n changes to a cell leads to

log-log incidence plots with a slope of n−1. Stocks (1953) had the right

idea, although from a mathematical point of view his analysis was rather

limited because he assumed that changes happened at a constant rate

per year and that at most one change per year occurred.

Armitage and Doll (1954) crystallized multistage theory by extending

the data analysis and mathematical development. With regard to the

data, they examined log-log plots for several distinct cancers rather than

aggregating data over different cancers as had been done by Nordling

(1953). With regard to theory, their mathematical model allowed dif-

ferent rates for different steps; they assumed continuous change rather

than arbitrarily limiting changes to one per year; and they noted that the

stages did not have to be genetic mutations but only had to be sequential

changes to cells. The style of data analysis and mathematical argument

formed the basis for the future development of multistage models.

Armitage and Doll (1954) rejected Fisher and Hollomon’s (1951) mul-

ticell theory in which the changes happen to different cells. Armitage

and Doll argued that if a chemical mutagen caused cancer by causing

mutations to several different cells, then incidence would increase with

dose raised to a high power. For example, in Eq. (4.1), if the mutation
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rate, u, increases linearly with dose, d, then for n steps in carcinogenesis,

the incidence is proportional to dn. In those cases known to Armitage

and Doll, incidence increased only with a low power of dose but a high

power of time. Thus, they rejected the multicell theory.

Against Armitage and Doll’s quick rejection of multicell theory, Whit-

temore and Keller (1978) pointed out that if a particular carcinogen af-

fected only a few of the various stages in progression, for example only

m < n of the stages, then multicell theory predicts that incidence would

increase as dm. So, Armitage and Doll’s argument did not really rule

out the multicell theory. Later molecular evidence tends to favor se-

quential changes to a cell lineage rather than changes to many different

cells. However, recent work on genetic changes in stromal cells and

analyses of the tissue environment (see below) will probably lead to the

conclusion that changes to the surrounding cells and tissue can also be

important in some cases.

The next step in the history, from a chronological point of view, con-

cerns the role of cell proliferation and clonal expansion. However, I

delay that topic until a later section. Instead, I take up what I consider

to be the next major insight: how to test theories of progression.

4.2 A Way to Test Multistage Models

Various forms of multistage theory can be fit to the data. But the fact

that a particular model can be fit to the data by itself provides only weak

support for the model. The problem is that models are often too pliable,

too easily fit to different forms of data. Because many different models

can be nicely fit to the same data, fitting models to data provides very

little insight. For testing multistage hypotheses, the key breakthrough

came with Knudson’s (1971) comparison of incidence between inherited

and noninherited forms of retinoblastoma. In this section, I present the

background to Knudson’s work, what he accomplished in his studies,

and some of the historical aspects of his work (Knudson 1977).

In the 1960s, the importance of somatic mutations and the nature of

stages in progression continued to be debated (Foulds 1969). Several

authors developed the idea that cancer arises by the accumulation of

genetic mutations to cell lineages. Burch (1963) noted that if a sequence

of mutations drives progression, then some individuals may inherit one

mutation and obtain the rest after birth by somatic mutation. Burch
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(1964) stated: “Although for a specific cancer the inherited predisposi-

tion usually affects only a single autosomal locus . . . the phenotypic ex-

pression in adults should generally involve somatic mutation of the gene

homologous with the inherited allele, together with somatic mutation of

homologous genes at another locus.” This combination of inherited and

somatic mutation explains why the “commonest form of predisposing

inheritance appears to be a simple Mendelian dominant of incomplete

penetrance.”

Anderson (1970) summarized further evidence of autosomal domi-

nant inheritance of cancer predisposition for certain types of tumors,

including retinoblastoma. In discussion of Anderson’s paper, DeMars

(1970) stated:

I think many pedigrees are consistent with the notion that one of
the parents in these families might be heterozygous for a reces-
sive and that the neoplasms appear as a result of subsequent so-
matic mutations in which individual cells become homozygous for
a recessive neoplasm-causing gene. Can you critically exclude that
possibility in any of the cases that you called autosomal dominant?
It’s obviously important if we want to understand the relationship
between the genotypes and the phenotype called cancer.

Ashley (1969a) made the first comparison of age-specific incidence

between inherited and noninherited forms of the same cancer. He com-

pared polyposis coli, an inherited form of colon cancer, with noninher-

ited cases. He concluded that “the slope of age dependence for the de-

velopment of colonic cancer is less steep in the case of individuals car-

rying the gene for polyposis coli than in the general population.” Ashley

argued that this comparison supported multistage theory, where transi-

tions between stages arise by genetic mutations (hits): “the difference in

slopes suggests that more ‘hits’ are required in the case of an individual

in the general population before a colonic cancer will develop than is

the case in an individual who has, in his genome, the gene [mutation]

for polyposis coli.”

Knudson (1971) compared age-onset patterns of retinoblastoma be-

tween inherited and noninherited forms. In his introduction, Knudson

placed his work in the context of multistage progression, in which pro-

gression is driven by genetic mutations:
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The origin of cancer by a process that involves more than one dis-
creet [sic] stage is supported by experimental, clinical, and epidemi-
ological observations. These stages are, in turn, attributed by many
investigators to somatic mutations . . . What is lacking, however, is
direct evidence that cancer can ever arise in as few as two steps and
that each step can occur at a rate that is compatible with accepted
values for mutation rates. Data are presented herein in support
of the hypothesis that at least one cancer (the retinoblastoma ob-
served in children) is caused by two mutational events.

Knudson concluded from his retinoblastoma data that individuals

who inherit one mutation follow the age-onset pattern expected if one

additional hit leads to cancer, whereas individuals without an inherited

mutation follow the kinetics expected if two hits leads to cancer. Knud-

son fit his data to particular one-hit and two-hit mathematical models.

However, his theoretical arguments in this paper ignored the way the

retina actually develops. In a later pair of papers, Knudson and his

colleagues produced a theory of incidence that accounts for retinal de-

velopment (Knudson et al. 1975; Hethcote and Knudson 1978).

The later papers had several parameters concerning retinal develop-

ment and mutation that the authors fit to the data. However, Knudson’s

great insight was simply that age-specific incidence of inherited and non-

inherited retinoblastoma should differ in a characteristic way if cancer

arises by two hits to the same cell. He obtained the data and showed

that very simple differences in incidence do occur.

In my view, nothing is more powerful than figuring out how to test

an important hypothesis by a simple comparison (Frank 2005; Frank

et al. 2005). Although Ashley (1969a) made essentially the same com-

parison of age-specific incidence between inherited and noninherited

forms of colon cancer, Knudson’s (1971) work achieved the status of a

classic whereas Ashley’s (1969a) paper is rarely cited. Ashley certainly

deserves credit for his accomplishment, but Knudson’s paper deserves

to be regarded among the few major achievements in this subject.

In retrospect, we can now see that Knudson’s paper made two major

contributions. First, he compared age-specific incidence curves between

inherited and noninherited cases. The inherited cases had increased

incidence by an amount consistent with an advance of progression by

one rate-limiting step. This approach provided a method of analysis by

which one could use quantitative comparison of age-specific incidence
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between two groups to infer underlying processes of progression. In

this case, the comparison pointed to a genetic mutation as a key rate-

limiting step.

The second contribution arose from the hypothesis that two muta-

tions provide the only rate-limiting barriers to tumor progression in ret-

inoblastoma. Knudson’s conclusion that two genetic hits lead to cancer

contributed an important step in the history of the subject. In partic-

ular, Knudson’s study presented the first data in support of the idea

that cancer is primarily a genetic disease driven by mutation and that

progression can be explained by known rates of mutation. Later, when

it was discovered that the genetic basis of retinoblastoma depended on

mutational knockout of both alleles at a single locus—named the retino-

blastoma or Rb locus—Knudson’s hypothesis provided the link between

the rate of cancer progression and the molecular nature of tumor sup-

pressor genes, in which abrogation by mutation of both alleles knocks

out the function of a tumor suppressor protein and releases a constraint

on tumorigenesis.

Knudson (1971) has been cited 2,926 times as of August, 2005. Fig-

ure 4.1 shows the citation history by year. The sharp increase in citations

in the early 1990s follows the rise of molecular studies that confirmed

the key role of tumor suppressor genes in limiting cancer progression

and the contribution of mutations to tumor suppressor genes in tumori-

genesis (Knudson 2003).

A dissonance exists between Knudson’s quantitative method of analy-

sis, which formed the entire basis for his paper, and the molecular anal-

yses of the 1990s that elevated Knudson’s work to classic status. The

later molecular work cited Knudson because he foreshadowed the con-

clusions of the molecular analyses: cancer progression requires knock-

out of both alleles of a tumor suppressor locus. But that molecular work

has ignored the major intellectual contribution of the Ashley-Knudson

papers: the quantitative analysis of progression dynamics by compari-

son of age-specific incidence curves between different genotypes.

I have emphasized several times that a gene has a causal effect on

cancer to the extent that it has a quantitative effect on progression dy-

namics: a genetic change has a causal effect to the extent that the ge-

netic change shifts the age-specific incidence curve. Ultimately, research

must return to this quantitative problem. I develop this issue in the next

chapter.
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Figure 4.1 Citations per year for Knudson (1971) as of August, 2005.

4.3 Cancer Is a Genetic Disease

The role of somatic mutations in cancer was debated for many years.

Witkowski (1990) puts that historical debate in context with a compre-

hensive time line of developments in cancer research interleaved with

developments in basic genetics and molecular biology (see also Knudson

2001). Here, I mention a few of the highlights that provide background

for evaluating theories of progression and incidence.

Boveri (1914, 1929) often gets credit for the first comprehensive the-

ory of somatic genetic changes in cancer progression (Wunderlich 2002).

Tyzzer (1916) used the term “somatic mutation” to describe events in

cancer progression. In the 1950s, Armitage and Doll (1954, 1957) cau-

tiously described the stages of multistage progression as possibly re-

sulting from somatic mutations but perhaps arising from other causes.

Burdette (1955), in a comprehensive review of the role of genetic muta-

tions in carcinogenesis, tended to oppose the central role of mutations

in progression. In (1969), Fould’s extensive summary of cancer progres-

sion also downplayed the role of mutation.
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Knudson’s (1971) study strongly supported mutation as the primary

cause of progression. But Knudson’s evidence for the role of mutation

came indirectly through quantitative analysis of incidence curves; I sus-

pect that Knudson’s study had only limited impact at the time with re-

gard to the debate about the importance of mutation.

The first steps in the modern molecular era began in the late 1970s,

with the cloning of the first oncogenes that stimulate cellular prolifera-

tion. In the 1980s, several groups cloned the Rb (retinoblastoma) gene

and other tumor suppressor genes. The tumor suppressors stop the

cell cycle in response to various checkpoints (see review by Witkowski

1990). From these molecular studies arose the concept that oncogene

loci require mutation to only one allele to stimulate proliferation, be-

cause the mutant allele provides an aberrant positive control, whereas

tumor suppressor loci require mutations to both alleles to abrogate the

negative control on the cell cycle: one hit for oncogenes, two hits for

tumor suppressor genes.

Fearon and Vogelstein (1990) provided the next step with their ge-

netic analysis of colorectal tumor progression. They isolated tumors in

different morphological stages of progression. From genetic analysis of

those samples, they concluded that mutational activation of oncogenes

and mutational inactivation of tumor suppressor genes drive progres-

sion. Fewer genetic changes in key oncogenes and tumor suppressor

genes lead to benign tumors; more changes lead to aggressive cancers.

The mutations tend to happen in a certain order, but much variability

occurs. Five or so key mutations seem to be involved in progression. The

mutations accumulate in a cell lineage over time, leading to monoclonal

tumors. Together, these observations support multistage carcinogene-

sis by the accumulation of mutations in cell lineages.

The initial studies of cancer genes focused on changes in progress

through the cell cycle: mutations to oncogenes typically accelerated

the cycle, and mutations to tumor suppressor genes typically released

blocks to cell-cycle progress. Further studies showed that many cancer-

related genes influence DNA repair and chromosomal homeostasis. Mu-

tations in such genes increase the rate of point mutations, the loss of

chromosomes, the accumulation of duplicate chromosomes, and several

varieties of chromosomal instability. Most cancers appear to have some

sort of breakdown in DNA repair capacity or in chromosomal home-

ostasis. Kinzler and Vogelstein (1998) named those genes that regulate
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the cell-cycle “gatekeeper” genes and those genes that manage genetic

integrity “caretaker” genes.

A distinct line of theory focuses on the important role of tissue inter-

actions instead of the accumulation of mutations in cell lineages. For

example, Folkman (2003) emphasizes angiogenesis—the recruitment of

a blood supply to a growing tumor. In developing epithelial tumors,

the neighboring stromal tissue interacts in many ways with the primary

growth (Mueller and Fusenig 2004).

With regard to tissue interactions, perhaps the key problem concerns

the nature of rate-limiting steps in progression. For example, a primary

cell lineage that is accumulating mutations and progressing toward can-

cer may acquire a mutation that alters the neighboring stromal tissue

or attracts a blood supply. Kinzler and Vogelstein (1998) call such mu-

tations “landscapers.” Alternatively, genetic changes may arise in the

neighboring tissue rather than in the primary cell lineage that has started

toward tumor progression. Or changes in tissue may be limited by phys-

iological processes that do not derive from underlying genetic changes.

In summary, the dominant view at present focuses on accumulation

of genomic changes in one or perhaps a few cell lineages. Tissue interac-

tions, such as angiogenesis and signals from the stromal environment,

clearly influence tumorigenesis, but their relative importance compared

to genetic change in limiting the quantitative rate of progression re-

mains unknown. Finally, other types of genomic changes that regulate

gene expression may be important, such as methylation of DNA pro-

moter regions and modification of histones. I discuss below how such

genomic changes in gene regulation may influence rates of progression.

With these modern views of mutation accumulation and cancer pro-

gression in mind, I return to the problem of mutation rates. That prob-

lem influenced the development of theoretical models.

4.4 Can Normal Somatic Mutation
Rates Explain Multistage Progression?

By the 1950s, studies of age-specific incidence in humans and chem-

ical carcinogenesis in animals supported the theory that cancer pro-

gresses through multiple stages. The first quantitative theories of Nord-

ling (1953) and Armitage and Doll (1954) inferred approximately six

stages.
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Ashley (1969b) used the standard Armitage and Doll (1954) multi-

stage model to fit data for gastric cancer. He calculated n = 7 stages

and a mutation rate of 10−3. His calculations are a bit hard to follow,

but he seems to be using somatic mutation rate per year. He concluded

that the fitted mutation rate appears to be high, although he seemed

not to be aware of the scaling he used for his mutation rate estimate.

In any case, this high number may have influenced subsequent authors

by suggesting that the standard multistage theory requires a very high

mutation rate. For example, Knudson (1971) stated in his introduction:

“What is lacking, however, is direct evidence that cancer can ever arise

in as few as two steps and that each step can occur at a rate that is

compatible with accepted values for mutation rates.”

Stein (1991, p. 167) provides the following calculation to support his

argument that five or more hits are very unlikely based on standard

somatic mutation processes:

It is generally agreed that mutation rates in mammalian cells occur
with a frequency of some 10−5 to 10−6 mutations per cell genera-
tion (Evans 1984) [see also Lichten and Haber (1989), Yuan and Keil
(1990), Kohler et al. (1991)]. Thus, five independent, simultaneous
mutations will occur at a frequency of some 10−25 to 10−30 muta-
tions per cell generation. To score such a 5-hit event will require
the elapse of some 1025 through 1030 generations. Now the human
body, in an average lifetime, produces a total of only 1016 cells, or
that number (minus one) of cell divisions. By this calculation, on a
5-hit model, cancer should seldom occur—indeed, in not more than
10−9 down to 10−14 of the population—that is, never. The model
requires mutation rates of some 10−3 per cell division for it to be
applicable, rates which are most unlikely to be found.

The apparent contradiction between the commonly accepted somatic

mutation rate and those rates supposedly needed for a multiple-hit the-

ory may have played an important role in how the theory developed.

In particular, Loeb has emphasized that an early stage in carcinogenesis

must very often be mutation to the DNA repair system (Loeb 1991; Beck-

man and Loeb 2005). Subsequent hypermutation could then explain how

cancer cells obtain the multiple mutations that most tissues apparently

need for transformation (Rajagopalan et al. 2003; Michor et al. 2004).

The fact that many tumors have chromosomal instabilities supports the

hypermutation theory.
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Figure 4.2 Mutation rate per cell division required to explain observed cancer
incidence for various numbers of stages in multistage progression. The x axis
shows the number of cell divisions over a lifetime, d. The calculations follow a
simple multistage model with constant mutation rate per cell division, the same
mutation rate for each transition between stages, and no clonal expansion. Can-
cer arises only after the accumulation of nmutations within a single cell lineage.
The number attached to each line show the number of stages in progression,
n, from classical multistage theory. The shaded area highlights the commonly
accepted mutation rate per cell division. I calculated the required mutation
rate per cell division, u, by solving for the value of u that satisfies the equation
N(1−∑n−1

i=0 Pi(ud)) ≈ C, where N is the number of distinct cell lineages in the
tissue under study, Pi(x) is the Poisson probability of i events given a mean of
x events, d is the number of cell divisions per cell lineage over a lifetime in that
tissue, and C is the probability that an individual develops cancer in that tissue.
For this figure, I used N = 108 and C = 0.05; results change little when varying
N up or down by a factor of 10 and when varying C over the range 0.01− 0.1.
See Chapter 6 for the mathematical background.

The need for hypermutation seems to be widely accepted (but see

Sieber et al. 2005). However, my own calculations of the somatic muta-

tion rate required to get several hits contradicts the calculation given by

Stein (1991) and the strong conclusions drawn by Loeb (1991) and Beck-

man and Loeb (2005) on the sheer implausibility of multiple mutations

accumulating in a single cell lineage (see also Calabrese et al. 2004).

Figure 4.2 shows that a somatic mutation rate on the order of 10−5

to 10−6 may be sufficient to explain 4–6 hits. I used a model in which

stem cells renew tissues, as happens in colorectal, epidermal, and per-

haps several other epithelial tissues, in which most human cancers arise.
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Colonic epithelium renews one to two times per week, so stem cells prob-

ably divide 50–100 times per year. Over a lifetime, the number of stem

cell divisions to renew the colonic epithelium may be near 104. Other

tissues renew less frequently, perhaps needing somewhere around 102

to 103 stem cell divisions. Figure 4.2 shows that 104 stem cell divisions

can explain 4–6 hits within the normal range for somatic mutation; 103

cell divisions can explain 3–4 hits.

Hypermutation may indeed play a key role in many cases. However,

in looking at Figure 4.2 and the calculations in Calabrese et al. (2004),

the argument against standard mutational processes does not seem as

strong as is sometimes presented.

The debate about the role of hypermutation continues in the current

literature. I delay discussion of those arguments until a later section,

so that I can first fill in important steps in the historical development of

the subject.

4.5 Clonal Expansion of Premalignant Stages

Muller (1951, p. 131) described the problem clearly. In the accumula-

tion of a series of somatic mutations within a cell lineage:

The time element would constitute an influential factor unlike what
is found to be the case in ordinary mutation production; for cells
in which one step had occurred might because of it have prolif-
erated sufficiently, by the time of a later treatment, to give better
opportunity for another step to occur on top of the first.

Nordling (1953) made a similar comment, but, having cited Muller in

another context, may well have obtained the idea from the quote here.

Platt (1955) independently came to the same idea when thinking about

the long latent period between exposure to a carcinogen and occurrence

of cancer. Platt argued that

If the carcinogen simply acts by causing cells to proliferate, so that
instead of dividing by mitosis x times in 20 years, they have been
stimulated to divide x × y times (y > 1), and if, as Sonneborn
seems to have shown in paramecium, the chromosomal substance
duplicates more and more inaccurately as the number of divisions
is increased, and if this kind of nuclear aberration could cause a
malignant change in the cell, the reason for the latent period would
be explained.
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Armitage and Doll (1957) developed a two-stage mathematical the-

ory in which the first hit causes proliferation of the altered cell, and

the second hit causes progression to cancer. They developed this the-

ory to explain two observations. First, prior experimental studies of

carcinogens had emphasized only two distinct stages in carcinogenesis.

Second, many common cancers increased in incidence with about the

fifth or sixth power of age.

Previously, Armitage and Doll (1954) showed that a simple multistage

model could explain the increase of incidence with age based on six

or seven hits, the number of hits being the exponent on age plus one.

However, given the two-stage interpretation of experimental carcinogen

studies, they sought in their 1957 paper an alternative theory to fit the

data. Their new clonal expansion theory could be fit to the observed rise

of incidence with a high power of age. The rapid increase in incidence

with age occurs because, given the first hit, the rate of transformation

by the second hit increases with time as the clone of initiated cells grows

and raises the number of cells at risk for obtaining the second hit.

Starting with Fisher (1958), many others have given variant mathe-

matical treatments of clonal expansion. They all come down to the same

process: increasing the number of target cells with i − 1 hits raises the

rate at which the ith hit occurs. This increase in the rate of transition

between stages raises the slope of the incidence curve (acceleration), al-

lowing a model with a small number of hits to generate incidence curves

with high acceleration.

I develop some of the technical details of clonal expansion models

in the mathematical chapters of this book. For example, if the clone

expands rapidly, the next hit comes so quickly that it is not rate limit-

ing in progression. Once a clone approaches in size the inverse of the

mutation rate, the next hit comes inevitably and does not limit the rate

of progression. So, these models depend on slow clonal expansion over

many years to provide a fit to observed incidence curves.

Recent molecular studies implicate several key genetic changes in pro-

gression for many cancers. Because of those studies, the two-stage mod-

els of clonal expansion have given way to more sophisticated multistage

models that include one or more stages of clonal proliferation (Luebeck

and Moolgavkar 2002).

Many models can provide a moderately good fit to the data for com-

mon cancers. Thus, the data do not strongly discriminate between the
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original multistage theory, the two-stage clonal expansion theory, or the

newer hybrid models. Armitage and Doll’s (1961, p. 36) conclusions still

apply:

In summary, we doubt whether the available observational data
provide clear and consistent evidence in favor of any particular
model. Further elucidation is likely to come either from direct bi-
ological evidence of a nonquantitative nature, or from quantitative
experiments, carefully designed and reported, perhaps on a larger
scale than is usually undertaken at present.

I agree that one cannot easily choose between the main classes of

models by analyzing how well they fit the data. Most of the models

supply a set of reasonable assumptions or modifications that provide a

good fit. However, I do think that comparative tests like those originally

used by Ashley (1969a) and Knudson (1971) can be developed to dis-

criminate between the models (Frank 2005; Frank et al. 2005). I discuss

that approach in Chapter 8.

4.6 The Geometry of Cell Lineages

Two aspects of cellular reproduction influence mutation accumula-

tion. First, the rate of cell division influences the number of mutational

events per unit time, because mutations arise primarily during cell repli-

cation. Second, the shape of cellular lineages determines how a single

mutational event passes to descendant cells of a lineage. The rate at

which a second hit strikes a descendant cell depends on how many of

those descendant cells exist.

Some tissues have extensive cell division early in life and then rel-

atively little after childhood, for example, neural and bone tissue. The

relatively rare childhood cancers occur in such tissues, whereas the com-

mon adult cancers occur in continuously dividing tissues. Perhaps as

much as 90% of human cancers arise in renewing epithelial tissues, most

commonly, those of the colon, lung, breast, and prostate.

I am not certain about the historical origins of these ideas on cell

division. The early chemical carcinogenesis literature emphasized the

role of cell division rate stimulated by particular chemical agents. With

regard to childhood cancers and tissue growth, Moolgavkar and Knud-

son (1981) reviewed some prior work and then presented an extensive

mathematical framework in which to analyze the role of development
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in cell division and age-specific incidence. Moolgavkar and Knudson fo-

cused on extending the two-hit theories with clonal expansion to fit the

age-incidence curves of both childhood and adult cancers.

Cairns (1975) wrote the key paper on cell lineage shape in epithelial

tissues. He emphasized three factors that reduce mutation accumula-

tion and the risk of cancer.

First, renewal of epithelial tissue from stem cells creates a linear cel-

lular history that reduces opportunities for multiple mutations to accu-

mulate in a lineage. Normally, each stem cell division gives rise to one

stem cell that remains at the base of the epithelium and one transit cell.

The transit cell divides a limited number of times, producing cells that

move up from the basal layer and eventually slough off from the sur-

face. The stem lineage renews the tissue and survives over time. Thus,

accumulation of somatic mutations occurs mainly in the stem lineage.

Mutations in transit cells usually are discarded as the transit cells die at

the surface.

Recent studies of human epidermal tissue suggest that the skin re-

news from relatively slowly dividing basal stem cells that give rise to

rapidly dividing transit lineages, each transit lineage undergoing 3–5

rounds of replication before sloughing from the surface (Janes et al.

2002). Studies of gastrointestinal tissues estimate 4–6 rounds of divi-

sion by transit lineages (Bach et al. 2000). Sell (2004) reviews the nature

of stem cells in other tissues.

Second, stem cells may have reduced mutation rates compared with

other somatic cells. In each asymmetric stem cell division, the stem lin-

eage may retain the original DNA templates, with all new DNA copies

segregating to the transit lineage. If most mutations occur in the pro-

duction of new DNA strands, then most mutations would segregate to

the transit lineage, and the stem lineage would accumulate fewer muta-

tions per cell division (Merok et al. 2002; Potten et al. 2002; Smith 2005;

Karpowicz et al. 2005). In addition, stem cells may be particularly prone

to apoptosis in response to DNA damage, killing themselves rather than

risking repair of damage (Potten 1998; Bach et al. 2000).

Third, compartmental organization of tissues reduces the opportu-

nity for competition and selection between lineages. In the epidermis

and intestine, each stem lineage clonally renews a small, well-defined

sector of tissue. The whole tissue spans numerous separate, noncom-

peting cell lineages. The colon has about 107 such compartments, called
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crypts. A mutation in one compartment remains confined to that loca-

tion, unless the mutation provides an invasive phenotype that causes

cells to break into neighboring compartments. Put another way, the

compartmental structure reduces competition between cellular lineages

by providing a barrier to clonal expansion, thus limiting the number of

descendant cells that carry a noninvasive mutation.

To summarize Cairns’ view, asymmetric mitoses of stem cells reduce

mutation accumulation within lineages, and compartmentalization re-

duces competition and selection between lineages. Symmetric mitoses

and exponential cell lineage expansion increase the risk of cancer pro-

gression. I follow up on these issues in a later chapter on cell lineages.

4.7 Hypermutation, Chromosomal
Instability, and Selection

Two process may accelerate the accumulation of genomic change.

First, changes early in progression may accelerate the production of

subsequent changes. Second, competition and selection between cell

lineages that harbor various genomic changes would favor clonal ex-

pansion of more aggressive lines.

ACCELERATION OF VARIATION BY MUTATORS

Burdette (1955, p. 218) nicely summarized the potential role of mu-

tators in early stages of progression: “A logical corollary to the so-

matic mutation hypothesis is that [inherited] mutants act as mutators.”

Those mutators would accelerate the accumulation of subsequent so-

matic changes in cells. Loeb developed the mutator hypothesis through

a series of papers (Loeb et al. 1974; Loeb 1991, 1998; Beckman and Loeb

2005).

Nowell (1976, p. 26) emphasized chromosomal instabilities: “It is pos-

sible that one of the earliest changes in tumor cells involves activation of

a gene locus which increases the likelihood of subsequent nondisjunc-

tion or other mitotic errors.” Recent reviews of chromosomal instability

can be found in Rajagopalan et al. (2003) and Michor et al. (2004).
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SELECTION BETWEEN VARIANTS

Cairns (1975, p. 200) noted that an increase in the mutation rate per

cell division would speed up progression. However, in epithelial tissues

renewed by stem cells, each new mutation would remain confined to a

single linear history of descent. Thus, Cairns stated that

Unless such mutagenic mutations confer some survival advantage,
however, they will remain confined to the stem cells in which they
arise . . . Probably more important, therefore, are mutations that
affect the interactions of a cell with its neighbours. Any mutation
that gives a stem cell the ability to move out of its compartment
in an epithelium may cause it to form an expanding clone of stem
cells.

This quote emphasizes the theory of clonal expansion. However, the

early theories of clonal expansion focused only on the consequences

of expansion. By contrast, Cairns emphasizes the processes that limit

competition, and the types of cellular changes that would bypass those

limits and promote competition between lineages. Put another way, the

early theories focused on the consequences of selection, and the later

theories beginning with Cairns emphasized the mechanisms involved in

such selection.

The debate continues about the relative importance of mutators ver-

sus selection and clonal expansion (Sieber et al. 2005). Tomlinson et al.

(1996) reviewed the issues in favor of selection, arguing against the need

to invoke mutators in order to explain the incidence of cancer.

4.8 Epigenetics: Methylation and Acetylation

Many theoretical issues have turned on the rate of transition between

key stages in progression. I mentioned the concerns that the commonly

accepted somatic mutation rate of about 10−6 mutations per gene per

cell division seemed too low to some investigators to explain how mul-

tiple changes could accumulate.

One recurring problem concerns the definition of “mutation” (Bur-

dette 1955). I am interested in kinetics, so I tend to follow those au-

thors who use the term “mutation” rather loosely for heritable genomic
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changes that influence progression. Other authors, interested in the

particular mechanisms of change that underlie progression, emphasize

the distinctions between different kinds of genomic changes.

An early distinction arose between point mutations to particular bases

and chromosomal instability, which causes a variety of broad karyotypic

changes that often affect dosage and gene expression. Some have argued

that mutations causing chromosomal instability likely arise early in pro-

gression in many tumors (Nowell 1976; Rajagopalan et al. 2003; Michor

et al. 2004). Such chromosomal instability could explain the accumula-

tion of numerous genetic changes in a cell lineage, ultimately leading to

malignant disease.

Recent evidence points to an important role for various epigenetic

changes in contributing to the overall rate of genomic changes in pro-

gression. Epigenetic changes include methylation and acetylation of hi-

stone proteins and methylation of DNA (Kuo and Allis 1998; Breivik

and Gaudernack 1999b; Wang et al. 2001; Jones and Baylin 2002; Eg-

ger et al. 2004; Feinberg and Tycko 2004; Fraga et al. 2005; Genereux

et al. 2005; Hu et al. 2005; Robertson 2005; Seligson et al. 2005; Sontag

et al. 2006). Both methylation and acetylation can strongly influence

gene expression, and both tend to be inherited through a cellular lin-

eage. Complex molecular regulatory systems control these epigenetic

processes, determining the rate of change and the stability of inherited

changes. The regulatory systems are often perturbed in tumors, causing

enhanced rates of epigenetic changes—a different mechanistic form of

the mutator phenotype.

With regard to kinetics, epigenetic changes simply provide another

contributing factor to the speed at which rate-limiting steps in progres-

sion may be passed. If one includes epigenetic change, it may not be

so hard to explain how cell lineages accumulate multiple hits over the

course of a lifetime. With regard to mechanism, some have proposed

that epigenetic change presents a new paradigm of progression (Prehn

2005), but my focus remains on kinetic issues.

4.9 Summary

This chapter completes the background on biological observations of

incidence and progression, and on the history of theories to explain pat-

terns of incidence. These background chapters discussed quantitative
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theories but did not develop any of the quantitative methods or conclu-

sions. To build a stronger quantitative understanding of the causes of

cancer, we need to expand the theory and tie the theory more closely

to testable predictions about how particular genetic or physiological

processes shift incidence. The next chapter begins development of the

quantitative theory by providing a gentle introduction to the mathemat-

ical models and to why those models can help to understand cancer.
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DYNAMICS





5 Progression Dynamics

Progression depends on various rate processes, such as the rate of so-

matic mutation and the time for a solid tumor to build a blood supply.

To link rate processes to the observed age-onset curves of cancer inci-

dence, one must understand how the processes combine to determine

the speed of progression. This chapter introduces the quantitative the-

ory that links carcinogenic process and incidence.

The first section provides background on mathematical theories of

progression. The general approach begins with the assumption that

cancer develops through a series of stages. This assumption of multi-

stage progression sets the framework in which to build particular mod-

els of progression dynamics. Within this framework, I argue in favor of

simple theories that make comparative predictions. If one understands

how a particular process affects progression, then one should be able to

predict how altering that process changes progression dynamics.

The second section lists some of the observations on cancer incidence

that a theory should seek to explain. These observations set the target

for mathematical theory and emphasize the need to link progression

dynamics to incidence.

The third section introduces the classical model of multistage pro-

gression. This model predicts an approximately linear relation between

incidence and age when plotted on log-log scales. The observed patterns

match this prediction for several cancers. However, the fit of observa-

tions to theory is not by itself particularly informative. To make further

progress, I emphasize the need for comparative theories. I briefly men-

tion one comparative theory that follows from the classical multistage

model: the ratio of incidence rates between two groups depends on the

difference in the number of rate-limiting steps in progression. I develop

that theory in later chapters.

The fourth section discusses why one should bother with abstract the-

ories that often run ahead of empirical understanding. The main reason

is that we are not likely to have much luck in understanding real sys-

tems if we cannot understand with simple logic how various processes

could in principle combine to influence progression. In addition, it helps
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to have a toolbox of possible explanations that one thoroughly under-

stands. Such understanding prevents the common tendency to latch

onto the first available explanation that seems to fit the data, without

full consideration of reasonable alternatives.

The fifth section presents the equations for a simple model of pro-

gression through a series of stages. I emphasize that the equations are

completely equivalent to a simple diagram that illustrates the flow be-

tween stages of progression. The equations introduce the notation and

structure of a formal model, paving the way for more detailed analysis

in the following chapters.

The sixth section develops technical definitions for incidence and ac-

celeration that follow from the formal specification of the model in the

previous section. Incidence provides the key measure of occurrence for

cancer: the cases of cancer per year, at each age, for a given population

of individuals. Incidence is a rate—cases per year—just as velocity is

a rate. Acceleration is the rate of change in incidence with age: how

fast incidence increases or decreases as individuals become older. The-

ories about the carcinogenic role of particular biochemical mechanisms

must ultimately link those mechanisms to their effects on incidence and

acceleration.

5.1 Background

MULTISTAGE PROGRESSION IS A FRAMEWORK, NOT A HYPOTHESIS

Most mathematical models of cancer progression descend from Ar-

mitage and Doll’s (1954) paper on multistage theory. The phrase “multi-

stage theory” has led to some confusion. A multistage model simply

assumes that cancer does not arise in a single step—an assumption

supported by much evidence. So, “multistage theory” is not really a

particular theory; it is a framework that describes the kind of dynamical

processes used to model progression through multiple stages.

This framework provides tools to develop testable quantitative hy-

potheses that link progression dynamics to the curves of age-specific

cancer incidence. Progression dynamics also provides a notion of cau-

sality: a process causes cancer to the extent that the process alters the

age-specific incidence curve.
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THE IMPORTANCE OF COMPARATIVE HYPOTHESES

A mathematical analysis for the age of cancer onset depends on sev-

eral parameters. Those parameters might include the number of stages

in progression, the somatic mutation rate that moves a tissue from one

stage to the next, the number of cells in the tissue, and the precancerous

rate of cell division. Given values for those parameters, the mathemati-

cal model generates an age-specific incidence curve.

A mathematical model may be used in two different ways: fit or com-

parison.

A fit chooses values for all parameters that minimize the distance be-

tween the predicted and observed age-specific incidence curves. A good

fit provides a close match between prediction and observation. A good

fit also uses realistic values for parameters such as rates of mutation

and cell division.

A comparison sets an explicit hypothesis: as a parameter changes,

the model predicts a particular direction of change for the age-specific

incidence curve. For example, an inherited mutation may reduce by one

the number of stages that must be passed during progression. Mathe-

matical models predict that fewer stages cause the incidence curve to

have a lower slope and to shift to earlier ages (higher intercept). I will

show data that support this comparative prediction.

FITTING

One can fit theory to observation, but the match usually arises be-

cause a model with several parameters creates a flexible manifold that

conforms to the data. Even when one constrains parameter estimates

to realistic values, an incorrect model with several parameters often has

great flexibility to conform to the shape of the data. A fit is achieved so

easily that such a model, fitting widely and well, actually explains very

little. As Dyson (2004) tells it:

In desperation I asked Fermi whether he was not impressed by
the agreement between our calculated numbers and his measured
numbers. He replied, “How many arbitrary parameters did you
use for your calculations?” I thought for a moment about our cut-
off procedures and said, “Four.” He said, “I remember my friend
Johnny von Neumann used to say, with four parameters I can fit
an elephant, and with five I can make him wiggle his trunk.” With
that, the conversation was over.
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Several mathematical methods test the quality of a fit. But techni-

cal fixes do not overcome the main difficulty: mathematical models fail

to capture the full complexity of multidimensional problems such as

cancer. If a model does become sufficiently complex, one has so many

parameters that fitting almost anything is accomplished too easily.

Although a good fit means little, a lack of fit also provides little insight:

lack of fit means only that one does not have exactly the right model.

However, one rarely has exactly the right model. So, by lack of fit, one

may end up rejecting a theory that in fact captures much of the essential

nature of a process but misses one aspect.

Finally, another common approach considers the realism of parame-

ter estimates obtained from the data. For example, when fitting a model,

how close do the estimated mutation rates match values thought to be

realistic? However, parameter estimates can only be compared to real-

istic values when one has a complete model. In incomplete models, the

parameter estimates change to make up for processes not included in

the model. So the realism of parameter estimates provides a test only

when fitting a complete model that captures the full complexity of a

process. But for cancer and for most interesting biological phenomena,

we do not have complete models and probably never will have complete

models.

Models do have great value in spite of the difficulties of drawing con-

clusions by fitting to the data. The key is to develop and test theories in

a comparative way.

COMPARISON

A comparison is simple to formulate, understand, and test. Consider

the following prediction: as the number of steps in progression declines,

the slope of the incidence curve decreases. To test this, one has to mea-

sure a relative change in the number of steps and a relative change in the

slope of the incidence curve. This test can be accomplished by compar-

ing the incidence curves between genotypes, where one genotype has a

mutation that abrogates a suspected rate-limiting step in progression.

A comparative prediction allows tests of causal hypotheses. If I un-

derstand what causes cancer, then I can predict how incidence curves

change as I change the underlying parameters of cancer dynamics.

The limited role of mathematics and quantitative studies in much of

biology follows from a fatal attraction to fitting complex models. Simple
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comparative models are often rejected a priori because they do not con-

tain all known processes. The reasoning seems to be: how can a model

be useful if a known process is left out? All known processes are added

in; fits are obtained; little is learned; quantitative analysis is abandoned.

A model is not a synthesis of all known observations; a model is a tool

to test one’s ability to predict the behavior of a system. If one cannot say

how the system changes when perturbed, then one does not understand

the system. To study perturbations most effectively, formulate and test

the simplest comparative theories.

5.2 Observations to Be Explained

In this section, I briefly list a few puzzles—just enough to set the

context. Chapter 2 provided a more complete review of the observations

on age-specific incidence.

The difference in incidence curves between inherited and sporadic

cancers provides the most striking observation (Knudson 1971, 2001).

In the simplest case, the inherited form of a cancer arises in those who

carry a defect in a single allele. For example, a carrier with a mutant

APC allele typically develops numerous independent colon tumors in

midlife. By contrast, sporadic (noninherited) cases mostly occur later in

life.

The comparison between inherited and sporadic incidence curves pre-

sents an opportunity to test how particular mutations affect the rate of

cancer progression. Figure 2.6 compares incidence data between spo-

radic cancers and inherited cancers in carriers of a mutation to a sin-

gle allele. Comparison of incidence curves between experimentally con-

trolled genotypes of rodents provides an exceptional opportunity to test

hypotheses. Figure 2.7 illustrates the sort of data that can be obtained.

Later, I will provide methods to analyze those data with regard to quan-

titative models of progression dynamics.

Six additional patterns in the incidence data suggest the kinds of puz-

zles that dynamical theories of progression must explain.

First, incidence accelerates slowly with age for some cancers, such

as melanoma, thyroid, and cervical cancers. By contrast, other cancers

accelerate more rapidly with age, such as colorectal, bladder, and pan-

creatic cancers (Figure 2.3).
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Second, the acceleration of cancer incidence with age declines at later

ages for the common epithelial cancers—breast, prostate, lung, and col-

orectal (Figure 2.3). Several other cancers also show a steady and some-

times rather sharp decline in acceleration at later ages. In some cases,

the patterns of acceleration differ between countries (see Appendix). On

the whole, declines in acceleration later in life appear to be typical for

many cancers.

Third, several cancers show very high early or midlife accelerations,

sometimes with accelerations at early ages rising to a midlife peak (Fig-

ure 2.3). For example, prostate cancer has an exceptionally high midlife

peak (Figure A.2); leukemia (Figure A.6) and in some cases colon cancer

(Figure A.4) show rises in early life.

Fourth, smokers who quit by age 50 have a lower acceleration in lung

cancer risk later in life than do those who never smoked or who continue

to smoke (Figure 2.8).

Fifth, exposure to a carcinogen often causes the median number of

years to tumor formation to decline linearly with dosage when measured

on log-log scales (Figures 2.10, 2.11).

Sixth, given a set of individuals who have suffered breast cancer at

a particular age, the close relatives of those individuals have high and

nearly constant annual risk (zero acceleration) for breast cancer after

the age at which the affected individuals were diagnosed. By contrast,

individuals whose relatives have not suffered breast cancer have lower

risk per year, but their risk accelerates with age (Peto and Mack 2000).

These observations provide a sample of interesting puzzles, most of

which have yet to be explained in a convincing way. Dynamical models

of cancer progression provide the only source of plausible hypotheses

to explain the range of observed patterns.

5.3 Progression Dynamics through Multiple Stages

Models of progression dynamics analyze transitions through stages.

The simplest type of model follows progression through a linear se-

quence. This linear model arose over 50 years ago, when people first

observed clear patterns in the age-specific incidence of cancer.

Figure 5.1 illustrates the type of pattern that was apparent to early ob-

servers: the incidence of colorectal cancer increases in a roughly linear
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Figure 5.1 Age-specific incidence for colorectal cancer. Data for all males from
the SEER database (www.seer.cancer.gov) using the nine SEER registries, year of
diagnosis 1992–2000.

way with age when plotted on log-log scales. In an earlier chapter, Fig-

ure 2.2 showed that log-log plots of incidence are approximately linear

for many cancers.

The line in Figure 5.1 fits a model in which

I = ctn−1,

where I is cancer incidence at age t , the exponent n− 1 determines the

rate of increase in cancer incidence with age, and c is a constant. Taking

the logarithm of both sides of this equation gives the log-log scaling

shown in the figure

log (I) = log (c)+ (n− 1) log (t) ,

in particular, the figure plots log(I) versus log(t). The line in Figure 5.1

has a slope of n− 1 ≈ 5.

The linear rise on log-log scales means that incidence is increasing

exponentially with age in proportion to tn−1. In the early 1950s, several

authors wondered what might explain this exponential rise in incidence

with age (Frank 2004c; Moolgavkar 2004).

Fisher and Hollomon (1951) recognized that cancer incidence would

increase as tn−1 if transformation required n independent steps. The

argument is roughly as follows. Suppose each step happens at a rate of



92 CHAPTER 5

Figure 5.2 Multistage model of cancer progression. Individuals are born in
stage 0. They progress from stage 0 through the first transition to stage 1 at
a rate u0, then to stage 2 at a rate u1, and so on. Severe cancer only arises
after transition to the final stage. With regard to epidemiology, the rate at
which individuals enter the final stage, n = 6 in this case, is approximately
proportional to tn−1 as long as cancer remains rare and the ui ’s are not too
different from each other.

u per year, where u is a small rate. The probability of any step having

happened after t years is 1 − e−ut ≈ ut . At age t , the probability that

n − 1 of the steps has occurred is approximately (ut)n−1, and the rate

at which the final step happens is u, so the approximate rate (incidence)

of occurrence at time t is proportional to untn−1.

Nordling (1953) and Armitage and Doll (1954) emphasized that the

different steps may happen sequentially. There are n − 1! different or-

ders in which the first n − 1 steps may occur. If we assume they must

occur in a particular order, then we divide the incidence calculated in the

previous paragraph, untn−1, by n − 1! to obtain the approximate value

for passing n steps at age t as

In (t) ≈ untn−1

n− 1!
. (5.1)

Armitage and Doll (1954) developed this theory of sequential stages for

the dynamics of progression—the multistage theory of carcinogenesis

as illustrated in Figure 5.2.

This basic model provides a comparative prediction for the relative

incidence of sporadic and inherited cancers (Frank 2005). Suppose that

normal individuals develop sporadic cancer in a particular tissue after

n steps. Individuals carrying a mutation develop inherited cancer after

n− 1 steps, having passed one step at conception by the mutation that

they carry. Using Eq. (5.1) for n steps versus n − 1 steps, the incidence

ratio of sporadic to inherited cancers at any age t is

R = In
In−1

≈ ut
n− 1

.

In Chapter 8, I will develop this comparative prediction and apply it

to data from retinoblastoma and colon cancer. That application will

show how a simple comparative theory can link the genetics of cancer

progression to the age of cancer incidence.
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5.4 Why Study Quantitative Theories?

An ordered, linear sequence leaves out many of the complexities of

carcinogenesis. However, it pays to begin with this simple model, to

understand all of its logical consequences, and to study how well that

model can predict changes in incidence. Following on the simple model,

we can begin to explore alternatives, such as parallel lines of progres-

sion in different cellular lineages or incidence aggregated over different

pathways.

After I have analyzed the basic model, I will explore a range of more

complex assumptions, because we need to understand the possible al-

ternative explanations for observed patterns. Without broad conceptual

understanding, there is a tendency to latch onto the first available expla-

nation that fits the data without full consideration of reasonable alter-

natives. The theory I develop will run ahead of empirical understanding,

but if used properly, this is exactly what theory must do.

Another issue concerns the definition of stages and rate-limiting steps.

To address this issue, we must consider what we wish to accomplish with

mathematical models. The models are tools, so we need be concerned

only about defining stages and rate-limiting steps in ways that help us

to achieve particular goals for particular problems.

Sometimes we may formulate a model in a very abstract, nonbiological

way, for example, to study how variation in rates of transition between

stages influences age-onset patterns. In this case, stages remain abstract

notions that we manipulate in a mathematical model in order to under-

stand the logical consequences of various assumptions. In other cases,

we may try to match the definition of stages and rates to the biological

details of a particular cancer. A stage may, for example, be an adenoma

of a particular size, histology, and genetic makeup. A transition between

stages may occur at the rate of a somatic mutation to a particular gene.

5.5 The Basic Model

Assume that cancer progression requires passage through n rate-

limiting steps, each step moving through the sequence of tumor pro-

gression to the next stage. A step could, for example, be mutation to

APC or p53, as in colorectal cancer progression. But for now, I just

assume that such steps must be passed.
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Not all changes during tumor development limit the rate of progres-

sion. A necessary change may happen very quickly following, for exam-

ple, expansion of a precancerous tumor to a large size. Such a step is

necessary for progression but does not limit the rate of progress, and

so does not determine the ages at which individuals carry tumors of

particular stages. I develop the basic theory under the assumption that

whatever determines a rate-limiting step, tumor progression requires

passing n such steps to develop into cancer. This section follows the

derivations given in Frank (2004a).

I gave a picture of the basic model in Figure 5.2. That picture formally

describes a set of differential equations. Because the picture and the

equations present the same information, one may choose to focus on

either. The equations are

ẋ0 (t) = −u0x0 (t) (5.2a)

ẋj (t) = uj−1xj−1 (t)− ujxj (t) i = j, . . . , n− 1 (5.2b)

ẋn (t) = un−1xn−1 (t) , (5.2c)

where xi(t) is the fraction of the initial population born at time t = 0

that is in stage i at time t , with time measured in years. Usually, I assume

that when the cohort is born at t = 0, all individuals are in stage 0, that

is, x0(0) = 1, and the fraction of individuals in other stages is zero.

As time passes, some individuals move into later stages. The rate of

transition from stage i to stage i + 1 is ui . The ẋ’s are the derivatives of

x with respect to t .

5.6 Technical Definitions of Incidence and Acceleration

Two ways to characterize age-onset patterns play an important role

in analyzing cancer data and studying theories of cancer progression.

Incidence is the rate at which individuals develop cancer at particular

ages. Acceleration is the change in incidence rates. For example, positive

acceleration means that incidence increases with age.

This section provides some technical details for the definitions of

incidence and acceleration. One can get a rough idea of the main results

without these details, so some readers may wish to skip this section and

come back to it later.

Individuals who move into the final, nth stage develop cancer. They

pass into the final stage at the age-specific incidence rate ẋn(t), which
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is roughly the probability of developing cancer per year at age t . The

age-specific incidence is the fraction of all individuals in the cohort who

develop cancer for the first time at age t , which is the probability of

developing cancer at age t divided by the fraction of individuals, S(t),
who have not yet developed cancer by that age. In symbols, we write

that the age-specific incidence is I(t) = ẋn(t)/S(t).
The incidence, I(t), is the rate at which cancer cases accumulate at a

particular age. I frequently refer to the acceleration of cancer, which is

how fast the rate, I(t), changes at a particular age, t . The most useful

measure of acceleration in multistage models scales incidence and time

logarithmically (Frank 2004a, 2004b).

Use of logarithms provides a scale-free measure of change. In other

words, differences on a logarithmic scale summarize percentage change

in a variable independently of the value of the variable. This can be seen

by examining the derivative of the logarithm for a variable x, which is

d log (x) = dx
x
.

The right side is the change in x divided by x, which measures the frac-

tional change in x independently of how large or small x is.

For example, if we wanted to measure the percentage increase in the

age-specific incidence for a given percentage increase in age, then we

need to measure in a scale-free way changes in both age-specific inci-

dence and age. We obtain a scale-free measure by defining the log-log

acceleration (LLA) at age t as

LLA (t) = dI (t) /I (t)
dt/t

= d log (I (t))
d log (t)

. (5.3)

The derivative of incidence, dI(t)/dt , is the age-specific acceleration,

so LLA is just a normalized (nondimensional) measure of age-specific

acceleration.

5.7 Summary

This chapter introduced the quantitative tools needed to build mod-

els of cancer progression. Such models make predictions about how

particular genetic or physiological changes alter age-specific incidence.

The ability to make such predictions successfully defines a causal under-

standing of cancer. The next chapter begins my mathematical analysis

of the ways in which particular causes affect age-specific incidence.
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To test hypotheses about how particular biochemical processes affect

cancer, we need quantitative predictions for how biochemical changes

alter the age of cancer onset. This chapter develops the quantitative

theory of progression dynamics.

The first section outlines my strategy for presentation. I divide each

quantitative analysis into a précis that gives the main points, a mathe-

matical presentation of the analytical details, and a set of conclusions.

The second section solves the basic model of multistage progression

dynamics. In that model, individuals progress through a series of stages

with the same constant transition rate from each stage to the next. That

model follows the classical analysis of multistage progression, leading

to the conclusion that a log-log plot of cancer incidence versus age is

approximately linear with a slope of n − 1, where n is the number of

rate-limiting steps in progression. The slope of n − 1 measures the ac-

celeration of cancer with age. I present an exact solution for the model,

which shows that, under some conditions, the incidence curve flattens

late in life and drops below the linear approximation, causing a late-life

decline in acceleration.

The third section analyzes parallel lines of progression within indi-

viduals. The models follow the stages of cells or tissue compartments,

in which different cells or compartments may be in different stages of

progression within the same tissue. The greater the number of indepen-

dent lines of progression, the slower progression must be in each line to

keep the overall incidence from rising to very high levels. The smaller

the number of lines, the more strongly acceleration tends to decline later

in life.

The fourth section discusses how incidence changes when the rates

of transition vary between different stages in progression. The greater

the variation in rates of transition, the more strongly the acceleration of

cancer tends to decline with advancing age.

The fifth section studies what happens when rates of transition vary

with age. Rates may increase with age if DNA repair capacity or other

checks on cell-cycle integrity decline with age. Alternatively, rates of
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transition may rise when a precancerous cell expands into a large clone,

in which a subsequent change to any one of the clonal cells could cause

progression to the next stage in carcinogenesis. As the clone grows

larger, the target size for a transition increases. Time-varying rates often

cause a rise in acceleration to a midlife peak, followed by a late-life

decline in acceleration.

6.1 Approach

This chapter and the following one develop the theory of progression

dynamics. Most of the sections contain some mathematics. I use the

following structure to make the presentation accessible. A section with

mathematics begins with a précis that highlights the main results. The

mathematical details follow, often with some illustrations to emphasize

the key points. The section ends with a brief statement of the conclu-

sions.

I developed much of the following original theory for this book. Al-

though the overall structure and many of the particular results are new,

my mathematical work grew from a rich and highly developed field. I

gave an overview of the history in Chapter 4. I particularly wish to ac-

knowledge the pioneering contributions of Armitage and Doll, Knudson,

and Moolgavkar, who have been most influential in my own studies.

6.2 Solution with Equal Transition Rates

PRÉCIS

I start with the linear chain of stepwise progression illustrated in Fig-

ure 5.2. No type of cancer will always follow the same steps with fixed

transition rates between steps. But a thorough understanding of the

simplest case puts us in a better position to study more realistic as-

sumptions.

In this section, I assume that the transitions between steps happen at

the same rate, u, and that everyone is born in stage 0. Individuals who

progress through the nth stage develop cancer.

With these assumptions, the fraction of the population at age t in each

precancerous stage is given by the Poisson distribution with a mean of

ut . Intuitively, ut would be the average number of transitions passed if

there were unlimited stages, because u is the transition rate per stage
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and t is the time that has elapsed. So the probability of i transitions

among the precancerous stages follows the standard Poisson process.

If cancer remains uncommon by age t , then incidence is I(t) ≈ ktn−1,

where k = un/(n− 1)!. On log-log scales,

log (I (t)) ≈ log (k)+ (n− 1) log (t) .

The log-log acceleration is

LLA (t) ≈ n− 1.

This is the classical result that log-log plots of incidence versus age will

be approximately linear with a slope of n− 1 (Armitage and Doll 1954).

When a significant fraction of individuals develops cancer, the log-log

incidence plot tends to accelerate more slowly at later ages, causing the

curve to flatten late in life and drop below the linear approximation. The

following details provide an exact solution for this simple model. The

exact solution shows how acceleration declines with age.

DETAILS

I introduced the basic model in Eqs. (5.2) of the previous chapter. I

repeat those equations here to provide the starting point for further

analysis

ẋ0 (t) = −u0x0 (t) (6.1a)

ẋj (t) = uj−1xj−1 (t)− ujxj (t) i = j, . . . , n− 1 (6.1b)

ẋn (t) = un−1xn−1 (t) , (6.1c)

where xi(t) is the fraction of the initial population born at time t = 0

that is in stage i at time t , with time measured in years. Usually, I assume

that when the cohort is born at t = 0, all individuals are in stage 0, that

is, x0(0) = 1, and the fraction of individuals in other stages is zero.

As time passes, some individuals move into later stages. The rate of

transition from stage i to stage i + 1 is ui . The ẋ’s are the derivatives of

x with respect to t .
If the transition rates are constant and equal, uj = u for all j , then we

can obtain an explicit solution for the multistage model (Frank 2004a).

This provides a special case that helps to interpret more complex as-

sumptions that must be evaluated numerically. The solution is xi(t) =
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e−ut(ut)i/i! for i = 0, . . . , n − 1, with the initial condition that x0(0) = 1

and xi(0) = 0 for i > 0. Note that the xi(t) follow the Poisson distribu-

tion for the probability of observing i events when the expected number

of events is ut .
In the multistage model above, the derivative of xn(t) is given by

ẋn(t) = uxn−1(t). From the solution for xn−1(t), we have ẋn(t) =
ue−ut(ut)n−1/n− 1!. Age-specific incidence is

I (t) = ẋn (t)
1− xn (t) =

ẋn (t)∑n−1
i=0 xi (t)

= u (ut)n−1 /n− 1!∑n−1
i=0 (ut)

i /i!
, (6.2)

and log-log acceleration from Eq. (5.3) is

LLA (t) = dI (t) /I (t)
dt/t

= n− 1− ut (Sn−2/Sn−1) , (6.3)

where Sk =
∑k
i=0(ut)i/i!.

The total fraction of the population that has suffered cancer by age

t—the cumulative probability—is

xn (t) = 1− e−utSn−1. (6.4)

This analysis does not explicitly follow causes of mortality other than

cancer. Frank (2004a) analyzed the case in which each stage has a con-

stant transition rate to the next stage, u, as above, and also a constant

mortality rate from other causes, d. With constant mortality, d, the only

change in the solution arises in the expression xi(t) = e−(u+d)t(ut)i/i!
for i = 0, . . . , n − 1, in particular, with extrinsic mortality, we must

use e−(u+d)t in the solution rather than e−ut . Because these exponen-

tial terms arise in both the numerator and denominator of the expres-

sion for incidence and so cancel out, extrinsic mortality does not affect

the incidence and acceleration solutions given here. The classes xi for

i = 0, . . . , n− 1 can be interpreted as those individuals alive and tumor-

less at different stages in progression.

CONCLUSIONS

This simple model shows the tendency of incidence to increase with

age in an approximately linear way on log-log scales. The increase in

incidence with age occurs because individuals progress through multi-

ple precancerous stages. Many processes cause departures from log-log

linearity. The following sections explore some of the ways in which pro-

gression affects the shape of the age-incidence curve.
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6.3 Parallel Evolution within Each Individual

The model in the previous section assigns each individual in the popu-

lation to a particular stage of progression. Sometimes, it may make more

sense to consider the stage of particular cells or tissue compartments

within a single individual. Different components may be in different

stages of progression.

I described in Chapter 3 how colorectal cancer initiates in individ-

ual crypts, perhaps with mutations that occur to a particular stem cell

within a crypt. So we might choose to focus on different stages of pro-

gression in different crypts or stages of progression in different stem cell

lineages. The human colon has about 107 crypts, and a slightly higher

number of stem cell lineages, so each individual has many parallel, in-

dependent lines of progression.

PRÉCIS

Suppose each individual has L independent lines of progression. We

start by calculating the rate of transition into the final, cancerous stage

for each independent line—the incidence per line. The incidence per

individual is the rate at which one of the L lines moves into the final,

cancerous state. The incidence per individual is simply L multiplied by

the incidence per line: the cancer rate rises linearly with the number of

independent lines that can fail.

If we fix the rate of progression per line, then the number of inde-

pendent lines does not affect log-log acceleration. However, if we wish

to keep constant the overall probability per individual of developing

cancer by a certain age, then as the number of lines increases, the prob-

ability of cancer per line must decline. Interestingly, slower per-line

transformation keeps acceleration higher through later ages, because

slow transformation maintains a high number of stages remaining in

progression.

DETAILS

Let the number of parallel lines of evolution within each individual

be L. We now have to consider progression hierarchically. Within each

individual, cancer arises as soon as one of the L lines progresses to the

nth stage. For each independent line, the probability of progressing to
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the final malignant state by time t is xn(t). The cumulative probability

of cancer is the probability that at least one of the L lines has progressed

to the malignant state. This cumulative probability of cancer by age t is

p (t) = 1− [1− xn (t)]L . (6.5)

For large L and small xn(t), the Poisson approximation is very accurate,

p(t) ≈ 1− e−xn(t)L. The Poisson distribution with mean xn(t)L gives the

distribution of the number of independent tumors per individual at age

t .
Incidence is the rate of new cases divided by the fraction of the pop-

ulation at risk. Using the definition for p(t) in Eq. (6.5) and dropping t
from the notation,

I = ṗ
1− p =

Lẋn (1− xn)L−1

(1− xn)L
= Lẋn

1− xn .

Comparing this result with Eq. (6.2) shows that having L independent

lines of progression within an individual simply increases incidence by

a constant value L. Log-log acceleration is independent of constant mul-

tiples of incidence, as shown in Eq. (5.3), so log-log acceleration is inde-

pendent of L and is given by Eq. (6.3).

What does change is the value of u that one must assume in order for a

certain total fraction of the population to have cancer by a particular age,

T . If the fraction of the population with cancer ism, then u is obtained by

solving m = p(T) for u, using Eq. (6.5) for p(T) and Eq. (6.4) for xn(T).
As the number of independent lines, L, increases, slower transitions

must be assumed to give the same overall incidence. This reduction of

u causes each line to progress more slowly, but, by chance, one of the

many separate lines within an individual progresses to the final stage

with probability p(T).
If, under the assumptions of this model, individuals rarely have more

than one independent tumor, then the per-line probability of progres-

sion is approximately m/L, the total probability of progression per in-

dividual, m, divided by the number of lines, L. It is often most informa-

tive to evaluate progression on a per-line basis and to present results

for particular levels ofm/L ≈ xn(T). In this model, multiple tumors per

individual are rare when m = p(T) < 0.2.
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Figure 6.1 Acceleration of cancer incidence in a multistage model calculated
from Eq. (6.3). For all curves: n = 10; the cumulative probability of cancer by age
T = 80 is m = p(80); and L is the number of independent lines of progression
within each individual. (a) The cumulative probability of cancer by age 80 is set
to m = 0.1. The values on each curve show L. The values of u were obtained by
solvingm = p(80), yielding for the curves from top to bottom: 0.00757, 0.0209,
0.0373, 0.0778. (b) The number of independent lines is set to L = 1. The values
on each curve show m. The values of u were obtained by solving m = p(80)
in Eq. (6.5), yielding for the curves from top to bottom: 0.0275, 0.0516, 0.0778,
0.1017, 0.1423, and 0.2348. The two panels show results for separately varying
values of m and L, but for m < 0.2, each curve depends only on the ratio m/L.

CONCLUSIONS

Figure 6.1 shows how acceleration declines with age in multistage

progression. The decline in acceleration occurs because individuals pass

through the early stages of progression as they age. In this model, all

lines in all individuals are in stage 0 at birth, with n steps remaining.

Acceleration at birth is n− 1, as shown in the figure. Suppose at a later

age that all lines have progressed through a steps. Then at that age they

have n−a steps remaining, and an acceleration of n−a−1 (Figure 6.2).

In reality, all lines do not progress equally with age. The different lines

in separate individuals move stochastically through the various stages

of transformation. At any particular age, there is a regular probability

distribution of tissue components that have progressed to particular

precancerous stages or all the way to the final, malignant stage.

The acceleration at any age depends on the distribution of individual

tissue components into different stages of progression (Figure 6.3). For

this simple model, acceleration at a particular age is approximately n−
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Figure 6.2 Cause of declining acceleration with age in multistage progression.
The top line shows the six stages that a newborn must pass through in this case.
As individuals grow older, many may pass through the early stages. This exam-
ple shows rapid progression to emphasize the process. Here, most individuals
have passed to stage 2 by early life, so the acceleration at this age, the number
of steps remaining minus one, is three. By midlife, two steps remain, causing
an acceleration of one. By late life, all individuals who have not developed can-
cer have progressed to the penultimate stage, and so with one stage remaining,
they have an acceleration of zero. Redrawn from Frank (2004d).

a−1, where a is the average stage of progression among those lines that

have not progressed to the nth stage.

6.4 Unequal Transition Rates

When there are many independent lines in a tissue, then the prob-

ability that any particular line progresses to cancer must be low. For

example, in the colon, L is probably between 107 and 108, because there

are about 107 independent tissue compartments (crypts). If the lifetime

incidence is about m = 10−1, then the incidence per line is approxi-

mately m/L, which is small.

When the progression per line, m/L, is small, as in the upper curves

of Figure 6.1a, and the transition rates between steps are equal, then

acceleration declines relatively little with age. Stable acceleration oc-

curs because most lines remain in the early stages even among older

individuals (Figure 6.3, upper panels).

If transition rates differ between stages, then acceleration does de-

cline with age even when the progression per line is small. The top curve
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Figure 6.3 Distribution of independent lines of progression across various
stages, which depends only on n, u, and t . Here, n = 10 and t = 80. The
stage n = 10 is excluded; that stage causes cancer, and the distributions here
show the stages among individuals who have not had cancer. The panels from
top to bottom correspond to the parameters for the four curves from top to bot-
tom in Figure 6.1a, plus a fifth value of u = 0.1209, corresponding to m = 0.5
and L = 1, for the distribution in the bottom panel of this figure.
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Figure 6.4 Increasing variation in rates of transition reduces acceleration. In
this example, there are n = 10 steps. Three steps have relatively slow transition
rates, u0 = u3 = u7 = s, and the other seven steps have fast rates, f . The lifetime
risk per line,m/L, was set to 10−8 for all curves, so if L = 107, then the lifetime
risk per individual is 0.1. The slow and fast rates are calculated by s = u∗/d2

and f = u∗d. For the curves, from top to bottom, u∗ = 0.00962, 0.00963,
0.0119, 0.0238, 0.0516, and d =1, 5, 10, 20,

√
100. In all cases, the ratio of fast

to slow rates is f /s = d3; the lower the curve, the greater the variation in rates.

in Figure 6.4 shows the nearly constant acceleration with age when tran-

sition rates do not differ and m/L = 10−8. As the variation in transition

rates rises, the curves in Figure 6.4 drop to lower accelerations. (I nu-

merically evaluated Eqs. (6.1) for all calculations in this section.)

Figure 6.5 shows the distribution of lines in different stages at age 80,

where the panels from top to bottom match the increasing variation in

rates for the curves from top to bottom in Figure 6.4.

Why does rate variation cause a drop in acceleration with age? At

birth, all individuals are in stage 0, and there are n = 10 steps to pass

to get to the final cancerous stage of progression. So, the acceleration

is n−1 = 9, independently of the variation in rates, because each of the

n steps remains a barrier.

The bottom panel of Figure 6.5 shows the consequences of high vari-

ation in rates for the distribution of lines into stages at age 80. The

probability peaks for stages 0, 3, and 7 arise because transitions out

of those stages are relatively slow compared to all other transitions.

The fast transitions between, for example, stages 1 and 2, and between
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Figure 6.5 Probability that a line will be in a particular stage at age 80. Pa-
rameters for the panels here from top to bottom match the curves from top to
bottom in Figure 6.4. The expected number of lines in each stage is piL, where
pi is the probability that a line is in the ith stage, and L is the number of lines.
If the number of lines in an individual tissue is L = 107, then, on a logarithmic
scale, the expected number of lines in each stage is log10(piL) = log10(pi)+ 7.



THEORY I 107

Figure 6.6 Increasing variation in rates of transition reduces acceleration. In
this example, there are n = 10 steps. The first and last steps are the slowest; the
middle steps are the fastest. In particular, ui = un−1−i = u∗ki for i = 0, . . . ,4,
with u values chosen so that m/L = 10−8. Larger values of k cause greater
variation in rates. Greater rate variation reduces acceleration by concentrating
the limiting transitions onto fewer steps. Here, for the curves from top to bot-
tom, the values are k = 2 and u∗ = 2.245 × 10−3, 2.715 × 10−4, 6.85 × 10−5,
2.66 × 10−5. The values of accelerations for ages less than 15 were erratic be-
cause of the numerical calculations. At t = 0 the acceleration is n− 1 = 9.

stages 2 and 3, happen relatively quickly and do not limit the flow into

the final, cancerous stage. Only the ns = 3 slow transition rates limit

progression, and so acceleration declines to ns − 1 = 2, as shown in

Figure 6.4.

In the long run, the slowest steps determine acceleration (Moolgavkar

et al. 1999). But the long run may be thousands of years, so we need to

consider how acceleration changes over the course of a typical life when

rates vary. Figure 6.6 shows a different pattern of unequal rates. In

that figure, the first and last transitions happen at the slowest rate, and

the rates rise toward the middle transitions. As one follows the curves

from top to bottom, the variation in rates increases and the accelerations

decline. Figure 6.7 shows the distribution of lines into stages at age 80,

with the panels from top to bottom matching the curves from top to

bottom in Figure 6.6.

Armitage (1953) presented the classical approximation for unequal

rates. However, Moolgavkar (1978) and Pierce and Vaeth (2003) noted
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Figure 6.7 Probability that a line will be in a particular stage at age 80. Pa-
rameters for the panels here from top to bottom match the curves from top to
bottom in Figure 6.6. Probability shown on a log10 scale. If the number of lines
in an individual tissue is L = 107, then, on a logarithmic scale, the expected
number of lines in each stage is log10(piL) = log10(pi)+ 7.

that Armitage’s approximation can be off by a significant amount. I have

avoided using such approximations here and in other sections. With

modern computational tools, it is just as easy to obtain exact results by

direct calculation of the dynamical system, as I do throughout this book.
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Figure 6.8 Acceleration when all transition rates increase with age. (a) The
parameters are n = 4, u = 0.02, F = 20, a = 8.5, b = 1.5, T = 100. (b) The
parameters are n = 4, u = 0.012, F = 5, a = 5, b = 5, T = 100.

In summary, unequal rates cause a decrease in acceleration. When

there are ns relatively slow rates, and all other rates are relatively fast,

then acceleration early in life starts at n− 1 and then declines to ns − 1.

When rate variation follows a more complex pattern, increasing variation

will usually cause a decline in acceleration, but the particular pattern will

depend on the details.

6.5 Time-Varying Transition Rates

PRÉCIS

The previous models assumed that transition rates between stages re-

main constant over time. Many process may alter transitions rates with

age. In this section, I analyze two factors that may increase the tran-

sition rate between particular stages. In the first model, advancing age

may be associated with an increase in transition rates between stages,

for example, by an increase in somatic mutation rates (Frank 2004a).

In the second model, a cell arriving in a particular stage may initiate a

clone of aberrant, precancerous cells. Clonal expansion increases the

number of cells at risk for acquiring another change, increasing the rate

of transition to the next stage of progression (Armitage and Doll 1957).

Transition rates that increase over time cause a rise in incidence with

age, increasing acceleration. The faster transitions also move more older

individuals into later stages, causing a late-life decline in acceleration.

Thus, increasing transition rates often cause acceleration to rise to a

midlife peak, followed by decline late in life (Figures 6.8, 6.9).
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Figure 6.9 Clonal expansion influences patterns of acceleration. (a) Slower
clonal expansion shifts peak acceleration to later ages. Parameters for all curves
are n = 4, Ki = 1 for i = 0, . . . , n−2, and Kn−1 = 106. The curves have values of
rn−1 = 0.4,0.2,0.1 for the solid, long-dash, and short-dash curves, respectively.
The mutation rate per year was adjusted so that the total incidence of cancer
per lineage over all ages up to 80 years is m/L = 10−9, requiring mutation
rates for the solid, long-dash, and short-dash curves of, respectively, v = 10−5

multiplied by 3.15,4.35,8.0 for all i. (b) An increase in the maximum size of a
clone raises peak acceleration until the clone becomes sufficiently large that a
mutation is almost certain in a relatively short time period. Parameters as in
(a), except that rn−1 = 0.2, and for the sold, long-dash, and short-dash curves,
respectively, Kn−1 = 106,104,102, and v = 10−5 multiplied by 4.35,4.45,6.8
for all i to keep the total incidence of cancer per lineage at m/L = 10−9. (c)
Multiple rounds of clonal expansion greatly increase peak acceleration and shift
peak acceleration to a later age. Parameters are n = 4, r = 0.5 for all i, K0 = 1,
and Kn−1 = 106. For the lower (solid) curve, clonal expansion occurs only
in the last round before cancer, so Kn−2 = Kn−3 = 1. For the middle (long-
dash) curve, clonal expansion occurs in the last two rounds before cancer, with
Kn−2 = 106 and Kn−3 = 1. For the upper (short-dash) curve, clonal expansion
occurs in the last three rounds before cancer, with Kn−2 = Kn−3 = 106. The
mutation rates for the solid, long-dash, and short-dash curves, respectively, are
v = 5.8 × 10−4,9.3 × 10−5,1.55 × 10−6 for all i to keep the total incidence of
cancer per lineage at m/L = 10−5. Redrawn from Frank (2004b).
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A transition rate might increase rapidly and then not change further.

This sudden increase in a transition rate would be similar to a sudden

abrogation of a rate-limiting step. Apart from a very brief burst in ac-

celeration, the main effect of a sudden knockout would be a decline in

acceleration because fewer limiting steps would remain.

DETAILS

In the first model, transition rates increase with advancing age (Frank

2004a). Let uj(t) = uf(t), where f is a function that describes changes

in transition rates over different ages. We will usually want f to be a

nondecreasing function that changes little in early life, rises in midlife,

and perhaps levels off late in life. In numerical work, one commonly

uses the cumulative distribution function (CDF) of the beta distribution

to obtain various curve shapes that have these characteristics. Following

this tradition, I use

β(t) =
∫ t/T

0

Γ (a+ b)Γ (a) Γ (b)xa−1 (1− x)b−1 dx,

where T is maximum age so that t/T varies over the interval [0,1], and

the parameters a and b control the shape of the curve. The value of β(t)
varies from zero at age t = 0 to one at age t = T .

We need f to vary over [1, F], where the lower bound arises when

f has no effect, and F sets the upper bound. So, let f (t) = 1 + (F −
1)β(t). Figure 6.8 shows examples of how increasing transition rates

affect acceleration.

In the second model, the transition rate between certain stages may

rise with clonal expansion. Models of clonal expansion have been stud-

ied extensively in the past (Armitage and Doll 1957; Fisher 1958; Mool-

gavkar and Venzon 1979; Moolgavkar and Knudson 1981; Luebeck and

Moolgavkar 2002). I describe the particular assumptions used in Frank

(2004b), which allow for multiple rounds of clonal expansion. Multiple

clonal expansions would be consistent with multistage tumorigenesis

being caused by progressive loss of control of cellular birth and death,

ultimately leading to excessive cellular proliferation.

I use the following strategy to study clonal expansion. First, assume

that all lines start in stage 0 at birth, t = 0, and use the initial condition

x0(0) = 1 so that xi(t) is the probability of a line being in stage i at

age t . Second, describe the value of xi(t) by summing all the influx into
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and outflux from that stage over the time interval [0, t]. Third, cells that

enter certain stages undergo clonal expansion. Fourth, clonal expansion

increases the number of cells at risk for making the transition to the next

stage. To account for this, outflux from a stage increases with the size

of clones in that stage.

The probabilities of being in various stages based on the influx and

outflux from each stage are

x0 (t) = D0 (t,0)

xi (t) =
∫ t

0
ui−1 (s) xi−1 (s)D (t, s)ds i = 1, . . . , n− 1

xn (t) =
∫ t

0
un−1 (s) xn−1 (s)ds,

where ui−1(s)xi−1(s) is the influx into stage i at time s, and

Di (t, s) = e−
∫ t
s ui(z)dz

is the outflux (decay) as of time t of the influx component that arrived

at time s. The integration of xi values over the time interval [0, t]means

that all influxes and outfluxes are summed over the whole time period.

The ui(t) values vary with time because the fluxes depend on clonal

expansion, so we need to express the u’s in terms of clonal expansion.

I use a logistic model to describe clonal growth. If yi(t) is the size of

the clone in the ith stage at time t , then the clone grows according to

ẏ(t) = riyi(1− yi/Ki), where the dot means the derivative with respect

to time, ri is the maximum rate at which the clone increases, and Ki is

the maximum size to which the clone grows. Starting with a single cell,

the size of the clone after a time period s of clonal expansion follows

the well-known solution for the logistic model (Murray 1989):

yi (s) = Kieris

Ki + eris − 1
.

The subscripts describe different stages, so that the different stages may

have different rates of increase and maximum sizes.

If we assume that transitions between stages occur by somatic muta-

tion, then for each cell that makes the transition into stage i, the total

mutation capacity of that cell lineage is the mutation rate per cell, v ,
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multiplied by the clone size, y , so the outflux of that cell lineage from

time s to time t is

Di (t, s) = e−
∫ t
s viyi(α)dα =

(
Ki

Ki + eri(t−s) − 1

)viKi/ri
.

The total rate of outflux from stage i to stage i + 1 at time t is

ui (t) = viyi (t) = vi
∫ t

0
ui−1 (s)Di (t, s) yi (t − s)ds/xi (t) .

This model is general enough to fit many different shapes of acceleration

curves. However, the goal here is not to fit but to emphasize that a few

general processes can explain the differences between tissues in their

acceleration patterns.

Figure 6.9a illustrates the effect of changing the rate of clonal expan-

sion, r , in a single round of clonal expansion in stage n − 1, similar

to the model of Luebeck and Moolgavkar (2002). Slower clonal expan-

sion causes the acceleration in cancer to happen more slowly and to be

spread over more years, because slow clonal expansion causes a slow

increase in the rate at which a lineage acquires the final transition that

leads to cancer. A rapid round of clonal expansion effectively reduces

by one the number of steps, n, so that for n = 4, one round of rapid

clonal expansion yields a nearly constant acceleration of n− 2 = 2 over

all ages (not shown). By contrast, slow clonal expansion often causes a

midlife peak in acceleration, as illustrated in the figure.

Figure 6.9b shows that an increase in maximum clone size raises the

peak level of acceleration until the clone becomes large enough that a

transition almost certainly occurs in a short time interval, after which

further clonal expansion does not increase the rate of progression.

Figure 6.9c shows that multiple rounds of clonal expansion can great-

ly increase the peak acceleration of cancer. The curves from bottom to

top have one, two, or three rounds of clonal expansion.

CONCLUSIONS

Transition rates that increase slowly over time cause acceleration to

rise to a midlife peak and then decline late in life. Clonal expansion may

be one way in which transition rates rise slowly over time. Alternatively,

somatic mutation rates may increase as various checks on the cell cycle

and DNA integrity decay with age.
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6.6 Summary

This chapter developed the basic models of cancer dynamics under

the assumption of multistage progression. Topics included multiple

lines of progression and variable rates of transition between stages. The

next chapter continues to develop the theory, with emphasis on multi-

ple pathways of progression, genetic and environmental heterogeneity,

and a comparison of my models of cancer dynamics with some classical

models of aging and of chemical carcinogenesis.
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This chapter continues to develop the quantitative theory of cancer pro-

gression and incidence.

The first section analyzes multiple pathways of progression in a par-

ticular tissue, in which more than one sequence of events leads to cancer.

With multiple pathways, a fast sequence with relatively few steps would

dominate incidence early in life and keep acceleration low, whereas a se-

quence with more steps would dominate incidence later in life and raise

the acceleration. Such combinations of sequences can cause the aggre-

gate pattern of incidence to have rising acceleration through midlife,

followed by a late-life decline in acceleration.

The second section evaluates how inherited genetic variation affects

incidence. Inherited mutations cause individuals to be born with one or

more steps in progression already passed. If, in a study, different inher-

ited genotypes cannot be distinguished, then all measurements on can-

cer incidence combine the incidences of the different genotypes. Rare

inherited mutations have little effect on the aggregate incidence pat-

tern. Common inherited mutations cause aggregate incidence to shift

between two processes. Mutants dominate early in life: aggregate inci-

dence rises early with a relatively low acceleration, because the mutants

have relatively few steps in progression. Normal genotypes dominate

later life: aggregate incidence accelerates more sharply with later ages,

because the wild type has more steps in progression.

If different genotypes can be distinguished, then one can test directly

the role of particular genes by comparison of mutant and normal pat-

terns of incidence and acceleration. The change with age in the ratio

of wild-type to mutant age-specific incidence measures the difference

in acceleration between the normal and mutant genotype. Under simple

models of progression dynamics, the observed difference in acceleration

provides an estimate for the difference in the number of rate-limiting

stages in progression.

The third section continues study of heterogeneity in predisposition,

focusing on continuous variation caused by genetic or environmental

factors. Continuous variation may arise from a combination of many
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genetic variants each of small effect and from diverse environmental

factors. I develop the case in which variation occurs in the rate of pro-

gression, caused for example by inherited differences in DNA repair ef-

ficacy or by different environmental exposures to mutagens.

Populations with high levels of variability have very different patterns

of progression when compared to relatively homogeneous groups. In

general, increasing heterogeneity causes a strong decline in the accel-

eration of cancer. To understand the distribution of cancer, it may be

more important to measure heterogeneity than to measure the average

value of processes that determine rates of progression.

The fourth section relates my models of progression and incidence

to the classic Gompertz and Weibull models frequently used to summa-

rize age-specific mortality. The Gompertz and Weibull models simply

describe linear increases with age in the logarithm of incidence. Those

models make no assumptions about underlying process. Instead, they

provide useful tools to reduce data to a small number of estimated pa-

rameters, such as the intercept and slope of age-specific incidence.

Data reductions according to the Gompertz and Weibull models can

be useful descriptive procedures. However, I prefer to begin with an ex-

plicit model of progression dynamics and derive the predicted shape of

the incidence curve. Explicit dynamical models allow one to test com-

parative hypotheses about the processes that influence progression. I

show that the simplest explicit models of progression dynamics yield

incidence curves that often closely match the Weibull pattern.

The final section reviews applications of the Weibull model to dose-

response curves in laboratory studies of chemical carcinogenesis. Most

studies fit well to a model in which incidence rises with a low power

of the dosage of the carcinogen and a higher power of the duration of

carcinogen exposure. Quantitative evaluation of chemical carcinogens

provides a way to test hypotheses about the processes that drive pro-

gression.

7.1 Multiple Pathways of Progression

PRÉCIS

Cancer in a particular tissue may progress by different pathways. Ide-

ally, one would be able to measure progression and incidence separately

for each pathway. In practice, observed incidence arises from combined
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progression over all pathways in a tissue. In this section, I analyze inci-

dence and acceleration when aggregated over multiple underlying path-

ways of progression.

If one pathway progresses rapidly and another slowly, then incidence

and acceleration will shift with age from dominance by the early pathway

to dominance by the late pathway. For example, the early pathway may

have few steps and low acceleration, whereas the late pathway may have

many steps and high acceleration. Early in life, most cases arise from

the early, low-acceleration pathway; late in life, most cases arise from

the late, high-acceleration pathway.

In this example, the aggregate acceleration curve may be low early in

life, rise to a peak in midlife when dominated by the later pathway, and

then decline as the acceleration of the later pathway decays with ad-

vancing age. Aggregated pathways provide an alternative explanation

for midlife peaks in acceleration. In the Conclusions at the end of this

section, Figure 7.1 illustrates the main points and provides an intuitive

sense of how multiple pathways affect incidence and acceleration. (Var-

ious multipathway models are scattered throughout the literature. See

the references in Mao et al. (1998)).

DETAILS

For a particular tissue, I assume k distinct pathways to cancer indexed

by j = 1, . . . , k. Each pathway has nj transitions and i = 0, . . . , nj states.

The probability of being in state i of pathway j at age t is xji(t). A tissue

is subdivided into L distinct lines of progression. A line might be a stem

cell lineage, a compartment of the tissue, or some other architecturally

defined component. Each line is an independent replicate of the system

with all k distinct pathways.

Cancer arises if any of the Lk distinct pathways has reached its final

state. All pathways begin in state 0 such that xj0(0) = 1 and xji(0) = 0

for all i > 0. I interpret xji(t) as the probability that pathway j is in

state i at time t .
The probability that a particular line progresses to malignancy is the

probability that at least one pathway in that line has progressed to the

final state,

z (t) = 1−
k∏
j=1

[
1− xjnj (t)

]
. (7.1)
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Figure 7.1 Multiple pathways of progression in a tissue influence age-onset
patterns of cancer. This figure shows epidemiological patterns for k = 3 path-
ways in a tissue in which there is a single line of progression, L = 1. On
the y axis, the panels measure (a) log incidence, (b) log-log acceleration (LLA),
and (c) frequency of cancer for each pathway. The x axis plots age on a log-
arithmic scale. The lifetime probability of cancer per individual at age 80 is
m = 0.1. In each panel, the long-dash curve shows the pathway for which
n1 = 4, u1 = 0.0103, and the lifetime probability of cancer is 0.01; the short-
dash curve shows the pathway for which n2 = 8, u2 = 0.0413, and the lifetime
probability of cancer is 0.02; and the dot-dash curve shows the pathway for
which n3 = 13, u1 = 0.1016, and the lifetime probability of cancer is 0.07. The
solid curve shows the aggregate over all pathways.

To keep the analysis simple, I focus on k pathways in one line. The

solution for multiple lines scales up according to the theory outlined in

Section 6.3. Typically, if the total probability of cancer, m, by age T is
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less than 0.2, then we have m/L ≈ z(T), and the cumulative probability

of cancer at age t is p(t) ≈ z(t)L.

The transitions between stages are uji(t), the rate of flow in the jth
pathway from stage i to stage i + 1. The transition rates may change

with time. These distinct, time-varying rates provide the most general

formulation. It is easy enough to keep the analysis at this level of gen-

erality, but then we have so many parameters and specific assumptions

for each case that it becomes hard to see what novel contributions are

made by having multiple pathways. To keep the emphasis on multiple

pathways for this section, I assume that all transitions in each pathway

are the same, uj , that transition rates do not vary over time, and that

distinct pathways indexed by j may have different transition rates.

Incidence at age t is

I = ż
1− z ,

where I is the incidence at age t ; the numerator, ż, is the total flow into

terminal stages at age t ; and the denominator, 1− z, is proportional to

the number of pathways that remain at risk at age t .
The rate of progression for a line is

ż =
k∑
j=1

ẋjnj
∏
i �=j

(
1− xini

) = (1− z) k∑
j=1

ẋjnj
1− xjnj

.

The incidence per pathway is Ij = ẋjnj /(1 − xjnj ), so the previous two

equations can be combined to give

I =
k∑
j=1

Ij =
k∑
j=1

ẋjnj
1− xjnj

,

in words, the total incidence per line is the sum of the incidences for

each pathway. Differentiating I yields

İ =
k∑
j=1

(
ẍjnj

1− xjnj
+ I2j

)
.

Earlier, I showed that log-log acceleration is LLA(t) = tİ/I, which can be

expanded from the previous expressions.

Using this formula for LLA to make calculations requires applying the

pieces from earlier sections. In particular, ẋjnj = ujxjnj−1 and ẍjnj =
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ujẋjnj−1 = u2
j (xjnj−2 − xjnj−1). These expansions give everything in

terms of xji , for which we have explicit solutions from an earlier section

as

xji = e−uj t
(
ujt
)i
/i! i = 0, . . . , nj − 1 (7.2a)

xjnj = 1−
nj−1∑
i=0

xji. (7.2b)

CONCLUSIONS

Figure 7.1 illustrates how multiple pathways affect epidemiological

patterns. The pathway marked by the long-dash line in the figure shows

a slowly accelerating cause of cancer that dominates early in life. The

pathway marked by the dot-dash curve shows a rapidly accelerating

cause of cancer that dominates late in life. The aggregate acceleration,

shown by the sold curve in Figure 7.1b, is controlled early in life by the

slowly accelerating pathway and late in life by the rapidly accelerating

pathway. A pathway with intermediate acceleration, shown by the short-

dash curve, contributes a significant number of cases through mid- and

late life, but does not dominate at any age.

7.2 Discrete Genetic Heterogeneity

Some individuals may inherit mutations that cause them at birth to

be one or more steps along the pathway of progression. In this section,

I analyze incidence and acceleration when individuals separate into dis-

crete genotypic classes. After deriving the basic mathematical results, I

illustrate how genetic heterogeneity affects epidemiological pattern.

PRÉCIS

In the first case, one cannot distinguish between mutant and normal

genotypes. If mutated genotypes are rare, then the aggregate pattern of

incidence will be close to the pattern for the common genotype. A small

increase in cases early in life does develop from the mutated genotypes,

but those cases do not contribute enough to change significantly the

aggregate pattern.

If the mutants are sufficiently frequent, they may change aggregate

acceleration. Early in life, when mutants contribute a significant share
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of cases, aggregate acceleration may be dominated by the lower accel-

eration associated with mutants, which have fewer steps in progression

than do normal genotypes. Late in life, aggregate acceleration will be

dominated by the normal genotype, which has more steps and a higher

acceleration. The net effect may be low acceleration early when domi-

nated by the mutants, a rise to a midlife peak as dominance switches to

the normal individuals, and a late-life decline in acceleration following

the trend set by the normal genotype (Figure 7.2).

In the second case, one can distinguish between mutant and normal

genotypes. This is an important case, because it allows one to test di-

rectly the role of particular genes by comparison of mutant and normal

patterns of incidence and acceleration. I show that the ratio, R, of nor-

mal to mutant incidence provides a good way to compare genotypes. The

change in this ratio with age on log-log scales is the difference in acceler-

ation between the normal and mutant genotype. Under simple models of

progression dynamics, the observed difference in acceleration provides

an estimate for the difference in the number of rate-limiting stages in

progression.

DETAILS

I assume a single pathway of progression in each line and a single

line of progression per tissue, that is, k = L = 1. Extensions for multiple

pathways and lines can be obtained by following the methods in prior

sections. I assume the pathway of progression has n rate-limiting steps,

with the transition rate between stages, u. Here, u is the same between

all stages and does not vary with time.

A fraction of the population, pj , has mutations that start them j steps

along the pathway of progression; in other words, those individuals have

n − j steps remaining before cancer. I refer to individuals that start j
steps along as members of class j or as being born in the jth stage of

progression.

AGGREGATE PATTERNS

If different genotypes cannot be distinguished, then all measurements

on cancer incidence will combine the incidences for the different geno-

types. The aggregate rate of transition into the final, cancerous state is

ż = ∑n−1
j=0 pjẋjn−j , where xji is the probability that an individual born

in the jth stage has progressed a further i stages. The population-wide
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Figure 7.2 Genetic heterogeneity in the population influences aggregate epi-
demiological patterns. The rows, from top to bottom, are log-log incidence,
log-log acceleration, and relative frequency of cancer caused by different geno-
types. In each panel, the most common genotype in the population has fre-
quency p0 = 1 − pj , and a second genotype has frequency pj , where j is the
number of stages in progression by which the mutant genotype is advanced at
birth. In all plots, the common genotype has n = 10 stages. The long-dash
curves show results for the common genotype, the short-dash curves show re-
sults for the mutant genotype. The solid curve shows the aggregate pattern for
incidence and acceleration. In all plots, the constant rate of transition between
stages is u = 0.0778 for both the common and mutant genotypes. For all cases,
the cumulative probability of cancer at age 80 is approximately 0.1. The rare
genotype contributes at most 0.005 to cumulative probability.

cumulative probability of having cancer by age t is z = ∑n−1
j=0 pjxjn−j .

Here, all values of z and x depend on time, but I have dropped the t to

keep the notation simple. Eqs. (7.2) provide solutions for xji , substitut-

ing n− j for nj , and noting the constant transition rates in this section,

uj = u for all j .
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From these parts, we can write the total age-specific incidence in the

population as

I = ż
1− z =

u
∑n−1
j=0 pj (ut)

n−j−1 /n− j − 1!∑n−1
i=0 pi

∑n−i−1
j=0 (ut)j /j !

,

and the log-log acceleration as

LLA = tİ/I

= ut
⎛⎝∑n−2

j=0 pj (ut)
n−j−2 /n− j − 2!∑n−1

j=0 pj (ut)
n−j−1 /n− j − 1!

−
∑n−2
i=0 pi

∑n−i−2
j=0 (ut)j /j !∑n−1

i=0 pi
∑n−i−1
j=0 (ut)j /j !

⎞⎠ .
Figure 7.2 shows that genetic heterogeneity will typically have little

effect on aggregate patterns of cancer. That figure assumes a common

genotype with n = 10 steps and a rare mutant genotype with n−j steps,

where j is the number of stages in progression by which the mutant

genotype is advanced at birth. If the mutant advances only by j = 1,

then the patterns differ little between the genotypes. If, however, n is

small, as for retinoblastoma, then advancing one step, j = 1, can have a

significant effect (not shown). Mutants are usually thought to advance

progression by just one stage (Knudson 2001; Frank 2005), although

relatively little direct evidence exists.

If mutants advance progression by j = 4 stages, then the mutants

can have a significant impact on aggregate patterns, as shown in the

middle column of Figure 7.2 in which the mutant occurs at a frequency

of 0.01. However, the mutant must not be too rare—the right column of

Figure 7.2 shows that genetic heterogeneity has little effect for j = 4, if

the mutant occurs at a frequency of 0.001.

COMPARISON BETWEEN GENOTYPES: RATE-LIMITING STEPS

Mutant genotypes may often have little effect on aggregate pattern, as

shown in the previous section. However, if one can track the incidence

patterns separately for different genotypes, then much can be learned by

comparison of incidence patterns between genotypes. Indeed, relative

incidence patterns between genotypes may be the most powerful way

to learn about cancer progression and the link between particular genes

and cancer risk (Knudson 1993, 2001; Frank 2005).

In the next chapter, I will compare retinoblastoma incidence in hu-

mans between normal individuals and those who carry a mutation to
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the retinoblastoma (Rb) gene (Section 8.1). I will also compare colon

cancer incidence between normal individuals and those who carry a mu-

tation to the APC gene. In both cases, the ratio of age-specific incidences

between normal and mutant individuals follows roughly along the curve

predicted by multistage theory if the mutants begin life one stage further

along in progression than do normal individuals (Frank 2005). Here, I

develop the theory for predicting the ratio of incidences between normal

and mutant genotypes.

Assume a simple model of progression, with n stages and a constant

rate of transition between stages, u. Mutant individuals begin life in

stage j , and so have n − j stages to progress to cancer. The results of

Section 6.2 provide the age-specific incidence for progression through n
stages, In, so the ratio of incidences of normal and mutant individuals

is

R = In/In−j =
(
(ut)j

(
n− j − 1

)
!

(n− 1)!

)(Sn−j−1

Sn−1

)
, (7.3)

where Sj =
∑j
i=0(ut)i/i!. When j = 1, then R ≈ ut/(n − 1) is often a

good approximation (Frank 2005).

When comparing the incidences between two genotypes, it may often

be useful to look at the slope of log(R) versus log(t), which is

ΔLLA = d log (R)
d log (t)

=
d log (In)− d log

(
In−j

)
d log (t)

= LLAn − LLAn−j

= j − ut
(
Sn−2

Sn−1
− Sn−j−2

Sn−j−1

)
, (7.4)

where LLAk, the log-log acceleration for a cancer with k stages, is given

in Eq. (6.3). The slope of log(R) versus log(t) is equal to the difference

in LLA, so I will sometimes refer to this slope as ΔLLA.

When progression causes acceleration to drop at later ages, then the

slope of log(R) tends to decline with age. For example, in Figure 7.3,

cancer develops through a single line of progression, L = 1. Often, a

small number of progression lines tends to cause acceleration to drop at

later ages. By contrast, in Figure 7.4, cancer develops through many lines

of progression, L = 108, which keeps acceleration nearly constant across

all ages. Consequently, the ratio of incidences has a constant slope equal
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Figure 7.3 Ratio of incidence rates between normal and mutant genotypes
when there is a single line of progression, L = 1. The normal genotype has n
steps in progression to cancer; the mutant has n− j steps. The top row shows
the ratio on a log10 scale, calculated from Eq. (7.3). The bottom row shows the
slope of the top plots, calculated from Eq. (7.4). The values of j are 1 (solid
lines), 2 (long-dash lines), 3 (short-dash lines), and 4 (dot-dash lines). The total
incidence for the normal genotype was set to 0.1, which required u = 0.0304
for n = 5, and u = 0.0778 for n = 10.

to the number of steps by which a mutation advances progression, that

is, ΔLLA = LLAn − LLAn−j ≈ j. (7.5)

COMPARISON BETWEEN GENOTYPES: TRANSITION RATES

The previous section compared incidence rates between genotypes.

In that case, one genotype required n steps to progress to cancer; the

other mutant genotype inherited j mutations and began life with only

n − j steps remaining. The inherited mutations abrogate rate-limiting

steps.

In this section, I make a different comparison. Both genotypes require

n steps to complete progression, but the mutant has a higher transition

rate between stages. Let the transition rate for the normal genotype be
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Figure 7.4 Ratio of incidence rates between normal and mutant genotypes
when there are multiple lines of progression. For these plots, L = 108. To keep
the cumulative probability at 0.1 for the normal genotype at age 80, u = 0.00052
for n = 5, and u = 0.00753 for n = 10. All other aspects match Figure 7.3.

u, and the transition rate for the mutant genotype be v = δu, with δ > 1.

As in Eq. (7.4), I calculate the log-log slope of the ratio of incidences, in

this case taking the ratio of mutant to normal genotypes, R. The solution

follows from Eq. (6.3):

ΔLLA = LLAu − LLAv = ut
[
δSvn−2

Svn−1
− S

u
n−2

Sun−1

]
, (7.6)

where Sαj =
∑j
i=0(αt)i/i!

Figure 7.5 illustrates this theory. The left column shows the stan-

dard log-log incidence curves. The bottom curve plots the wild-type in-

cidence; the curves above show incidence for mutants with higher tran-

sition rates. The right column plots the difference in the slopes of the

incidence curves, ΔLLA, between the wild-type and the various mutant

genotypes.

The bottom right panel, Figure 7.5h, uses L = 108 independent lines

of progression within the tissue under study. With large L, almost all
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Figure 7.5 Comparison between genotypes with different transition rates. (a-
d) The left incidence panels show the standard log-log plot, with incidence on
a log10 scale. The bottom, short-dash curve in each incidence panel illustrates
the wild-type genotype. The four incidence curves above the wild type show,
from bottom to top, increasing transition rates between stages. The transition
rate for the bottom curve is u, and for the curves above δu, with δ = 6i/4 for
i = 1, . . . ,4. (e-h) The ΔLLA plots on the right show the slope of R, which is the
difference between wild-type and mutant genotypes in the slopes of the log-log
incidence plots calculated from Eq. (7.6). For example, the solid line in each
right panel illustrates the difference in the slopes between the lowest wild-type
curve and the solid curve; each line type on the right illustrates the difference in
log-log slopes between the wild type and the curve with the matching line type
on the left. Each ΔLLA panel has the same parameters as the panel to the left.
In each case, the value of u is obtained by solving for the transition rate that
yields a cumulative incidence of 0.1 at age 80, where cumulative incidence is
given by Eq. (6.5). The values of L from top to bottom are L = 100,102,104,108.

lineages remain in the initial stage throughout life and have n stages
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Figure 7.6 Comparison between genotypes with different transition rates. As-
sumptions are the same as in Figure 7.5, except that n = 10 and δ = 3i/4 for
i = 1, . . . ,4.

remaining; thus, the log-log incidence slopes remain near n−1 for both

wild-type and mutant genotypes.

The top right panel, Figure 7.5e, uses L = 100 independent lines of

progression within the tissue. With small L, the few lineages at risk

tend to progress with age through at least the early stages, causing a

reduction in the number of remaining stages and a drop in the log-log

incidence slope. The mutants, with faster transition rates, advance more

quickly through the early stages and so, at a particular age, have fewer

stages remaining to cancer. With fewer stages remaining, those mu-

tants have lower log-log incidence slopes, and therefore the difference

in slopes, ΔLLA, between wild-type and mutant genotypes increases.
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Figure 7.5 uses n = 7 stages; Figure 7.6 provides similar plots but with

n = 10 stages.

In summary, a mutant genotype that increases transition rates will

cause a rise in ΔLLA when compared with the wild type. This increase inΔLLA occurs even though the number of rate-limiting stages is the same

for mutant and wild-type genotypes. The amount of the rise with age inΔLLA depends most strongly on the increase in transition rates caused

by the mutant and on the number of independent lines of progression

in the tissue.

CONCLUSIONS

The ratio of normal to mutant incidence provides one of the best tests

for the role of genetics in progression dynamics. Figures 7.3 and 7.4

show predictions for this ratio under simple assumptions about pro-

gression. Similar predictions could be derived by analyzing the ratio

of incidences in other models of progression, such as those developed

in earlier sections. In Chapter 8, I analyze data on the observed ratio

of incidences between normal and mutant genotypes. Those ratio tests

provide the most compelling evidence available that particular inherited

mutations reduce the number of rate-limiting stages in progression.

7.3 Continuous Genetic and
Environmental Heterogeneity

Quantitative traits include attributes such as height and weight that

can differ by small amounts between individuals, leading to nearly con-

tinuous trait values in large groups (Lynch and Walsh 1998). All quan-

titative traits vary in populations. With regard to cancer, studies have

demonstrated wide variability in DNA repair efficacy (Berwick and Vineis

2000; Mohrenweiser et al. 2003), which influences the rate of progres-

sion. Probably all other factors that determine the rate of progression

vary significantly between individuals.

Variation in quantitative traits stems from genetic differences and

from environmental differences. The genetic side arises mainly from

polymorphisms at multiple genetic loci that contribute to inherited poly-

genic variability. The environmental side includes all nongenetic factors

that influence variability, such as diet, lifestyle, exposure to carcinogens,

and so on.



130 CHAPTER 7

0 0.005 0.01 0.015 0.02
0

0.2

0.4

0.6

0.8

1.0

10–4 10–3 10–2

50

100

150

200

250

u u

Pr
o
b
ab

ili
ty

 d
en

si
ty Fractio

n
 affected

(a) (b)

Figure 7.7 The log-normal probability distribution used to describe variation
in transition rates, u. (a) In a log-normal distribution of u, the variable ln(u) has
a normal distribution with mean m and standard deviation s. The three solid
curves show the distributions used to calculate three of the curves in Figure 7.8.
The solid curves from right to left have (m, s) values: (−4.77,0.2), (−5.25,0.6),
and (−5.75,1). The dotted line shows the probability that an individual will
have progressed to cancer by age 80, measured by the fraction affected on the
right scale. I calculated the dotted line using the parameters given in Figure 7.8.
(b) Same as panel (a) but with linear scaling for u along the x axis.

In this section, I analyze how continuous variation influences epidemi-

ological pattern. The particular model I study focuses on variation be-

tween individuals in the rate of progression. My analysis shows that

populations with high levels of variability have very different patterns

of progression when compared to relatively homogeneous groups. In

general, increasing heterogeneity causes a strong decline in the acceler-

ation of cancer.

PRÉCIS

I use the basic model of multistage progression, in which carcinogen-

esis proceeds through n stages, and each individual has a constant rate

of transition between stages, u. To study heterogeneity, I assume that

u varies between individuals. Both genetic and environmental factors

contribute to variation.

There are L independent lines of progression within each individual,

as described in Section 6.3. I use a large value, L = 107, which causes log-

log acceleration (LLA) to be close to n − 1, without a significant decline

in acceleration late in life (Figure 6.1).

To analyze variation in transition rates between individuals, I assume

that the logarithm of u has a normal distribution with mean m and

standard deviation s. This sort of log-normal distribution often occurs
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Figure 7.8 Acceleration for different levels of phenotypic heterogeneity in tran-
sition rates. Each curve shows the acceleration in the population when aggre-
gated over all individuals, calculated by Eq. (7.9). I used a log-normal distribu-
tion for f (u) to describe the heterogeneity in transitions rates, in which ln(u)
has a normal distribution with mean m and standard deviation s. To get each
curve, I set a value of s and then solved for the value ofm that caused 1−b = 0.1
of the population to have cancer by age 80 (see Eq. (7.7)). With this calculation,
95% of the population has u values that lie in the interval (em−1.96s , em+1.96s)
(see Figure 7.7). For all curves, I used n = 10 and L = 107. For the curves, from
top to bottom, I list the values for (m, s) : low–high, where low and high are the
bottom and top of the 95% intervals for u values: (−4.64,0) : 0.0097− 0.0097;
(−4.77,0.2) : 0.0057 − 0.013; (−5.00,0.4) : 0.0031 − 0.0015; (−5.25,0.6) :
0.0016−0.017; (−5.50,0.8) : 0.00085−0.020; and (−5.75,1) : 0.00045−0.023.
I tagged the curve with s = 0.6 to highlight that case for further analysis in
Figure 7.9.

for quantitative traits that depend on multiplicative effects of different

genes and environmental factors (Limpert et al. 2001).

Figure 7.7 shows examples of log-normal distributions. Note that a

small fraction of individuals has large values relative to the typical mem-

ber of the population. In terms of cancer, such individuals would be fast

progressors and would contribute a large fraction of the total cases.

The question here is: How does heterogeneity influence epidemiolog-

ical pattern? To study this, I increase variability by raising the param-

eter s in the log-normal distribution, which increases the variability in

transition rates, u. To measure epidemiological pattern, I analyze how

changes in s affect log-log acceleration.

Figure 7.8 shows that increasing variability causes a large decline in

acceleration when epidemiological pattern is measured over the whole

population. In this example, s measures variability: in the top curve,

s = 0 and the population contains no variability; in the second curve
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from the top, s = 0.2, showing the effect of a small amount of variability;

the curves below increase variability with values of s = 0.4,0.6,0.8,1.0,

respectively.

In Figure 7.8, focus on the curve labeled s = 0.6. That curve shows

the acceleration of cancer in the total population. Figure 7.9 illustrates

the contribution to that aggregate curve by different subgroups of the

population with different values of the transition rate, u.

Figure 7.9a plots the contribution of each subgroup in the population:

the sum of the individual curves determines the aggregate curve in Fig-

ure 7.8. At different ages, each subgroup contributes differently to the

aggregate pattern. The solid curve shows the top 2.5% of the population

with the highest values of u, defined in the legend as the group between

the 97.5th percentile and the 100th percentile. The legend gives the

percentile levels for the other curves.

In Figure 7.9a, the solid curve shows that those who progress the

fastest contribute most strongly to acceleration early in life. In Fig-

ure 7.9b, the solid curve shows the fraction of individuals in that group

who have progressed to cancer; already by age 30, ten percent of that

group has developed cancer, and by age 60, nearly everyone in that

group has progressed.

Returning to Figure 7.8a, we can see that, as age increases, succes-

sive groups rise and fall in their contributions to total acceleration in

the population. The contribution of each group peaks as the fraction

of individuals affected in that group increases above ten percent (Fig-

ure 7.9b), and then the contribution declines as nearly all individuals in

the group progress to cancer.

Figure 7.9c shows the acceleration pattern if each subgroup were it-

self the total population. Each group is itself heterogeneous, but with

variation over a smaller scale than in the aggregate population. The ac-

celeration pattern is relatively high and constant within all groups except

the two highest groups, comprising 5% of the population, who progress

very fast.

Figure 7.9b shows that under heterogeneity, cancer forms a rather

sharp boundary between those strongly prone to disease, who progress

with near certainty, and those less prone, who progress with low prob-

ability. This kind of sharp cutoff between those affected and those who

escape is sometimes called truncation selection.
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Figure 7.9 Explanation of the drop in aggregate acceleration caused by popu-
lation heterogeneity. Each panel shows patterns for different segments of the
population stratified by transition value, u. The legend in (a) shows that each of
the first four strata comprise 2.5% of the population, that is, the top 2.5% of u
values, the next 2.5%, and so on. The fifth stratum includes the rest of the pop-
ulation, with individuals that have u values that fall between the 0th and 90th
percentiles. All panels have parameters that match the curve labeled s = 0.6
in Figure 7.8. (a) The contribution of each stratum to the aggregate LLA of the
population. I calculated each curve from Eq. (7.8), with denominators integrated
over all values of u, and numerators integrated over values of uwithin each stra-
tum and divided by the total probability contained in the stratum. Total LLA
equals the sum of the curves. (b) Fraction of individuals within each stratum
who suffer cancer by age 80, calculated as 1 − b in Eq. (7.7), integrated over u
values within each stratum, and divided by the total probability contained in
the stratum. (c) LLA calculated within each stratum by integrating numerators
and denominators in Eq. (7.8) over values of u within each stratum.
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The truncating nature of selection in this example can also be seen

in Figure 7.7, in which the dotted line measures the probability that an

individual will have progressed to cancer by age 80 (right scale). Those

few individuals with higher u values progress with near certainty; the

rest, with lower u values, rarely progress to cancer. The transition is

fairly sharp between those values of u that lead to cancer and those

values that do not.

DETAILS

I assume a single pathway of progression in each line, k = 1, and

allow multiple lines of progression per tissue, L ≥ 1. Extensions for

multiple pathways can be obtained by following the methods in earlier

sections. I assume the pathway of progression has n rate-limiting steps

with transition rate between stages, u. Here, u is the same between all

stages and does not vary with time. Each individual in the population

has a constant value u in all lines of progression. The value of u varies

between individuals. In this case, u is a continuous random variable

with probability distribution f (u).
I obtain expressions for incidence and log-log acceleration that ac-

count for the continuous variation in u between individuals. To start,

let the probability that a particular line of progression is in stage i at

time t be xi(t, u), for i = 0, . . . , n. For a fixed value of u, we have

from Section 6.2 that xi(t, u) = e−ut(ut)i/i! for i = 0, . . . , n − 1 and

xn(t, u) = 1−∑n−1
i=0 xi(t, u).

The probability that an individual has cancer by age t is the probability

that at least one of the L lines has progressed to stage n, which from

Eq. (6.5) is

p (t, u) = 1− [1− xn (t, u)]L .
Incidence is the rate at which individuals progress to the cancerous

state divided by the fraction of the population that has not yet pro-

gressed to cancer. The rate at which an individual progresses is ṗ(t, u),
the derivative of p with respect to t . To get the average rate of progres-

sion over individuals with different values of u, we sum up the values

of ṗ(t, u) weighted by the probability that an individual has a particular

value of u. In the continuous case for u, we use integration rather than

summation, giving the average rate of progression in the population as

a =
∫
ṗ (t, u) f (u)du.
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The fraction of the population that has not yet progressed to cancer

is

b = 1−
∫
p (t, u) f (u)du, (7.7)

which is one minus the average probability of progression per individual.

With these expressions, incidence is I(t) = a/b, and log-log accelera-

tion is

LLA (t) = d log (I)
d log (t)

= t (İ/I) = t ( ȧ
a
− ḃ
b

)
. (7.8)

Because ḃ = −a, we can also write

LLA (t) = t
(
ȧ
a
− ḃ
b

)
= t

(
ȧ
a
+ a
b

)
= t

(
ȧ
a
+ I
)
. (7.9)

To make calculations, we need to express a and ȧ in terms of xi , for

which we have explicit solutions. First, to expand a, we need ṗ = Lẋn(1−
xn)L−1, with ẋn = uxn−1 (see Eqs. 6.1). Second, ȧ = ∫

p̈(t, u)f (u)du,

with p̈ = L[ẍn(1 − xn)L−1 − ẋ2
n(L − 1)(1 − xn)L−2] and ẍn = uẋn−1 =

u2(xn−2 − xn−1).

CONCLUSIONS

Increasing heterogeneity causes a strong decline in the acceleration

of cancer. Heterogeneity could, for example, cause a cancer with n = 10

stages to have acceleration values below 5 that decline with age. Thus,

low values of acceleration (slopes of incidences curves) do not imply a

limited number of stages in progression. Heterogeneity must be nearly

universal in natural populations, so heterogeneity should be analyzed

when trying to understand differences in epidemiological patterns be-

tween populations.

Heterogeneity in progression rates causes cancer to be a form of trun-

cation selection, in which those above a threshold almost certainly de-

velop cancer and those below a threshold rarely develop cancer. Under

truncation selection, the amount of variation in progression rates will

play a more important role than the average rate of progression in de-

termining what fraction of the population develops cancer and at what

ages they do so. To understand the distribution of cancer, it may be

more important to measure heterogeneity than to measure the average

value of processes that determine rates of progression.
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7.4 Weibull and Gompertz Models

PRÉCIS

Demographers and engineers use Weibull and Gompertz models to

describe age-specific mortality and failure rates. A simple form of the

Weibull model assumes that failure rates versus age fit a straight line on

log-log scales. This matches the simplest multistage model of progres-

sion dynamics under the assumption that log-log acceleration remains

constant over all ages.

The advantage of the Weibull model is that it makes no assumptions

about underlying process, and allows one to reduce data description to

the two parameters of slope and intercept that describe a line. Compari-

son between data sets can be made by comparing the slope and intercept

estimates.

The disadvantage of the Weibull model is that, because it is a de-

scriptive model that makes no assumptions about underlying process,

one cannot easily test hypotheses about how particular factors affect

the processes of progression. I prefer an explicit underlying model of

progression dynamics. In some cases, such as the simplest multistage

model, the solution based on explicit assumptions about progression

leads to an approximate Weibull model.

The common form of the Gompertz model arises by assuming a con-

stant value for the slope of incidence versus age on log-linear scales:

that is, logarithmic in incidence and linear in age. The advantages and

disadvantages for the Weibull model also apply to the Gompertz model.

DETAILS

The Weibull model describes age-specific failure rates. Engineers use

the Weibull model to analyze time to failure for complex control sys-

tems, particularly where system reliability depends on multiple sub-

components. Multicomponent failure models have a close affinity to

multistage models of disease progression. Demographers also use the

Weibull model to describe the rise in age-specific mortality rates with

increasing age.

Both engineers and demographers have observed that the Weibull

model provides a good description of age-specific failure rates in many
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situations, so they use the model to fit data and reduce pattern descrip-

tion to a few simple parameters. Various forms of the Weibull model

exist. A simple and widely applied form can be written as

W (t)−W (0) = αtβ,

where W(t) is the Weibull failure rate at age t , W(0) is the baseline

failure rate, and α and β are parameters that describe how failure rate

increases with age.

The simple model of multistage progression with equal transition

rates, given in Eq. (6.2), can be rewritten as

I (t) = αtβ/Sn−1

≈ αtβ if Sn−1 ≈ 1

whereα = un/(n−1)!, the exponent β = n−1, and Sn−1 is the probability

that a particular line of progression has not reached the final disease

state by age t .
If I(t) ≈ αtβ is a good approximation of the observed pattern of age-

specific incidence, then multistage progression dynamics approximately

follows the Weibull model. On a log-log scale, the relation is

log (I) ≈ log (α)+ β log (t) .

With this form of the model expressed on a log-log scale, estimates for

the height of the line, log(α), and the slope, β, provide a full description

of the relation between incidence and age. The log-log acceleration for

this pattern of incidence is β, the slope of the line.

Whenever log-log acceleration remains constant with age, the multi-

stage and Weibull models will be similar. The previous sections dis-

cussed the assumptions under which log-log acceleration remains con-

stant with age.

The Weibull model simply describes pattern, and so cannot be used

to develop testable predictions about the processes that control age-

specific rates. With multistage models of progression, we can predict

how incidence will change in individuals with inherited mutations com-

pared with normal individuals, or how incidences of different diseases

compare based on the number of stages of progression, the number of
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independent lines of progression, the variation in transition rates be-

tween stages, and the temporal changes in transition rates over a life-

time.

The Gompertz model provides a widely used alternative description

of mortality rates. Let G(t) be the age-specific mortality rate of a Gom-

pertz model, and let a dot denote the derivative with respect to t . The

Gompertz model assumes that the mortality rate increases at a constant

rate γ with age:

Ġ = γG.
Solving this simple differential equation yields

G(t) = aeγt ,

where a = G(0). From the differential equation, we can also write

Ġ
G
= d ln (G)

dt
= γ,

which shows that the slope of the logarithm of mortality rate with re-

spect to time is the constant γ. Horiuchi and Wilmoth (1997, 1998)

defined d ln(G)/dt as the life table aging rate.

The Gompertz model arises when one assumes a constant life table

aging rate. As with the Weibull model, the Gompertz model describes

the pattern that follows from a simple assumption about age-related

changes in failure rates. Neither model provides insight into the pro-

cesses that influence age-related changes in disease. However, these

models can be useful when analyzing certain kinds of data. For exam-

ple, the observed age-specific incidence curves may be based on rela-

tively few observations. With relatively few data, it may be best to esti-

mate only the slope and intercept for the incidence curves and not try

to estimate nonlinearities.

When fitting a straight line on a log-log scale, one is estimating Weibull

parameters. Similarly, fitting a straight line of incidence versus time on

a log-linear scale estimates parameters from a Gompertz model. The

Weibull distribution may be the better choice because it provides a lin-

ear approximation to an underlying model of multistage progression

dynamics.
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CONCLUSIONS

Weibull and Gompertz models provide useful tools to reduce data

to a small number of estimated parameters. However, I prefer to begin

with an explicit model of progression dynamics and derive the predicted

shape of the incidence curve. Explicit dynamical models allow one to test

comparative hypotheses about the processes that influence progression.

7.5 Weibull Analysis of
Carcinogen Dose-Response Curves

PRÉCIS

Peto et al. (1991) provided the most comprehensive experiment and

analysis of carcinogen dose-response curves. In their analysis, they com-

pared the observed age-specific incidence of cancer (the response) over

varying dosage levels. They described the incidence curves by fitting the

data to the Weibull distribution. They also related the Weibull incidence

pattern to the classic Druckrey formula for carcinogen dose-response

relations. The Druckrey formula summarizes the many carcinogen ex-

periments that give linear dose-response curves when plotting the me-

dian time to tumor onset versus dosage of the carcinogen on log-log

scales (Druckrey 1967).

I discussed the Druckrey equation, the data from Peto et al.’s study,

and some experimental results from other carcinogen experiments in

Section 2.5. Here, I summarize the theory that ties the Weibull approxi-

mation for incidence curves to the Druckrey equation between carcino-

gens and tumor incidence.

DETAILS

Define the instantaneous failure rate as λ(t). Cumulative failure in-

tensity is μ(t) = ∫ t0 λ(x)dx. Then, from the nonstationary Poisson pro-

cess, the probability of survival (nonfailure) to age t is

S (t) = e−μ(t)

and failure is 1− S.
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Note that median time to failure, m, is

S (m) = 0.5 = e−μ(m)

and so

ln (0.5) = −μ (m) .
Age-specific incidence, I(t), is the instantaneous decrease in survival

divided by the fraction of the original population still surviving, thus

I (t) = −S′/S = −d ln (S) /dt = λ (t) ,

so the instantaneous failure rate from the nonstationary Poisson process

is also the age-specific incidence rate.

Cumulative incidence sums up the age-specific incidences; cumulative

incidence measures the total failure intensity over the total time period,

thus

CI (t) =
∫ t

0
I (x)dx =

∫ t
0
−d ln (S (x)) /dx

= − ln (S (t)) =
∫ t

0
λ (x)dx = μ (t) .

This background provides the details needed to decipher the rather

cryptic analysis in Peto et al. (1991) on the Weibull distribution and the

Druckrey equation.

To start, assume that cumulative failure follows the Weibull distribu-

tion

μ (t) = − ln (S) = btn.
Then the median time to failure is

μ (m) = − ln (0.5) = bmn

and so

b = − ln (0.5) /mn

and

CI = μ (t) = btn = − ln (0.5) (t/m)n .

Thus, the median, m, and the exponent, n, completely determine the

course of survival, time to failure, and incidence.
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For carcinogen experiments, Druckrey and others have noted an ex-

cellent linear fit on log-log scales between the median time to tumor, m,

and dosage, d, such that

log (m) = k1 − (1/s) log (d) ,

which means that, in the form usually given in publications,

k1 = dms.

To use these empirical relations in the incidence formulae above, where

patterns depend on tn and on m, we can use s = n/r , thus

k1 = dmn/r

and

m = (k1/d)r/n .

Substituting for m in our previous formulae,

CI = μ (t) = − ln (0.5) dr tn

kr1
= k2dr tn,

which suggests that cumulative incidence depends on the rth power of

dose and the nth power of age, with k values fit to the data.

Note that if d = 0, this formula for incidence suggests no cancer

in the absence of carcinogen exposure. If there is a moderate to high

dosage, then almost all cancers will be excess cases induced by carcino-

gens. However, one may wish to correct for background cases, either

by interpreting CI as excess incidence or by substituting (d + δ)r for d,

where δ > 0 explains the background cases.

CONCLUSIONS

This section provided the technical details to analyze experimental

studies of carcinogens. Those studies measure the relation between

tumor incidence and age at different dosage levels. The analysis then

estimates the effect of dosage on the time to tumor development. Most

studies fit well to a model in which the cumulative incidence up to age

t rises with dr tn, where d is dose, t is age, the exponent r is the log-

log slope for incidence versus dosage, and n is the log-log slope for

cumulative incidence versus age.
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7.6 Summary

A wide variety of incidence and acceleration curves can be drawn

based on reasonable assumptions about progression and heterogeneity.

That great flexibility of the theory means that it is easy to fit a model to

observations. A theory that fits almost any observable pattern explains

little; insights and testing of ideas cannot come from simply fitting the

theory to observations.

The value of the theory arises from comparative hypotheses. The

models predict how incidence and acceleration change between groups

with different genotypes or different exposures to carcinogens. If one

can consistently predict how perturbations to certain processes shift

incidence and acceleration, then one has moved closer to understand-

ing the processes of carcinogenesis. The following chapters describe

comparative studies.



8 Genetics of Progression

Genes affect cancer to the extent that they alter age-specific incidence.

Thus, the most powerful empirical analysis compares age-specific inci-

dence between normal and mutated genotypes. This chapter describes

comparative studies between genotypes.

The first section compares mutant and normal genotypes in human

populations. I begin with the classic study of retinoblastoma. An inher-

ited mutation in the Rb gene causes a high incidence of bilateral retinal

tumors. Individuals who do not inherit a mutation suffer rare unilat-

eral tumors. The age-specific acceleration of unilateral cases is one unit

higher than the acceleration of bilateral cases, consistent with the pre-

diction that most of the individuals who suffer bilateral retinoblastoma

were born advanced by one stage in progression because of an inherited

mutation.

A similar comparison between inherited and sporadic cases of colon

cancer shows that the sporadic cases have an acceleration approximately

one unit greater than inherited cases. The decrease in acceleration for

individuals who inherit a mutation to the APC gene supports the hy-

pothesis that such mutations cause their carriers to be born one stage

advanced in progression.

The second section compares incidence between different genotypes

in laboratory animals. The controlled genetic background makes clearer

the causal role of particular mutations in shifting age-specific incidence.

I describe the quantitative methods needed to test hypotheses with the

small sample sizes commonly obtained in lab studies. I then present a

full analysis of one example: the change in age-specific incidence and

acceleration between four genotypes with different knockouts of DNA

mismatch repair genes. Knockouts that cause a greater increase in mu-

tation rate had earlier cancer onset and a lower age-specific acceleration.

The lower acceleration suggests some hypotheses about how the mis-

match repair mutations affect the rate of cancer progression.

The third section compares breast cancer incidence between human

groups classified by the age at which a first-degree relative developed

the disease. The earlier the age of onset for the affected first-degree
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relative, the faster the rate of progression. Those who progressed more

quickly appeared to have an inherited polygenic predisposition. Greater

polygenic predisposition was associated with lower age-specific acceler-

ation. I discuss various hypotheses about why such predisposition may

increase incidence and reduce acceleration.

8.1 Comparison between
Genotypes in Human Populations

Comparisons between sporadic and inherited cancers provide power-

ful support for multistage theory. With new genomic techniques, com-

parison of age-specific incidence between human groups with different

genotypes will become increasingly easy to accomplish. So, it is impor-

tant to have a clear sense of what has already been done and what can

be learned in the future.

RETINOBLASTOMA

Bilateral retinoblastoma, in which tumors develop in both eyes, is an

inherited disease. Most unilateral cases occur sporadically. Knudson

(1971) predicted that bilateral cases follow age-specific patterns consis-

tent with one inherited mutation (hit) and the need for only one somatic

hit to produce a tumor. By contrast, Knudson predicted that unilateral

cases require two somatic hits to form a tumor.

Figure 8.1 compares age-specific incidence of bilateral (inherited) and

unilateral (sporadic) cases. The typical measure of age-specific incidence

is the number of cases in an age group divided by the number of persons

at risk in that age group. However, given the small sample sizes and the

difficulty of measuring the base population that represents the number

of persons at risk, Knudson analyzed incidence as the number of cases

not yet diagnosed at a particular age divided by the total number of

cases eventually diagnosed, in other words, the fraction of cases not yet

diagnosed.

Knudson (1971) fit the bilateral cases to the model log(S) = −k1t ,
where S is the fraction of cases not diagnosed, k1 is a parameter used

to fit the data, and t is age at diagnosis. He fit the unilateral cases to

the model log(S) = −k2t2, where k2 is a parameter used to fit the data.

The figure shows a reasonable fit for both models, with k1 = 1/30 and

k2 = 4× 10−5.
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Figure 8.1 Incidence of unilateral and bilateral retinoblastoma. Redrawn from
Knudson (1971).

Knudson (1971) gave various theoretical justifications for why inher-

ited and sporadic forms should follow these simple models of incidence,

proportional either to t for one hit or t2 for two hits. However, his the-

oretical arguments in that paper ignored the way in which the retina

actually develops. In a later pair of papers, Knudson and his colleagues

produced a theory of incidence that accounts for retinal development

(Knudson et al. 1975; Hethcote and Knudson 1978).

Consider, for example, an individual who inherits one mutation. All

dividing cells in the retina that are at risk for transformation can be

transformed by a single additional somatic mutation. As the retina

grows, the number of cells at risk for a somatic mutation increases,

causing a rise in risk with age. However, the retina grows to near its
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final number of cells by around 60 months of age, causing cell division

to slow and reducing the risk per cell with age. Change in overall risk

with age depends on the opposing effects of the rise in cell number and

the decline in the rate of cell division.

Hethcote and Knudson (1978) developed a mathematical theory based

on cellular processes of retinal development, and fit their model to an

extended set of data on inherited and sporadic retinoblastoma. The

basic pattern in the data remains the same as in Figure 8.1, but the later

model fits parameters for the somatic mutation rate and for aspects of

cell population size and cell division rate.

At first glance, the realistic model based on cell populations and cell

division may seem attractive. However, many factors affect the inci-

dence of human cancers, including environment, cell-cell interactions,

tissue structure, and somatic mutations during different phases of tu-

mor development. No model can account for all of those factors, and

so incidence data can never provide accurate estimates for isolated pro-

cesses such as somatic mutation rate or cell division rate.

Knudson’s main insight was simply that age-specific incidence of in-

herited and sporadic retinoblastoma should differ in a characteristic way

if cancer arises by two hits to the same cell. He obtained the data and

showed that very simple differences in incidence do occur. The next step

is to understand why the observed differences follow the particular pat-

terns that they do. Detailed mathematical theory based on cell division

and mutation rate provides insight about the factors involved, but with

regard to data analysis, that theory depends too much on the difficult

task of estimating parameters of mutation and cell division from highly

variable incidence data.

RATIO OF SPORADIC TO INHERITED INCIDENCE

I advocate theory more closely matched to Knudson’s original insight

and to what one can realistically infer given the nature of the data (Frank

2005). According to Knudson’s theory, bilateral tumors arise from single

hits to somatic cells with an inherited mutation. The rate at which a

hit occurs in the developing retina at a particular age depends on many

factors, including the number of target cells and the rate of cell division.

But we cannot get good estimates for those factors, so let us use the

observations for bilateral cases at different ages to estimate the rate
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at which a somatic mutation occurs in the tissue at a particular age,

subsuming all the details that together determine that rate.

In particular, we take our estimate for age-specific bilateral incidence

as our estimate for the rate at which second hits occur in the tissue

at a particular age. Clearly, this simplifies the real process; for exam-

ple, bilateral cases require at least one hit in each eye. However, the

probability of two second hits leading to bilateral cases is fairly high at

roughly 0.1–0.3 (Figure 2.6c), thus the probability of one second hit is

about
√

0.1–
√

0.3, the same order of magnitude as the probability of two

second hits. So let’s proceed with the simple approach that IB(t), the

incidence of bilateral cases at age t , provides a rough estimate of the

rate of second hits to the tissue at age t .
The incidence of unilateral cases can be written as

IU (t) ≈ f (t) IB (t) ,

where f (t) is the fraction of somatic cells at age t that carry one somatic

mutation, and IB(t) is approximately the rate at which the second hit

occurs and leads to a detectable tumor. The strongest prediction of

multistage theory arises from the comparison of sporadic and inherited

cases, so we analyze the ratio of unilateral to bilateral incidence at each

age:

R = IU (t)
IB (t)

≈ f (t) ;

in words, the ratio of unilateral to bilateral rates should be roughly f (t),
the fraction of cells at time t that carry the first hit in individuals that

do not inherit a mutation. For example, if f (t) = 0.1, then one-tenth of

somatic cells have a first mutation, and the susceptibility for sporadic

cases is about one-tenth of the susceptibility for inherited cases.

The expected number of somatic mutational events suffered by a gene

in a particular cell is the mutation rate per cell division, v , multiplied by

the number of cell divisions going back to the embryo. Let the number

of cell divisions at age t be C(t), so that vC(t) is the expected number

of mutational events. For most assumptions, vC(t) << 1, so we can

take vC(t) ≈ f (t) as the fraction of cells at time t that carry a somatic

mutation, and thus

R = IU (t)
IB (t)

≈ vC (t) . (8.1)
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Few attempts have been made to measure the somatic mutation rate

per gene per cell division. Yeast provide a convenient model of sin-

gle eukaryotic cells. For yeast, the mutation rate has been estimated

as 10−7–10−5 (Lichten and Haber 1989; Yuan and Keil 1990). In mice,

Kohler et al. (1991) estimated the frequency of somatic mutations as

1.7×10−5. There are roughly 101–102 divisions in a mouse cell lineage,

so this study suggests a somatic mutation rate per cell division on the

order of 10−7–10−6. I use the approximate value of 10−6 per gene per

cell generation.

The number of cell divisions, C(t), is roughly in the range 15–40,

because there are probably about 15–25 cell divisions before the start of

retinal development, and it takes about 15 cellular generations to make

the e15 ≈ 106–107 cells in the fully developed retina. Thus, IU(t)/IB(t) ≈
10−4–10−5, and this ratio may increase by a factor of about two during

early childhood as C(t) increases from around 15–25 at the start of

retinal development to roughly 30–40 in the final cellular generations in

the retina.

These rough calculations lead to two qualitative predictions (Frank

2005). First, the ratio of unilateral to bilateral age-specific incidence

should be roughly 10−4–10−5. Second, the ratio of unilateral to bilateral

incidence should approximately double with age over the period of reti-

nal growth as the number of cellular generations, C(t), increases with

time.

Figure 8.2b shows that the ratio of unilateral to bilateral incidence is

in the predicted range of 10−4–10−5, roughly the somatic mutation rate

multiplied by the number of cellular generations. This ratio approxi-

mately doubles from the earliest age of 0–1 to the latest age of 2–3 at

which sufficient numbers of bilateral cases occur to estimate incidence

rates. The increase of this ratio supports the prediction that unilateral

incidence increases relative to bilateral incidence as the number of cel-

lular generations increases.

DIFFERENCE BETWEEN SPORADIC AND INHERITED ACCELERATION

Individuals who inherit a mutation are born one step further along

than are individuals who do not inherit a mutation. Thus, my simple

theory predicted that the ratio of sporadic to inherited incidence would
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Figure 8.2 Age-specific incidence of retinoblastoma. (a) Bilateral (solid line)
and unilateral (dashed line) cases of retinoblastoma per 106 population, shown
on a log10 scale. Description of the data in Figure 2.6. (b) Ratio, R, of unilateral
(IU) to bilateral (IB) incidence at each age multiplied by 10−5, using the data
in the previous panel. From Frank (2005).

be the probability that nonmutant individuals acquire an extra muta-

tion somatically: approximately the mutation rate per cell division mul-

tiplied by the number of cell divisions (Frank 2005). The data shown in

Figure 8.2 provide a good match to that prediction when using common

assumptions about somatic mutation and cell division.

I now develop a simpler, more general comparative prediction for the

difference in incidence between sporadic and inherited cases. In almost

all multistage theories, an inherited mutation advances progression and

therefore decreases the acceleration of cancer. So, multistage theory

predicts that the acceleration of sporadic cases is greater than the ac-

celeration of inherited cases. If we assume that a mutation advances

progression by one step, then the theory predicts that the acceleration

of inherited cases declines by about one when compared to the acceler-

ation of sporadic cases.

I developed the general theory for comparing accelerations in Sec-

tions 7.2 and 7.3. The main features of the theory follow from basic

definitions. The ratio of sporadic to inherited incidence is

R = IS
II
.

The slope of R on a log-log scale is

d log (R)
d log (t)

= d log (IS)
d log (t)

− d log (II)
d log (t)

.
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Recall that d log(I)/d log(t) is the slope of the incidence curve, or ac-

celeration, when measured on a log-log scale. I called this measure the

log-log acceleration (LLA). Thus, the log-log slope of R is the difference

in acceleration between sporadic and inherited cases

ΔLLA = d log (R)
d log (t)

= LLAS − LLAI , (8.2)

in which ΔLLA denotes the difference in log-log acceleration.

Figure 8.3 shows the log-log slope of R (ΔLLA) for retinoblastoma,

using unilateral incidence to measure sporadic cases and bilateral inci-

dence to measure inherited cases. To calculate the log-log slope of R,

I started in Figure 8.3a with the same incidence data as in Figure 8.2a.

Estimates for incidence at each age derive from many observations, as

described in Figure 2.6. I fit straight lines to the data for unilateral and

bilateral cases in Figure 8.3a. The plot in Figure 8.3c shows log(R), a

linearized version of Figure 8.2b. The slope of log(R) versus log(t) is

about one-half, as shown in Figure 8.3e.

In plotting the retinoblastoma data, the proper scaling for age needs

to be considered. So far, I have used age since birth. However, the

progression by somatic mutation may begin just after conception. So, it

might be reasonable to measure age in years since conception, obtained

by adding 0.75 years to age since birth.

The plots in the right column of Figure 8.3 measure age since concep-

tion. Using age since conception, the log-log slope in Figure 8.3f is near

one, matching the predicted value from simple multistage models, such

as in Eq. (6.3). These plots illustrate how incidence data may be used to

study the dynamics of cancer progression.

COLON CANCER

Individuals who inherit one mutated copy of the APC gene almost

invariably develop multiple colon tumors by midlife, causing a disease

known as familial adenomatous polyposis (FAP) (Kinzler and Vogelstein

2002). In terms of multistage theory, it may be that individuals with

an inherited APC mutation begin life one stage further along than do

normal individuals (Frank 2005).

Figure 8.4a shows the age-specific incidence for individuals with in-

herited FAP or noninherited (sporadic) colon cancer. Figure 8.4b plots
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Figure 8.3 Retinoblastoma incidence evaluated with regard to multistage the-
ory. (a and b) Bilateral (solid line) and unilateral (dashed line) incidence of reti-
noblastoma per 106 population, shown on a log10 scale. Description of the data
in Figure 2.6. (c and d) Ratio, R, of unilateral (IU) to bilateral (IB) incidence at
each age multiplied by 10−5, using the fitted lines in the panels above. (e and f)
Difference in log-log acceleration between unilateral and bilateral cases, which
is the log-log slope of R versus age in Eq. (8.2). The left column shows age from
birth; the right column shows age from conception. Ages measured in years. I
did not use the unilateral data after age 2.5 years (see Figure 8.2), because reti-
nal cell division slows with age, changing a key process that governs incidence.
Without matching data from bilateral cases after 2.5 years, there is no way to
calibrate the effect of slowing cell division on the ratio of unilateral to bilateral
incidence.
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Figure 8.4 Age-specific incidence of inherited and sporadic colon cancer. (a)
Inherited colon cancer (FAP) caused by mutation of the APC gene (solid circles)
and sporadic cases (open circles) per 106 population, shown on a log10 scale.
Description of the data in Figure 2.6. (b) Ratio of sporadic colon cancer incidence
(IC) to inherited FAP incidence (IF ) at each age multiplied by 10−4, using the
data in the previous panel. From Frank (2005).

the ratio of sporadic to inherited age-specific incidence, R = IS/II . This

ratio increases about 3-fold with age, varying between about 2–6 ×10−4.

RATIO OF SPORADIC TO INHERITED INCIDENCE

In Section 7.2, I developed theory to predict the ratio of age-specific

incidence between two genotypes under the assumption of simple step-

wise progression through n stages with constant transition rates. One

could certainly use more complex models, but there are not enough data

to justify particular assumptions. So I stick with the simplest model to

see how well it explains the data.

I start with the assumption that sporadic colon cancer requires pro-

gression through n stages. Inherited FAP requires progression through

only n − 1 stages, because at birth those individuals have already ad-

vanced by one stage. From Eq. (7.3), we have the ratio of sporadic to

inherited cases

R ≈ ut
n− 1

, (8.3)

noting that the colon has multiple lines of progression, thus the ratio of

Sn−2/Sn−1 in Eq. (7.3) will be close to one.

If transitions occur as somatic mutations, then the transition rate per

year is the mutation rate per cell division, v , multiplied by the number of

cell divisions per year, D, providing the substitution u = vD in Eq. (8.3).
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I use v ≈ 10−6, as discussed in the previous section. The colon epithe-

lium turns over every few days, and stem cells that ultimately renew the

tissue probably divide at least once per week, or about D ≈ 50 times per

year. For the number of stages, n, epidemiological and molecular esti-

mates usually fall in the range 4–7 (Armitage and Doll 1954; Fearon and

Vogelstein 1990; Luebeck and Moolgavkar 2002). All of these numbers

are provisional, but they allow us to predict that the ratio of sporadic to

inherited incidence rates should be roughly

R ≈ ut
n− 1

= vDt
n− 1

≈ 10−5t.

The data for inherited FAP and sporadic cases can be compared on the

range t = 20–40, so R is predicted to increase over the range 2–4 ×
10−4. Figure 8.4b shows that the ratio of incidences is of the predicted

magnitude and increases with age, although the increase with age is

slightly greater than predicted.

ACCELERATION IN SPORADIC VERSUS INHERITED CASES

Multistage theory predicts that sporadic cases must progress through

at least one more stage than inherited cases. More stages in progres-

sion leads to a higher acceleration, so the theory predicts that cases of

sporadic colon cancer should accelerate with age more rapidly than the

acceleration of inherited cases.

Figure 8.5 shows the same data as in Figure 8.4, with the incidence

curves forced to be straight lines. This forced linearity allows an ap-

proximate estimate of the log-log slope of R versus t , as shown in Fig-

ure 8.5c. The estimated value of 1.5 for this slope is reasonably close to

the predicted value of 1, the difference in the number of stages between

sporadic and inherited forms.

The theory can be refined in many ways, for example, taking account

of the number of independent cell lineages at risk for stepping through

the various transition stages. But most reasonable assumptions apply

to both the inherited and sporadic rates of transition, and so the ratio

of incidence rates remains roughly the same under such refinements.

At present, we have little quantitative information about the differ-

ent processes that drive progression. Without such details, we get the

most insight from simple theories that lead to easily tested comparative

predictions. For sporadic versus inherited cancers, two predictions of
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Figure 8.5 Age-specific incidence of inherited and sporadic colon cancer. (a
and b) These panels match the corresponding panels in Figure 8.4, with the
fitted incidence curves here forced to be linear by assumption. (c) The difference
in the log-log acceleration between sporadic and inherited cases, which is the
log-log slope of R (see Eq. (8.2)).

multistage theory apply broadly. The first prediction is qualitative: the

acceleration of sporadic cases should be greater than the acceleration

of inherited cases. The second prediction is quantitative: if inherited

cases arise from a single mutation, then the difference in acceleration

between sporadic and inherited cases should be about one. My analyses

of retinoblastoma and the FAP form of inherited colon cancer support

both the qualitative and quantitative predictions.

8.2 Comparison between Genotypes
in Laboratory Populations

The previous sections compared the age of cancer onset between in-

dividuals with and without particular inherited mutations. Those in-

dividuals with inherited mutations progressed more quickly, at a rate

consistent with having passed at birth one stage in cancer progression.

Many lab studies with mice or rats compare the age-onset patterns

of cancer between different genotypes. Those studies usually focus on

whether particular mutations cause faster progression to cancer. In the

lab, one can control the environment and use animals that differ only

at particular loci. Such studies can provide a strong case for the causal

role of certain mutations in cancer progression.
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Figure 8.6 Survival of wild-type TRAMP mice versus Pten heterozygous TRAMP
mice that have one Pten allele knocked out. Kwabi-Addo et al. (2001) ascribed
death in all 63 mice shown in these plots to either a large primary tumor or
to metastatic disease. Survival plots of this sort are often called Kaplan-Meier
plots.

Lab studies rarely analyze the quantitative patterns of cancer onset

in the way that I did in the previous sections. Instead, the analysis typ-

ically emphasizes the qualitative pattern of whether certain combina-

tions of mutations cause earlier or later cancer onset than do other

combinations. For example, Figure 8.6 compares the survival of two

mouse strains (Kwabi-Addo et al. 2001). One strain has the TRAMP geno-

type that predisposes mice to develop prostate cancer. The other strain

carries the same genes that predispose to prostate cancer, but also is

heterozygous at the Pten locus, with one allele knocked out. Pten mu-

tations are common in many cancers, including cancers of the prostate.

The figure shows that the Pten heterozygotes progress more rapidly to

cancer.

Experimenters usually plot results from these studies as the fraction

of mice surviving to a particular age, as in Figure 8.6. In this section,

I show how to transform such data into age-specific rates of cancer in-

cidence, allowing comparison of relative rates for different treatments.

This transformation to age-specific rates allows one to test particular

hypotheses about the dynamics of cancer onset with the limited sample

sizes typical of lab studies. I illustrate the method by analyzing the age

of cancer onset in different DNA mismatch repair genotypes (Frank et al.

2005).
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Figure 8.7 Age of lymphoma onset in mice with different mismatch repair
genotypes. For each genotype, both alleles at each locus were knocked out.
(a) Kaplan-Meier estimate at each age of the fraction of mice that have not yet
developed lymphoma among the population of mice that remain at risk. (b)
Smoothed curve fit to the estimated survival curve by the smooth.spline func-
tion of the R computing language (R Development Core Team 2004) with the
smoothing parameter set to 0.5. (c) Incidence of lymphomas on log-log scales.
(d) The acceleration of lymphoma onset calculated from the slope of the lines
in (c). Redrawn from Frank et al. (2005).

METHODS

Usually, the lab animals in each group have a common genotype and

common method of treatment. Each group forms a population in which

one observes the time to onset for a particular stage of cancer progres-

sion in a particular tissue. From the onset times, one estimates a “sur-

vival” curve, where “survival” here means time to onset of some partic-

ular event.

In each time interval, for example in each month, one has a listing

of how many animals were removed because they suffered the event of

interest and how many animals were removed for other causes. If we
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assume the other causes of removal happen independently of the event

of interest, we can use the data to estimate a survival curve.

The Kaplan-Meier survival estimate provides the simplest and most

widely used method for lab studies. At each time, ti , at which events

are recorded, the fraction surviving during the interval since the last

recording is σi = 1−di/ni , where di is the number of individuals suffer-

ing an event since the last time of recording at ti−1, and ni is the number

of individuals at risk during this period. Note that as other causes re-

move individuals, ni decreases over time by more than the number of

observed events. The fraction of individuals that have not suffered an

event (survived) to time ti is the product of the survival fractions over all

time intervals, S(ti) =
∏
σj , where the product of the σj ’s is calculated

over all time intervals up to and including ti .
Figure 8.7 shows the steps by which I transform Kaplan-Meier sur-

vival plots (Figure 8.7a) into incidence (Figure 8.7c) and acceleration (Fig-

ure 8.7d) plots. These analytical transformations provide an informative

way of presenting data with regard to quantitative study of progression

dynamics. Frank et al. (2005) give the details for this analysis. Here, I

briefly summarize the main points.

The data in Figure 8.7 come from mouse studies of mutant mismatch

repair (MMR) genotypes. Defects in the MMR system reduce repair of

insertion and deletion frameshift mutations and single base-pair DNA

mismatches (Buermeyer et al. 1999). MMR defects can also reduce initia-

tion of apoptosis in response to DNA damage (Edelmann and Edelmann

2004).

I transformed standard survival plots into incidence by first fitting

a smoothed curve to the survival data (Figure 8.7b). From the survival

curve, S(t), the incidence, measured as probability of death from cancer

per month at age t , is

I (t) = −dS (t)
dt

1
S (t)

= −d ln (S (t))
dt

. (8.4)

I calculated the incidence curves with Eq. (8.4), put incidence and age on

log-log scales, and then fit a straight line through the estimated curves to

get the lines of log-log incidence in Figure 8.7c. I fit straight lines because

the data provide enough information to get a reasonable estimate of the

slope, but not enough information to provide a good estimate of the

curvature of the log-log plots at different ages.
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Figure 8.8 Age of gastrointestinal tumor (adenoma) onset in mice with differ-
ent mismatch repair genotypes. Panels as in Figure 8.7. Redrawn from Frank
et al. (2005).

Acceleration in Figure 8.7d shows the slope of the incidence curves.

The accelerations are constant over time because I forced the incidence

curves to be linear. With more data, one could estimate nonlinear inci-

dence curves, which would allow changes in acceleration with age.

HYPOTHESES AND TESTS

Multistage theory makes three qualitative predictions about the dy-

namics of cancer. First, the fewer the number of steps in progression

that must be passed, the lower the acceleration of cancer with age. In lab

experiments, the theory predicts that abrogation of tumor suppressor

functions or introduction of oncogenes reduces the acceleration. Sec-

ond, small to moderate increases in the mutation rate cause greater can-

cer incidence at earlier ages but do not affect the acceleration. Third,

large increases in mutation rate can cause such rapid transitions be-

tween stages that certain mutations required for carcinogenesis may no

longer limit the rate of tumor formation. If some transitions no longer
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Comparison Type Acceleration Age Mutation

Mlh3 v Mlh3Pms2 GI cancer + + –

Mlh3 v Mlh1 + + –

Mlh3 v Mlh3Pms2 Lymphoma + + –

Mlh3 v Mlh1 Lymphoma + + –

Pms2 v Mlh3Pms2 Lymphoma + + –

Pms2 v Mlh1 Lymphoma + + –

Mlh3 v Pms2 Lymphoma + + –

GI cancer

Figure 8.9 Comparison of cancer dynamics for four different mismatch repair
genotypes. The ‘+’ and ‘–’ symbols show the direction of change for each com-
parison. In each comparison, the genotype with the lower mutation rate had
a higher acceleration and median age of onset—or, equivalently, the genotype
with the higher mutation rate had a lower acceleration and median age of onset.
From Frank et al. (2005).

limit the kinetics of carcinogenesis, the number of rate-limiting steps

decreases, and the acceleration declines.

MMR genotypes affect both mutation rate and apoptosis in response

to DNA damage. Apoptosis suppresses cancer progression and may

often be a rate-limiting step in carcinogenesis. Previous work (Chen

et al. 2005; Lipkin et al. 2000) showed that the mutation rates for the

four knockout genotypes can be ordered as Mlh3 < Pms2 < Mlh1 ≈
Mlh3Pms2, and decreased apoptosis in response to DNA damage of the

four genotypes can be ordered as Mlh3 ≈ Pms2 < Mlh1 ≈ Mlh3Pms2.

Figure 8.9 shows that differences in mutation rate predict the direc-

tion of change in acceleration and median age of onset in lymphomas

(Figure 8.7) and in gastrointestinal tumors (Figure 8.8). Note that it is

possible to have later age of onset and lower acceleration, so accelera-

tion and age of onset are two independent dimensions of the dynamics.

The direction of change in mutation rate predicts the direction of change

in the acceleration in all 7 cases (p ≈ 0.008), with the same result for

the association between mutation rate and age of onset. Differences in
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anti-apoptotic effects (not shown) also predict the direction of change

in acceleration and age of onset.

Limited sample sizes present the greatest problem in studies that

estimate age-specific incidence for particular genotypes. To get around

this limitation, I formulated the hypotheses as predictions about the

direction of change in comparisons between genotypes. For example,

I predicted that acceleration would decline in a sample with relatively

stronger defects in mismatch repair when compared against a sample

with relatively weaker defects in mismatch repair.

If each key prediction is formulated in a comparative way, laboratory

studies with small sample sizes can be used. Each comparison provides

a single binary outcome that represents either a success or failure of

the theory to predict the direction of change in some attribute of cancer

dynamics. The binary outcomes can be aggregated to form a nonpara-

metric test based on the binomial distribution. This allows my approach

to be applied to small samples of mice in each genotype. The effective

sample size comes from the number of comparisons.

Over the past few years, vast resources have been expended on ani-

mal experiments that compare survival curves for different genotypes.

If these sorts of experiments were designed and analyzed with dynamics

in mind, the research could move to the next level in which the mech-

anistic consequences of particular genetic pathways are related to the

dynamics of carcinogenesis. The data I presented here were not col-

lected to test mechanistic and quantitative hypotheses about dynamics.

A simple reanalysis provided significant insights about how DNA repair

genotypes affect separately the age of onset and the acceleration of can-

cer.

8.3 Polygenic Heterogeneity

The previous sections showed how mutations to the mismatch repair

genes or APC accelerate gastrointestinal cancer, and mutation to Rb ac-

celerates retinoblastoma. Those mutations to single genes have simple

inheritance patterns and cause major changes in incidence, making them

relatively easy to study.

Genetic variation across multiple loci may also strongly affect inci-

dence. However, such polygenic causation creates difficulties in studies,
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because each particular genetic variant has only a minor effect, shifting

incidence by only a small amount.

Comparison of the rate of progression between different genotypes

could provide information about the ways in which genetic variants com-

bine to influence cancer incidence. However, if individual genetic vari-

ants cause only small changes, then how can one identify genotypes

that are sufficiently different with regard to cancer predisposition? One

approach is to identify a group of genetically predisposed individuals

by studying the first-degree relatives of those who develop cancer early

in life. This high-risk group can be compared with a control group of

low-risk individuals who do not have an affected first-degree relative.

In a comparison between high- and low-risk groups, two outcomes

would suggest polygenic predisposition to cancer. First, the high-risk

group must have early onset of cancer as measured by age-specific inci-

dence. Second, one must rule out the possibility that major mutations to

single genes, such as APC, explain most of the difference in age-specific

incidence.

A study of breast cancer showed that those with affected first-degree

relatives progress more rapidly than do the controls (Figure 8.10). In-

terestingly, the earlier the age at which a first-degree relative develops

breast cancer, the greater the incidence of those at risk (Peto and Mack

2000).

The slopes of the incidence curves form a set of parallel acceleration

curves (Figure 8.11). Those groups whose first-degree relatives had can-

cer at a relatively earlier age had both greater incidence and lower accel-

eration. In terms of multistage theory, this negative association between

incidence and acceleration arises when the genetically predisposed fast

progressors must pass through fewer rate-limiting stages than the slow

progressors.

A difference in the number of stages in progression can arise in at least

four ways. First, the fast progressors may have genotypes that advance

them one or more stages in progression. An advance in initial stage

seems to explain the difference in incidence in the single-gene defects,

such as retinoblastoma and FAP.

Second, the fast progressors may have less efficient DNA repair and a

higher somatic mutation rate, causing progression to advance so rapidly

through some stages that those stages are no longer rate-limiting.
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Figure 8.10 Age-specific incidence of breast cancer for individuals with an af-
fected first-degree relative. Incidence shown as cases per 10,000 individuals
per year. The various lines plot the ages at which first-degree relatives were
diagnosed with breast cancer. I calculated incidence from a summary report
on familial breast cancer (Collaborative Group on Hormonal Factors in Breast
Cancer 2001). The report presented data on relative risk for individuals with
affected first-degree kin and on incidence in controls who did not have affected
kin. I calculated incidence as relative risk multiplied by incidence in controls.
The data do not exclude cases in which an affected family carries a major mu-
tation to a gene such as BRCA1 or BRCA2. However, Peto and Mack (2000) used
independent data on the frequency of BRCA1 or BRCA2 mutations in affected
individuals of different ages to argue that families carrying major mutations
make up only a small fraction of the total population of families in this study.

Third, the fast progressors may start in the same stage as the slow

progressors and have as many rate-limiting steps to pass but advance

more quickly through stages. At later ages, the fast progressors will

on average have fewer stages remaining. It is the number of stages

remaining that determines acceleration at a particular age (Figure 6.2;

Frank 2004b, 2004d).

Fourth, genetic variants may affect aspects of clonal expansion or

other processes that influence acceleration (Chapters 6 and 7).

Peto and Mack (2000) suggested that incidence reaches a high, con-

stant level after the age at which a first-degree relative develops breast

cancer. Figure 8.10 does show that the incidence curves level off sooner
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Figure 8.11 Incidence and acceleration of breast cancer in affected families. (a)
This plot is identical to Figure 8.10, with the individual points not shown. Each
curve is derived by fitting a smoothed spline to points at the four ages marked
by ticks on the x axis. In this panel, I used the smooth.spline function of R
with degrees of freedom (df) equal to 3 (R Development Core Team 2004). (b,c)
Incidence curves fit with degrees of freedom equal to 2.4 or 2.0, respectively,
forcing a more linear fit. (d–f) Acceleration, the slope of the incidence curves in
the panels above. The flattening of the acceleration curves near the endpoints
arises at least partly from the spline-fitting procedure, which linearizes the fit
of the incidence curves at the extreme values. (g–i) The differences in the accel-
eration curves from the panels above; each curve is the difference between the
control curve and the curve for one of the groups with an affected relative. Note
that the accelerations are somewhat erratic because they are derived from the
slope of fitted curves based on observations at only four distinct age categories
(see Figure 8.10). By contrast, the ΔLLA values remain relatively stable under
different smoothing stringencies.

when the first-degree relative is affected at an earlier age. Why might

incidence plateau earlier in faster progressors?
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If fast progressors have passed through all but the final stage in cancer

progression, and have only one stage remaining, then their annual risk

is constant—the risk is just the constant probability of passing the final

stage (Frank 2004d). By contrast, families with low genetic risk move

through the early stages slowly. In midlife, slow progressors typically

have more than one stage to pass, and so continue to have an increasing

rate of risk with advancing age.

The key questions concern what sort of genetic variants cause rela-

tively fast or slow progression, and how those genetic variants actually

affect the mechanisms and rates of progression. In a later chapter, I

discuss genetic variation in more detail. Based on the limited data cur-

rently available, one conclusion is that variants in DNA repair efficacy

may play an important role.

8.4 Summary

This chapter discussed inherited genetic predisposition to cancer in

light of multistage theory. Comparisons between genotypes provide the

strongest evidence for the role of particular genes in cancer progression.

Indeed, shifts in age-specific incidence may be the only way to measure

the consequences of particular genotypes on cancer, and quantitative

changes in progression dynamics may be the only way to evaluate the

relative importance of particular carcinogenic processes. The next chap-

ter applies the same methods of analysis to chemical carcinogens. The

observed shifts of age-specific incidence in response to carcinogens pro-

vide a window onto the processes of cancer progression.
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Carcinogens shift age-incidence curves. Such shifts provide clues about

the nature of cancer progression. For example, a carcinogen that influ-

enced only a late stage in progression would have little effect if applied

early in life, whereas a carcinogen that influenced only an early stage

would have little effect if applied late in life. By various combinations of

treatments, one can test hypotheses about the causes of different stages

in progression.

The first section begins with the observation that incidence rises more

rapidly with the duration of exposure to a carcinogen than with the

dosage. Cigarette smoking provides the classic example, in which inci-

dence rises with about the fifth power of duration and the second power

of dosage.

The standard explanation for the relatively weaker effect of dosage

compared with duration assumes that a carcinogen affects only a subset

of stages. I contrast that standard theory with a variety of alternative

explanations. For example, a model in which a carcinogen affects equally

all stages also fits the data well. Overall, fitting different models to the

data provides little insight.

The second section begins with the observation that lung cancer in-

cidence changes little after the cessation of smoking but increases in

continuing smokers. The standard explanation assumes that smoking

does not affect the final transition in the sequence of stages of cancer

progression. Among those who quit, nearly all subsequent cases arise

from individuals who progressed to the penultimate stage while smok-

ing, and await only the final transition. With one stage to go, incidence

remains nearly constant over time.

I show once again that a model in which a carcinogen affects equally

all stages also fits the data well. Although the data do not distinguish

between theories, the various theories do set a basis for connecting how

carcinogens influence mechanisms of cellular and tissue change, how

those changes affect rates of transition in the stages of tumorigenesis,

and how those rates of progression affect incidence curves.

The third section links different mechanistic hypotheses about car-

cinogen action to predicted shifts in age-incidence patterns. Those links
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between mechanism and incidence provide a way to test hypotheses

about carcinogenic effects on the rate of transition between stages, on

the number of stages affected, and on the particular order of affected

transitions.

By altering both carcinogen treatment and animal genotype, one may

test explicit hypotheses about carcinogenic action. For example, if a car-

cinogen is believed to cause a particular genetic change, then a knock-

out of that genotype should be less affected by the carcinogen when

measured by age-incidence curves. Such tests can manipulate different

components of progression and compare the outcomes to quantitative

theories of incidence.

9.1 Carcinogen Dose-Response

Lung cancer incidence increases with roughly the fourth or fifth power

of the number of years (duration) of cigarette smoking but with only

the first or second power of the number of cigarettes smoked per day

(dosage). The stronger response to duration than dosage occurs in

nearly all studies of carcinogens. Peto (1977) concluded: “The fact that

the exponent of dose rate is so much lower than the exponent of time is

one of the most important observations about the induction of carcino-

mas, and everyone should be familiar with it—and slightly puzzled by

it!”

In this section, I first summarize the background concepts and two

studies of duration and dosage. I then consider five different explana-

tions. The most widely accepted explanation is that cancer progresses

through several stages, causing incidence to rise with a high power of

duration, but that a carcinogen usually affects only one or two of those

stages in progression, causing incidence to rise with only the first or

second power of dosage. However, several alternative explanations also

fit the data, so fitting provides little insight. In a later section, I dis-

cuss ways to formulate comparative tests. Such comparative tests may

help to distinguish between alternative hypotheses and to reveal the

processes by which carcinogens influence progression.

BACKGROUND

In the standard theory, the usual approximation of incidence is I(t) ≈
kuntn−1, where k is a constant, n is the number of rate-limiting transi-
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tions between stages that must be passed before cancer, u is the rate of

transition between stages, and t is age. Suppose a carcinogen increases

the rate of transition between some of the stages to u(1+ bd), where d
is dosage and b scales dose level into an increment in transition rate.

If the carcinogen affects r of the transitions, then I(t) ≈ kun(1 +
bd)r tn−1. Two further changes to this equation provide a more useful

formula for studies of dosage and duration.

First, in examples such as cigarette smoking, the onset of carcinogen

exposure does not begin at birth but at some age t0 at which smoking

starts, so the duration of exposure is t − t0 = τ .

Second, in empirical studies, one cannot directly estimate u, the base-

line transition rate between stages, so the term kun = c enters in anal-

ysis only as a single constant, c. In different formulations, there will

be different combinations of factors that together would be estimated

as a single constant from data. I will use c to denote such constants,

although the particular aggregate of factors subsumed by c may change

from case to case.

With these assumptions, one may begin an analysis of dosage, d, and

duration, τ , with an expression such as

I (τ) ≈ c (1+ bd)r τn−1 (9.1)

or a suitably modified equation to match the particular problem.

If, as often assumed, moderate to large doses significantly increase

transitions, then bd is much larger than one, and the transition rate

becomes u(1+ bd) ≈ ubd. Incidence is then

I (τ) ≈ cdrτn−1 (9.2)

with incidence rising as the rth power of dose, dr and the n−1st power

of duration, τn−1. Here, c = kunbr , representing a single constant that

may be varied or estimated from data.

Sometimes it is useful to study cumulative incidence, the summing

up (integration) of incidence rates over the duration of exposure. This

leads to the simple expression for cumulative incidence

CI (τ) ≈ cdrτn. (9.3)

Here, c differs from above but remains an arbitrary constant to vary or

estimate from data.
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In most empirical studies, incidence rises with a much lower power

of dose than duration, r < n. This fact has led most authors to suggest

that carcinogens typically affect only a subset of the transitions. For

example, if one estimates r = 2 and n = 6, then one could interpret

those results by concluding that the carcinogen affects two of the six

transitions.

Later, I will suggest that this classic formulation of the theory may be

misleading. In particular, the observation that the exponent on dosage

is usually less than the exponent on duration does not necessarily imply

that the carcinogen affects only a small number of transitions. However,

the classic puzzle for the different responses to dosage and duration

arises from the theory outlined here, so I use that theory as my starting

point.

CIGARETTE SMOKING

The classic study of cigarette smoking among British doctors esti-

mated annual lung cancer incidence in the age range 40–79 as I(τ) ≈
c(1+d/6)2τ4.5, where c is a constant, d is dosage measured as cigarettes

per day, and τ = t−t0 is duration of smoking with t as age and t0 = 22.5
as estimated age at which smoking starts (Doll and Peto 1978). If we use

the expression for incidence in Eq. (9.1), then the estimate by Doll and

Peto (1978) corresponds to r = 2 and n = 5.5.

Figure 9.1 shows the dose-response relationship for cigarette smok-

ing, in which Doll and Peto (1978) fit a quadratic response curve. Subse-

quent authors have reiterated that lung cancer incidence increases with

the first or second power of the number of cigarettes smoked per day

(Zeise et al. 1987; Whittemore 1988; Freedman and Navidi 1989; Mool-

gavkar et al. 1989).

CARCINOGEN APPLIED TO LABORATORY RATS

Peto et al. (1991) presented a large dose-response experiment in which

they applied the carcinogenN-nitrosodiethylamine (NDEA) to laboratory

rats. I summarized the details of this experiment and other laboratory

studies in Section 2.5. Here, I repeat the main conclusions.

Peto et al. (1991) measured, for each dosage level, the median duration

of carcinogen exposure required to cause a tumor. Suppose we fit an

empirical relation for the cumulative incidence rate, CI, which is the
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Figure 9.1 Dose-response for cigarette smoking, standardized for age. The
filled circle and error bars mark the mean and 90% confidence interval at various
dosages. The solid line shows the quadratic fit given by Doll and Peto (1978)
with incidence per 105 equal to 9.36(1 + d/6)2. The dashed curve shows my
calculation in which a nearly equivalent fit for incidence per 105 individuals can
be obtained with a higher power of dose, in this case 25(1+ d/46)5. Redrawn
from Figure 1 of Doll and Peto (1978).

total incidence over the duration of exposure (see Background above

and Section 7.5). In empirical studies of dose-response, one typically

observes that CI increases approximately with the rth power of dose

and the nth power of duration, CI(τ) ≈ cdr tn. Then for the fixed level

of cumulative incidence that occurs at the median duration to tumor

development, τ = m, we have CI(m)/c ≈ drmn. Taking the logarithm

of both sides and solving for log(m) yields

log (m) ≈ (1/n) log (k)− (r/n) log (d) , (9.4)

where k = CI(m)/c is a constant estimated from data. This equation

is the expression of the classical Druckrey formula that I presented in

Eq. (2.4).
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Figure 9.2 Esophageal tumor dose-response line. The circles show the ob-
served durations of exposure required to cause one-half of the treatment group
to develop a tumor. Each median duration is matched to the dosage level for the
treatment group of rats. The line shows the excellent fit to the Druckrey formula
in Eq. (9.4) with r = 3, n = 7, k = 0.036, and a slope of −r/n = −1/s = −1/2.33.
Data from Peto et al. (1991).

Figure 9.2 shows that the results of Peto et al. (1991) fit closely to the

Druckrey relation with n = 7 and the slope −r/n approximately −3/7,

leading to an estimate of r = 3. This analysis again shows that incidence

increases with a high power of duration and a relatively low power of

dose.

Zeise et al. (1987) reviewed many other examples of dose-response

relationships. In some cases, increasing dose causes a roughly linear

rise in incidence; in other cases, incidence rises with dr , where d is dose

rate and r > 1, usually near 2; in yet other cases, incidence rises at a

rate lower than linear, with r < 1.

Perhaps only one pattern in dose-response studies recurs: the rise

in incidence with dose is usually lower than the rise in incidence with

duration of exposure, that is, r < n, as emphasized by Peto (1977).

ALTERNATIVE EXPLANATIONS

The observation that incidence rises more slowly with dosage than

with duration plays a key role in the history of carcinogenesis studies

and multistage theories. To give a sense of this history, I briefly list

some alternative explanations. I also comment on how well different

theories fit the observations: although fitting provides a weak mode of
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discrimination, it does provide a good point of departure for figuring

out how to construct informative comparative tests. I delay discussion

of tests until later in this chapter.

CARCINOGENS AFFECT SOME STAGES BUT NOT OTHERS

Suppose, as discussed above, that a carcinogen increases the rate of

transition between stages to u(1 + bd), where d is dosage and b trans-

lates dose level into an increment in transition rate. If, for certain stages

in progression, moderate to large doses significantly increase the tran-

sition rate, then bd is much larger than one, and the transition rate

becomes u(1 + bd) ≈ ubd. For other stages not much affected by the

carcinogen, bd is small, and u(1+ bd) ≈ u.

If a large increase in transition rate occurs for r of the stages, and

the carcinogen has little effect on the other n − r transitions, then as I

showed in Eq. (9.3) above,

CI (τ) ≈ cdrτn,

with the cumulative incidence rate rising as the rth power of dose, dr ,
and the nth power of duration, τn.

This explanation easily fits any case in which incidence increases ex-

ponentially with dosage and duration. However, the mathematics of

curves provides no reason to believe that the number of steps affected

by carcinogens can be inferred by measuring the empirical fit to the

exponent on dosage.

THE MATHEMATICS OF CURVES: CARCINOGENS AFFECT ALL STAGES

Consider the most famous dose-response study: smoking among Brit-

ish doctors. Figure 9.1 shows the fit given by Doll and Peto (1978), in

which the highest exponent of dose is two. From that fit, many authors

have stated that lung cancer depends on the second power of dose, and

thus the carcinogens in cigarette smoke affect only two stages in lung

cancer progression. Against that explanation, the dashed curve in Fig-

ure 9.1 illustrates my calculation that a nearly equivalent fit for incidence

can be obtained with a higher power of dose, in this case proportional

to (1+ d/46)5.

The fact that one can fit a higher power of dose to those lung cancer

data certainly does not mean that the carcinogens in cigarette smoke

affect five stages of carcinogenesis rather than two. It does mean that
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the original fit to the second power of dose provides little evidence with

regard to the number of stages affected.

In general, an expression in a lower power of dosage, d, will often fit

the data about as well as an expression in a higher power of d over a

moderate range of dosage (Zeise et al. 1987; Pierce and Vaeth 2003). In

fitting data, one usually prefers the fit from the lower exponent because

it is regarded as more parsimonious. However, when trying to infer

biological mechanism, moderate distinctions between the goodness-of-

fit of expressions that have various exponents on d do not provide strong

evidence about the number of stages affected by a carcinogen.

In the remainder of this section, I present some examples and tech-

nical issues about dose-response curves for those readers who like to

see the details (see also Pierce and Vaeth 2003). Suppose a carcino-

gen affects all n transitions equally. Then dosage raises incidence by

k(1 + bd)n, where k is an arbitrary constant, and bd is the incremen-

tal increase in transition rate caused by dose d and scaling factor b.

The expression for dosage can be expanded into a series of terms with

increasing powers of d as

k (1+ bd)n = k
n∑
i=0

(
n
i

)
(bd)i .

As bd declines, those terms with smaller exponents on d increasingly

dominate the contribution of dosage, and so it would appear in the data

as if the exponent on dose was small.

The smoking data in Figure 9.1 provide a good example. In those data,

the exponent on duration suggests that n ≈ 6, that dosage varies over a

range of about 0–40 cigarettes per day, and that incidence increases by

a factor of about 50 over the range of dosage studied. Using those data

to provide reasonable ranges for dosage and for the consequences on

incidence, suppose that a carcinogen affects incidence by the expression

k(1 + bd)r , with k = 1, b = 1/43.5, and r = 6. The solid curve in

Figure 9.3 shows the dose-response effect.

In an empirical study, we would attempt to estimate the solid dose-

response curve in Figure 9.3 from the data. The difficulty arises from

the fact that we can get a good fit for r = 2, and that the fit improves

relatively little for higher values of r . The figure shows example curves

for r = 2 and r = 3 that fit very closely to the true curve. By the com-

mon statistical methods, one would usually choose the fit with the lower
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Figure 9.3 Lower power dose-response curves match higher power curves when
dose and response vary over intermediate scales. Here, dosage varies over 1–40
and relative incidence in response to exposure varies over 1–50, matching the
ranges in the smoking data of Figure 9.1. I scaled both axes logarithmically
to analyze how a percentage increase in dose causes a particular percentage
increase in relative incidence. All curves follow k(1 + bd)r . In this theoretical
example, the solid curve shows the true dose-response if the carcinogen affected
r = 6 transitions, with k = 1 and b = 1/43.5. The long-dash curve shows the
close fit to the true curve that can be obtained with r = 2 by choosing parameters
that minimize the total squared deviations between the curves, k = 0.77 and
b = 1/7.7. The short-dash curve shows that only a small improvement in fit can
be obtained using a curve with r = 3, k = 0.88, and b = 1/15.9.

power of r = 2, noting that there is no statistical evidence that higher

exponents fit the data significantly better.

DIMINISHING RISE IN CARCINOGENESIS AS DOSAGE INCREASES

Multistage analyses typically assume that, for each particular transi-

tion rate between stages, the carcinogen either has no effect or causes a

linear rise in transition rate with increasing dose. Authors rarely discuss

reasons for assuming a linear increase in transition rates with dose. A

supporting argument might proceed as follows. Mutation rates often

rise linearly with dose of a mutagen. If carcinogens act directly as mu-

tagens, then carcinogens increase the rates of transition between stages

in a linear way with dose.

Carcinogens may often act by processes other than direct mutage-

nesis. In particular, Cairns (1998) argued that carcinogens act mainly

as mitogens, increasing the rate of cell division. Increased cell division
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does of course increase the accumulation of mutations, but does so dif-

ferently from the mechanisms by which classical mutagens act. For ex-

ample, the potentially mutagenic chemicals in cigarette smoke diffuse

widely throughout the body, yet the carcinogenic effects concentrate

disproportionately in the lungs. To explain this discrepancy in smok-

ers between the distribution of chemical mutagens and the distribution

of tumors, Cairns argued that the carcinogenic effects of smoke arise

mostly from the irritation to the lung epithelia and the associated in-

crease in cell division.

If carcinogens sometimes act primarily by increasing cell division,

then we would need to know how mitogenic effects rise with dose. For

example, doubling the number of cigarettes smoked might not double

the rate at which epithelial stem cells divide to repair tissue damage. I

do not know of data that measure the actual relation between mitoge-

nesis and dose, but, plausibly, mitogenesis might rise with something

like the square root of dose instead of increasing linearly with dose.

A diminishing increase in transition rates with dose would explain the

observation that the exponent on dose is usually less than the exponent

on duration. That observation is often expressed with the Druckrey

equation that fits data from many studies of chemical carcinogenesis

(Figures 2.11, 9.2). The Druckrey equation can be expressed as k =
drmn, where k is a constant, d is the dose level, and m is the median

duration of carcinogen exposure to onset of a particular type of tumor.

Usually, r < n, that is, the exponent on dose is less than the exponent

on duration. Peto (1977) mentioned that, for carcinomas, r/n is often

about 1/2.

Now consider a simple multistage model with n stages and equal tran-

sition rates, u, between stages. Assume a carcinogen has the same effect

on all stages, in which the transition rate is uf(d), where f (d) is a func-

tion of carcinogen dose, d. Then k = [f (d)]nmn, because the carcinogen

has the same multiplicative effect on all n stages.

Suppose that the rise in transition rates diminishes with dose, for

example, f (d) = da, with a < 1. Then the basic multistage model with

all n transitions affected by a carcinogen leads to k = danmn. If a = r/n,

then we have the standard Druckrey relation, k = drmn, which closely

fits observations from many different experiments with a = r/n ≈ 1/2.

Alternatively, we could use the more plausible expression uf(d) =
u(1+ bda), which leads to the multistage prediction k = (1+ bda)nmn.
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This expression is, on a log-log scale, log(m) = k′−log(1+bda), and may

often fit the data well. For example, in the large carcinogen study shown

in Figure 9.2, if we use Peto’s (1977) suggested value of a = r/n = 1/2,

with fitted values for two parameters of k′ = 1.01 and b = 16, we obtain

a line that is almost exactly equivalent to the fit of the Druckrey formula

shown in the figure.

The match of this diminishing effect theory to the observed relation

in Figure 9.2 shows that the data fit equally well to a model in which the

carcinogen affects only r < n of the stages in progression or a model

in which the effects of carcinogen dose rise at a diminishing rate with

increasing dose.

Diminishing effects of carcinogens with dose readily explain the ob-

servation that r < n. At present, little information exists about how

widespread such diminishing effects may be. Carcinogenic acceleration

of mitogenesis provides a plausible mechanism by which diminishing

effects may arise, but additional mechanisms probably occur.

HETEROGENEITY

Individuals vary in their susceptibility to carcinogens. Heterogene-

ity in susceptibility arises from both genetic and environmental factors.

Lutz (1999) suggested that heterogeneity may tend to linearize the dose-

response curve, that is, to reduce the exponent on dosage in such curves.

Lutz based his argument on a graph that illustrated how the aggregate

dose-response curve may form when summed over individuals with dif-

ferent susceptibilities. To evaluate this idea, I describe a few specific

quantitative models. These models suggest that heterogeneity can in-

fluence the dose-response curves, but heterogeneity does not provide a

convincing explanation for the widely observed low exponent on dose.

Consider the following rough calculation to illustrate the effect of

heterogeneity on the dose-response curve. Suppose a carcinogen affects

the relative risk of cancer, S. Let S depend on bd, where d is the dose,

and b is a factor that scales the effect of dose on relative risk.

Heterogeneity in individual susceptibility enters the analysis through

individual variability in b, the scaling factor that translates dose into an

increment in transition rate between stages of progression. We need the

value of S averaged over the different individual susceptibilities in the

population. Let the probability distribution for the values of b among

individuals be f (b). The value of S for each level of susceptibility, b,
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Figure 9.4 Distribution of individual susceptibility to carcinogens. For each
individual, the consequence of carcinogen dose d scales with bd, where b is
the individual’s susceptibility to the carcinogen. This example uses the beta
distribution to describe variation in individual susceptibility. The susceptibility
values, b, range from 0 to a maximum of B. Two parameters, α and β, control
the shape of the beta distribution. Here, I assumeα = β, so that all distributions
have a symmetrical shape with mean B/2. The solid curve shows α = β = 1;
the long-dash curve shows α = β = 2, and the short-dash curve shows α = β =
10,000.

must be weighted by the various probabilities of different values of b.

The average value of S over the different values of b is

S∗ =
∫
Sf (b)db, (9.5)

in which the distribution f (b) describes the level of heterogeneity, and

S is a function of b.

The slope of the dose-response curve on a log-log scale provides the

empirical estimate for r , the exponent on dosage. The observed dose-

response curve is S∗, so the log-log slope is

r = d log (S∗)
d log (d)

= dS∗

dd
d
S∗
. (9.6)

How does heterogeneity in individual susceptibility affect the shape

of the dose-response curve? To study particular examples, we first need

assumptions about the form of heterogeneity described by the distribu-

tion f (b). Figure 9.4 shows three probability curves for heterogeneity,

ranging from wide variation (solid line) to essentially no heterogeneity

(tall, short-dashed curve).

Next, we need to assume particular shapes for the dose-response

curve for a fixed level of susceptibility, that is, a fixed value of b. Fig-

ure 9.5 shows various examples. In the left panel, all the curves have
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Figure 9.5 Relative risk, S, in response to dose, d. The plots show dose varying
from 0 to 40, to illustrate roughly the range of dosage in number of cigarettes
per day. However, the consequences of dose always depend only on bd, where
b scales the dose into the actual effect. So the absolute dosage level does not
matter, but the size of the interval does. (a) In this function, risk saturates
to a maximum level, Sm = 100, at high dose for bd > 1, with S = 1 + (Sm −
1)(bd)n(n + 1 − nbd) for bd < 1. For all curves, n = 6. The curves, from
left to right, show values of b = 0.1,0.05,0.04,0.03,0.025. (b) In this function,
S = (1+ bd)n, with all parameters as in panel (a).

a saturating response to high dose, above which relative risk no longer

increases. In the right panel, risk continues to accelerate with increasing

dose.

Figure 9.6 illustrates how heterogeneity affects the aggregate dose-

response pattern in the population. In panel (a), the short-dash curve

shows the dose-response pattern when there is essentially no hetero-

geneity. Increasing heterogeneity alters the shape of the dose-response

curve, illustrated by the long-dash and solid curves of panel (a).

Figure 9.6b shows the log-log slopes of the aggregate dose-response

curves, obtained by calculating the slopes of the curves in the panel

above. These slopes provide the standard estimates for r , the exponent

on dose in the dose-response relationship.

Figure 9.7 shows the same calculations, but for a base response curve

that does not saturate at higher doses. In this case, heterogeneity always

increases the slope of the dose-response curve.

The consequences of heterogeneity follow general rules. When the

base curve rises at an increasing rate, then heterogeneity causes an in-

crease in value because, at each point, the average of higher and lower

doses is greater than the value at that point. By contrast, when the base

curve rises at a decreasing rate, then heterogeneity causes a decrease in
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Figure 9.6 Consequences of heterogeneity in individual susceptibility on car-
cinogen dose-response curves. All curves derive from the response function
shown in Figure 9.5a: in panels (a) and (b), the average value of susceptibility
is b = 0.05; in panels (c) and (d), the average is b = 0.025. Panels (a) and (c)
show the dose-response curves when averaged over heterogeneity in suscepti-
bility, calculated from Eq. (9.5). The three curves in each panel correspond to
the three distributions of susceptibility, b, in Figure 9.4. Panels (b) and (d) show
the corresponding log-log slopes of the dose-response curves, calculated from
Eq. (9.6).

value because, at each point, the average of higher and lower doses is

less than the value at that point.

In summary, large increases in heterogeneity usually cause minor

changes in the dose-response patterns. Those changes alter the details

of the dose-response relationship in interesting ways, but probably do

not explain the different effects of dosage and duration on incidence.

CLONAL EXPANSION

Precancerous stages in progression may proliferate by clonal expan-

sion. The expanding clone of cells carries somatic mutations or other

heritable changes. I described the theory of clonal expansion in Sec-

tion 6.5.

Clonal expansion could explain the different observed exponents on

dosage and duration. Suppose, for example, that cancer requires only
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Figure 9.7 Consequences of heterogeneity in individual susceptibility on car-
cinogen dose-response curves. All curves derive from the response function
shown in Figure 9.5b. Other assumptions match those described in Figure 9.6.

two rate-limiting transitions. The first transition causes the affected cell

to expand clonally. As the number of cells in the clone increases, the

rate of transition to the second stage rises because of the greater num-

ber of target cells available. In a carcinogen exposure study, incidence

would rise with an increasing exponent on duration because the target

population of cells for the final transforming step would increase with

time.

A two-stage model could fit a variety of exponents for duration of

smoking (Gaffney and Altshuler 1988; Moolgavkar et al. 1989), including

the exponent of n− 1 ≈ 4.5 reported by Doll and Peto (1978). The two-

stage model could also fit the observed exponent on dosage of about

two, because in a two-stage model the carcinogenic effects of smoking

may influence two independent transformations.

Although the two-stage model cannot be ruled out, we do not know

the exact nature of cancer progression and the rate-limiting steps that

determine progression dynamics. I tend to favor other models for four

reasons.
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First, the ability of two-stage models to fit the data provides rela-

tively little insight: with enough parameters and a mathematically flex-

ible formulation, a model can be molded to a wide variety of data. Sec-

ond, qualitative genetic evidence points to several rate-limiting steps in

most adult-onset cancers (Chapter 3), although those data are not con-

clusive. Third, to explain the high observed exponents on age or dura-

tion, one must typically assume that clonal expansion is slow and steady

over many years; bursts of clonal expansion over shorter periods do not

match the observations so easily. Fourth, clonal expansion is more dif-

ficult to test experimentally than models that emphasize simple genetic

or epigenetic changes to cells, because genomic changes can be manip-

ulated and compared between treatments more easily than properties

of clonal expansion.

The two-stage model may be limited and difficult to test. However,

aspects of clonal expansion in multistage progression may play an im-

portant role in the patterns of incidence (Luebeck and Moolgavkar 2002).

To move ahead, this idea requires useful comparative hypotheses that

predict different outcomes based on measurable differences in the dy-

namics of clonal expansion.

SUMMARY

Several theories fit the observed relatively low exponent on dosage

and high exponent on duration. But a close fit by itself provides little

evidence to distinguish one theory from another. Rather, one should

use the alternative theories and fits to the data as a first step toward

developing biologically plausible hypotheses and their quantitative con-

sequences. Once those theories are understood, one can then try to

formulate comparative tests that discriminate between the alternatives.

I turn to potential comparative tests after I discuss a related topic in

chemical carcinogenesis.

9.2 Cessation of Carcinogen Exposure

Lung cancer incidence of continuing smokers increases with approx-

imately the fourth or fifth power of the duration of smoking (Doll and

Peto 1978). By contrast, incidence among those who quit remains rela-

tively flat after the age of cessation (Doll 1971; Peto 1977; Halpern et al.

1993).
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In 1977, Richard Peto (1977) stated that the approximately constant

incidence rate after smoking ceases “is one of the strongest, and hence

most useful, observational restrictions on the formulation of multistage

models for lung cancer.” Peto argued that, in any model, the observed

constancy in incidence after smoking has stopped “suggests that smok-

ing cannot possibly be acting on the final stage” of cancer progression.

There could, for example, be a particular gene or pathway that acts

as a final barrier in progression and resists the carcinogenic effects of

cigarette smoke.

In 2001, Julian Peto (2001) reiterated Richard’s argument: “The rapid

increase in the lung cancer incidence rate among continuing smokers

ceases when they stop smoking, the rate remaining roughly constant

for many years in ex-smokers (Halpern et al. 1993). The fact that the

rate does not fall abruptly when smoking stops indicates that the mys-

terious final event that triggers the clonal expansion of a fully malignant

bronchial cell is unaffected by smoking, suggesting a mechanism involv-

ing signaling rather than mutagenesis.”

In this section, I discuss which stages of progression may be affected

by the carcinogens in cigarette smoke. I begin by summarizing observa-

tions on how cancer incidence changes after the cessation of carcinogen

exposure. I then consider two alternative explanations. First, the car-

cinogen may affect only a subset of stages in cancer progression; the

particular stages affected determine how patterns of incidence change

after cessation. Second, the carcinogen may affect all stages of pro-

gression; the different precancerous stages at which individuals cease

exposure determine how patterns of incidence change after cessation.

Both models fit the data reasonably well.

As we have seen often, fitting by itself does not strongly distinguish

between competing hypotheses. I therefore introduce some compara-

tive approaches that may provide a better way to test alternatives.

OBSERVATIONS

Figure 9.8a shows the flattening of the incidence curve upon cessation

of smoking from data collected in the Cancer Prevention Study II of the

American Cancer Society (Stellman et al. 1988). This figure summarizes

data for 117,455 men who never smoked, 91,994 current smokers, and

136,072 former smokers. The top curve represents lifetime smokers
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Figure 9.8 Reduction in relative risk of lung cancer between men who contin-
ued to smoke and those who quit at different ages. (a) Summary of data from
Figure 1 of Halpern et al. (1993). The top curve shows those who continued
to smoke. The lower curves show those who quit at different ages, the age of
quitting marked by the intersection of a lower curve with the top curve. The
bottom curve describes those who never smoked. Sample sizes given in the
text. (b) Model fit to the data in which smoke carcinogens affect equally all
stages in progression. The subsection All Stages Affected describes the details
of the model.

who never quit. The four curves below it represent individuals who quit

at different ages; the age at which smoking ceased coincides with the

intersection of each curve with the top curve for lifetime smoking. The

bottom curve shows incidence among those who never smoked.

Figure 9.9a presents data from a cessation of smoking study in the UK

(Peto et al. 2000). That study analyzed cumulative risk rather than inci-

dence rate. Cumulative risk measures the lifetime probability of death

from lung cancer at each age if no other causes of death were to occur.

A flat incidence rate translates into a linear increase in cumulative risk

with age. The plot shows that cessation of smoking reduces the upslope

in cumulative risk, somewhere between linear (flat incidence) and the ac-

celerating curve for those who continue to smoke. Thus, the pattern in

Figure 9.9a matches the pattern in Figure 9.8a: an initial flattening of the

incidence rate after cessation of smoking followed by a relatively slow

rise later in life.

Other studies report data on cessation of carcinogen exposure (re-

viewed by Day and Brown 1980; Freedman and Navidi 1989; Pierce and

Vaeth 2003). I focus only on the smoking data, because those studies

have the largest samples and have been discussed most extensively. I

emphasize how to develop and test hypotheses rather than argue for
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Figure 9.9 Reduction in relative risk of lung cancer between men who contin-
ued to smoke and those who quit at different ages. (a) Redrawn from Figure 3 of
Peto et al. (2000). Samples for this case-control design include 1465 case-control
pairs in a 1950 study combined with 982 cases plus 3185 controls in a 1990
study. (b) Model fit to the data in which smoke carcinogens affect equally all
stages in progression. The subsection All Stages Affected describes the details
of the model.

a comprehensive explanation to cover all of the available data. In my

opinion, the existing studies do not provide enough evidence to decide

between competing hypotheses. Instead, the smoking data define the

challenge for future studies.

ALTERNATIVE EXPLANATIONS

All theories must account for two observations. First, the relative risk

of lung cancer decreases in those who quit compared with those who

continue to smoke (Figures 9.8 and 9.9). Second, the rise in incidence

with smoking fits an increase in incidence with roughly the second power

of number of cigarettes smoked per day (dose).
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I discuss two alternative formulations. First, most prior explanations

fit the observations by positing that carcinogens in smoke affect only one

or two stages in progression, leaving the other stages mostly unaffected.

Second, I show that the standard multistage model of progression

also fits the observations very well. Previous authors rejected that stan-

dard model because they used the common approximation for incidence

given by Armitage and Doll (1954), which in fact does not apply well to

the problem of carcinogen exposure followed by cessation.

CARCINOGENS AFFECT SOME STAGES BUT NOT OTHERS

This idea was stated most clearly and perhaps originally by Armitage

in the published discussion following Doll (1971). I quote from Armitage

at length, because his words set the line of thinking that has dominated

the subject. Note that, at the time, the dose-response curve was thought

to be linear. Later work suggested that the response may in fact fit a

curve that rises with the square of dose (Doll and Peto 1978). Here is

what Armitage said:

The dose-response relationship seems to be linear, which suggests
that the carcinogen affects the rate of occurrence of critical events
at one stage, and one only, in the induction period. (If it affected
two stages, one might have expected a quadratic relationship, and
so on.) Does this crucial event happen early or late in the induction
period? For example, in a six-stage process, are we thinking of an
early stage, the first or second, or a late stage, the fifth or sixth?

The evidence here seems to conflict. One argument would sug-
gest that a very early stage is involved. I am thinking of the de-
lay of a generation or so between the increase in smoking in men
around the First World War, and the rise in lung cancer mortality
rates which was so marked 20 or 30 years later; and similarly the
increase in cigarette smoking among women about the time of the
Second World War, and the rise in lung cancer rates for females
which has become so noticeable in the last few years. This long
delay is what one would expect if a very early part of the process
were involved rather than a very recent one.

On the other hand, the halt in the rise in risk quite soon after
smoking stops suggests that a late stage is involved. Professor
Doll’s very ingenious treatment of the data on ex-smokers, in Tables
13 and 14, confirms the latter view. In a multi-stage process, if the
first stage were involved, the rate after stopping smoking would
continue to rise in the same way as for continuing smokers. If,
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on the other hand, the last stage were affected, one would expect
the rate to drop immediately to the rate for nonsmokers. What
seems to happen is a stabilization at the current rate until it is
caught up by the rate for nonsmokers. That is precisely what one
would expect if the next to last stage in a multi-stage process were
affected.

I should be interested to know whether Professor Doll has con-
sidered this anomaly and can resolve it. Is it, for example, conceiv-
able that two stages in a multi-stage process are affected . . .?

Exactly how does incidence change when a carcinogen affects only one

of n stages? Whittemore (1977) and Day and Brown (1980) presented ap-

proximate theoretical analyses. However, those approximations can be

rather far off from the actual theoretical values. I prefer exact calcula-

tions as shown in the example of Figure 9.10. I describe in detail the

results in Figure 9.10, because this particular model played an impor-

tant role in the history of carcinogen studies. The model also provides

general insight into multistage progression.

In Figure 9.10a,b, I used a basic n stage model in which a carcinogen

increases the rate of the ith transition between stage i and stage i + 1.

For example, if i = 0, then the carcinogen affects only the first transition

between the baseline stage 0 and the first precancerous stage 1; if i = n−
2, then the carcinogen affects only the penultimate transition between

stage n− 2 and stage n− 1. The model in Figure 9.10 has n = 6 stages.

The legend shows the line types that describe the outcome when the

carcinogen affects the ith transition.

In Figure 9.10a,b, the carcinogen is applied only between age 0 and age

60, after which carcinogen application ceases. If the carcinogen affects

one of the first three transitions, shown in Figure 9.10a, then incidence

follows closely the curve that would result if the carcinogen was applied

throughout life, from age 0 to age 80. With acceleration of an early stage,

cessation has little effect on incidence because anyone who ultimately

progresses to cancer has already passed the early stages by age 60.

Figure 9.10b shows the strong effect that cessation has on incidence

when a carcinogen is applied from age 0 to age 60 and influences a later

stage in progression. If the carcinogen affects the last transition, i = 5,

then during carcinogen application, anyone who progresses to the fifth

stage is almost immediately transformed into the final cancerous stage.

Thus, the curve for i = 5 up to age 60 shows the incidence pattern for
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a five-stage model: the six stages of progression minus one stage that

is not rate limiting in the presence of the carcinogen. After cessation,

progression follows the full six rate-limiting stages, and so incidence

instantly drops to the rate for a six-stage model.

If the carcinogen affects only the penultimate transition, i = 4, then

during carcinogen application, individuals move very rapidly from stage

4 to stage 5, where they await the final transforming event at the nor-

mal, background rate. By essentially skipping a stage during carcinogen

application, the incidence follows a five-stage model. After cessation,

almost all new cancers arise from the pool of individuals in stage 5 who

await the final transition. When transformation occurs by a single ran-

dom event, the incidence rate remains flat over time. The final event is

as likely to happen this year as next year or a later year. If the carcino-

gen affected only the third transition, i = 3, then after cessation most

cancers would arise in the pool of individuals that require two further

steps, causing incidence to increase only slowly with time as in a model

with only two stages.

In Figure 9.10c,d, the carcinogen is applied only between age 25 and

age 80. The carcinogen has relatively little effect when it increases the

earliest transition, i = 0, because that transition has already occurred

by age 25 in many of the individuals who ultimately progress to cancer.

For the next transition, i = 1, fewer would have passed that step by age

25, and so more will be affected by the carcinogen. For the later steps,

almost no one would have passed those steps by age 25, and so the

carcinogen increases incidence equally for all of the later transitions.

In Figure 9.10e,f, the carcinogen is applied only between age 25 and

age 60, after which carcinogen application ceases. This case matches the

problem of cessation smoking, with onset of smoking in the first third of

life and cessation in the last third of life. The patterns can be understood

from the previous cases. If smoking affects only an early stage, then the

earlier the stage, the less the effect, because the earliest stages are more

likely to have been passed already before the onset of smoking and the

acceleration of that stage. If smoking affects only a later transition, i,
then after cessation, the pool of individuals most susceptible has n − i
steps remaining; if smoking affects the final transition, no excess pool

of susceptibles exists, and incidence reverts to the background rate.

The first theoretical studies of smoking cessation considered models

in which smoking affected only one stage (Whittemore 1977; Day and
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Figure 9.10 Theoretical incidence curves in response to carcinogen application
followed by cessation. The carcinogen affects only a single transition in a model
with n = 6 steps. The legend shows the curve type for each of the i = 0, . . . ,5
transitions, in which the carcinogen affects only the ith transition. (a and b)
Carcinogen applied from age 0 to age 60. (c and d) Carcinogen applied from age
25 to age 80. (e and f) Carcinogen applied from age 25 to age 60. I calculated
the curves by numerical evaluation of the complete progression dynamics as
described in earlier chapters. I used the following assumptions: the number of
lineages per individual, L = 108; the transition rate for steps not affected by the
carcinogen, u = 7.24×10−4; and the transition rate for the single step affected
by the carcinogen during those ages of exposure, u(1+ d), where d = 70.

Brown 1980). The analyses I just presented improve the accuracy of

such models over previous studies, but the main points hold from ear-

lier work. After that early work, two observations affected subsequent

analyses of smoking cessation. First, none of the curves in Figure 9.10
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fit closely to data such as in Figure 9.8. Second, later studies of dose-

response favored a quadratic fit to the data, leading many to suppose

that smoking affects two stages in progression.

One can see from Figure 9.10e,f that a combination of the earliest

transition, i = 0, and the penultimate transition, i = n− 2 = 4, provides

the shapes needed to fit the data in Figure 9.8, and with two transitions

affected, the overall incidence would be higher. Various authors fit the

data in this way, sometimes weighting the role of those two stages dif-

ferently (Day and Brown 1980; Brown and Chu 1987; Whittemore 1988).

Those fitted models based on two affected stages match the data rea-

sonably well for both dose-response and incidence. In particular, one

can easily explain the flattening of the incidence curves upon cessation

by the penultimate transition and the later rise in incidence several years

after cessation by the earliest transition.

The data and matching models tell a pleasing empirical and logical

story. However, other plausible models also fit nicely to the data. The

next section provides an example.

ALL STAGES AFFECTED

Armitage’s quote shows that the linear or perhaps quadratic dose-

response curve motivated the initial models in which smoke carcino-

gens affect only one or two stages of progression. Those assumptions

about number of stages affected may over-interpret the data: one cannot

draw firm biological conclusions about a molecular mechanism from a

fitted exponent of a dose-response curve. In addition, the mathematical

analyses of progression have in the past typically used approximations;

those approximations do not capture key aspects of incidence curves

and dose-response curves.

I decided to analyze how well the standard model of multistage pro-

gression fits the data, in which the carcinogens affect equally all n stages.

I first fit the data in Figure 9.8a, giving the fitted curves shown in Fig-

ure 9.8b. To obtain those fitted curves, I began with the basic multistage

model described earlier in the theory chapters. I took the following pa-

rameters as given based on previous studies or on common assump-

tions: the number of stages, n = 6; the number of independent cell

lineages at risk, L = 108; the age at which smoking starts, 25 years; and

the maximum age of the analysis, 80 years. Those parameters were not

fit to the data but instead derived from extrinsic considerations.
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I then used the following crude procedure to fit the model to the

data. I set the cumulative lifetime risk of lung cancer for nonsmokers

to 0.005 to match the lowest curve in Figure 9.8, which shows data for

nonsmokers. I then fit the transition rate between stages per year, u,

needed to match that nonsmoker incidence curve, resulting in the esti-

mate u = 7.24× 10−4. Given this value for the baseline transition rate,

I next assumed that during exposure to smoke carcinogens, all transi-

tions between stages rise to u(1 + bd), where d is dose, and bd is the

increase in the transition rate caused by carcinogens. The value of b
sets a proportionality constant for the effect of a given dose; without

loss of generality, I used b = 1, because all calculations depend only on

the product bd and not on the separate values of the two parameters.

I estimated the value of d = 1.187 to match the top curve, in order

to obtain a lifetime cumulative risk for continuing smokers of 0.158.

Finally, I assumed that, upon cessation of smoking, carcinogenic effects

decay with a half-life of 5 years; this assumption prevents an unrealistic

instantaneous decline in incidence immediately upon cessation.

This fitting procedure required estimation of only two parameters, u
and d. The other values came from prior studies or common assump-

tions. The fit shown in Figure 9.8b provides a reasonable qualitative

match to the observed patterns in Figure 9.8a; some deviation occurs

at age 80—a few observations at this point cause some of the incidence

curves to rise late in life. Better fit could be obtained by optimizing

the fit procedure and by using additional parameters. But my point is

simply that the basic multistage model gives a nice match to the data

without the need for any special adjustment or refined fitting.

Originally, Armitage, Peto, and others rejected a model in which car-

cinogens affect all stages because the estimated exponent of the dose-

response curve is between one and two. Does the model I used, with all

stages affected, also match that observed dose-response relation?

To test the model fit to the observed dose-response curve, I focused on

the estimated value of d, which in the standard models is proportional

to dose. At the maximum age measured, in this case 80 years, I varied

the cumulative lifetime risk for continuing smokers between the value

for nonsmokers, 0.005, and the approximate observed value for lifetime

smokers of 0.158. For each cumulative risk value (the response), I fit the

d value (the dose) needed to match the cumulative risk. I then calculated

the log-log slope of the dose-response curve, which turned out to be
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1.84. Thus, the model provides a good match to the observed exponent

on the dose-response relation. The earlier section, The Mathematics of

Curves, and Figure 9.3 explain why a model with n = 6 steps can give an

approximately quadratic dose-response curve.

I repeated the same fitting procedure for the data in Figure 9.9a. In

those data, the maximum observed age is 75; otherwise, I used the same

background assumptions as in the previous case. The shift in maximum

observed age altered the two fitted parameters: u = 7.72 × 10−4 and

d = 1.225. The model provides a close fit to the data (Figure 9.9b). The

log-log slope of the dose-response curve is 1.84, as in the previous case.

In summary, a model with all stages affected fits the data reason-

ably well. The data do not provide any easy way to distinguish between

this model, with all stages affected, and the earlier models in which the

carcinogens affect only one or two stages. Perhaps the most striking

difference arises in the carcinogenic increase in transition rate that one

must assume: when the carcinogen affects all stages, the increase, d, is

about 1.2, or 120 percent. This small increase in transition would be

consistent with a moderate and continuous increase in cell division: the

mitogenic effect perhaps caused by irritation. By contrast, when the car-

cinogen affects only one stage, the required increase in transition rate, d,

may be around 70, and for two stages, d is probably around 8–10. Those

large increases in transition seem too high for a purely mitogenic effect,

and would therefore point to a significant role of direct mutagenesis in

increasing progression.

Fitting models cannot decide between mitogenic and mutagenic hy-

potheses. In the next section, I discuss how to use the quantitative mod-

els as tools to formulate testable hypotheses.

9.3 Mechanistic Hypotheses and Comparative Tests

Two observations set the puzzle. First, cancer incidence rises more

rapidly with duration of exposure than with dosage. In terms of lung

cancer, incidence rises more rapidly with number of years of smoking

than with number of cigarettes smoked per year. Second, lung cancer

incidence remains approximately constant after cessation of smoking

but rises in continuing smokers.
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Traditional explanations suggest that carcinogens affect only a subset

of stages in progression. Such specificity in carcinogenic effects would

often lead to incidence patterns that fit the observations.

I discussed in the previous section how an alternative model in which

carcinogens affect all stages also fits the observations. The fact that the

observations can be fit by a model in which all stages are affected does

not argue against the traditional explanation in which only a few stages

are affected. Rather, the proper inference is that we need to be cautious

about drawing firm conclusions about mechanism solely from models

fit to age-incidence curves.

Further progress requires testing alternative hypotheses about the

link between, on the one hand, how carcinogens affect the mechanisms

of progression dynamics and, on the other hand, how perturbations of

progression dynamics cause shifts in the age-onset curves. I focus on

shifts in age-onset curves because carcinogenic perturbations are impor-

tant only to the extent that they cause changes in incidence patterns.

In this section, I present alternative mechanistic hypotheses about

how carcinogenic perturbation affects progression dynamics. I also con-

sider the sorts of comparative tests that could distinguish between al-

ternative mechanistic hypotheses.

BACKGROUND

Tumors arise when cell lineages evolve ways around the normal limits

on tissue growth. Because tumors develop through evolutionary pro-

cesses, we can classify the mechanisms of carcinogen action by the par-

ticular evolutionary processes that they affect.

Variation and selection comprise the most important evolutionary

processes. For variation, I consider carcinogenic effects that act directly

by mutagenesis, defined broadly to include karyotypic and epigenetic

change. The different types of heritable change cause different spectra

of variation and act at different rates. For selection, I divide mecha-

nisms into three classes: mitogens directly increase cellular birth rate,

anti-apoptotic agents directly reduce cellular death rate, and selective

environment agents favor cell lineages predisposed to develop tumors.

Those selective mechanisms may indirectly increase variation. For ex-

ample, mitogens often increase mutation by raising the rates of DNA

replication.
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I do not use the common classification that divides the effects of car-

cinogens into initiation, promotion, and progression. That classification

primarily arises from the tendency of certain agents, at certain doses,

to have stronger effects when applied before or after other agents. Such

patterns certainly exist and must, to some extent, be correlated with

mechanism of action. Indeed, initiators do sometimes act as direct mu-

tagens that cause particular mutations early in tumor formation, and

promoters do often act as mitogens. But there are many exceptions with

regard to the consistency of the patterns, and the connections to mech-

anism often remain vague and somewhat speculative (Iversen 1995).

My focus on variation and selection does not set a mutually exclu-

sive alternative against the classical initiation-promotion-progression

scheme. Instead, my emphasis on variation and selection simply puts

the processes of tumor evolution ahead of the sometimes debatable pat-

terns for the ordering of consequences under certain experimental con-

ditions.

I place carcinogenic mechanism in the context of multistage progres-

sion, measured by shifts in age-onset curves. I therefore emphasize how

certain mechanisms affect rate processes and the time course of tumor

formation. For example: How does a carcinogenic agent affect the rate

of transition between particular stages? How many stages does an agent

affect? Does a particular agent have an effect only on tissues that have

already progressed to a certain stage? Put concisely, the issues concern

changes in rate, number of stages affected, and order of effects.

MUTAGENS: INCREASE HERITABLE VARIATION

I begin with background observations from the mouse skin model

of chemical carcinogenesis (Slaga et al. 1996). I then interpret those

observations in terms of hypotheses about rate, number, and order.

BACKGROUND

The first step in skin tumor development often appears to be a muta-

tion to H-ras that causes an amino acid substitution at codon positions

12, 13, or 61 in the phosphate binding domain of the protein (Brown

et al. 1990). Those substitutions can abrogate negative regulation of the

Ras signal that stimulates cell division (Barbacid 1987).

Different carcinogens induce different spectra of mutation to H-ras

isolated from papillomas or carcinomas of mouse skin. Table 9.1 shows
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Table 9.1 Carcinogen-induced H-ras substitutions in mouse skin papillomas

Carcinogen∗ Substitution (codon) Frequency in papillomas

MNNG G35 → A (12) 11/15
MNU G35 → A (12) 5/12
DMBA A182 → T (61) 45/48
MCA G182 → T (61) 4/20
MCA G38 → T (13) 4/20

∗ Abbreviations: MNNG,N-methyl-N′-nitro-N-nitrosoguanidine; MNU, meth-
ylnitrosourea; DMBA, 7,12-dimethylbenz[a]anthracene; MCA, 3-methylcholan-
threne. Initial carcinogen treatment followed by repeated application of TPA,
12-O-tetradecanoyl-13-acetylphorbol. Data from Brown et al. (1990).

the most frequent DNA base substitutions in response to four different

carcinogens, measured in papillomas that did not progress to carcino-

mas. In this case, the carcinogens were applied in one dose at the start

of treatment (an initiator), and most likely acted as direct mutagens.

The initial treatment with one of the mutagens listed in Table 9.1 was

followed by repeated application of a mitogen, TPA.

The observed substitution spectrum in response to an initial carcino-

gen probably results from two processes. First, the initial carcinogen

treatment causes a particular spectrum of genetic changes. That pri-

mary spectrum depends on the biochemical action of the carcinogen

with respect to DNA damage and repair. Second, among the variation

caused by those initial changes, only certain mutations become ampli-

fied to form papillomas. In this case, selection amplified those cells that

carry changes to the Ras protein and abrogation of negative regulation

of mitogenic signals.

I summarized results on H-ras mutation (Table 9.1) to emphasize that

different carcinogens often cause different spectra of heritable varia-

tion. Several other studies report carcinogen-specific spectra of herita-

ble change to DNA sequence, epigenetic marks, or karyotypic alterations

(reviewed by Lawley 1994; Turker 2003).

Mutation of H-ras appears to be a common early step of skin car-

cinogenesis in both mice and humans (Brown et al. 1995). Two alterna-

tive hypotheses could explain why H-ras mutations arise early in exper-

imental studies of chemical carcinogenesis in mice. First, the particular

carcinogens may produce a mutational spectrum that favors H-ras vari-

ation and selection. Second, amplification of H-ras mutation may be a
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favored early step in skin carcinogenesis, so that early change in H-ras is

not strongly dependent on the particular spectrum of heritable change

caused by a direct mutagen.

How do chemical carcinogens affect different stages of progression?

The stage at which p53 mutations occur in skin carcinogenesis and the

spectrum of mutations to that gene provide some clues (Brown et al.

1995; Frame et al. 1998). Burns et al. (1991) observed no p53 mutations

in benign papillomas, an early stage in carcinogenesis, whereas they

found that 25% of later stage carcinomas had p53 mutations. It may be

that early p53 mutations are actually selected against in skin carcino-

genesis. In three different studies that applied an initial mutagen to

mouse skin, heterozygote p53+/− mice had fewer papillomas than did

wild-type p53+/+ mice (Kemp et al. 1993; Greenhalgh et al. 1996; Jiang

et al. 1999). Another study showed that p53+/− mice had a three-fold

increase in progression of papillomas to carcinomas, demonstrating a

causal role of p53 mutation in later stages of carcinogenesis (Brown et al.

1995).

In three different chemical carcinogen treatments of mouse skin, the

particular spectrum of p53 mutations depended on the treatment. When

an initial mutagen, DMBA, was followed by the mitogen, TPA, most p53

changes were loss of function mutations, including frameshifts, dele-

tions, and the introduction of stop codons. Repeated application of

DMBA led to five carcinomas with one deletion and four transversion

mutations in p53. Repeated application of the mutagen MNNG led to

four carcinomas with G → A transitions in p53 (Brown et al. 1995).

HYPOTHESES AND TESTS

I describe a series of hypotheses and tests to show how one might

in principle connect particular mechanisms of carcinogen action to con-

sequences for multistage carcinogenesis. Some of the tests may not be

experimentally well posed or practical to do, but they should help to

stimulate thought about how to develop new, more practical tests that

provide information about mechanism.

Measuring a rate of transition directly is difficult, so I focus on the

number of transitions and the order of effects.

Hypothesis for number of steps affected by a carcinogen.—A treatment

affects only a subset of rate-limiting steps.
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Test.—Apply a mutagen continuously. If all steps are affected equal-

ly, then untreated and treated animals should have approximately the

same slope of the incidence curve (log-log acceleration, LLA), because

they have the same number of rate-limiting steps. The treated animals

should, however, have a higher intercept for their age-incidence curve,

because their transitions happen at a faster rate. If some transitions are

more sensitive than others, then the LLA of the incidence curve should

decrease with increasing dose because, as dose rises, an increasing num-

ber of steps should change from rate limiting to not rate limiting. The

fewer the number of rate-limiting steps, the lower the LLA.

Hypothesis for mechanism of initial carcinogen treatment.—The primary

effect is mutation of the first rate-limiting step in multistage progres-

sion.

Test.—Compare age-onset curves in mice with wild-type H-ras and H-

ras mutated in one of the carcinogenic codons, each mouse genotype

either treated or not treated with a single dose of an initial carcino-

gen. To get enough tumors for comparison, the mice could have a

cancer-predisposing genotypic background with changes distinct from

the functional consequences of H-ras mutation. If the initial carcinogen

treatment only has a tumorigenic effect through mutation of H-ras as the

first rate-limiting step, then the untreated, wild-type mice would have to

pass one more step than either of the other three treatments: mutated

H-ras with or without initial carcinogen treatment and wild-type H-ras

treated with an initial carcinogen. An additional rate-limiting step to

pass should cause the slope of the incidence curve (LLA) to be one unit

higher than in treatments that rapidly pass that step.

Hypothesis for order of stages affected.—Certain carcinogens affect only

a particular transition in an ordered series of stages of progression.

Test.—Suppose carcinogenA is thought to affect primarily an early stage,

such as H-ras mutation in skin tumors, and carcinogen B is thought to

affect primarily a late stage, such as p53 mutation in skin tumors. The

following comparisons support the hypothesis. If A acts early and B
acts late, then the difference in incidence between A early and A late is

greater than the difference between B early and B late. If A acts early

and B acts late, then the combination of A applied early and B applied

late has a stronger effect than B applied early and A applied late.
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Summary.—These tests emphasize treatments that apply chemical car-

cinogens to altered animal genotypes, with age-incidence curves mea-

sured as the outcome and interpreted in the light of quantitative predic-

tions of multistage theory.

MITOGENS: INCREASE CELLULAR BIRTH RATE

Increased cell division raises the rate of tumor formation (reviewed

by Peto 1977; Cairns 1998). Higher rates of tumorigenesis occur in re-

sponse to irritation, wound healing, and chemical mitogens.

I first describe three hypotheses to explain the association between

mitogenesis and carcinogenesis. Ideally, I would follow with tests that

clearly distinguish between alternative hypotheses. However, given the

current level of technology, it is not easy to define practical experiments

that connect biochemical changes caused by mitogens to consequences

for rates of tumorigenesis. With that difficulty in mind, I finish by laying

a foundation for how to formulate tests as understanding and technol-

ogy continue to improve.

HYPOTHESES

Faster cell division balanced by increased cell death.—In this case, the

number of cells does not increase because tissue regulation balances

cell birth and death, but the mitogen increases cell division and turnover.

The faster rate of DNA replication increases the rate at which mutations

occur (Cunningham and Matthews 1995).

Normally asymmetrically dividing cell lineages divide symmetrically.—

Epithelial stem cells sometimes divide asymmetrically. One daughter

remains as a stem cell to provide for future renewal; the other daughter

often initiates a rapidly dividing and short-lived lineage. Cairns (1975)

suggested that in each asymmetric stem cell division, the stem lineage

may retain the older DNA templates, with the younger copies segregat-

ing to the other daughter cell (supporting evidence in Merok et al. 2002;

Potten et al. 2002; Armakolas and Klar 2006). If most mutations occur

in the production of new DNA strands, then most mutations would seg-

regate to the nonstem daughter lineage, and the stem lineage would ac-

cumulate fewer mutations per cell division. In addition, stem cells may

be particularly prone to apoptosis in response to DNA damage, killing
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themselves rather than risking repair of damage (supporting evidence

in Bach et al. 2000; Potten 1998).

If these processes reduce stem cell mutation rates, then carcinogens

or other accidents that kill stem cells may have a large effect on the accu-

mulation of mutations (Cairns 2002). In particular, lost stem cells must

be replaced by normal, symmetric cell division with typical mutation

rates that may be much higher than stem cell mutation rates. Thus, re-

generation of stem cells following carcinogen exposure or during wound

healing may cause increased mutation.

Clonal expansion of predisposed cell lineages.—Once a mutation occurs, a

mitogen may stimulate clonal expansion. An expanding clone increases

the number of target cells for the next transition (Muller 1951). This

increase in transition rate between stages does not require a rise in mu-

tation rate per cell division, only an increase in the number of cells avail-

able for progressing to the next stage.

TESTS

The mechanistic details of mitogenesis may be studied directly at the

biochemical and cellular levels. However, I am particularly interested

in the different ways in which mitogenesis shifts age-incidence curves.

To study shifts in age incidence, one must analyze how mechanistic

consequences of mitogenesis affect rates at which carcinogenic changes

accumulate in cells.

The first two mechanistic hypotheses in the previous section focus on

an increase in the mutation rate per cell; the third hypothesis focuses

on an increase in the number of target cells susceptible for transition

to the next stage. The two processes have different consequences for

age-incidence curves.

Increase in mutation rate per cell.—In this case, the mitogen acts like a

mutagen. The particular hypotheses and tests from the section on direct

mutagenesis apply.

Increase in number of target cells for next transition.—More target cells

cause a higher transition rate per unit time. The main difference from

mutagenic agents arises from the time course over which the mutation

rate increases. When a chemical agent causes an increased rate of mu-

tation per cell, the rise in the mutation rate most likely occurs over a

short period of time. By contrast, an increase in the number of target
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cells may happen slowly as a predisposed clone expands, causing a slow

rise in the transition rate to the following stage.

In the theory chapters, I demonstrated a clear difference in how age-

incidence curves shift in response to a change in transition rate. A quick

rise in a particular transition abrogates a rate-limiting step and reduces

the slope of the age-incidence curve. In an idealized model, each abro-

gation of a rate-limiting step reduces the slope by one unit. By contrast,

a slow rise in a transition rate causes a slow rise in the slope of the age-

incidence curve. Multiple rounds of slow clonal expansion can lead to

high age-incidence slopes. (See Section 6.5, which describes the theory

of clonal expansion.)

Increasing the dosage of a mitogen may cause more rapid clonal ex-

pansion. The theory predicts that the increase in the rate of clonal ex-

pansion causes a steeper rise in the slope of the incidence curve over a

shorter period of time. If the rate of clonal expansion is not too fast,

then longer duration of exposure to a mitogen may cause a sequence of

clonal expansions as one transition follows another, leading to a steep

rise in the slope of the incidence curve. At high doses and rapid rates of

clonal expansion, transitions may occur so rapidly that the rate-limiting

effects of a stage may be abrogated, causing a drop in the slope of the

incidence curve.

ANTI-APOPTOTIC AGENTS: DECREASE CELLULAR DEATH RATE

Anti-apoptosis may act in at least two different ways. First, blocking

cell death may allow mutations to accumulate at a faster rate, because

apoptosis is an important mechanism for purging damaged cells. Sec-

ond, absence of cell death may cause clonal expansion, with an increase

in the number of target cells for the next transition.

I discussed in the previous sections some of the ways in which to

study increased mutation rate per cell versus increased target size in

an expanding clone of cells. It may be possible to complement those

approaches by study of genotypes with loss of apoptotic function.

SELECTIVE ENVIRONMENT: FAVORS PREDISPOSED CELL LINEAGES

The previous sections discussed carcinogens that directly cause mu-

tations or directly affect cellular birth or death. This section focuses on
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carcinogens that change the competitive hierarchy between genetically

or epigenetically variable cell lineages.

Consider, for example, an agent that kills cells by inducing apopto-

sis. That agent favors variant cell lineages that resist the induction of

apoptosis. Clonal expansion of the anti-apoptotic lineages follows. Anti-

apoptosis may often be an early step in carcinogenesis.

Variant cell lineages arise continuously. However, in the absence of

a selective agent to expand clones of predisposed cells, variant cell lin-

eages may have relatively little chance of completing progression. In

this regard, selective agents may play a key role in raising cancer inci-

dence. As always, variation and selection must complement each other

in the evolutionary process of transformation.

HYPOTHESIS

A recent theory proposes that carcinogens may act as both mutagens

and selective agents (Breivik and Gaudernack 1999b; Fishel 2001). In

the presence of a mutagen that causes a certain type of DNA damage,

selection may favor cells that lose the associated repair pathway. Cells

that lack the appropriate repair response may not stop the cell cycle to

wait for repair or may not commit apoptosis, whereas repair-competent

cells often slow or stop their cycle during repair. Thus, repair-deficient

cells could outcompete repair-competent cells, as long as the gain in

survival or in the speed of the cell cycle offsets any loss in division

efficacy caused by the increased accumulation of mutations.

In support of their theory, Breivik and Gaudernack (1999a) noted

the association between the physical location of colorectal tumors and

the loss of particular types of DNA repair. Proximal colorectal tumors

tend to have microsatellite instability caused by loss of mismatch repair

(MMR) genes. The MMR pathway repairs damage caused by methylating

carcinogens. Breivik and Gaudernack (1999a) argue that methylating

carcinogens often arise from bile acid conjugates that occur mainly in

the proximal colorectum.

The argument for proximal tumors can be summarized as follows.

Methylating carcinogens concentrate in the proximal colorectum. The

MMR pathway repairs the damage caused by methylating agents. Those

cells that lose the MMR repair pathway gain an advantage in the selective

environment created by methylating agents, because MMR-deficient cells



200 CHAPTER 9

slow down less for repair or commit apoptosis less often than do MMR-

competent cells.

By contrast, distal colorectal tumors tend to have chromosomal insta-

bility caused by loss of the mechanisms that maintain genomic integrity,

such as the nucleotide excision repair (NER) pathway. Breivik and Gaud-

ernack (1999a) argue that the bulky-adduct-forming (BAF) carcinogens

may arise primarily from dietary and environmental factors and concen-

trate primarily in the distal colorectum.

The argument for distal tumors can be summarized as follows. BAF

carcinogens concentrate in the proximal colorectum. The NER pathway

primarily repairs the damage caused by BAF agents. Those cells that lose

the NER repair pathway gain an advantage in the selective environment

created by BAF agents, because NER-deficient cells slow down less for

repair or commit apoptosis less often than do NER-competent cells.

By this theory, a carcinogen may act in three stages. First, direct mu-

tagenesis creates variant cell lineages. Second, selection favors clonal

expansion of variant cells that lose repair function for the type of mu-

tagenic damage caused by the carcinogen. Third, direct mutagenesis of

cells that lack associated repair processes may speed the rate at which

subsequent transitions occur through the steps of multistage progres-

sion.

TEST

By test, I mean the ways in which to study the predicted consequences

of a carcinogen for age-specific incidence. This section focuses on car-

cinogens that may act both as direct mutagens and as selective agents.

No clear theory has been defined to formulate hypotheses for the rela-

tion between the dosage of such carcinogens and the patterns of age-

specific incidence.

I can speculate a bit. As mentioned above, a directly mutagenic agent

may have three separate effects: initial mutagenesis, secondary selective

expansion of mutator clones, and tertiary mutagenesis.

Consider a particular mutagen and an associated DNA repair system

that fixes the kind of damage caused by the mutagen. A knockout geno-

type with reduced or absent repair function should respond differently

to the carcinogen when compared to the wild type. In particular, the

incidence rate of the knockout should be insensitive to the initial muta-

genesis directed at the repair system under study, because that repair
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system has already been mutated in the germline. The knockout should

also be insensitive to clonal expansion, because in the knockout all cells

share the loss of repair function and so there should be no selective

advantage for relative loss of repair function. The knockout should be

affected mainly by the tertiary mutagenesis.

Quantitative predictions could be developed for the relative incidence

patterns in wild-type and knockout genotypes, using the methods of the

earlier theory chapters. Those predictions could be tested in labora-

tory animals. Although such tests may not be easily accomplished, it is

worthwhile to consider how to connect carcinogenic effects to mecha-

nism, and mechanism to incidence. Ultimate understanding of cancer

can only be achieved by understanding how factors influence the rates

of progression, and how rates of progression affect incidence.

9.4 Summary

This chapter analyzed classical explanations for chemical carcinogen-

esis. Those explanations focused on how dosage and duration of chem-

ical exposure may alter incidence. The classical explanations are not as

compelling as they originally appeared. The problem arises from the

ease with which alternative models can be fit to the data. To avoid the

problems of fitting models to the data, I showed how one may frame

quantitative hypotheses about chemical carcinogenesis as comparative

predictions—the most powerful method for testing causal interpreta-

tions of cancer progression.

The next chapter turns to mortality patterns for the leading causes

of death. I show that the quantitative tools I have developed to study

cancer may help to understand the dynamics of progression for other

age-specific diseases and the processes of aging.
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This chapter analyzes age-specific incidence for the leading causes of

death. I discuss the incidence curves for mortality in light of multistage

theories for cancer progression. This broad context leads to a general

multicomponent reliability model of age-specific disease.

The first section describes the age-specific patterns of mortality for

the twelve leading causes of death in the USA. Heart disease and vari-

ous other noncancer causes of death share two attributes. From early

life until about age 80, the acceleration in mortality increases in an ap-

proximately linear way. After age 80, mortality decelerates sharply and

linearly for the remainder of life. By contrast, cancer and a couple of

other causes of death follow a steep, nearly linear rise in mortality up to

40–50 years, and a steep, nearly linear decline in acceleration later in life.

The late-life deceleration of aggregate mortality over all causes of death

has been discussed extensively during the past few years (Charlesworth

and Partridge 1997; Horiuchi and Wilmoth 1998; Pletcher and Curtsinger

1998; Vaupel et al. 1998; Rose and Mueller 2000; Carey 2003).

The second section presents two multistage hypotheses that fit the

observed age-specific patterns of mortality. The increase in acceleration

through the first part of life may be explained by a slow increase in the

transition rate between stages—perhaps a slow increase in the failure

rate for components that protect against disease. With regard to the late-

life decline in acceleration, all multistage models produce a force that

pushes acceleration down at later ages. That downward force comes

from the progression of individuals, as they grow older, through the

early stages of disease.

The third section expands the multistage theory of cancer to a broader

reliability theory of mortality. For cancer, genetic and morphological ob-

servations support the idea that tumor development progresses through

a sequence of stages. For other causes of death, little evidence ex-

ists with regard to stages of progression. A multicomponent reliability

framework seems more reasonable: the reliability (lifespan) of organ-

isms may depend on the rates of failure of various component subsys-

tems that together determine disease progression and survival. Multi-

stage progression corresponds to multiple components arranged in a
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series. By contrast, functionally redundant components act in parallel;

disease arises when all components fail independently.

In the final section, I argue that my extensive development of multi-

stage theory for cancer provides the sort of quantitative framework

needed to apply reliability theory to mortality. For cancer, I have shown

how multistage theory leads to many useful hypotheses: the theory pre-

dicts how age-incidence curves change in response to genetic pertur-

bations (inherited mutations) and environmental perturbations (muta-

gens and mitogens). Reliability theory will develop into a useful tool for

studies of mortality and aging to the extent that one can devise testa-

ble hypotheses about how age-incidence curves change in response to

measurable perturbations.

10.1 Leading Causes of Death

Figure 10.1 illustrates mortality patterns for non-Hispanic white fe-

males in the United States for the years 1999 and 2000. The top row

of panels shows the age-specific death rate per 100,000 individuals on

a log-log scale. The columns plot all causes of death, death by heart

disease, and death by cancer.

The curves for death rate in the top row have different shapes. To

study quantitative characteristics of death rates, it is useful to present

the data in a different way. The second row of panels shows the same

data, but plots the age-specific acceleration of death instead of the age-

specific rate of death. The log-log acceleration (LLA) is simply the slope

of the rate curve in the top panel at each age. Plots of acceleration

emphasize how changes in the rate of mortality vary with age (Horiuchi

and Wilmoth 1997, 1998; Frank 2004a).

The bottom row of panels shows one final plotting transformation

to aid in visual inspection of mortality patterns. The bottom row takes

the plots in the row above, transforms the age axis to a linear scale to

spread the ages more evenly, and applies a mild smoothing algorithm

that retains the same shape but smooths the jagged curves. I use the

transformations in Figure 10.1 to plot mortality patterns for the leading

causes of death in Figure 10.2, using the style of plot in the bottom row

of Figure 10.1.

Figure 10.2 illustrates the mortality patterns for non-Hispanic white

males in the United States for the years 1999 and 2000. Each plot shows



204 CHAPTER 10

20             40      60       100

01
8

6
4

2

20     40      60      80     100

8
6

4
2

0

4
3

2
1

01
8

6
4

2
01

8
6

4
2

4
2

0
−

2
4

2
0

−
2

D
ea

th
 r

at
e

A
cc

el
er

at
io

n
A

cc
el

er
at

io
n

Age

All Heart Cancer

(a) (d) (g)

(b) (e) (h)

(c) (f) (i)

20             40      60       10020             40      60       10020             40      60       100

20             40      60       10020             40      60       100

20     40      60      80     10020     40      60      80     100

4
2

3

2
4

3

Figure 10.1 Age-specific mortality patterns by cause of death. Data averaged
for the years 1999 and 2000 for non-Hispanic white females in the United
States from statistics distributed by the National Center for Health Statistics,
http://www.cdc.gov/nchs/, Worktable Orig291. The top row of panels shows
the age-specific death rate per 100,000 individuals on a log-log scale. The
columns plot all causes of death, death by heart disease, and death by can-
cer. The second row of panels shows the same data, but plots the age-specific
acceleration of death instead of the age-specific rate of death. Acceleration is
the derivative (slope) of the rate curves in the top row. The bottom row takes
the plots in the row above, transforms the age axis to a linear scale to spread
the ages more evenly, and applies a mild smoothing algorithm that retains the
same shape but smooths the jagged curves. From Frank (2004a).

a different cause of death and the percentage of deaths associated with

that cause.

The panels in the left column of Figure 10.2 show causes that ac-

count for about one-half of all deaths. Each of those causes shares two

attributes of age-specific acceleration. From early life until about age 80,

the acceleration in mortality increases in an approximately linear way.
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Figure 10.2 Age-specific acceleration of mortality by cause of death. Data
averaged for the years 1999 and 2000 for non-Hispanic white males in the
United States from statistics distributed by the National Center for Health Statis-
tics http://www.cdc.gov/nchs/, Worktable Orig291. The causes of mortality
are based on the International Classification of Diseases, Tenth Revision http:
//www.cdc.gov/nchs/about/major/dvs/icd10des.htm. The diseases are: Heart
for diseases of the heart; CerVas for cerebrovascular diseases; Accid for acci-
dents (unintentional injuries); Infl for influenza and pneumonia; Suic for inten-
tional self-harm (suicide); Nephr for nephritis, nephrotic syndrome and nephro-
sis; Sept for septicemia; Canc for malignant neoplasms; ChrRsp for chronic
lower respiratory diseases; Liver for chronic liver diseases and cirrhosis; Diab
for diabetes mellitus; and Alzh for Alzheimer’s disease. From Frank (2004a).
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After age 80, acceleration declines sharply and linearly for the remain-

der of life. Some of the causes of death also have a lower peak between

30 and 40 years.

The panels in the upper-right column of Figure 10.2 show causes that

account for about one-third of all deaths. These causes follow steep,

linear rises in mortality acceleration up to 40–50 years, and then steep,

nearly linear declines in acceleration for the remainder of life. The

bottom-right column of panels shows two minor causes of mortality

that are intermediate between the left and upper-right columns.

What can we conclude from these mortality curves? The patterns by

themselves do not reveal the underlying processes. However, the pat-

terns do constrain the possible explanations for changes in age-specific

mortality. For example, any plausible explanation must satisfy the con-

straint of generating an early-life rise in acceleration and a late-life de-

cline in acceleration, with the rise and fall being nearly linear in most

cases. A refined explanation would also account for the minor peak in

acceleration before age 40 for certain causes.

10.2 Multistage Hypotheses

The mortality curves show a rise in acceleration to a mid- or late-life

peak, followed by a steep and nearly linear decline at later ages.

In earlier chapters, I provided an extensive analysis of multistage

models. Within the multistage framework, many alternative assump-

tions can often be fit to the same age-incidence pattern. Thus, fits to

the data can only be regarded as a way to generate specific hypotheses.

With that caveat in mind, I describe some multistage assumptions that

fit the mortality curves and thus provide one line for the development

of particular hypotheses (Frank 2004a).

Several alternative models may cause a rise in acceleration through

the first part of life. Perhaps the simplest alternative focuses on the

transition rates between stages of progression. If transition rates in-

crease slowly with age, then acceleration will rise with age (Figures 6.8,

6.9).

With regard to the late-life decline in acceleration, all multistage mod-

els produce a force that pushes acceleration down at later ages. That

downward force comes from the progression of individuals, as they grow

older, through the early stages of disease (Figures 6.1, 6.2).
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If, for example, n stages remain before death, then the predicted slope

of the log-log plot (acceleration) is n − 1. As individuals age, they tend

to progress through the early stages. If there are n stages remaining

at birth, then later in life the typical individual will have progressed

through some of the early stages, say a of those stages. Then, at that

later age, there are n − a stages remaining and the slope of the log-

log plot (acceleration) is n − a − 1. As time continues, a rises and the

acceleration declines (Frank 2004a, 2004b).

10.3 Reliability Models

For cancer, I have been using various stepwise multistage models.

Those stepwise models were originally developed for cancer in the 1950s

(see Chapter 4) based on the idea of a sequence of changes to cells or

tissues, for example, a sequence of somatic mutations in a cell lineage.

Later empirical research has supported stepwise progression, based on

both genetic and morphological stages in tumorigenesis.

Cancer researchers sometimes argue about what kinds of changes

to cells and tissues determine stages in progression, the order of such

changes, the number of different pathways of progression for a given

type tissue and tumor, and how many rate-limiting changes must be

passed for carcinogenesis. But those arguments take place within the

multistage framework, which provides the only broad theoretical struc-

ture for studies of cancer. The multistage framework developed inter-

nally within the history of cancer research, with relatively little outside

influence. For those reasons, I have presented the multistage theory

with reference only to cancer.

By contrast, studies of heart disease and other causes of mortality face

different biological problems and have a different theoretical tradition.

On the biological side, most diseases do not have widely accepted stages

of progression or widely accepted processes, such as somatic mutation,

that drive transitions between stages. Certainly, some multistage pro-

gression ideas exist for noncancerous diseases (Peto 1977), and some

theories about somatic mutation have been posed (e.g., Andreassi et al.

2000; Vijg and Dolle 2002; Kirkwood 2005; Wallace 2005; Bahar et al.

2006). But those ideas and theories do not form a cohesive framework

in current studies of mortality.
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Several theories of age-specific mortality have been based on multiple

stages or multiple states of progression. Specific models almost always

derive from reliability theory—the engineering field that evaluates time

to failure for manufactured devices (Gavrilov and Gavrilova 2001).

In engineering, components of a device that protect against failure

may be arranged in various pathways. Serial protection means that sys-

tem failure follows a pathway in which first one component fails, fol-

lowed by a second component, and so on; the probability of failure of

later components in the sequence occurs conditionally on the failure of

earlier components in the sequence. Parallel protection describes func-

tional redundancy, in which any single functioning component keeps the

system going; failure occurs only after all redundant components fail;

and component failures occur independently. Various combinations of

serial and parallel pathways may be designed.

Reliability theory calculates time to failure (mortality) based on as-

sumptions about component failure rates and pathways by which com-

ponents are related. Obviously, the multistage theory I developed ear-

lier forms a branch of reliability theory. However, the reliability theory

found in texts focuses on engineering problems, and those problems

rarely match the particular biological scenarios for cancer progression.

So, although the principles exist in reliability texts, many of the specific

results in my theory chapters are new.

Gavrilov and Gavrilova (2001) provided a nice review of reliability the-

ory applied to human mortality. They note that when system failure

depends on the simultaneous failure of several components, the accel-

eration of age-specific mortality declines later in life. I have already

discussed the idea several times. If system failure requires failure of n
components, then log-log acceleration (LLA) is n − 1. As systems age

and components fail, say a have failed, then LLA tends to drop toward

n − a − 1. Details vary, but the idea holds widely. Vaupel (2003) gives

a good, intuitive description of how multicomponent reliability may ex-

plain the late-life mortality plateau.

In light of reliability theory, we can state more generally an expla-

nation for the late-life decline in the acceleration of mortality (Frank

2004a). Suppose a measurable disease outcome, such as death, occurs

only after several different rate-limiting events have occurred. Each

event has at least some aspect of its time course that is independent

of other events. If so, then the dynamics of onset will not follow the
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course for a single event model, and will instead be the outcome of a

multi-event model. The events do not have to follow one after another

or be arranged in any particular pattern. The key is at least partial in-

dependence in the time course of progression for each event, and final

measured outcome (mortality) only occurring after multiple events have

occurred.

Similarly, a condition for a midlife rise in acceleration is a slow in-

crease in the rate at which individual components fail (Frank 2004a).

10.4 Conclusions

I have included a discussion of mortality in a book otherwise devoted

to cancer for two reasons. First, from the vantage point of the general

reliability problem, one can more easily see what is necessary to ex-

plain patterns of cancer incidence. Second, the extensive development

of multistage theory I presented in earlier chapters provides just the sort

of quantitative background needed to use reliability theory fruitfully in

the general study of mortality.

One might now ask: If reliability theory applies to everything, then

does it have any explanatory power? This question seems reasonable,

but I think it is the wrong question. The reliability framework provides

tools to help us formulate testable hypotheses. That framework by itself

is not a hypothesis.

For cancer, I have shown how multistage theory leads to many useful

hypotheses. For example, I have used the theory to predict how age-

incidence curves change in response to genetic perturbations (inherited

mutations) and environmental perturbations (mutagens and mitogens).

Reliability theory will develop into a useful tool for studies of mortality

and aging to the extent that one can develop useful hypotheses about

how age-incidence curves change in response to measurable perturba-

tions.

10.5 Summary

This chapter finishes my three empirical analyses of disease dynamics

in light of multistage progression models. The three empirical analyses

covered genetics, chemical carcinogenesis, and aging. The next section
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of the book turns to evolutionary processes: What factors shape the pop-

ulation frequencies of predisposing genetic variants? How does tissue

architecture affect the somatic evolution of cancer?



PART III

EVOLUTION





11 Inheritance

Cancer progresses by the accumulation of heritable changes in cell lin-

eages. In the simplest case, all of the changes happen to the DNA of a

single somatic cell lineage. Starting with the initial cell, the carcinogenic

process develops through the sequential addition of genetic changes

that eventually gives rise to the tumor.

Many cancer biologists rightly object to this oversimplified view. The

heritable changes may often be epigenetic—genomic changes other than

DNA sequence—or physiological changes that persist (inherit) for many

cell generations. Changes may happen to multiple lineages, with car-

cinogenesis influenced by positive feedback between altered lineages.

But even this richer view still comes down to heritable changes in cell

lineages—almost necessarily so, because cells are the basic units, and

persistent change means heritable change. Disease arises at the level of

tissues, but the causes derive from changes to cells.

The first heritable carcinogenic changes may trace back to a somatic

cell that descended from the zygote, in which case the changes derive

purely from the somatic history of that organism. Or the origin of a

particular inherited variant may trace back to a germline cell in one of

the individual’s ancestors, in which case the inherited variant may be

shared by other descendants.

All of these descriptions turn on heritable change in lineages, that is,

on evolutionary change. Cancer has long been understood in terms of

somatic evolution within an individual’s cellular population. More re-

cently, the role of inherited germline variants has been studied in terms

of the evolutionary genetics of populations of individuals.

We can think about any particular variant, somatic or germline, in

two ways. First, the variant influences disease through its effect on

progression—the role of development that traces cause from genes to

phenotypes. Second, the phenotype influences whether, over time, the

variant lineage expands or goes extinct—the role of natural selection in

shaping the distribution of variants.

The following chapters focus on variants that originate in somatic

cells: in a particular cell, variants trace their origin back to an ancestral
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cell that descended from the most recent zygote. Somatic variants drive

progression within an individual.

This chapter focuses on germline variants that may occur in differ-

ent individuals in the population: in a particular cell, germline variants

trace their origin back to an ancestral cell that preceded the most recent

zygote. Germline variants determine inherited predisposition to cancer.

The first section describes how inherited variants affect progression

and incidence—the causal pathway from genes to phenotypes. A classi-

cal Mendelian mutation is a single variant that strongly shifts age-onset

curves to earlier ages. Such mutations demonstrate the central role

of inherited variation in progression and the multistage nature of car-

cinogenesis. Other inherited variants may only weakly shift age-onset

curves; however, the combination of many such variants predisposes

individuals to early-onset disease.

The second section turns around the causal pathway: the phenotype

of a variant—progression and incidence—influences the rate at which

that variant increases or decreases within the population. The limited

data appear to match expectations: variants that cause a strong shift

of incidence to earlier ages occur at low frequency; variants that cause

a milder age shift occur at higher frequencies; and variants that only

sometimes lead to disease occur most frequently.

The final section addresses a central question of biomedical genetics:

Does inherited disease arise mostly from few variants that occur at rel-

atively high frequency in populations or from many variants that each

occur at relatively low frequency? The current data clarify the question

but do not give a clear answer. Inheritance of cancer provides the best

opportunity for progress on this key question.

11.1 Genetic Variants Affect Progression and Incidence

The first studies measured differences in progression and age of on-

set between variants at a single locus. Those first studies aggregated

all variants into two classes, wild type and mutant, and compared inci-

dences between those classes. Current studies measure differences at

a finer molecular scale, distinguishing between variants at a particular

nucleotide or amino acid site, or between variants that differ by single

insertions or deletions. Ultimately, one would like to know how variants

at multiple sites combine to affect incidence. So far, most studies have
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been limited to indirect analysis of multiple sites by associations be-

tween familial relationships and incidence, the classical nonmolecular

approach to quantitative inheritance.

VARIANTS AT A SINGLE LOCUS

This section compares progression and incidence between individu-

als who carry, at a single locus, either the wild-type allele or a loss of

function mutation. In most cases, one compares homozygotes for the

wild type and heterozygotes that carry one wild-type and one loss of

function mutation. In practice, “wild type” means the class of all variant

alleles that do not have a large effect on incidence, and “loss of function”

means the class of all variant alleles that cause a large increase in the

rate of progression.

The comparison between individuals carrying wild-type and loss of

function genotypes played a key role in the history of multistage theo-

ries of carcinogenesis. The shift of the incidence curve to earlier ages

in the loss of function genotypes provided the first direct evidence that

mutations in cell lineages affect progression. The observed magnitude

of the shift in incidence curves matched the expected shift under multi-

stage theory. In that theory, progression follows the accumulation of

multiple genetic changes, and the inherited mutation provides the first

of two or more steps in carcinogenesis.

In earlier chapters, I described studies that compared age incidence

between genotypes that differed at a single locus, comparing the wild-

type with loss of function mutations. In this section, I copy the figures

from two earlier examples. The following sections provide new exam-

ples.

Figure 11.1 compares incidence rates between inherited and sporadic

cases of retinoblastoma. In the inherited cases, individuals carry one

mutated allele at the retinoblastoma locus. Within the multistage frame-

work, inheriting a key mutation means being born one stage advanced in

progression. The theory predicts that an advance by one stage reduces

the slope of the incidence curve by one. The difference in the log-log ac-

celeration (LLA) of the two incidence curves measures the difference in

the slopes of the incidence curves. Figure 11.1c shows that the observed

difference in slopes is close to one, matching the theory’s prediction.
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Figure 11.1 Age-specific incidence of bilateral and unilateral retinoblastoma.
Bilateral cases are mostly inherited, and unilateral cases are mostly sporadic.
(a) Bilateral (solid line) and unilateral (dashed line) incidence of retinoblastoma
per 106 population, shown on a log10 scale. (b) Ratio, R, of unilateral to bilateral
incidence at each age multiplied by 10−5, using the fitted lines in the previous
panel. (c) Difference in log-log acceleration between unilateral and bilateral
cases, which is the log-log slope of R versus age in Eq. (8.2). Ages measured in
years. I presented this figure earlier as Figure 8.3; see my earlier presentation
for more details.

Figure 11.2 compares incidence rates between inherited and sporadic

cases of colon cancer. In the inherited cases, individuals carry one mu-

tated allele at the APC locus. Again, the multistage framework predicts

that an inherited mutation in a key rate-limiting process advances pro-

gression by one stage and therefore reduces the log-log acceleration of

incidence by one. Figure 11.2c shows a difference in LLA of about 1.5, a

reasonable match to the theory’s prediction given the sample sizes and

complexities of progression.

COMMON VARIANTS AT A SINGLE SITE

The previous section described studies that aggregated variants into

wild-type and mutant classes. This section presents two cases in which

mutations at specific sites define the variants.

BRCA MUTATIONS AND BREAST CANCER

Struewing et al. (1997) screened Ashkenazi Jewish females for two

specific mutations in BRCA1 and one specific mutation in BRCA2. They

obtained age of breast cancer onset among the 89 carriers and 3653

noncarriers. They used a statistical procedure that accounted for relat-

edness between certain sample members to obtain estimates for the risk

of breast cancer, measured as the expected fraction of women at each
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Figure 11.2 Age-specific incidence of inherited familial adenomatous polypo-
sis (FAP) and sporadic colon cancer. (a) Inherited colon cancer (FAP) caused by
mutation of the APC gene (top curve) and sporadic cases (bottom curve) per
106 population, shown on a log10 scale. (b) Ratio, R, of sporadic colon cancer
incidence to inherited FAP incidence at each age multiplied by 10−4, using the
data in the previous panel. (c) The difference in the log-log acceleration between
sporadic and inherited cases, which is the log-log slope of R. I presented this
figure earlier as Figure 8.5; see my earlier presentation for more details.

five-year age interval who would be expected to develop cancer by that

age.

In Figure 11.3a, the circles plot their estimates, shown as the fraction

who would be expected not to have developed a breast tumor by each

age. The solid curve provides a smoothed fit to the carrier class; the

dashed curve provides a smoothed fit to the noncarrier class.

In the data from Struewing et al. (1997), the estimated fraction tumor-

less sometimes increases from one age to a later age. Such increases

are, of course, not possible in the actual fraction tumorless curves. The

increases arise because of the estimation procedure. I mention this be-

cause the rise and fall in the estimates (shown as circles) at later ages

causes the curves to be particularly sensitive to the smoothing param-

eters. For these reasons, and the moderately small sample of carriers,

these data only illustrate various ways in which to analyze such prob-

lems.

With current technological trends, we will eventually have vastly more

data of this kind. At present, I focus mainly on exploratory analysis to

highlight some interesting hypotheses, which will require further stud-

ies to test.

Hypothesis 1: All carriers do not have highly elevated risk.—The second

row of panels in Figure 11.3 plots the standard log-log incidence curves
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Figure 11.3 Breast cancer rates for females who carry a mutation in BRCA1 or
BRCA2, shown as solid lines, versus those females who do not have a mutation,
shown as dashed lines. The circles in (a) and (c) mark the estimated fraction of
females in each class that have not yet developed tumors, taken from Figure 1B
of Struewing et al. (1997). In (b) and (d), I transformed the fraction tumorless,
f , as S = (max − f )/max, where max is the fraction of the carriers who have
fully elevated risk. Panels (a) and (b) used the smooth.spline function of the
R computing language (R Development Core Team 2004) to fit a smooth curve
to the observed points, with smoothing parameter set to 0.5; (c) and (d) force
a stiffer, less curved fit with a smoothing parameter of 0.6. The second row
shows incidence on a log10 scale, obtained from −d ln(S)/dt , where S is the
fraction tumorless in the curves of the top row. The bottom row shows ΔLLA,
the difference in the log-log slopes of incidence in the second row of plots.

for carriers and noncarriers. In all four panels, the noncarriers (dashed

curve) show the commonly observed pattern for sporadic breast cancer:

a diminishing slope of incidence with age, but little or no actual decrease

in the incidence rate before age 80. By contrast, the incidence declines

after midlife for the carriers (solid curves) in all of the panels except
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panel (h). I work through the steps that lead to panel (h). As I men-

tioned, I do not regard these manipulations as tests of any hypothesis,

but rather as ways to generate new hypotheses.

Panel (e) shows the direct estimate of carrier incidence using the orig-

inal values of Struewing et al. (1997) and the standard smoothing pa-

rameter of 0.5 for fitting the curves in panel (a). In (e), carrier incidence

declines strongly and steadily after about age 55. In (f), I considered

the possibility that only a fraction of carriers have highly elevated risk.

The division of carriers into very high risk and moderate risk categories

may arise from genetic predisposition caused by other loci. I discuss

evidence for this idea in following sections; here I just look at the con-

sequences.

The estimated fraction of carriers who develop cancer by age 80 is

about 0.66. What if nearly all carriers with highly elevated risk de-

velop cancer? Suppose, for example, that only a fraction max = 0.7
of carriers have elevated risk, and nearly all of them develop cancer.

Then the fraction tumorless among the class with highly elevated risk is

S = (max− f )/max, where f is the fraction tumorless among all carri-

ers. Panels (b) and (d) show the fraction tumorless among carriers with

highly elevated risk, using max = 0.7. Panel (f), derived from (b), has a

carrier incidence curve that drops later in life, but less strongly than in

(e).

Panel (h), derived from (d), has what I consider to be the right shape

for the carrier incidence curve. The difference between (h) and (f) comes

only from the smoothing parameter used to fit the curves in the top

row. Whenever a key match to expectations arises only from a moderate

change in the smoothing parameter, one clearly does not have enough

data to draw any conclusions. Normally, after seeing such a pattern,

I would suggest not presenting such an analysis. I present it here to

warn about the importance of sample size and sensitivity to smoothing

procedures, and because I think the alternative biological interpretations

are sufficiently interesting to stimulate further work.

In summary, I suggest that the estimated incidence curve in (h), based

on the stiffer smoothing method, comes closer to the actual incidence

pattern. More importantly, I propose that, among carriers, only a frac-

tion have highly elevated risk. I will discuss below two ways in which

background genotype may elevate risk in some BRCA mutant carriers.
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Hypothesis 2: BRCA mutations abrogate a rate-limiting step.—An inher-

ited mutation may increase incidence in at least two different ways.

First, an inherited mutation may raise the rate of somatic mutations,

including epigenetic and chromosomal changes. In this case, the inher-

ited mutation may not abrogate a rate-limiting step, but instead increase

the transition rates between the normal rate-limiting steps that charac-

terize carcinogenesis in the absence of the mutation. If so, then the the-

ory predicts a rise with age in the difference between the log-log slopes

of incidence (ΔLLA) for sporadic versus inherited cases. (See Eq. (7.6)

and Figures 7.5 and 7.6.)

Second, an inherited mutation may directly or indirectly abrogate a

single rate-limiting step. In this case, the theory in Eq. (7.5) predicts thatΔLLA ≈ 1 and does not change much with age.

The bottom row of Figure 11.3 shows a range of patterns for ΔLLA. In

panel (i), the value rises strongly with age; in panel (l), the value remains

mostly flat and near one. The two middle panels follow intermediate

trends. We do not know enough yet to assign significantly higher likeli-

hood to one pattern over the others because of: the limited sample size

for inherited cases; the fluctuations in the fraction tumorless caused by

the estimation procedure in the original paper; and the uncertainty with

regard to the fraction of carriers who have elevated risk.

I favor the right column of panels in Figure 11.3, because the incidence

pattern for carriers has the common shape for breast cancer, in which

incidence plateaus later in life but does not decline significantly before

age 80. The right column matches the prediction for a BRCA mutation

to knock out one rate-limiting step. To test that hypothesis, we need

more data on incidence in carriers and on the fraction of carriers who

have highly elevated risk.

MDM2 VARIANT AND THE P53 PATHWAY

p53 is the most commonly mutated gene in tumors. In some tumors,

mutations arise in those genes that regulate p53 rather than in p53 itself.

To search for new inherited variants that affect the p53 system and

cancer, Bond et al. (2004) focused on MDM2, a direct negative regulator

of p53. They found a single nucleotide polymorphism in the MDM2 pro-

moter that enhanced MDM2 expression and attenuated the p53 pathway.

In particular, the variant had a T → G change at the 309th nucleotide of

the first intron (SNP309). This SNP occurred at high frequency in a sam-
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ple of 50 healthy individuals: heterozygote T/G at 40% and homozygote

G/G at 12%.

A variant affects cancer to the extent that it shifts the age-onset curve

to earlier ages. To measure the variant’s effect, Bond et al. (2004) studied

a group that suffered soft tissue sarcoma (STS) and had no known p53

or other predisposing inherited mutations.

The data collected by Bond et al. (2004) show that the variant allele

shifts age of onset to earlier ages, supporting the hypothesis that the

variant’s increased expression of MDM2 enhances tumor progression.

However, Bond et al.’s (2004) particular quantitative analyses misuse

the data and the theory of multistage progression. I demonstrate proper

analysis, because this study provides just the sort of combined genetic,

functional, and population level insight that will be required to move

the field ahead.

Figure 11.4a,b presents copies of Figure 7C,E from Bond et al. (2004).

Panel (a) compares age of onset for all soft tissue sarcomas between

the wild type (T/T) and the homozygote variant (G/G). The wild type

progresses at a median age of 59 compared with a median of 38 for the

homozygote variant, showing the earlier onset for the variant.

In the sample collected by Bond et al. (2004), liposarcomas form the

largest subset of soft tissue sarcomas. Figure 11.4b shows how Bond

et al. (2004) fit curves to the onset data for liposarcoma in order to esti-

mate the number of rate-limiting steps in progression for each genotype.

They assumed that the y axis measured incidence, and fit I(t) = ktn−1

(they used r instead of n for the number of rate-limiting steps). From

their fitting procedure, they estimated n as 4.8 for the wild type (T/T,

solid curve), 3.5 for the heterozygote (T/G, dashed curve), and 2.5 for

the homozygote variant (G/G, dot-dash curve). These estimates differ

by about one, so the authors concluded that the variant abrogates one

rate-limiting step in progression. I do not know whether the biological

conclusion is correct, but the analysis of the data is inappropriate.

The y axis of Figure 11.4b measures the percentage of individuals of

a particular genotype who have suffered cancer by a particular age. That

measure differs from incidence. I have shown previously that such data

can be transformed into incidence. Let y be the percentage of individ-

uals with cancer by age t , as on the y axis of Figure 11.4b. Then the

fraction tumorless is S = 1 − y/100, where the 100 arises because y is

given as a percentage. Incidence is I(t) = −d ln(S)/dt .
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To study the curves in relation to the number of rate-limiting steps, n,

we can use the form applied by Knudson (1971), ln(S) = −k1tn, where

k is a constant, or, differentiating ln(S) with respect to t , we can use in-

cidence, I(t) = k2tn−1. I discussed in earlier chapters the theory behind

these equations.

If I were to analyze the data in Figure 11.4b, I would highlight two is-

sues before starting. First, there are only four individuals in the variant

homozygote (G/G) sample. One will not get a reliable estimate of a rate

(incidence) from four observations. Second, the median age of onset

is nearly identical for the wild type (T/T) and the heterozygote (T/G).

Median age of onset often provides a good measure for the rate of pro-

gression as, for example, in the classical Druckrey analysis of chemical

carcinogens (see Section 2.5). With nearly identical medians for those

two genotypes, I would not be inclined to put much weight on any es-

timated differences in the slopes of the incidence curves, unless I had

reason to believe that one genotype had both more rate-limiting steps

and a faster transition rate between steps than the other genotype. In

this study, those assumptions would over-interpret the data.

Given these issues with regard to the data analysis of Figure 11.4b, I

would be content to note that the direction of shift in the homozygote

variant (G/G) is consistent with enhanced progression.

I have emphasized data interpretation because the work of Bond et al.

(2004) is just the sort of study that will become increasingly common

and important as genomic technology improves. I agree with the au-

thors that the analysis of inherited variants comes down to understand-

ing how those variants affect age of onset. Further, the quantitative as-

pects of rates could, in principle, provide insight into the mechanisms

by which variants influence the complex process of progression. With

the inevitably larger samples that will soon be available, it should be pos-

sible to accomplish such analyses with much greater ease and power.

INTERACTION BETWEEN VARIANTS AT DIFFERENT SITES

Variants at different nucleotide sites may interact to influence pro-

gression. Studies to date have generally not had sufficient resolution

and sample sizes to demonstrate the joint effects of different variants

on age-incidence patterns in human populations. The work of Bond et al.
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Figure 11.4 Onset of soft tissue sarcoma for individuals classified by genotype
at a single nucleotide polymorphism in the promoter region of MDM2. At the
polymorphic site, individuals are wild type (T/T), heterozygote for the variant
allele (T/G), or homozygote for the variant (G/G). The y axis shows the per-
centage of individuals of a particular genotype who have suffered cancer by a
particular age. (a) The homozygote variant has earlier age of onset than the wild
type. (b) Pattern for those soft tissue sarcomas classified as liposarcoma, the
most common form of soft tissue sarcoma in the sample. Redrawn from Figure
7C,E of Bond et al. (2004).

(2004) discussed in the previous section provides a glimpse of the sort

of study that will become common in the future.

In the previous section, I described how MDM2 acts as a negative reg-

ulator of p53. Bond et al. (2004) showed that a nucleotide variant in the

promoter of MDM2 enhances expression of the MDM2 protein and thus

negatively influences the p53 regulatory system. In individuals with a

normal p53 locus, the MDM2 promoter variant enhances progression of

soft tissue sarcomas, the same type of cancer often found in individuals

who inherit p53 defects.

Bond et al. (2004) extended their study to samples that included indi-

viduals who carry both the MDM2 promoter variant and a mutation in

p53. Those double mutant individuals suffered faster progression than

individuals who inherited only one of the two mutations. If we use +
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and − superscripts to label the wild type and variant, then the order-

ing of the median age of onset was MDM2−/p53− < MDM2+/p53− <
MDM2−/p53+ < MDM2+/p53+, with values for the medians of 2 <
14 < 38 < 57.

The MDM2 variant alone shifts the median from 57 in the wild type

to 38; the p53 variant alone shifts the median from 57 in the wild type

to 14. In this case, either variant by itself causes significantly enhanced

progression. In other cases, a variant by itself may have little effect in

the absence of a synergistic variant at another site.

COMPARISON BETWEEN RARE VARIANTS AT SINGLE SITES

Technical advances in DNA sequencing efficiency provide an oppor-

tunity to study individual nucleotide variants. Ideally, one would like

to associate nucleotide variants to their consequences for cancer, mea-

sured by the age of cancer onset. However, each particular variant often

occurs only rarely in natural populations, so it may be difficult to com-

pare the age of onset between those individuals with and without the

variant. In addition, many amino acid substitutions may have a weak

effect on biochemical function, whereas a few substitutions may have

a strong effect. Some a priori way of weighting the expected effects of

particular substitutions would greatly enhance the association between

DNA sequence variants and their consequences for cancer onset.

The association between the nucleotide sequence of DNA mismatch

repair genes and colorectal cancer has been the focus of many recent

studies. In those studies, each observed human subject provides an

age of cancer onset and information about variant nucleotide sites or

amino acid substitutions in the mismatch repair genes. The two prob-

lems mentioned above arise when analyzing the data from those studies:

each particular variant occurs rarely, and some method must be used to

weight the expected consequences of a substitution.

To solve these problems, various computational methods predict the

expected functional consequences of amino acid substitutions. One

method examines the evolutionary history of a gene, and weights more

heavily those substitutions that occur rarely across different species (Ng

and Henikoff 2003). The idea is that relatively rare changes must of-

ten be more constrained by functional consequences of substitutions,
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whereas relatively common changes must often have relatively few dele-

terious consequences. Another method, polymorphism phenotyping

(PolyPhen), combines evolutionary conservation with various measures

of biochemical structure and function (Ramensky et al. 2002).

I obtained two unpublished collections of PolyPhen scores for mis-

match repair gene variants and the associated ages of colorectal can-

cer onset. Figure 11.5 presents a preliminary analysis of those data. I

particularly wish to emphasize the importance of using the full age of

onset data. Many analyses simply classify age of onset as early or late,

throwing out the most valuable quantitative aspect of outcome. I have

emphasized throughout this book that age of onset provides the sum-

mary measure of outcome when studying how various causal factors

influence cancer progression.

Figure 11.5a shows the association between single amino acid sub-

stitutions and age of onset. These data came from a survey of the lit-

erature, in which each publication usually reported a single amino acid

variant believed to influence mismatch repair function and age of cancer

onset. These confirmed variants form a generally accepted set of DNA

repair variants with functional consequences on which we could test the

efficacy of the PolyPhen scoring method.

The raw data for Figure 11.5a scatter widely, because so many factors

influence the age of cancer onset for each individual case. I used a sliding

window analysis to illustrate the strong trend in the data (see figure

legend). The result shows a clear tendency for increased PolyPhen score

to predict the association between a substitution and the rate of cancer

progression measured by age of onset.

The confirmed variants in Figure 11.5a generally had some indepen-

dent evidence that suggested functional consequence for DNA repair

and cancer. If PolyPhen does indeed provide a computational method

for predicting consequence, then the method should also work on nu-

cleotide sequences obtained without any a priori information about the

functional consequence of variant sites.

Figure 11.5b shows unpublished data collected from individuals for

whom early-onset colorectal cancer runs in their family. For each in-

dividual, I received the age of colorectal cancer onset and the average

PolyPhen score over all 34 variant amino acid sites in the data set. I

excluded 26 individuals who did not have any variants and so did not

have a predictive PolyPhen score. The remaining 62 individuals each had
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Figure 11.5 Association between cancer onset and the predicted functional
consequences of amino acid substitution in DNA repair genes measured by the
PolyPhen score. (a) A data set of 78 individuals culled from the literature, in
which each paper reported the age of onset and the associated amino acid sub-
stitution. The PolyPhen score was calculated for the single amino acid replace-
ment. Each observation provided a PolyPhen score and an age of onset. I first
sorted the observations by PolyPhen score. I then calculated a sliding window
of average values with a window size of 35. Each point in the figure shows the
average value of age and PolyPhen score in the window. (b) Individuals who
come from families with a tendency for early-onset colorectal cancer. For each
individual, DNA sequences were obtained from parts of the mismatch repair
genes Mlh1, Mlh2, and Mlh6. I used a window size of 25 for this analysis of
the 62 individuals with nonzero PolyPhen scores. I obtained these data and all
calculations of PolyPhen scores from the laboratory of Steven M. Lipkin at the
University of California, Irvine.

one or a few variant sites. The sliding window analysis in Figure 11.5b

demonstrates the predictive power of the PolyPhen scoring for age of

onset. In this case, the variants were collected blindly with regard to
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prior knowledge about the functional consequences of particular amino

acid substitutions.

Many factors influence age of onset, so the PolyPhen scoring on sin-

gle variants will provide only a small amount of information about pre-

dicted risk and age of onset. The value of the analysis may come from

hypotheses about which amino acid sites and which kinds of biochemi-

cal function affect DNA repair efficacy, and how those changes in efficacy

influence cancer progression. Such hypotheses could be tested in labo-

ratory animals, in which one could construct genotypes with particular

amino acid substitutions.

COMBINED EFFECT OF VARIANTS AT MULTIPLE SITES

Cancer often aggregates in families, suggesting a strong inherited

component that predisposes individuals to disease. In two well-studied

cancers, breast and colon, only about 10–20% of the inherited compo-

nent can be explained by known variants (Anglian Breast Cancer Study

Group 2000; de la Chapelle 2004). Those known variants include BRCA1

and BRCA2 for breast cancer and APC and the mismatch repair genes

for colon cancer. Each of those variants causes a large change in the

incidence curve. The large effect of such variants makes them relatively

easy to study: compare the incidence curves between genotypes with

and without the variant. A small sample provides sufficient power to

observe the large effect.

Many other variants, each with small effect on incidence, may also oc-

cur. However, finding such variants is difficult. One must first identify a

candidate variant, and then compare incidence between genotypes with

and without the variant in large samples. Such studies remain beyond

what can easily be accomplished, even with advancing technology.

STATISTICAL STUDIES OF INHERITANCE

In the absence of direct knowledge about many genes that predispose

to cancer, statistical studies have analyzed how environmental and ge-

netic variation contribute to differences in cancer risk. For example,

reflecting environmental effects, immigrants take on the risk of colon

cancer that is specific for their new home (Haenszel and Kurihara 1968).

The risk of developing colon cancer for an individual in a specific ge-

ographical region is strongly associated with levels of meat consump-

tion (Armstrong and Doll 1975), so changes in diet might explain the
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altered risk of immigrants. Smoking (Doll 1998; Vineis et al. 2004) and

long-term exposure to certain carcinogens (Vineis and Pirastu 1997) also

cause significant environmental risk.

To determine the genetic component of risk, statistical studies com-

pare the frequencies of cancer occurrence between monozygotic twins,

dizygotic twins, other family members, and unrelated individuals (Licht-

enstein et al. 2000). In principle, such studies could separate the con-

tributions of shared genes, shared environment in the family, and dif-

ferences in environment between unrelated individuals. However, the

statistical power of such studies tends to be low, with wide confidence

intervals for the relative roles of genes and environment. This problem

is particularly severe for the rarer cancers because of low sample sizes

in such studies.

A large study from the Swedish Family-Cancer database provided nar-

rower confidence intervals for the proportions of cancer variance that

are explained by genes and environment (Czene et al. 2002). The esti-

mates for genetic contribution ranged from 1% to 53%, depending on the

type of cancer. These values may be lower limits, because certain types

of genetic variation could not be separated from the effects of a shared

environment. Confounding components include similar genotypes be-

tween parents, which would be classed as a shared environmental effect

rather than a genetic effect. In this study, Mendelian loci explain only

part of the total genetic contribution to cancer risk, indicating a signifi-

cant role for polygenic variation.

An interesting analysis of the Anglian Breast Cancer Study Group

study took a different approach to genetic predisposition (Pharoah et al.

2002). The authors first removed the two known Mendelian loci asso-

ciated with breast cancer—BRCA1 and BRCA2—from the analysis, and

then fitted the remaining risk distribution to a polygenic model in which

the small risks per variant allele are multiplied across loci. According

to the fitted model, the 20% of the population that has the highest level

of genetic predisposition has a 40-fold greater risk than the 20% of the

population with the lowest level of predisposition. The model also pre-

dicted that more than 50% of breast cancers occur in the 12% of the

population with the greatest predisposition. The known Mendelian loci

account for only a small proportion of the total genetic risk, with the

remainder being explained by polygenic variation.
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It is difficult to tell how reliable those conclusions are about polygenic

inheritance. Other models could be fit to the same data, with different

contributions of Mendelian loci, polygenic loci, and environment. I favor

the strong emphasis on polygenic inheritance, because most complex

quantitative traits in nature show extensive polygenic variation (Barton

and Keightley 2002; Houle 1992; Mousseau and Roff 1987). However,

statistical models are hard to test directly, because it is difficult to obtain

evidence that strongly supports one model and rules out other plausible

models. One is often left with conclusions that are based as much on

prior belief as on data.

DIRECT STUDIES OF VARIANTS AT MULTIPLE SITES

Ideally, one would like to know how particular genetic variants affect

the biochemistry of cells, and how those biochemical effects influence

progression to cancer. Although we are still a long way from this ideal,

recent studies of DNA repair genes provide hints about what could be

learned (Mohrenweiser et al. 2003).

Individuals vary in the ability of their cells to repair DNA damage

(Berwick and Vineis 2000). A relatively low repair efficiency is associated

with a higher risk of cancer. Presumably, the association arises because

higher rates of unrepaired somatic mutations and chromosomal aberra-

tions contribute to faster progression to cancer. Repair genes also play

a role in sensing genetic damage and initiating apoptosis.

Most studies of repair capacity measure the effects of mutagens on

DNA damage in lymphocytes. For example, a mutagen can be applied to

cultures of lymphocytes; after a period of time, damage can be measured

by the numbers of unrepaired single-strand or double-strand breaks, or

by incorporation of a radioisotope. To study the role of DNA repair

in cancer, measurements compare individuals with and without cancer.

Berwick and Vineis (2000) summarized 64 different studies that used

a variety of methods to quantify repair. In those studies, a relatively

low repair capacity was consistently associated with an approximately

2–10-fold increase in cancer risk.

Roughly speaking, repair efficiency has an inheritance pattern that is

typical of a quantitative trait. A few rare Mendelian disorders cause se-

vere deficiencies in repair capacity. Apart from those rare cases, repair

capacity shows a continuous pattern of variation and has a significant
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Figure 11.6 Schematic summary of breast cancer incidence in individuals with
varying levels of relatedness to an index case. Redrawn from Peto and Mack
(2000).

heritable component (Grossman et al. 1999; Cloos et al. 1999; Roberts

et al. 1999). Measures of variability and heritability are statistical de-

scriptions of the genetics of repair. Recent studies have made the first

steps toward understanding the mechanistic relations between genetic

variants and altered phenotypes.

Many genes in the five key repair pathways for different types of DNA

damage are known (Bernstein et al. 2002; Thompson and Schild 2002;

Mohrenweiser et al. 2003), so genetic variants can be identified by se-

quencing the loci involved. Specific variants can also be constructed,

and their physiological consequences tested in cell-based assay systems.

Mohrenweiser et al. (2003) list 22 genes in the core pathway of the MMR

system. This system primarily corrects mismatches and short insertion

or deletion loops that arise during replication or recombination (Hsieh

2001). The MMR system increases the accuracy of replication by a factor

of 100–1,000.

Eighty-five different variants have been found in seventeen different

MMR genes that were screened in at least fifty unrelated individuals

(Mohrenweiser et al. 2003). Of those variants, 38% occurred at a fre-

quency of 2% or more; 21% occurred at a frequency of 5% or more;

and 12% occurred at a frequency of 20% or more. The other DNA re-

pair pathways provided similar results, as summarized by Mohrenweiser
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et al. (2003). In 74 repair genes from various pathways, the average fre-

quency of the wild-type allele is approximately 80%, with the remaining

20% comprised of different allelic variants. Among the 148 alleles per

person at the 74 repair loci, the average number of allelic variants is

expected to be approximately 30. Presumably, each individual carries a

very rare or unique genotype.

In summary, small variations in DNA repair are highly heritable, DNA

repair efficiency is correlated with cancer risk, and there are widespread

amino acid polymorphisms in the known repair genes. The next step

will be to link those polymorphisms to variations in the biochemistry of

repair, providing a mechanistic understanding of how genetic variation

influences an important aspect of cancer predisposition (de Boer 2002).

AGE-SPECIFIC INCIDENCE

The polymorphisms that occur in DNA repair genes hint at variations

in cellular physiology that may be very common. The connection be-

tween DNA repair efficiency and cancer seems plausible, because so-

matic mutations and chromosomal aberrations probably have a key role

in cancer progression. However, at present, we cannot make a simple

mechanistic connection between repair efficacy and the rate of progres-

sion to cancer.

Currently, the most interesting studies of multisite variants and age-

specific incidence link aggregation of cases in families to age of onset.

Presumably, familial cases that rule out known major single-site variants

arise from multisite variants shared by relatives.

Peto and Mack (2000) noted that women who are at high risk of devel-

oping breast cancer show an approximately constant incidence of cancer

per year after a certain age, whereas in most individuals incidence rises

significantly with age (Figure 11.6). This pattern appears in three differ-

ent classes of susceptible individuals after the age at which a particular

patient develops cancer. I refer to the individual who first has cancer as

the patient or the index case, and the age of this first diagnosis as the

index age.

In the first class, an index case with monolateral breast cancer has

an annual risk of developing cancer in the other (contralateral) breast

of approximately 0.7% per year after the index age. A different study

found a similar result, with risk in the contralateral breast of about 0.5%

per year after the initial cancer (Figure 11.7).
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Figure 11.7 Incidence of cancer in the contralateral breast after the first pri-
mary breast cancer, excluding cases in which the contralateral cancer was di-
agnosed within three months of the first cancer. Incidence per year shown on
a linear scale per 100,000 population. The earliest cases (solid line) probably
carry an excess frequency of BRCA1 or BRCA2 mutations (Peto et al. 1999). The
decline in incidence for those cases may arise because the subset of individuals
who carry BRCA1 or BRCA2 mutations may more rapidly develop contralateral
tumors. Redrawn from Hartman et al. (2005).

In the second class, a monozygotic twin of an index case has an ap-

proximate risk of 1.3% per year after the index age, which is again ap-

proximately 0.7% per breast per year.

In the third class, mothers and sisters of an index case have a risk of

approximately 0.3–0.4% per year after they have passed the index age.

Single locus mutations of large effect, such as BRCA1 or BRCA2, ex-

plain less than one-fifth of familial aggregation (Anglian Breast Cancer

Study Group 2000). Thus, the patterns of high and nearly constant inci-

dence most likely arise from familial inheritance of variants at multiple

sites—polygenic inheritance.

The tendency for risk after the index age to remain nearly constant

for the remainder of life raises an interesting puzzle: what causes that

early plateau of incidence in highly susceptible individuals?

HYPOTHESIS FOR EARLY PLATEAU OF INCIDENCE

Peto and Mack (2000) concluded: “A . . . model that may account for

these peculiar temporal patterns is that many, and perhaps most, breast
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cancers arise in a susceptible minority whose incidence, at least on av-

erage, has increased to a high constant level at a predetermined age that

varies between families.”

But why should predisposed individuals have constant annual risks

after a certain age? Individuals who are not predisposed to breast cancer

show an increasing risk with age, and the same is true for the other most

common types of epithelial cancer when risk is measured in the absence

of information about genetic predisposition.

Frank (2004d) proposed the following explanation for Peto and Mack’s

(2000) observations. Suppose, at birth, that each of L different cell lin-

eages in the breast has n rate-limiting steps remaining before cancer.

I have discussed previously that, as individuals age, their cell lineages

may progress independently. Over time, the various lineages form a

distribution of stages: some still have n stages remaining before cancer,

others have progressed part way and have, for example, n − a stages

remaining.

If some cell lineages in an individual have passed through all but the

final stage in cancer progression, with only one stage remaining, then

that individual’s annual risk is constant—the risk is just the constant

probability of passing to the final stage. Families that have an increased

predisposition may progress through the first n−1 stages quickly; sub-

sequently, their annual risk is the constant probability of passing the

final stage. Families with low genetic risk move through the early stages

slowly: in middle or late life, members of those families typically have

more than one stage to pass and so continue to have an increasing rate

of risk with advancing age.

If the early stages in cancer progression involve somatic mutations

or chromosomal aberrations, impaired DNA repair efficiency could ex-

plain why families with increased predisposition move quickly through

the early stages. When they have progressed through the early stages,

individuals from those families have a high constant risk later in life

while awaiting the final transition. By contrast, better repair efficiency

slows the transition through the early stages. Slow transitions early in

life mean more stages to pass through later in life. With more stages

remaining, individuals at low risk continue to show an increase in inci-

dence with age (Frank 2004d).
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11.2 Progression and Incidence Affect Genetic Variation

The previous section described how genetic variants affect progres-

sion and incidence: the pathway from genes through development to

phenotype. In this section, I analyze how progression and incidence

affect the frequency of variants in populations: the pathway from phe-

notype through natural selection to gene frequency.

EVOLUTIONARY FORCES

Many forces potentially influence gene frequency. The wide range of

alternatives makes it easy to fit some model to the observed distribution

of frequencies, but hard to determine if the fit has any meaning.

Only natural selection provides a simple comparative prediction: the

stronger the deleterious effect of a cancer-predisposing variant on sur-

vival and reproduction, the lower the expected frequency of that variant.

A comparative prediction forecasts the overall tendency or trend, not the

relative frequency of any particular variant.

In this section, I summarize the major evolutionary forces. The fol-

lowing section evaluates the comparative prediction that the deleterious

effects of a variant influence its frequency.

DRIFT

Drift encompasses various chance events. Each copy of a genetic vari-

ant lives an individual and descends, on average, to λ babies. Most pop-

ulations neither grow nor shrink continually, and so the total number

of gene copies remains about the same with λ ≈ 1. If the population

shrunk in one generation to 10% of its current size, then λ = 0.1.

A few simple calculations illustrate the key role of drift for rare vari-

ants. Consider a population of size N with a particular variant at fre-

quency p. In one generation, how much does p typically change if ran-

dom drift is the only evolutionary force acting?

The number of copies of a particular variant is α = p2N, where N is

the size of the population, and 2N is the total number of gene copies—

the factor of 2 arises because each diploid individual carries two copies

of each gene.

In the next generation, the number of variant gene copies follows a

Poisson distribution with an average of αλ in a progeny gene pool of
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size 2Nλ. As long as αλ is not too small, we can use the normal approx-

imation for the Poisson distribution, which tells us that the number of

variant gene copies in the next generation approximately follows a nor-

mal distribution with mean αλ and standard deviation
√
αλ. In terms

of variant gene frequency p in the next generation, the 95% confidence

interval is p(1± 2/
√
αλ).

How much does drift change gene frequency in one generation in a

stable population, λ = 1? Suppose the gene frequency starts at p = 10−5

in a gene pool of size 2N = 107, so there are originally α = p2N = 100

variant gene copies. In the next generation, the frequency of the variant

gene has a 95% confidence interval of p(1 ± 0.2), which shows that 5%

of the time the gene frequency will change by more than 20% in one

generation. Over relatively short time periods, significant changes in

the frequency of rare variants may occur.

LINKAGE AND HITCHHIKING

Consider a new variant that exists as a single copy in the population

at frequency p = 1/2N. Suppose that focal variant resides on a chromo-

some near another site that has a rare, favorable variant. Let the only

force acting on the focal variant be the benefit derived from residing

near a favorable variant at a nearby site.

Suppose the neighboring site causes an average increase in reproduc-

tion of 1+ s compared with the normal value of one. Further, suppose

the focal site and beneficial neighbor recombine at a rate of r per gen-

eration. Then the frequency of the focal site tends to increase if s > r ,
that is, if the selective benefit, s, of being linked to an advantageous al-

lele is greater than the rate, r , at which that linkage is broken down by

recombination. If the selective benefit happens to be fairly strong, then

the beneficial site will significantly increase the frequency of all of the

closely linked variants.

PLEIOTROPY

Many variants affect more than one phenotype or more than one com-

ponent of survival and reproduction. Suppose, for example, that a vari-

ant enhanced the rate of wound healing. On the one hand, rapid healing

would probably provide some benefit, perhaps against infection. On

the other hand, wound healing can be carcinogenic probably because of
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the enhanced rate of symmetric mitoses, and more rapid wound heal-

ing may be more carcinogenic. So a variant that increased the rate of

wound healing might rise to high frequency even though it shifts cancer

incidence to earlier ages.

In general, when a variant shifts cancer to earlier ages and occurs

at unexpectedly high frequency, pleiotropy is a reasonable hypothesis.

However, it is often difficult to figure out the multiple effects of a variant

and the respective consequences for survival and reproduction.

OVERDOMINANCE AND EPISTASIS: VARIABLE GENETIC BACKGROUND

Overdominance occurs when, at a locus with two alternative alleles,

the heterozygote is more fit than either homozygote. Sickle cell anemia

provides the classic example. An individual with one sickle cell vari-

ant allele enjoys protection against malaria, but an individual with two

copies of the variant suffers severe disease from aberrations in red blood

cells. Those opposing benefits and costs influence the frequency of the

sickle cell variant.

Overdominance probably occurs rarely for variants that directly cause

significant shifts of cancer to earlier ages. Most carcinogenic variants act

in a physiologically recessive way, such that a cell with one normal copy

and one variant copy has a normal phenotype. Deleterious effects at the

cellular level arise only when both allelic copies suffer loss of function.

However, an individual needs to carry only one mutated copy to be at

risk; the cancerous phenotype arises after somatic mutation knocks out

the second copy in a small fraction of cells. So, although most cancer-

predisposing mutations are physiologically recessive, they are inherited

as dominant alleles (Marsh and Zori 2002). So far, only three genes

(RET , MET , and CDK4) have been found with inherited variants that

act dominantly within cells (as oncogenes) among 31 cancer genes with

single locus predisposing variants (Marsh and Zori 2002).

Pleiotropic overdominance may occur, in which a heterozygote locus

that predisposes to cancer has beneficial effects on some other pheno-

type. Probably some cases of pleiotropic overdominance will eventually

be discovered, but no evidence presently suggests this process as a ma-

jor force maintaining genetic variability in predisposition.

Epistasis arises when the effect of a variant depends on the presence

or absence of variants at other loci. Epistasis is much like overdomi-

nance: both processes cause changes in the phenotypic consequences of
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a variant in relation to the genetic background in which the variant lives.

One can think of copies of the variant as living in genetically variable en-

vironments, favored in some environments and disfavored in others.

VARIABLE ENVIRONMENT

External environments also vary. For example, a variant may be disfa-

vored in certain carcinogenic environments and favored in the absence

of those environments. The variable selection can maintain variants that

predispose to cancer at frequencies higher than expected through the

deleterious effects of increased cancer incidence.

MUTATION AND SELECTION

When thinking about cancer, we can often take a simple point of view:

mutation creates deleterious variants that predispose to cancer, and se-

lection removes those deleterious variants from the population. The

other evolutionary forces listed above may or may not act in any particu-

lar case, but deleterious mutation and the purging of those mutations by

natural selection occur continually. The balance between mutation and

selection sets the default against which we should compare observed

frequencies.

MUTATION-SELECTION BALANCE: A COMPARATIVE PREDICTION

It is often difficult to measure precisely the rate of mutation and the

rate at which natural selection purges deleterious mutations. In addi-

tion, other forces such as drift and pleiotropy often affect the frequency

of deleterious, predisposing variants. So any attempt to predict pre-

cisely the frequency of a deleterious variant or to fit some model with

estimated parameters of mutation and selection would mislead: one can

calculate precise predictions or estimate parameters, but those calcula-

tions or estimations would only provide a false sense of precision.

We can estimate the relative strengths of mutation and selection with-

in an order of magnitude or so. Those rough estimates provide guide-

lines to the expected frequencies of deleterious variants. We can also

make two simple comparative predictions. First, as selection against

variants increases, the observed frequency of the variants declines. Sec-

ond, as mutation rate at a particular locus increases, the observed fre-

quency of deleterious variants at that locus increases.
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These rough guidelines and comparative predictions set a baseline

for expectations of variant allele frequency. When observations deviate

significantly from expectations, then we may turn to forces other than a

balance between deleterious mutation and purging by natural selection.

HIGH PENETRANCE AND EARLY ONSET

Suppose a mutation is expressed in all carriers, and those carriers

die before they have reproduced. In this situation, each case must arise

from a new mutation, and the frequency of mutated alleles, q, is roughly

equivalent to the mutation rate per generation, u, that is, q = u.

Inherited cases of retinoblastoma, Wilms’ tumor, and skin cancer in

xeroderma pigmentosum transmit as dominant mutations. Most indi-

viduals who carry a highly penetrant mutation develop the disease dur-

ing childhood or early life. Without treatment, carriers do not usually

reproduce. These diseases all occur at frequencies, q, of approximately

10−5–10−4 (Vogelstein and Kinzler 2002).

The commonly quoted values for mutation rate, u, tend to be in the

range of 10−6–10−5 per gene per generation (Drake et al. 1998), an order

of magnitude lower than the frequency of cases. For this type of ap-

proximate calculation, a match within an order of magnitude suggests

that we have roughly the right idea about the factors that influence allele

frequencies.

Certainly, other estimates of frequency for these diseases or other

early-onset cancers will not match so closely to the usual estimate of

the mutation rate. A mismatch implicates some force beyond the stan-

dard baseline mutation rate and immediate removal of all mutations by

natural selection. For example, the penetrance may be less than perfect,

some carriers may reproduce, or the gene may be unusually mutable.

AGE OF ONSET AND THE FORCE OF SELECTION

Some inherited mutations have low penetrance or cause later-onset

disease. Natural selection removes a mutation from the population in

proportion both to the probability that it causes disease and to the re-

duction in reproductive success of those individuals who express the

disease (Rose 1991; Nunney 1999, 2003; Frank 2004e). Reduction in

reproductive success depends on the age of onset: later onset has less

effect on transmission of alleles to the next generation. Figure 11.8
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Figure 11.8 The force of selection at different ages. Loss in fitness caused by
cancer is the force of selection averaged over the probabilities of death at dif-

ferent ages. This loss is pr = ∫ T
0 ẋn(t)f (t)dt , where pr , the fractional loss in

fitness, is the averaged product of the age-specific incidence, ẋn(t), and the loss
in reproduction caused by death at age t , f (t). The age-specific incidence pro-
vides a measure of penetrance at different ages. No good data exist to estimate
the force of selection at different ages for humans; however, the curve shown
here gives the approximate shape of the force of selection.

shows the technical details. The following paragraphs describe the main

points.

Suppose the probability of expression in a carrier—the penetrance—

is p, and the reduction in reproductive success is r . If q is the frequency

of the mutant allele in the population, then qp is the frequency of cases,

and the rate at which mutations are removed in each generation is qpr ,
the frequency of cases multiplied by the reduction in reproductive suc-

cess in each case. Equilibrium occurs when mutant alleles purged by

selection match the influx of new mutations at rate u, so at equilibrium,

qpr ≈ u.

Familial adenomatous polyposis.—Inherited mutations of the APC gene

act in a dominant manner and cause the colon cancer syndrome familial

adenomatous polyposis (FAP) (Kinzler and Vogelstein 2002). Nearly all

carriers develop cancer, with a median age of onset of about 40 years.

The frequency of cases, qp, is of the order of 10−4. We do not have

historical data on the reduction in reproductive success that occurs in

the absence of treatment. A reasonable value is r ≈ 10−1, which takes
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into account the fact that the age of reproduction in the past was proba-

bly somewhat lower than in modern societies. In this case, qpr ≈ 10−5,

which is again fairly close to the standard estimate for the mutation rate.

Hereditary nonpolyposis colon cancer.—Mutations in the DNA mismatch

repair (MMR) system lead to hereditary nonpolyposis colon cancer (HN-

PCC) (Boland 2002). Mutations in several MMR genes cause an increase

in the somatic mutation rate, and more frequent somatic mutations lead

to a high probability of early-onset cancer. The median age of diagnosis

for HNPCC is about 42 years (Lynch et al. 1995). The frequency of cases

is at least of the order of 10−3, but may be more because HNPCC can be

difficult to distinguish from colon cancers that arise in the absence of

MMR defects.

Setting the level of reproductive loss at r = 10−1, the rate of removal

of MMR mutations, qpr , is 10−4 or higher. This value would indicate a

high mutation rate if there were only one MMR locus. However, muta-

tions that increase the risk of developing HNPCC have been identified in

five MMR loci so far (Boland 2002), and mutations that influence HNPCC

may also occur in other MMR genes. There are 22 genes in the core MMR

pathway (Mohrenweiser et al. 2003). The effective mutation rate is nu,

where n is the number of MMR loci and u is the mutation rate per locus.

Using a range for n of approximately 3–10, we obtain a range for the

mutation rate per locus of approximately 1–3 ×10−5.

Neurofibromatosis type 1.—Inherited mutations in the neurofibromato-

sis 1 (NF1) gene cause a variety of symptoms with variable penetrance

(Gutmann and Collins 2002). Carriers may express various nonlethal

deformities: numerous flat, pigmented skin spots; freckling; pigmented

nodules of the iris; and soft, fleshy peripheral tumors that arise from

nerves (neurofibromas). Several other complications develop, including

seizures, learning disabilities, and scoliosis.

NF1 is among the most common dominantly inherited diseases of

humans. Gutmann and Collins (2002) estimated prevalence of about

3×10−4, based on several earlier studies (Crowe et al. 1956; Huson et al.

1989; Sergeyev 1975; Samuelsson and Axelsson 1981). Carriers almost

always express some of the symptoms—a penetrance, p, of nearly one.

The disease rarely reduces potential fertility, but actual reproductive

success of carriers has been estimated to be about one-half of normal
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individuals, r ≈ 0.5 (Huson et al. 1989). Thus, qpr ≈ 10−4, which implies

a high germline mutation rate.

Few families transmit a mutation through several generations, and

most cases arise from new mutations (Gutmann and Collins 2002). A

wide variety of DNA lesions occur in the gene, including translocations,

large chromosomal deletions, smaller deletions within the gene, small

rearrangements within the gene, and point mutations. No particular

mutational hotspots have been detected. This large gene spans almost

9 kb of coding DNA over at least 57 exons and, including the intron

regions, approximately 300 kb of total DNA. Perhaps the large size con-

tributes to the high rate at which loss of function mutations arise. It will

be interesting to learn if other special attributes of this gene cause the

apparently elevated mutation rate.

Hereditary breast cancer.—Mutations in BRCA1, which has an impor-

tant function in the repair of double-strand DNA breaks, confer a high

probability of developing breast or ovarian cancer (Couch and Weber

2002). Current estimates for the penetrance of breast cancer in carriers

of BRCA1 mutations range from 56% to 86% (Couch and Weber 2002).

Lack of functional BRCA1 leads to chromosomal abnormalities (Welcsh

and King 2001), a common feature of cancer cells. The median age of

onset is approximately 50 years (Ford et al. 1998), which is later than for

most of the other cancers that follow dominant Mendelian inheritance.

The frequency of BRCA1 mutant alleles and associated cases varies in

different populations over the range 10−3–10−2 (Tonin et al. 1995; Couch

and Weber 1996; Struewing et al. 1997; Couch and Weber 2002). No data

measure the decrease in reproduction in carriers of BRCA1 mutations:

a reasonable guess would be in the range 10−2–10−1. These values give

an estimate for qpr of 10−5–10−3, which is somewhat higher than the

standard assumption of 10−6–10−5 for the mutation rate.

Welcsh and King (2001) suggested that BRCA1 may have an elevated

somatic mutation rate because of the high density of repetitive DNA

elements in the gene. Those repeats may also cause a higher germline

mutation rate, which would explain the higher than expected frequency

of variants in populations.

Alternatively, Harpending and Cochran (2006) argued that natural se-

lection of BRCA1 variants may be more strongly affected by that gene’s

role in early brain growth and development rather than in DNA repair.
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Such pleiotropy could explain the elevated frequency of BRCA1 if the

variants had beneficial effects on brain development. In particular, Harp-

ending and Cochran (2006) argue that heterozygotes for BRCA1 variants

can in some environments have beneficial neural effects, but the variant

homozygotes would be at a disadvantage. A mild heterozygote advan-

tage balanced against strongly deleterious effects in the variant homozy-

gotes could explain the observed frequency of BRCA1 variants. The age

of variant BRCA1 alleles may provide clues about the forces that affect

allele frequencies.

THE AGE OF ALLELES: A COMPARATIVE PREDICTION

Variants that cause greater reproductive loss will disappear from the

population faster than variants that cause relatively lower reproductive

loss.

In the simplest case, each new variant causes early death before repro-

duction, and each variant only lives for a generation. Lower penetrance

or later onset imposes a weaker selective sieve against variants, allowing

the variants a longer time before extinction.

Soon, we will have enough data on the DNA sequences of variants to

allow reconstruction of their history and the time back to their com-

mon ancestor—the age of the allele. If the age of alleles is primarily

determined by a balance between the origin of novel variants by mu-

tation and clearance from the population by selection, then those ages

should follow the simple prediction that more deleterious alleles tend to

last a shorter period of time. Alternatively, forces other than mutation-

selection balance may determine the age of alleles.

Consider, for example, the two alternative hypotheses for BRCA1 vari-

ant frequency. If the elevated frequency of BRCA1 variants arises from

a higher germline mutation rate for that gene balanced against contin-

ual loss of variants by selection, then most variants at this locus should

be relatively young (recent in origin). By contrast, if the elevated fre-

quency arises from pleiotropic beneficial effects on neural development

balanced against deleterious effects on cancer progression, then most

variants at this locus should be relatively old.
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11.3 Few Common or Many Rare Variants?

I have discussed a small number of mutations in which carriers suffer

significantly earlier onset of disease. In those cases, a single mutation

greatly increases incidence. Such mutations often appear to occur in key

genes that directly affect progression of the particular type of cancer.

The search for single mutations of large effect has intensified over

the past few years. However, few new mutations have been discovered.

Most of the inherited predisposition to cancer remains unexplained. The

widespread heritability of cancer appears to be caused by several vari-

ants each of relatively small effect—what is often called polygenic inher-

itance.

Within this large, polygenic component of heritability, do genetic vari-

ants that cause disease tend to be common or rare? Are there relatively

few common, older variants or many rare, newer variants?

Much recent debate in biomedical genetics has turned on these ques-

tions, because methods for estimating genetic risk in particular individ-

uals depend on the frequency of variant alleles (Weiss and Terwilliger

2000; Lee 2002). If most genetic risk comes from a few relatively com-

mon alleles that are relatively old, then those alleles will be associated

with other polymorphisms in the genome that can be used as markers

of risk. Those associations arise because the original mutations will,

by chance, occur in regions in which other single nucleotide polymor-

phisms (SNPs) are located nearby.

By contrast, most genetic risk might come from many rare, young al-

leles. If so, then there will be no consistent association between known

SNPs and genetic predisposition. Each particular mutation will have its

own profile of linked marker polymorphisms, often specific for a par-

ticular population. Those linkage profiles will differ for each mutation.

Because there may be many mutations, with each making only a small

contribution to genetic risk, no overall association will occur between

known marker polymorphisms and total genetic risk.

The available data do not definitively distinguish between a few com-

mon, older variants and many rare, younger variants. Wright et al. (2003)

argued eloquently in favor of many rare variants; I agree with their logic.

However, the issue here does not turn on point of view, but rather on the

actual distribution of variants and their effects. I discuss two examples

that provide the first clues.
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MULTIPLE COLON ADENOMAS

Fearnhead et al. (2004) collated data on 124 individuals with multi-

ple adenomatous polyps. They screened those individuals for germline

DNA variants in five genes known to influence colon cancer progression,

and found 13 different variants. They compared the frequency of those

13 variants in the 124 cases with the frequency in 483 random control

individuals.

Table 11.1 shows the frequencies of the 13 variants in cases and con-

trols. These results suggest that many rare variants, each of small effect,

contribute significantly to the heritability of cancer. In this study, almost

all of the variants were single amino acid substitutions. Each such small

change in protein shape and charge may contribute a small amount to

disease. Many such changes, each rare, may in the aggregate explain

much of the genetic basis of disease.

Fearnhead et al. (2004) support their argument that single amino acid

substitutions in proteins contribute to disease by evaluating the func-

tional changes for many of the mutations listed in Table 11.1. Almost

all of the variants occur in regions of their proteins known to have im-

portant functional roles in pathways that are often disrupted in tumors.

I briefly summarize two examples from Fearnhead et al.’s (2004) discus-

sion.

The APC variant E1317Q alters charge in the region that binds to β-

catenin. Mutation of the APC regulatory pathway appears to be a com-

mon first step in adenoma formation (Kinzler and Vogelstein 2002). APC

represses β-catenin, which may have two different consequences for cel-

lular growth. First, β-catenin may enhance expression of c-Myc and other

proteins that promote cellular division. Second, β-catenin may play a

role in cell adhesion processes, effectively increasing the stickiness of

surface epithelial cells. In either case, repression of β-catenin reduces

the tendency for abnormal tissue expansion. In tumors, somatic mu-

tations in APC usually include domains involved in binding β-catenin,

releasing β-catenin from the suppressive effects of APC (Kinzler and

Vogelstein 2002).

The hMLH1 variant K618A alters the charge of a highly conserved

region of this DNA mismatch repair protein. Several deleterious muta-

tions have been reported in this region (Wijnen et al. 1996; Peltomaki

and Vasen 1997; Mitchell et al. 2002), and studies in yeast demonstrated
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Table 11.1 Variants in cases with multiple polyps and in controls

% carriers % carriers
Gene Mutation in cases in controls

APC E1317Q 2.42 1.25
CTNNB1 N287S 0.81 0.62
AXIN1 P312T 0.81 0.00
AXIN1 R398H 0.81 0.00
AXIN1 L445M 0.81 0.00
AXIN1 D545E 1.61 1.28
AXIN1 G700S 4.84 3.96
AXIN1 R891Q 3.91 2.93
hMLH1 G22A 0.81 0.21
hMLH1 K618A 3.22 2.07
hMLH2 H46Q 0.81 0.00
hMLH2 ex4SDS 0.81 0.00
hMLH2 E808X 0.81 0.00

Combined 24.9 11.5

From Tables 2 and 3 of Fearnhead et al. (2004), who contributed new data
and also collated data from various sources (Frayling et al. 1998; Lamlum et al.
2000; Webster et al. 2000; Dahmen et al. 2001; Taniguchi et al. 2002; Guerrette
et al. 1998; Tannergard et al. 1995). The mutation ex4SDS is an exon 4 splice
donor site. Mutations of the form α#β describe amino acid substitutions α → β
at codon position #.

that substitutions at position 618 cause functional changes (Shimodaira

et al. 1998). hMLH1 works in various heteromeric complexes, includ-

ing interaction with hPMS2 (Buermeyer et al. 1999; Fishel 2001); the

hMLH1 K618A mutation causes more than 85% loss of interaction be-

tween hMLH1 and hPMS2 (Guerrette et al. 1999).

DNA REPAIR VARIANTS

Earlier in this chapter, I mentioned that DNA repair efficiency varies

considerably in populations and has a large heritable component (Gross-

man et al. 1999; Cloos et al. 1999; Roberts et al. 1999). In addition, poor

repair efficiency consistently associates with an approximately 2–10-fold

increase in cancer risk (Berwick and Vineis 2000).

The previous section showed that rare variants at DNA mismatch re-

pair loci can predispose to colon cancer. The fact that rare variants can

predispose does not resolve whether the high heritability of repair ef-

ficiency and cancer predisposition arises mainly from relatively rare or
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common alleles. The existing data do not settle the issue. Two lines of

evidence provide clues.

FREQUENCY DISTRIBUTION OF VARIANTS

Mohrenweiser et al. (2003) summarized genetic variation across 74

DNA repair loci. Figure 11.9 shows that the rare, intermediate, and

common alleles contribute equally to the variance in allele frequency.

To understand what this means, consider how to calculate the genetic

variance in allele frequencies.

The contribution of a variant allele with frequency pi to the variance

at its locus is vi = pi(1 − pi). A rare allele at frequency pi = 0.01

contributes vi ≈ 0.01 to the frequency variance. A common allele at

frequency pi = 0.11 contributes vi ≈ 0.1 to the frequency variance, or

about an order of magnitude more than the rare variant. If there were

ten times as many rare variants as common variants, then the rare and

common variants would contribute equally to the total variance.

Figure 11.9 shows that there are more rare variants than common vari-

ants. The excess of rare variants explains why the total contribution to

the variance in allele frequency is about the same for rare, intermediate,

and common alleles.

These calculations provide information about the frequency of vari-

ant alleles. However, these data do not connect the different variants

to their consequences for disease. Inevitably, some of the variants will

have little or no effect, whereas others may significantly increase risk.

The common types are unlikely to be severely deleterious, but beyond

that, no strong conclusions can be made about the effects of the vari-

ant alleles. The data on colon cancer in the previous section show that

rare variants can influence predisposition. The next section shows that

combinations of common variants may also significantly affect predis-

position.

MULTIPLE VARIANTS INCREASE PREDISPOSITION

A pathway such as a particular type of DNA repair forms a quanti-

tative trait that protects against cancer progression. Certain individual

polymorphisms may each reduce the efficacy of the pathway by a small

amount, and consequently cause a small and perhaps undetectable in-

crease in cancer risk. In combination, multiple polymorphisms may sig-

nificantly reduce efficacy and consequently cause a significant rise in
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Figure 11.9 The relative variance in allele frequencies for rare and common
alleles of 74 DNA repair genes. The total number of variants in each frequency
category is shown above the bars. Each rare variant contributes a small frac-
tion of the total variance, but there are many more rare than common variants.
Changes in amino acid sequence define the variants. Data collated by Mohren-
weiser et al. (2003).

cancer risk. Particularly high risk may occur when those polymorphisms

concentrate in one or more key pathways and compromise essential pro-

tective mechanisms (Han et al. 2004; Popanda et al. 2004; Cheng et al.

2005; Gu et al. 2005; Wu et al. 2006).

Wu et al. (2006) measured the frequency of 44 polymorphisms in vari-

ant DNA repair and cell-cycle control genes. They compared frequencies

in 696 patients with bladder cancer versus 629 unaffected controls. The

study focused on the increase in relative risk with a rise in the number

of variant alleles. The hypothesis was that many cases would arise in

individuals who carry a greater than average number of predisposing

polymorphisms in key pathways.

To analyze the role of multiple variants in a sample of modest size,

one must study relatively common variants. If the variants were rare,

very few individuals would carry several variants. Thus, the design of Wu

et al.’s (2006) study focuses attention on the role of multiple common

variants, without addressing how multiple rare variants may contribute

to disease. In spite of this limitation, the study is important because
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much of polygenic predisposition may arise from the combined effect

of many variants. Given the widespread distribution of variant alleles in

populations (Figure 11.9), each individual carries a unique combination

of numerous variants across key pathways in carcinogenesis.

Wu et al.’s (2006) most interesting result concerns the interaction

between smoking and polymorphisms in the DNA repair pathway that

functions in nucleotide-excision repair (NER). The NER pathway removes

bulky DNA adducts frequently caused by the polycyclic aromatic hydro-

carbons in tobacco smoke. Smoking significantly increases bladder can-

cer risk. A few studies have shown that certain single polymorphisms

within the NER pathway associate weakly with greater susceptibility to

bladder cancer (reviewed by Garcia-Closas et al. 2006). Such weak effects

are often difficult to reproduce in subsequent studies.

Wu et al. (2006) included 13 NER variants across nine loci. Among

those who have smoked, individuals with seven or more NER variants

had a relative risk of cancer 3.37 times greater than those with fewer

than four variants, with a 95% confidence interval for relative risk of

2.08–5.48. Among nonsmokers, individuals with seven or more variants

had a relative risk of cancer 1.40 times greater than those with fewer

than four variants, with a 95% confidence interval for relative risk of

0.72–2.73.

Wu et al. (2006) further analyzed all 44 polymorphisms across 33 DNA

repair and cell-cycle control loci. Among the 851 individuals who had

smoked, 74% of the subjects had bladder cancer. The most powerful ge-

netic effect concentrated in the NER loci: among the 124 smokers who

carried three particular NER variants, 97% had bladder cancer, whereas

only 53% of those smokers who did not carry all three variants had blad-

der cancer.

The results in Wu et al.’s (2006) study suggest that multiple NER vari-

ants significantly raise cancer risk in smokers. Such studies are often

difficult replicate for at least three reasons.

First, the strong effect of smoking demonstrates that certain polymor-

phisms may only have strong effects in the presence of particular en-

vironmental challenges. Unmeasured environmental or genetic effects

may often determine whether the particular genotypes under study play

an important role in progression.

Second, the variants under study may not directly affect progression,

but instead be linked to variants at other sites that influence carcino-
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genesis. In other populations, with different genetic linkage relations,

those same variants will associate differently with cancer rates.

Third, such studies suffer from problems common to exploratory sta-

tistical analyses: the number of variables (polymorphisms) and their

combinations greatly exceeds the number of individuals sampled. With

so many different combinations, by chance certain combinations will as-

sociate with strong differences in outcome. Although statistical meth-

ods attempt to deal with such problems, conclusions from such studies

often do not hold up in future attempts to repeat the work.

With those caveats in mind, I now compare Wu et al.’s (2006) re-

sults with a similar study. Garcia-Closas et al. (2006) analyzed 22 poly-

morphisms in seven NER genes among 1,150 bladder cancer cases and

1,149 controls. In agreement with Wu et al. (2006), Garcia-Closas et al.

(2006) found weak effects for each variant when analyzed in isolation,

but found stronger, significant effects when analyzing the interaction

between smoking and multiple NER variant sites. Garcia-Closas et al.

(2006) limited their analysis to pairs of variant NER sites, and found

that certain pairs of variants significantly increased risk in smokers.

The two studies had six NER polymorphisms in common. Four of

those polymorphisms were not particularly important in either study.

At the locus RAD23, one particular variant played a key role in Wu et al.

(2006) but, although present in Garcia-Closas et al. (2006), did not play

a key role in that study. Instead, Garcia-Closas et al. (2006) found that a

different variant site in RAD23 had significant explanatory power when

evaluating interactions between pairs of variant sites. The two studies

also shared a variant at the ERCC6 locus: that variant was important in

multisite interactions in Wu et al. (2006) but not in Garcia-Closas et al.

(2006).

CONCLUSION

Preliminary evidence suggests that risk depends on the combination

of effects at multiple variant sites. Practical sampling issues limit stud-

ies to combinations of common variants. In small samples, combina-

tions of rare variants occur too infrequently to allow study. In the pop-

ulation, more rare variants occur than common variants (Figure 11.9),

so the net contribution of multiple rare variants may be at least as great

as the combinations of common variants.
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The effect per variant of rare versus common variants remains un-

known. Rare alleles will likely have greater effects than the common

alleles if variant frequency depends on mutation, drift, and selection

against deleterious effects. By contrast, common alleles may have larger

effects if variants either have variable consequences depending on envi-

ronment or genetic background, or if variants have beneficial pleiotropic

effects that offset the deleterious traits that increase cancer incidence.

It will not be easy to work out the relative contribution of different

variants and how variants combine to determine disease. But much at-

tention will continue to focus on this problem. Through cancer studies,

we will gain insight into the genetic basis of variability in key functional

components, such as DNA repair and tissue regulation via control of the

cell cycle. By study of functional components and their genetic basis of

variation in efficiency, and how the components interact to determine

disease, we will begin to understand how evolution has shaped the age-

specific curves of failure. Through those curves of failure, we can ana-

lyze the evolutionary design of reliability that sets the nature of disease

and aging.

11.4 Summary

The first part of this chapter described how inherited genetic variants

affect the age of cancer onset. In the future, new genomic technologies

will measure genetic variation with far greater resolution. To interpret

those high-resolution measurements of genetic variation, we will have

to connect the observed genetic variation to the causes of cancer. Such

connections can only be made by studying how genetic variants shift the

age-specific incidence. In the second part of the chapter, I analyzed the

population frequency of predisposing genetic variants in light of various

evolutionary forces. I suggested that studies of cancer predisposition

may lead the way in understanding the structure of inherited genetic

variation for age-specific diseases.

The next chapter turns to the somatic evolution of cancer within in-

dividuals. Most human cancers arise in tissues that renew throughout

life. Those tissues often derive from stem cells. I review the biology of

stem cells and how the shape of stem cell lineages in renewing tissues

affects the progression of cancer.



12 Stem Cells:
Tissue Renewal

Tissue renewal determines the rate of cell division. In many tissues,

renewal derives from rare stem cells. In this chapter, I discuss how

mitotic rate and lineal descent from stem cells set the relative risk of

cancer.

The first section provides background on tissue renewal and cancer.

About 90% of human cancers arise in epithelial tissues. Epithelial layers

in certain organs, such as the intestine and skin, renew continuously

throughout life. Cancer incidence in renewing tissues rises sharply with

age. By contrast, childhood cancers concentrate in tissues that divide

rapidly early in life but relatively little later in life. In general, the age-

specific rate of cell division explains part of the relative risk for different

tissues at different ages.

The second section describes the shape of cell lineages in renewing

tissues. Many tissues that renew frequently have a clear hierarchy of

cell division and differentiation. Rare stem cells divide occasionally,

each division giving rise on average to one replacement stem cell for

future renewal and to one transit cell. The transit cell undergoes multi-

ple rounds of division to produce the various short-lived, differentiated

cells. New stem cell divisions continually replace the lost transit cells.

I review the stem-transit architecture of cell lineages in blood forma-

tion (hematopoiesis), in gastrointestinal and epidermal renewal, and in

sex-specific tissues such as the sperm, breast, and prostate.

The third section discusses the important distinction between sym-

metric and asymmetric stem cell divisions. In symmetric divisions, the

two daughter cells have an equal chance to remain a stem cell or dif-

ferentiate into a transit cell. To maintain a pool of N stem cells in a

niche, each stem cell division produces on average one new stem cell

and one new transit cell; the fate of each cell is determined randomly.

In asymmetric divisions, differentiation happens in a determined way:

one particular daughter cell remains a stem cell, and the other differen-

tiates into a transit cell.

The fourth section analyzes how symmetric versus asymmetric stem

cell divisions affect the accumulation of mutations over time. In every
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mitosis, the DNA duplex splits, each strand acting as a template for repli-

cation to produce a new complementary strand. Most mutations during

replication probably arise on the newly synthesized strand. Under a

program of asymmetric cell division, a stem lineage could reduce its

mutation rate if each stem cell division segregated the oldest template

strands to the daughter destined to remain in the stem lineage and the

newer strands to the daughter destined for the short-lived transit lin-

eage. Recent evidence supports this hypothesis of strand segregation in

stem cell lineages.

The fifth section outlines how tissue compartments prevent compe-

tition between cellular lineages. In tissues such as the intestine and

skin, the spatial architecture restricts lineal descendants of stem cells

to a very narrow region. From a lineage perspective, each compartment

limits the local population size and defines a separate parallel line of

descent and evolution. An expanding clone, perhaps one step along in

carcinogenesis, cannot normally grow beyond its compartmental bound-

aries, thus limiting the target number of cells for the accumulation of

subsequent mutations.

12.1 Background

TISSUE DEMOGRAPHY AND THE DISTRIBUTION OF TUMORS

 Roughly 90% of cancers arise as carcinomas in epithelial (surface) tis-

sues. The epithelium may be the external surface of an organ, such as

the skin or outer lining of the intestine, or internal surfaces of the blad-

der, prostate, breast, and so on. The other 10% of cancers arise mostly

as leukemias (blood) and sarcomas (connective tissues, bone, etc.).

Cairns (1975) listed the tissue distributions from the Danish Cancer

Registry, as shown in Table 12.1. Peto (1977) estimated that for fatal

cancers in Britain, 20% derive from sex-specific epithelial cells (breast,

prostate, ovary), 70% derive from other epithelial cells (lung, intestine,

skin, bladder, pancreas, etc.), and 10% derive from non-epithelial cells

(blood, bone, connective tissues, etc.).

The age-specific rate of cell division explains part of the relative risk

for different tissues. Rare childhood cancers concentrate in tissues that

undergo cell division early in life followed by relative cellular quiescence

(see Section 2.3). Common adult-onset cancers occur in surface epithelia

that renew throughout life, such as in the skin and intestine.
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Table 12.1 Cancer incidence in Denmark, 1943–1967

Type Commonest sites Total cases %

Carcinomas
External epithelia Skin, large intestine,

lung, stomach, cervix 168,591 56

Internal epithelia Breast, prostate, ovary,
bladder, pancreas 110,182 36

Sarcomas and leukemias 23,801 8

From Cairns (1975), based on data from the Danish Cancer Registry (Clemme-
sen 1964, 1969, 1974).

RENEWING TISSUES AND EPITHELIAL RISK

 The epithelium of the human colon turns over at least once per week

throughout life. As cells die at the surface, they are replaced by new cell

divisions. By age 60, a person has been through at least 3,000 replace-

ment cycles, which means that some cell lineages must pass through

many generations. Those renewing lineages would be at high risk for

accumulating mutations and progressing to cancer.

Cairns (1975) recognized the importance of tissue renewal in the dis-

tribution of cell divisions, and the key role that cell division plays in

cancer progression. He wrote:

We may . . . expect to find, especially in animals which undergo
continual cell multiplication during their adult life, the evolution
of mechanisms that protect the animal from being taken over by
any “fitter” cells arising spontaneously during its lifetime—that is
mechanisms for minimising the rate of production of variant cells
and for preventing free competition between cells . . . Because most
of the cell division is occurring in epithelia, that is where we may
expect to find the protective mechanisms most highly developed.

12.2 Stem-Transit Program of Renewal

Cairns (1975) suggested various mechanisms that protect against the

accumulation of somatic mutations and the competition between cell

lineages.

One protective mechanism arises from the distinction between stem

cells and transit cells. The long-lived stem cells renew the tissue over
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Figure 12.1 Pattern of cell division in the epithelial layer of the skin. At the
deepest layer, each basal stem cell divides and produces one cell that remains
at the base to continue as a stem cell and one cell that moves up to form the
transit lineage. The transit lineage divides a few times, and the cells progress
through various developmental stages as they migrate to the surface. Eventu-
ally, the cells lose their nucleus and synthesize the insoluble proteins of the
skin (keratin). As the basal stem cells continue to divide, the flow of cells from
the basal layer pushes the cells above toward the surface. The surface layer
continually sheds dead cells, which are replaced by new cells from below. From
Figure 4.1 of Cairns (1997).

many years. The short-lived transit cells derive from stem cells, divide

several times to provide a temporary population of surface cells, and

then die. Cairns (1975) wrote:

The turnover that occurs in the self-renewing epithelia is the re-
sult of continual shedding of superficial cells balanced by contin-
ual multiplication of the deeper cells. In the simplest examples,
like the skin, cell division is restricted to the deepest (basal) layer
of cells [Figure 12.1]. To keep the number of basal cells constant,
one of the two daughter cells resulting from each cell division must
on average remain in the basal layer and the other must escape and
be discarded.

Cairns contrasted two alternative patterns by which tissues may re-

new themselves. In Figure 12.2a, the lower left cell is the single stem

cell that will renew the local area of tissue. Each stem cell division pro-

duces one new daughter stem cell to the right and one new transit cell

to the top. The transit cell migrates up through the tissue and dies on

the surface. The new stem cell repeats the process. Through 16 cell di-

visions, the original stem cell produces 16 new transit cells that renew
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(a)

(b)

Figure 12.2 Alternative stem-transit designs to renew a tissue based on asym-
metric stem cell division. Each pattern begins with a single stem cell at the
lower left. Time moves to the right, as the stem lineage progresses along the
lower row in each case. Stem cells divide asymmetrically in these two patterns,
each stem cell division producing one daughter transit cell and one daughter
stem cell. All cells that remain in the tissue over time trace their ancestry back
through a linear history of stem cell divisions. Derived from Cairns (1975).

the tissue over time. Those 16 stem cell divisions also trace a linear

history of descent, so that the final stem cell on the bottom right traces

its ancestry back through the lineage that forms the bottom row. Any

mutations that remain in the tissue over time must occur in the stem

cell lineage.

Figure 12.2b presents a second pattern by which the stem lineage may

produce 16 transit cells. The original stem cell at the bottom left divides

to produce one new daughter cell to the right and one new transit cell

to the top. The transit cell then goes through two further rounds of cell

division, producing four transit cells to renew the tissue for each stem

cell division. In this case, the tissue produces 16 transit cells with just

four rounds of stem cell division. Again, any mutations that remain in

the tissue over time must occur in the stem cell lineage, but with just

four stem cell divisions in (b), that pattern reduces the accumulation of

mutations relative to the pattern in (a) with 16 stem cell divisions.

Those tissues that renew most often appear to have a stem-transit

architecture, following the pattern in Figure 12.2b.

HEMATOPOIETIC RENEWAL

The numerous distinct blood cell types derive from hematopoietic

stem cells via a complex transit hierarchy (Weissman 2000; Kondo et al.
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Figure 12.3 The transit lineage of hematopoietic differentiation in adult mice.
Long-term hematopoietic stem cells (LT-HSC) renew throughout life. Short-term
hematopoietic stem cells (ST-HSC) self-renew over a 6–8 week period. Multipo-
tential progenitor (MPP) cells self-renew for less than two weeks, differentiating
into common lymphoid progenitors (CLP) and common myeloid progenitors
(CMP). Those progenitors then differentiate into another layer of precursors,
which then differentiate into the final cell types of the blood. Redrawn from
Kondo et al. (2003) and Shizuru et al. (2005).

2003). Figure 12.3 shows the differentiation hierarchy. Only the long-

term (basal) stem cell lineage survives over time. The other cell lineages

divide a limited number of times, differentiate, and die, to be replaced

by new daughter cells derived from the basal stem lineage. I could not

find any clear statement about the typical number of cell divisions from

the basal lineage to extinction of a transit lineage.

The long-term stem cells of young mice appear to divide roughly every

10–20 days. No evidence suggests different rates of division between

stem cells (Bradford et al. 1997; Cheshier et al. 1999).

GASTROINTESTINAL RENEWAL

Studies of mice and humans show that the epithelial surface of the

intestine sloughs off continually and is renewed by fresh cells (Bach et al.
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Figure 12.4 The morphology of normal colon tissue. Labels show surface ep-
ithelium (SE), colon crypts (CC), goblet cells (GC), lamina propria (LP), and mus-
cularis mucosa (MM). The crypts open to the surface epithelium—in this cross
section, some of the crypts appear partially or below the surface. From Kinzler
and Vogelstein (2002), original published in Clara et al. (1974).

2000). Renewal occurs by a flow of cells from numerous invaginations—

crypts—throughout the intestinal surface (Figure 12.4). Cells flow from

the base of each long, narrow crypt to the surface.

The small intestine of the mouse has about 15 cell layers from the ep-

ithelial surface to the base of the crypt (Figure 12.5). In the small intes-

tine, stem cells reside around the fourth cell position from the bottom.

Those stem cells produce daughters that flow either down to the lowest

layers, where they differentiate into Paneth cells, or upward where the

daughter cells continue to divide and differentiate into the functional

goblet cells and enterocytes of the intestinal epithelium.
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Figure 12.5 Schematic of a small intestine crypt of a mouse. The crypt has
about 15 cells from the epithelial surface at the top to the base, as numbered
along the right. In three dimensions, the cylindrical lining of the mouse small
intestine crypt has about 200–250 cells. Modified from Marshman et al. (2002).

Figure 12.6 shows the cell lineage hierarchy of the mouse small intes-

tine. The active stem cells divide to give rise to daughter cells. One-half

of the daughter cells must remain active stem cells to continue future

renewal. The other half of the daughters begins the transit pathway to

differentiation.

In the first few transit divisions, T1–T3, the cells retain the potential

to return to fully active stem cells in order to replace stem cells that

die or to contribute to tissue renewal after injury. Some of those early

transit lineage cells differentiate into Paneth cells and flow downward;

the others continue to flow upward, divide, and eventually differentiate

into the mature epithelial cells. Within a week or so, the daughters of

the stem cells have flowed to the surface and died, to be replaced by

the continual flow from below. Figure 12.7 gives a rough idea of the

three-dimensional crypt architecture.

Gastrointestinal stem cells remain difficult to identify unambiguously.

Through various indirect studies, Bach et al. (2000) conclude that each

mouse small intestine crypt has 4–6 active stem cells. Those stem cells
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Figure 12.6 Cell lineage hierarchy in a small intestine crypt of a mouse. Ac-
tive stem cells give rise to daughter stem cells that remain near the base of the
crypt and the first generation of the transit lineage pathway (T1), the potential
clonogenic stem cells. The early transit generations retain the ability to return
to fully active stem cells, but normally they move either up or down the crypt.
If the cells move down, they differentiate into Paneth cells that line the base of
the crypt. If the cells move up, they differentiate into goblet cells and then ma-
ture enterocytes, after which they die and are shed from the epithelial surface.
Redrawn from Marshman et al. (2002).

divide about once per day; each crypt produces about 300 new cells per

day. There are about six transit divisions, so it takes about one week

for a daughter cell of the stem lineage to move up, differentiate, and die

at the surface. The mouse small intestine has about 7 × 105 crypts, so

the whole small intestine of the mouse produces about 2×108 cells per

day.

The large intestine (colon) has a similar architecture but lacks Paneth

cells. Cancer occurs more often in the large intestine than in the small in-

testine, in spite of the similar tissue architecture and pattern of cellular

renewal. Probably the colon suffers greater concentrations of carcino-

gens that result from digestion and excretion. The human large intestine

has around 107 crypts that each renew about once per week. If a stem

lineage in the human colon divided once every six days for 80 years, it
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Figure 12.7 Three-dimensional schematic of a crypt in the mouse small in-
testine. The positions of the individual cells show how things might look in a
typical crypt. The Paneth cells tend toward the bottom, where they contribute
to innate immunity by responding to bacterial infection (Ayabe et al. 2000).
The numbers on the cells show the transit cell generation i, as in the Ti of Fig-
ure 12.6. The stem cells vary in actual cellular position in the range 3–7, but on
average appear to be around cell position 4 when numbered from the bottom.
The figure only shows the bottom 7 cell positions of the approximately 15 posi-
tions. CSC abbreviates “clonogenic stem cell” (see Figure 12.6). Redrawn from
Marshman et al. (2002).
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Figure 12.8 Architecture of skin renewal in the mouse based on Potten’s model
of epidermal proliferative units. The top cross-sectional view shows the epider-
mal layers. About one in ten basal cells are stem cells (S). The neighboring basal
cells and all cells in the layers directly above derive from the stem cell in a typical
stem-transit architecture. The surface view shows that each unit derived from
a single stem cell forms a roughly hexagonal shape that encompasses about
ten basal cells. Each black cell denotes the single stem cell in each unit. From
Potten and Booth (2002).

would divide about 5,000 times. However, the actual history of stem

lineages and the number of divisions over time remains unknown.

EPIDERMAL RENEWAL

The epidermal layer of the skin turns over about every 7 days in mice

(Potten 1981; Ghazizadeh and Taichman 2001) and approximately every

60 days in humans (Hunter et al. 1995); however, those numbers must

be taken only as rough estimates.

Several lines of indirect evidence suggest that the skin renews by a

stem-transit architecture (Watt 1998; Janes et al. 2002). For example,

about 60% of basal epidermal cells are progressing through the cell cycle,

but in mice only about 10% of those cells can continue through several

rounds of cell division after irradiation. Human epidermal cells plated

in cell culture also show a distinction between rare cells that have a high
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capacity for self-renewal and common cells that divide only a few times.

Those cycling cells with limited capacity for self-renewal are thought to

be the transit population (Watt 1998).

Figure 12.8 shows Potten’s model of the epidermal proliferation unit

for mice (Potten 1974, 1981; Potten and Booth 2002). Each approxi-

mately hexagonal unit of surface skin renews from a basal layer com-

prising about ten cells, of which only one basal stem cell renews the

unit.

Human skin is more complex: it has variable thickness in different lo-

cations, often has more layers than mouse skin, and has an undulating

basal layer. Most authors agree that stem cells reside at the basal layer

and give rise to an upward-migrating transit lineage. Controversy con-

tinues over the location of the stem cells in the basal layer, the frequency

of stem cells among basal cells, and the architecture of stem-transit lin-

eages and proliferative units (Potten and Booth 2002; Ghazizadeh and

Taichman 2005).

The hairs in the epidermis renew by a different process. Figure 12.9

shows the hair cycle, in which each follicle alternates between rest and

growth phases. During hair growth, there seems to be a stem-transit

type of architecture: stem-like cells replace themselves in the follicular

germ and simultaneously initiate transit lineages that move up and con-

tinue to divide. After the growth phase, the lower part of the follicle

regresses.

It remains unclear where the stem cells come from to reseed the fol-

licular germ at the start of the next growth phase. Those stem cells may

come from cells in the follicular germ of the rest phase, shown as FG(s?)

in Figure 12.9, or the next round of stem cells may migrate down from

daughter cells produced by the stem cells in the bulge region. Potten

and Booth (2002) emphasized the difficulty of interpreting various stud-

ies on this issue. Two recent studies favor the bulge stem cells as the

progenitors for each new round of follicular growth (Morris et al. 2004;

Kim et al. 2006).

In development, the stem cells of the bulge region appear to be the

ultimate source for the interfollicular stem cells (those, for example, in

Figure 12.8) and at least for the initial seeding of the follicular germ.

After injury, the bulge stem cells can regenerate the hair follicle, seba-

ceous gland, and interfollicular proliferative units (Cotsarelis et al. 1990;

Taylor et al. 2000; Potten and Booth 2002).
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Figure 12.9 Life cycle of a mammalian hair follicle. As the follicle moves from
the rest phase to the growth phase, the follicular germ region moves downward
and becomes an active site of cell division. Transit cells from the follicular germ
move upward to form the growing hair. After a growth phase, the follicular germ
region regresses to reform the rest phase morphology. From Potten and Booth
(2002).

So far, I have discussed the keratinocyte lineages that produce the hair

and the epidermal surface. In those tissues, melanocyte cell lineages

provide pigmentation. Recent studies suggest that, in the hair follicles,

the bulge region contains melanocyte stem cells (Nishimura et al. 2002;

Lang et al. 2005; Sommer 2005). In each hair cycle, the melanocyte

stem cells produce some daughters cells that migrate to the base of the

follicle where the active keratinocyte transit lineages will be generated.

Melanocytes in each new hair cycle seem to derive from the melanocyte

stem cells in the bulge region.

Cancer risk concentrates in long-lived cell lineages—the stem lineages.

Morris (2004) recently summarized evidence that various skin cancers

derive from keratinocyte stem lineages. Similarly, melanomas probably

descend from transformed melanocyte stem cells. Alternatively, trans-

formed transit cells may de-differentiate into cancer cells with stem-like

properties of renewal.
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OTHER TISSUES

The blood, intestine, and skin renew frequently and have clear stem-

transit architectures. Several other tissues also appear to have stem

lineages that may provide a source for regular renewal, a reservoir for

tissue repair, or daughter cell lineages that terminally differentiate (La-

jtha 1979; Watt 1998).

Mammalian spermatogenesis has a clearly defined stem-transit archi-

tecture of renewal and differentiation (de Rooij 1998). In other tissues,

the details of lineage history are less clear at present. Clarke et al. (2003)

discuss a model of breast epithelium renewed by a stem-transit hierar-

chy of differentiation. Numerous recent articles describe the properties

of breast stem cells (reviewed by Dontu et al. 2003; Liu et al. 2005; Vil-

ladsen 2005). Rizzo et al. (2005) discussed a stem-transit pathway of

renewal for the normal prostate, but at present we have only limited un-

derstanding of tissue architecture in the prostate. Cells with some stem-

like properties may occur in many tissues, but cell lineage architectures

probably vary according to demands for cell turnover and regeneration.

12.3 Symmetric versus Asymmetric Stem Cell Divisions

To maintain a pool ofN stem cells in a niche, each stem division must

on average produce one daughter stem cell and one daughter that dif-

ferentiates. Regulation of stem cell numbers may occur either by sym-

metric or asymmetric stem cell division (Cairns 1975; Watt and Hogan

2000; Morrison and Kimble 2006).

In symmetric division, each replication produces two identical daugh-

ter cells. Random processes then determine whether 0, 1, or 2 of the

daughters remain stem cells while the other daughters differentiate.

Over the whole pool of N stem cells, some process must regulate the

probability of differentiation such that on average each stem division

gives rise to one stem and one differentiated daughter.

In asymmetric division, the daughters differ. One daughter remains as

a stem cell to replace the mother, and the other daughter differentiates.

The shape of cell lineages and the rate of evolutionary change in lin-

eages depend on whether stem cells divide symmetrically or asymmet-

rically. I discuss those lineage consequences in the next section. Here, I
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briefly review evidence with regard to whether stem divisions are sym-

metric or asymmetric.

Several recent studies support the asymmetric pattern of stem cell

division. Lechler and Fuchs (2005) showed in mice that dividing cells

at the basal layer of the epidermis produce asymmetric daughters: one

daughter moves upward while differentiating into a cell with limited

proliferative capacity, whereas the other undifferentiated daughter re-

mains at the basal layer and retains proliferative capacity. Asymmetric

division of stem cells appears to split daughters between the stem and

transit pathways. Asymmetry of daughter cell fate arises from asym-

metry in the orientation of the mitotic spindles: one daughter moves

upward from the basal membrane, and the other daughter remains near

the basement membrane where it receives signals to maintain stem char-

acteristics.

Drosophila spermatogenesis also divides its stem cells asymmetrically

by mitotic spindle orientation and signals in the basal stem niche (Ya-

mashita et al. 2003). It remains unclear whether mammalian sperm stem

cells divide symmetrically or asymmetrically.

Preliminary in vitro evidence suggests that mammalian hematopoietic

stem cells divide asymmetrically (Takano et al. 2004; Giebel et al. 2006);

however, this hypothesis of hematopoietic stem cell asymmetry requires

further analysis.

Although asymmetry seems to occur in a few particular cases, ob-

taining direct evidence of asymmetry remains technically challenging

(e.g., Giebel et al. 2006). Another line of evidence in favor of asymmetry

comes from the pattern by which DNA segregates to daughter cells.

12.4 Asymmetric Mitoses and
the Stem Line Mutation Rate

Cairns (1975) emphasized that in a stem-transit architecture, only the

stem lineage survives over time. Thus, only those mutations in the “im-

mortal” stem lineage remain in the tissue. Cairns argued that organisms

may use various mechanisms to reduce the mutation rate in the stem

lineage.
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Figure 12.10 Cairns’ (1975) hypothesis of asymmetric DNA segregation in stem
cell divisions. (a) Immortal stranding, in which the stem lineage along the bot-
tom always receives the older strand of the DNA duplex in each round of cell
division. (b) Segregation of the newer DNA strand to the stem cell lineage in each
round of cell division. Random segregation would follow a stochastic process
between these two patterns. See text for full discussion.

IMMORTAL STRANDING

In every mitosis, the DNA duplex splits, each strand acting as a tem-

plate for replication to produce a new complementary strand. It is pos-

sible that most mutations during replication arise on the newly syn-

thesized strand. A stem lineage could reduce its mutation rate if each

stem cell division segregated the oldest template strands to the daugh-

ter destined to remain in the stem lineage and the newer strands to the

daughter destined for the short-lived transit lineage.

Figure 12.10a shows Cairns’ hypothesis for segregation of DNA tem-

plate strands. The DNA duplex at the lower left begins with identical

DNA strands. The duplex splits as shown, and each strand serves as a

template for replication. Suppose, each time a stem cell copies its DNA,

that during replication one new mutation arises on the new strand. The

“X” marks the new mutation. In the figure, the first round of replication

shows the original templates without mutations and the newly repli-

cated strands, each new strand with one mutation.

With each subsequent round of replication in Figure 12.10a, the older

template without mutations segregates to the stem lineage along the

bottom, and the younger strand with one new mutation segregates up

to the transit lineage. This pattern reaches a steady state, in which the

stem line retains the original template strand and a strand replicated
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once off the template with one new mutation. At the steady state, the

transit lineage always receives a strand copied from the template that

carries one new mutation; replication in the transit cell adds another

mutation.

Figure 12.10b shows the opposite pattern, in which the newest strand

always segregates to the stem lineage along the bottom. The newer

strand always has one additional mutation, so the stem lineage accrues

one new mutation in each generation.

By the standard view of DNA replication and mitosis, strands segre-

gate randomly to daughter cells. If so, then the pattern by which muta-

tions accumulate would follow a stochastic process between case (a), in

which the stem lineage always gets the older strand, and (b), in which

the stem lineage always gets the newer strand. Stochastic segregation

would, on average, cause mutations to accumulate in the stem lineage

at one-half the rate at which mutations arise on newly copied strands.

Cairns (1975) called the pattern in Figure 12.10a “immortal strand-

ing.” Any tendency away from purely random segregation and toward

immortal stranding would lower the rate at which mutations accumulate

in the stem line.

Immortal stranding requires asymmetric stem cell division, in which

the fate of the daughters is determined during mitosis, before segrega-

tion occurs. Any evidence for immortal stranding also provides evidence

for asymmetric stem cell division.

Several recent studies support Cairns’ hypothesis of immortal strand-

ing in stem cell lineages. Potten et al. (2002) marked DNA strands

in mouse small intestine crypts with tritiated thymidine, then labeled

newly synthesized strands with a different label, bromodeoxyuridine.

Over time, only a few cells in crypt positions 3–7 retained the initial la-

bel; those cell positions delineate the crypt location in which stem cells

reside (Figure 12.7). When the second label was removed, the putative

stem cells that retained tritiated thymidine lost the second label, bro-

modeoxyuridine, showing that those cells did pass through the mitotic

cycle.

Smith (2005) similarly showed that cells with stem lineage properties

in mouse mammary glands retain immortal strands through epithelial

tissue renewal.

Studies of asymmetrically dividing cells in tissue culture also demon-

strate conditions under which immortal stranding occurs (Merok et al.
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2002; Karpowicz et al. 2005). Interestingly, both asymmetric division

and immortal stranding may be regulated by p53 and IMP dehydroge-

nase, the rate-determining enzyme in ribonucleotide biosynthesis (Ram-

bhatla et al. 2005).

STEM CELL SENSITIVITY TO DNA DAMAGE

Mutations in the template strand of a stem cell carry forward through

the stem lineage and the renewing tissue. Cairns (1975) suggested that if

mutagens or other processes caused significant DNA damage to a stem

cell, the cell might undergo apoptosis rather than risk repair. Apopto-

sis would reliably remove the mutations from the tissue. In particular,

Cairns predicted that stem cells would be exceptionally prone to apop-

tosis in response to DNA damage when compared with other cells. Most

other cells have a relatively short expected life for their descendant lin-

eage; for those short-lived cell lineages, DNA damage does not impose

such severe risks as for stem cell lineages.

Several studies suggest that stem cells have extreme sensitivity to

damage, such that even a single radiation-induced hit can trigger apop-

tosis (Potten 1977; Hendry et al. 1982; Potten et al. 1992; Potten and

Grant 1998). Those studies demonstrated sensitivity in gastrointestinal

crypts near where stem cells reside, but it remains difficult to identify

the exact location of stem cells in vivo.

We are left with an association between extreme radiosensitivity of a

small fraction of cells and the expected location of stem cells. Potten

et al. (2002) used the methods described above to label DNA strands

and identify label-retaining cells as stem cells. They then found some

evidence for an association between those cells that retain label and

those cells that undergo apoptosis in response to mild radiation-induced

damage.

TISSUE REPAIR AND RISK OF SYMMETRIC DIVISION

We can measure the age of a DNA strand as the number of strand

replications back to some ancestral template. In Figure 12.10 each “X”

on a strand measures age back to the ancestral template on the left.

If a stem cell dies, it may be replaced by another stem cell (Cairns

2002). The replacement requires a symmetric mitosis, because both

daughters must be retained as stem cells in order to increase by one
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the number of stem cells in the pool. In a symmetric mitosis, the age

of the DNA strands increases in one of the new daughter stem cells.

This increase in age can be seen on the right side of Figure 12.10a. In

a steady-state stem cell division, the top daughter that would normally

segregate to the transit lineage has templates that have ages one and two

relative to the initial template of age zero that the main stem lineage has

retained.

The lost stem cell may alternatively be replaced by a daughter transit

cell (Cairns 2002). If, for example, the most recent daughter transit cell

on the right side of Figure 12.10a reverted to a stem cell, strand age

would increase by one relative to the lost ancestral stem cell.

Mitogenesis caused by wounds, chemical carcinogens, or irritation

increases the rate of cancer progression (reviewed by Peto 1977; Cairns

1998). Presumably wounds and other forms of tissue damage often kill

stem cells; repair requires that those stem cells be replaced.

The interesting comparison is: How much of the increased risk comes

from the accumulation of mutations in the stem line caused by sym-

metric mitoses, and how much of the enhanced risk comes from an

increased rate of mitosis independently of the distinction between sym-

metry and asymmetry in DNA strand segregation?

12.5 Tissue Compartments
and Repression of Competition

The renewing epithelia of the intestine and skin have a compartmental

structure (Figures 12.4 and 12.8). Each stem cell normally contributes

only to its own compartment. This spatial restriction prevents com-

petition between stem cell lineages in different compartments (Cairns

1975).

Suppose, for example, that a mutation caused a particular stem cell

to replicate faster. That mutant lineage might take over its own com-

partment, outcompeting other stem lineages within the compartment.

But spatial restrictions would often prevent the mutant lineage from

spreading beyond its own small neighborhood. From a lineage perspec-

tive, each compartment limits the local population size and defines a

separate parallel line of descent and evolution. An expanding clone,
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perhaps one step along in carcinogenesis, cannot normally expand be-

yond its compartmental boundaries, thus limiting the target number of

cells for the accumulation of subsequent mutations.

Cairns (1975) pointed out that each tissue probably has different rules

governing the territoriality of proliferating cells. Those spatial rules de-

termine which kinds of variant cell succeed in each type of tissue. Those

variants that could break territorial boundaries and invade neighboring

compartments would gain a significant competitive advantage, increase

their populations, and provide a large clonal target for subsequent ad-

vances in progression.

Repression of competition has become an important general concept

in the study of cooperative evolution (Buss 1987; Frank 1995; May-

nard Smith and Szathmary 1995; Frank 2003a). Perhaps such repres-

sion was an essential step in the evolution of complex multicellularity,

in which large populations of independent cells act in a mostly cooper-

ative manner.

12.6 Summary

This chapter reviewed the processes of tissue renewal. Most renew-

ing tissues derive from a small number of stem cells. Mutations to stem

cells pose the main risk for cancer. Stem cells may have various mech-

anisms to reduce their mutation rate. For example, the stem lineage

may retain the DNA template and segregate new copies of the DNA to

the daughter cells in the transit lineage. In addition, the patterns of

tissue renewal from stem cells and the shape of stem cell lineages af-

fect the accumulation of somatic mutations. To analyze in more detail

how somatic mutations accumulate, I discuss in the next chapter the

population genetics of somatic cell lineages.



13 Stem Cells:
Population Genetics

Heritable changes in populations of cells drive cancer progression. In

this chapter, I discuss three topics concerning population-level aspects

of cellular genetics.

The first section shows that mutations during development may con-

tribute significantly to cancer risk. In development, cell lineages expand

exponentially to produce the cells that initially seed a tissue. A sin-

gle mutation in an expanding population carries forward to many de-

scendant cells. By contrast, once the tissue has developed, each new

mutation usually remains confined to the localized area of the tissue

that descends directly from the mutated cell. Because mutations during

development carry forward to many more cells than mutations during

renewal, a significant fraction of cancer risk may be determined in the

short period of development early in life.

The second section analyzes the distinction between stem lineages

and transit lineages. To renew a tissue, cells must be continuously pro-

duced to balance the equal number of cells that die. Cell death prunes

certain cell lineages—the transit lineages—and requires that other lin-

eages continue to provide future renewal—the stem lineages. Renewal

imposes a constraint on the shape of stem and transit lineages. Within

this constraint, if the mutation rate is relatively lower in stem cells, then

relatively longer stem lineages and shorter transit lineages reduce can-

cer risk.

The third section contrasts symmetric and asymmetric mitoses in

stem cells. Each stem cell may divide asymmetrically, every division

giving rise to one daughter stem cell and one daughter transit cell. Al-

ternatively, each stem cell may divide symmetrically, giving rise to two

daughters that retain the potential to continue in the stem lineage; ran-

dom selection among the pool of excess potential stem cells reduces

the stem pool back to its constant size. With asymmetric division, any

heritable change remains confined to the independent lineage in which

it arose. With symmetric division, the random selection process causes

each heritable change eventually to disappear or to become fixed in the

stem pool; only one lineage survives over time.
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13.1 Mutations during Development

Renewing tissues typically have two distinct phases in the history of

their cellular lineages. Early in life, cellular lineages expand exponen-

tially to form the tissue. For the remainder of life, stem cells renew the

tissue by dividing to form a nearly linear cellular history. Figure 13.1

shows a schematic diagram of the exponential and linear phases of cel-

lular division.

Mutations accumulate differently in the exponential and linear phases

of cellular division (Frank and Nowak 2003). During the exponential

phase of development, a mutation carries forward to many descendant

cells. The initial stem cells derive from the exponential, developmental

phase: one mutational event during development can cause many of the

initial stem cells to carry and transmit that mutation. During the renewal

phase, a mutation transmits only to the localized line of descent in that

tissue compartment: one mutational event has limited consequences.

Development occurs over a relatively short fraction of the human

lifespan. However, a significant fraction of cancer risk may arise from

mutations during development, because the shape of cell lineage history

differs during development from that in later periods of tissue renewal

(Frank and Nowak 2003).

MUTATIONAL EVENTS VERSUS THE NUMBER OF MUTATED CELLS

Individuals begin life with one cell. At the end of development, a re-

newing tissue may have millions of stem cells. To go from one precursor

cell to N initial stem cells requires at least N − 1 cell divisions, because

each cell division increases the number of cells by one.

If the mutation rate per locus in each cellular generation is u, then how

many of the initial N stem cells carry a mutation at a particular locus?

This general kind of problem was first studied in microbial populations

by Luria and Delbrück (Luria and Delbrück 1943; Zheng 1999, 2005).

They wanted to estimate the mutation rate, u, in microbial populations

by observing the fraction of the final N cells that carry a mutation.

The Luria-Delbrück problem plays a central role in the study of can-

cer, because progression depends on how heritable changes accumulate

in cell lineages. The Luria-Delbrück analysis focuses on one aspect of
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Figure 13.1 Lineage history of cells in renewing tissues. All cells trace their
ancestry back to the zygote. Each tissue, or subset of tissue, derives from a pre-
cursor cell; np rounds of cell division separate the precursor cell from the zy-
gote. From a precursor cell, ne rounds of cell division lead to exponential clonal
expansion until the descendants differentiate into the tissue-specific stem cells
that seed the developing tissue. In a compartmental tissue, such as the intes-
tine, lineage history of the renewing tissue follows an essentially linear path, in
which each cellular history traces back through the same sequence of stem divi-
sions (Figure 12.2). At any point in time, a cell traces its history back through ns
stem cell divisions to the ancestral stem cell in the tissue, and n = np +ne +ns
divisions back to the zygote. Modified from Frank and Nowak (2003).

mutation accumulation in cell lineages: the distribution of mutations in

an exponentially expanding clone of cells.

To study the Luria-Delbrück problem, we must distinguish between

mutational events and the number of cells that carry a mutation. Fig-

ure 13.2 shows an example in which one cell divides through three

cellular generations to yield N = 23 = 8 descendants. This exponen-

tial growth requires a total of N − 1 = 7 cell divisions. Each cell di-

vision causes one cell to branch into two descendants, so there are

2(N − 1) = 14 branches in which DNA is copied and a mutational event
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Figure 13.2 Probability of the number of mutated cells for a single mutational
event. Each of the three sequences starts with a single cell that then proceeds
through three generations of cell division, yielding N = 23 = 8 descendants.
In each sequence, there are 2(N − 1) = 14 branches, each branch representing
an independent DNA copying process. I assume one mutational event with
equal probability of occurring on any branch. On the left, there are 8 third-
level branches, so the probability that the sequence yields one mutated cell is
23/[2(N − 1)] = 8/14. In the middle, there are 4 second-level branches, so
the probability that the sequence yields two mutated cells is 22/[2(N − 1)] =
4/14. On the right, there are 2 first-level branches, so the probability that the
sequence yields four mutated cells is 21/[2(N − 1)] = 2/14. Early mutations
in the sequence occur relatively rarely because there are fewer branches. When
early mutations do occur, they carry forward to a large number of descendant
cells; for this reason, the Luria-Delbrück distribution is sometimes called the
jackpot distribution.

may occur. If one mutational event occurs among those 14 replications,

then how many of the final 8 cells carry the mutation?

Figure 13.2 enumerates the possible outcomes for the simple example

in which there is exactly one mutational event and a single cell divides

regularly to produce 8 descendants. We can gain an intuitive under-

standing of the problem by generalizing the example in Figure 13.2.

Suppose we begin with one precursor cell, which then divides n times

to yield N = 2n descendants. Assume that exactly one mutational event

occurs, and that the mutational event happens with equal probability on

any of the 2(N − 1) branches. If the mutation occurs on one branch in

the first division, then 2−1 = 1/2 of the descendants carry the mutation;

if the mutation occurs on one branch in the second division, then 2−2 =
1/4 of the descendants carry the mutation. In general, a fraction 2−i of

the descendants carries the mutation with probability 2i/[2(N −1)] for

i = 1, . . . , n (Frank 2003b).

My simple calculations in the previous paragraph do not provide a

full description of the Luria-Delbrück distribution, because I assumed

exactly one mutational event over the entire population growth period.

In reality, mutational events arise stochastically, so a full analysis must
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consider how the stochastic process of mutational events translates into

the number of final cells that carry a mutation at a particular locus

(Zheng 1999; Frank 2003b; Zheng 2005). For example, how do muta-

tions during development translate into the number of initially mutated

stem cells at the end of development?

NUMBER OF INITIALLY MUTATED STEM CELLS

A small number of somatic mutations during development can lead to

a significant fraction of stem cells carrying a mutation that predisposes

to cancer. How much of the risk of cancer can be attributed to mutations

that arise in development?

No one has tried to measure developmental risk. But a few simple

calculations based on standard assumptions about cell division and mu-

tation rate show that developmental risk may be important (Frank and

Nowak 2003).

Suppose that N = 108 stem cells must be produced during devel-

opment to seed the colon. Exponential growth of one cell into N cells

requires about ln(N) cellular generations in the absence of cell death.

In this case, ln(108) ≈ 18. If the mutation rate per locus per cell divi-

sion during exponential growth is ue, then the probability that any final

stem cell carries a mutation at a particular locus, x, is roughly the mu-

tation rate per cell division multiplied by the number of cell divisions,

x = ue ln(N). This probability is usually small: for example, if ue = 10−6,

then x is of the order of 10−5.

The frequency of initially mutated stem cells may be small, but the

number may be significant. The average number of mutated cells at a

particular locus is the number of cells,N, multiplied by the probability of

mutation per cell, x. In this example, Nx ≈ 103, or about one thousand.

I have focused on mutations at a single locus. Mutations at many

different loci may predispose to cancer. Suppose mutations at L differ-

ent loci can contribute to predisposition. We can get a rough idea of

how multiple loci affect the process by simply adjusting the mutation

rate per cell division to be a genome-wide rate of predisposing muta-

tions, equal to ueL. The number of loci that may affect predisposition

may reasonably be around L ≈ 102 and perhaps higher. Following the

calculation in the previous paragraph, with L ≥ 102, the number of ini-

tial stem cells carrying a predisposing mutation would on average be at
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Figure 13.3 Number of initially mutated stem cells at the end of development.
The total number of initial stem cells, N, derive by exponential growth from
a single precursor cell. Each plot shows the cumulative probability, p, for the
number of mutated initial stem cells. By plotting log10[p/(1 − p)], the zero
line gives the median of the distribution. The number above each line is ue,
the mutation probability per cell added to the population during exponential
growth. (I used an actual value of 10−5.2 rather than 10−5 because of compu-
tational limitations.) For a single gene, the mutation probability per gene per
cell division, ug , is probably greater than 10−7. If there are at least L = 100
genes for which initial mutations can influence the progression to cancer, then
ue = L × ug ≥ 10−5. Initial mutations may, for example, occur in DNA repair
genes, causing an elevated rate of mutation at other loci. Calculations made
with algorithms in Zheng (2005). Modified from Frank and Nowak (2003).

least 105. Some individuals might have two predisposing mutations in

a single initial stem cell.

The average number of initially mutated cells may be misleading, be-

cause the distribution for the number of mutants is highly skewed. A

few rare individuals have a great excess; in those individuals, the muta-

tion arises early in development, and most of the stem cells would carry

the mutation. Those individuals would have the same risk as one who

inherited the mutation.

Figure 13.3 shows the distribution for the number of initially mutated

stem cells at the end of development. For example, in the right panel,

with a mutation probability per cell division of 10−6, a y value of 2

means that approximately 10−2, or 1%, of the population has more than

104 initially mutated stem cells at a particular locus (L = 1). Similarly,

with a mutation probability per cell division of 10−5, a y value of 3 means

that approximately 10−3, or 0.1%, of the population has more than 104

initially mutated stem cells.
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EXCESS RISK FROM DEVELOPMENTAL PREDISPOSITION

A significant fraction of adult-onset cancers may arise from mutations

that occur during the short period of development early in life (Frank

and Nowak 2003). In this section, I briefly summarize Meza et al.’s (2005)

thorough quantitative analysis of this problem.

Meza et al. (2005) evaluated the role of developmental mutations in

the context of colorectal cancer. They began with a model of progression

and incidence that they had previously studied (Luebeck and Moolgavkar

2002). In that model, carcinogenesis progresses through four stages:

two initial transitions, followed by a third transition that triggers clonal

expansion, and then a final transition to the malignant stage.

In their new study, Meza et al. (2005) began with the same four-stage

model. They then added a Luria-Delbrück process to obtain the prob-

ability distribution for the number of stem cells mutated at the end of

development. The stochasticity in the Luria-Delbrück process causes a

wide variation between individuals in the number of mutated stem cells.

Meza et al. (2005) first calculated the probability that an individual car-

riesNx initially mutated stem cells at the end of development. To obtain

overall population incidence, they summed the probability for each Nx
multiplied by the incidence for individuals with Nx mutations.

Meza et al. (2005) summed incidence in their four-stage model over

the number of initially mutated stem cells to fit the model’s predicted in-

cidence curve to the observed incidence of colorectal cancer in the USA.

From their fitted model, they then estimated the proportion of cancers

attributable to mutations that arise during development. Figure 13.4

shows that a high proportion of cancers may arise from mutations dur-

ing the earliest stage of life.

Cancers at unusually young ages are often attributed to inheritance.

However, Figure 13.4 suggests that early-onset cancers may often arise

from developmental mutations. Developmental mutations act similarly

to inherited mutations: if the developmental mutation happens in one

of the first rounds of post-zygotic cell division, then many stem cells

start life with the mutation. Inheritance is, in effect, a mutation that

happened before the first zygotic division.
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Figure 13.4 The proportion of cancers that arise from cells mutated during de-
velopment. These plots show calculations based on a specific four-stage model
of colorectal cancer progression (Meza et al. 2005). The parameters of the pro-
gression model were estimated from incidence data. The values of u above each
plot show the mutation rate per year in stem cells. Stem cells likely divide be-
tween 10 and 100 times per year, thus a mutation rate per year of at least 10−5

per locus seems reasonable. In each plot, the three curves sketch the hetero-
geneity between individuals in risk attributable to developmental mutations.
The first quartile shows the proportion of cancers at each age for those indi-
viduals whose risk is in the lowest 25% of the population, in particular, those
individuals who by chance have the fewest stem cells mutated during develop-
ment. Similarly, the fourth quartile shows the risk for the highest 25% of the
population with regard to developmental mutations. From Meza et al. (2005).
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CELL GENERATIONS TO A COMMON PRECURSOR CELL

When will cases with early onset and multiple tumors be caused by

developmental mutations rather than inherited mutations? The answer

depends on the pattern of cellular lineages that produce a tissue.

All cells in a tissue trace their ancestry back to a precursor cell. That

common precursor would be the zygote if both cells from the first zy-

gotic division contribute descendants to the tissue. Alternatively, sev-

eral cell divisions derived from the zygote may occur before a precursor

cell begins to differentiate into a particular tissue.

Figure 13.1 shows the different phases in the ancestry of a tissue. In

that figure, np rounds of cell division happen between the zygote and

the common precursor cell for the tissue. The precursor then seeds

an exponentially growing clone through ne cell generations. Once the

tissue is formed, the stem cells renew the tissue by proceeding through

ns cell divisions, where ns increases with age.

Consider an example to illustrate the potential importance of the

number of cell generations to a common precursor for a tissue. Sup-

pose a particular cancer syndrome has the characteristics of inherited

disease—early onset and multiple independent tumors. Assume that the

syndrome causes such severe early-onset disease that individuals who

suffer the disease rarely reproduce. Then each case must arise from a

new mutation.

The new mutation could occur in the parent: either in the germline or

in a precursor to the germline that does not give rise to the affected tis-

sue. A parental mutation would give rise to an inherited case, in which

the offspring carries the mutation in all somatic cells. Suppose the num-

ber of cell generations between the parental germline precursor and the

gamete is ng . Alternatively, the new mutation could occur in the off-

spring. The number of cell generations between the zygote and the

common precursor for the tissue is np.

The probability that an observed case arose from a developmental

mutation rather than an inherited mutation would be approximately

np/(np + ng). We could refine this approximation by adjusting for the

mutation rates in the maternal and paternal germlines and the somatic

precursor lineage and for the frequency of mutations carried by parents

that derived from an earlier generation. For example, if the mutation

rate per cell division is u, and the frequency of mutations carried by
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parents from earlier generations is f , then the approximation expands

to unp/(unp + ung + f ). My point here is simply that, as long as f is

small, a significant fraction of important de novo mutations may hap-

pen developmentally rather than be inherited from parents.

Few estimates exist for np, the number of precursor cell generations.

The little bit known about retinal development and the inherited can-

cer syndrome retinoblastoma raises some interesting issues. Retino-

blastoma usually occurs before the age of five. Without modern medi-

cal treatment, the disease would often be fatal, so the affected individ-

ual would not reproduce. The inherited syndrome includes early onset

and multiple independent tumors, usually with tumors in both eyes.

According to the analysis here, the inherited syndrome would derive

from developmental mutations approximately in a proportion of cases

np/(np + ng).
The number of retinal precursor generations, np, remains unknown.

Zaghloul et al. (2005) recently reviewed the subject of retinal develop-

ment and concluded that, based on the Xenopus model, the left and right

retina diverge rather late in development. Thus, there may be a sig-

nificant number of precursor generations, np, before divergence of the

common retinal precursors into the left and right eye. A developmen-

tal mutation before left-right divergence could predispose to bilateral

retinoblastoma, a symptom usually attributed to an inherited mutation.

13.2 Stem-Transit Design

Mutations in transit cells usually get washed out as the transit cells

slough at the surface (Cairns 1975). Most cell divisions occur in the

transit lineages, and those divisions pose relatively little cancer risk. Be-

cause of the mutational washout advantage of transit lineages, it would

seem that natural selection would favor a stem-transit separation with

short-lived transit lineages. But adaptation may be more subtle.

Figure 13.5 shows the possibilities for design of a stem-transit archi-

tecture (Frank et al. 2003). Suppose a tissue requires k new cells over a

certain period to renew itself. For now, assume that no other constraints

exist with regard to renewal. To make k cells starting from one cell, the

tissue may use n1 stem cell divisions leading to n1 transit lineages, each

transit lineage dividing n2 times to produce 2n2 final cells, for a total of

k = n12n2 cells.
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Figure 13.5 The pattern of cell division giving rise to a total of k cells. The
single, initial cell divides to produce a stem cell and a transit lineage. Each
transit lineage divides n2 times, yielding 2n2 cells. The stem lineage divides n1
times, producing a total of k = n12n2 cells. Redrawn from Frank et al. (2003).

Given the need to make k cells, consider how natural selection might

increase benefit. Suppose short-lived transit lineages pose little risk.

An improved design would add more cell divisions to those low-risk

transit lineages and reduce the number of divisions in the long-lived

stem lineage, that is, decrease n1 and increase n2.

In general, suppose we may choose to add one additional cell division

to any lineage, with the goal to minimize cancer risk (Frank et al. 2003).

If cancer requires n rate-limiting steps, and each step happens only dur-

ing cell division, the risk rises with dn, where d is the number of cell

divisions. Risk increases exponentially with number of cell divisions in

a lineage, thus natural selection favors prevention of long lineages. It is

always most advantageous to add any new cell division to the shortest

extant lineage. This optimal design maintains equal length among cell

lineages.

In terms of tissue architecture, if we start with one cell, then the best

design follows perfect binary cell division with all lineages remaining

the same length, such that k = 2n2 , where n2 is the number of rounds

of cell division. No stem divisions would occur except the first to seed

the transit lineages.
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This optimal design, with long transit lineages and no stem lineage,

assumes that all k cells survive to the end of the required period, with

no sloughing of cells. However, the requirement for continual cell death

at epithelial surfaces imposes an additional requirement. But for now,

I am just asking about the best design in the absence of the constraint

imposed by renewal, to understand how much of tissue architecture may

be explained by natural selection among alternative designs versus how

much may be explained by the unavoidable constraints of renewal.

This first analysis suggests that natural selection favors long transit

lineages and no stem lineage. If so, then the stem-transit design may

be the consequence solely of continual cell death at the tissue surface,

which imposes a stem-transit separation by shortening the cell lineages

that lead to the sloughing of surface cells. But we should consider two

additional factors.

First, the stem lineage may have a lower mutation rate than the tran-

sit lineage. Cairns (1975) proposed that immortal stranding and high

sensitivity to DNA damage lower the stem-line mutation rate (See Sec-

tion 12.4). If the stem lineage does have a lower mutation rate than the

transit lineage, then natural selection would favor adding more cell di-

visions to the lower-risk stem line. In terms of design, this benefit of

stem divisions would lengthen the stem lineage, that is, increase n1 in

Figure 13.5, and would shorten the higher-risk transit lineages, that is,

decrease n2.

Second, the transit lineage may be partially protected, because a tran-

sit cell that gets the required n carcinogenic changes may still slough

off. This benefit would favor lengthening the transit lineages, because

natural selection always tends to allocate additional divisions to those

lineages with the lowest relative risk. This particular benefit for transit

lineages works against the maintenance of a distinct, long-lived stem

line.

In summary, two factors appear to favor a stem-transit design. A

renewing tissue necessarily has continual cell death that prunes cell lin-

eages and creates a dichotomy between short and long cell lineages.

That constraint of tissue renewal may be sufficient to explain the stem-

transit design, even though, with regard to cancer risk, natural selection

often favors a more even distribution of cell lineage length. Alterna-

tively, if the stem line accrues mutations at a lower rate than the transit
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Figure 13.6 Stem-transit design to renew a tissue based on symmetric stem
cell division and regulation of the stem pool to a constant size. Each alternative
begins with two stem cells at the left. The two stem cells differ genetically. Each
stem cell divides to produce two daughter cells; the solid versus dashed arrows
represent the distinct daughter cells. The arrows up or down lead to transit
cells; the arrows to the right lead to the replacement stem cells that remain at
the base of tissue for subsequent renewal. There are six distinct patterns. The
four patterns at the left retain genetic polymorphism in the stem pool and differ
only in the four ways in which the distinct daughter cells can be assigned to stem
or transit lineages. The two patterns at the right lose genetic variability in the
stem pool; each of those patterns can happen in only one way, because the two
daughters from each initial stem cell both move into the same compartment,
either stem or transit, and so allow only one possible arrangement of daughter
cells. Thus, with random choice of which cells remain in the stem pool, 4/6 of
the time the polymorphism in the stem pool with be retained, 1/6 of the time
the pool will become fixed for one genotype, and 1/6 of the time the pool will
become fixed for the other genotype.

lines, then natural selection favors short transit lineages and long stem

lineages.

13.3 Symmetric versus Asymmetric Mitoses

Suppose a tissue compartment, such as an intestinal crypt, maintains

N stem cells. To maintain a constant stem pool size, each stem cell

may divide asymmetrically, every division giving rise to one daughter

stem cell and one daughter transit cell. Alternatively, each stem cell

may divide symmetrically, giving rise to two daughters that retain the

potential to continue in the stem lineage; random selection among the

pool of excess potential stem cells reduces the stem pool back to N.
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Figure 13.7 Symmetric stem cell division and regulation of the stem pool to
a constant size by random selection of daughter cells. The three patterns in
each generation—polymorphism, fixation for the light type, or fixation for the
dark type—are shown in Figure 13.6. Here those three patterns are combined
over two generations to form nine patterns. The probability for each pattern
can be obtained by using the hypergeometric distribution. In general, if the
stem pool size remains at N, and symmetric daughter cells migrate randomly
to either the stem or transit pool, then starting with n black stem cells that
double to 2n, and m gray stem cells that double to 2m, with n +m = N, the
probability of retaining 0 ≤ x ≤ αn = min(2n,N) black stem cells in the next

pool of N is given by P(x, n,N) =
(

2n
x

)(
2m
N−x

)/(
2N
N

)
. Over two generations,

P2(x, n,N) =
∑αn
i P(x, i,N)P(i, n,N). From this formula, the probability of re-

taining polymorphism after two generations starting with n = 1 black cell and
N = 2 stem cells is 16/36; the probability of ending with two black cells is
10/36; and the probability of ending with two white cells is 10/36.

With asymmetric division, the stem pool maintains N independent

cell lineages. Any heritable change remains confined to the particular

lineage in which it arose. The N distinct lineages form N parallel lines

of evolution.

With symmetric division, the random selection process causes each

heritable change eventually to disappear or to become fixed in the stem

pool. In effect, only one lineage survives over many generation.

Figure 13.6 introduces a rough guide to the sorting of lineages under

symmetric division. That figure shows a stem pool with N = 2, and the
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probability that the pool maintains two distinct lineages or coalesces

into one lineage after a single round of cell division. Figure 13.7 calcu-

lates the probability of lineage diversity versus coalescence through two

rounds of symmetric cell division.

Asymmetric and symmetric division have different consequences for

the evolution of stem cell compartments. With asymmetric division,

mutations remain in the stem pool but do not spread, unless those mu-

tations break the asymmetry and force competition between lineages.

With symmetric division, a mutation may be lost by chance or may take

over the entire compartment. If a mutation takes over the compartment,

any subsequent mutation in the compartment adds a second hit.

13.4 Summary

This chapter described the population genetics of somatic cell lin-

eages, with an emphasis on stem cells. The theory of population genetics

provides analytical tools to calculate how mutation, competition (selec-

tion), and random sorting of lineages (drift) influence the rate at which

mutations accumulate in cell lineages. Several recent papers have ap-

plied population genetic theory to analyze how the demography of the

stem cell compartment influences the accumulation of mutations and

the progression of cancer (e.g., Komarova et al. 2003; Michor et al. 2003;

Frank 2003c; Michor et al. 2004). The next chapter begins with empir-

ical studies of stem cell population genetics, and follows with a more

general review of cell lineage evolution and somatic mosaicism.



14 Cell Lineage
History

The trillions of cells in a human slowly but steadily accumulate heritable

change. Those heritable changes evolve in a spatially mosaic way. A few

tissue patches may be advanced, poised to pass the next step to disease.

Other tissue patches may be in an early stage, apparently normal but

silently one step closer to malfunction.

Cancer progresses through heritable change to cells. Those heritable

changes pass down cell lineages. To understand progression means to

understand cell lineage history, and how different cell lineages interact.

New genetic technologies will soon provide vastly greater resolution

in the measurement of heritable changes in cells: changes in DNA se-

quence, changes in DNA methylation, and changes in histone structure.

Those new data will allow study of progression in terms of cell lineage

history.

The first section discusses the reconstruction of cell lineage history

from measurements of heritable changes in cells. The present studies

remain crude, but hint at what will come. Variation in DNA methylation

or repeated microsatellite sequences indicates the amount of heritable

diversity among cells. Greater diversity suggests a longer time since the

cells shared a common ancestor and a longer time in which the tissue has

maintained independent cell lineages. By contrast, less diversity implies

a shorter time to a common ancestor, perhaps caused by a recent clonal

succession from a progenitor cell.

Measures of diversity suggest that colon crypts retain independent

stem cell lineages for several years, but that clonal replacements oc-

casionally homogenize the crypts. Crypts with APC mutations retain

greater diversity, perhaps because those crypts retain independent lin-

eages for relatively longer periods of time. Measures of diversity in hair

follicles suggest that the follicles renew via a hierarchy of stem cells.

The bulge region of the follicle contains ultimate stem cells that divide

rarely, seeding the base of the hair with temporary stem cells that divide

relatively frequently during each round of hair growth.

The second section analyzes how cell lineage history affects progres-

sion. Mitosis is known to be a key risk factor in cancer progression. The
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frequency of methylated DNA indicates the number of mitoses—a mea-

sure of mitotic age. I summarize data on the patterns of methylation

with age in different tissues and discuss how those measures of mitotic

age correspond to incidence patterns.

Another study tested the theory that progression develops through

a series of clonal successions. Direct measurement of precancerous

esophageal lesions found that progression to cancer increased with ge-

netic diversity in the lesion. Greater genetic diversity may indicate a

longer time since a common cellular ancestor and therefore less frequent

clonal succession, contradicting the theory that clonal successions play

a key role in progression.

The third section turns to measurements of somatic mosaicism, in

which patches of cells carry an inherited change from a common an-

cestor. Mosaic patches may arise by a mutation during development

or by a mutation in the adult that spreads by clonal expansion. Mosaic

patches form a field with an increased risk of progression, in which mul-

tiple independent tumors may develop. At present, the best studies of

mosaicism come from variants that cause visible skin defects, allowing

direct observation of the altered tissue.

Genomic technologies can measure heritable changes in cells that lack

an observable phenotype. Such genomic studies have already uncovered

mosaicism in numerous tissues. Advancing technology will soon allow

much more refined measures of genetic and epigenetic variation. Those

measures will provide a window onto cell lineage history with regard

to the accumulation of heritable change—the ultimate explanation of

somatic evolution and progression to disease.

14.1 Reconstructing Cellular Phylogeny

Cell lineage histories affect the accumulation of heritable changes and

the rate of carcinogenesis. For example, an expanding cell lineage poses

significant risks, because a mutation carries forward to a growing clone

of descendants. By contrast, the linear cellular history of renewal in

an epithelial compartment poses lower risk, because a mutation carries

forward only to the limited number of descendants in that single com-

partment.
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One might think of this theory of cell lineages as a forward analysis:

As time moves ahead, the pattern of descent influences the accumula-

tion of heritable change and the progress of cancer.

In empirical studies, we often must consider the reverse: Given a set

of cells that carry various heritable changes, how can we infer the ances-

tral lineage history of those cells? We know that, in an organism with

a single-celled zygote, any two cells trace back to a common ancestral

cell that is either the zygote or a descendant of the zygote. Similarly,

any heritable change shared by a pair of cells often traces back to a com-

mon ancestor in which the original alteration occurred. Somatic changes

trace back to a descendant of the zygote; inherited changes trace back

to an ancestor of the zygote.

Evolutionary biologists have developed various methods to recon-

struct the history of descent—the phylogeny (Page and Holmes 1998;

Felsenstein 2003; Hall 2004). The methods essentially measure the rela-

tive likelihood of various ancestral relations between a set of cells, given

the pattern of shared and variant characters in those cells. The charac-

ters may be DNA sequence, patterns of DNA methylation, or any other

heritable characters.

An organism consists of a population of cells, whose cellular phy-

logeny describes its development and the lines of descent. Similarly, a

tumor consists of numerous cells, in which the cellular phylogeny re-

flects the heritable changes that drove progression.

These points about cellular phylogeny have been known for a long

time. But only recently has it been possible to reconstruct aspects of

organismal history on the time scale of cellular generations.

I limit my discussion here to a few examples. I focus on cases that

illustrate how phylogeny will help to understand the dynamics of pro-

gression and the patterns of age-specific incidence. This field will de-

velop rapidly (Frumkin et al. 2005), but one can already outline some of

the key concepts with regard to cancer dynamics and incidence (Shibata

and Tavare 2006).

VARIABLE METHYLATION PATTERNS

Epithelial cancers usually arise from the accumulation of heritable

changes in stem cell lineages. The historical relations between the stem

cells—their phylogeny—defines the shape of the cell lineage histories in
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which heritable changes accumulate. The phylogenetic shape influences

the rate at which changes accumulate and therefore the dynamics of

cancer progression.

The principles of lineage shape and progression are clear enough, but

how can we figure out the actual history of stem cell lineages in an ep-

ithelial tissue compartment? In humans, one cannot use direct labeling

or other invasive techniques, so to study the cell lineage histories, one

must be able to read the past changes of cell lineages from the current

differences between cells. From those current differences, one can infer

how changes accumulated in the ancestral lineages that coalesce back

to the common ancestor.

To infer phylogenetic history, one must study the right kind of char-

acter. If the character changes too slowly relative to the time scale of

study, then the individual cells will not differ enough to infer historical

relations. For example, if DNA point mutations happen at about 10−9

per base per cell division, then over a period of about 103 generations,

one expects only one change per 106 bp in each cell relative to the com-

mon ancestor. With so little change, all of the extant cells would be

nearly identical across sequences of up to 106 bp, and it would be im-

possible to reconstruct the history. At the other extreme, if characters

change too fast, then the traces of history disappear.

In a normal gastrointestinal crypt, with up to 103 or so cell genera-

tions, standard DNA point mutations happen too rarely to reconstruct

history with reasonable efficiency. To obtain sufficient information,

Yatabe et al. (2001) measured methylation patterns. Adjacent DNA nu-

cleotide sites that contain the bases C and G, linked by a phosphodiester

bond and written CpG, may exist in a methylated or unmethylated state.

Daughter cells inherit the methylation pattern of their parental cell. Ran-

dom changes in the methylation state of each CpG pair happen roughly

on the order of 10−5 per site per cell division (Shmookler Reis and Gold-

stein 1982; Pfeifer et al. 1990), which is much more frequent than point

mutations in DNA sequence at about 10−9 per site per cell division.

NORMAL COLON CRYPTS

No one has yet reconstructed the phylogeny of cell lineages by study

of methylation patterns. But Yatabe et al. (2001) developed a test of

alternative shapes for stem cell lineages.
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Figure 14.1 Stem cell lineage history in a tissue compartment. (a) All stem cells
division occur asymmetrically, maintaining each independent stem cell lineage.
(b) Rare symmetric stem cell divisions lead to occasional loss of a stem cell
lineage and replacement by another resident lineage. Over time, chance events
cause loss of all lineages but one, leading to a sequence of clonal successions.

Yatabe et al. (2001) asked: Does a colon crypt maintain distinct stem

cell lineages over time, or does a crypt proceed through a sequence

of stem lineage replacements such that only one lineage survives over

time? Figure 14.1 contrasts these alternatives. If stem cells always di-

vide asymmetrically, then each stem cell division always produces one

daughter stem cell to continue the lineage: the crypt maintains several

distinct stem cell lineages. Alternatively, if occasionally a stem lineage

failed to produce a daughter stem cell, that loss may be compensated
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by symmetric division of another stem lineage to produce two daughter

stem cells.

Suppose purely asymmetric division occurs, and all independent stem

lineages remain over time (Figure 14.1a). Then two lineages within a

crypt will on average be as different as a pair of lineages sampled from

different crypts. In each case, every lineage traces back to a different

ancestral stem cell that seeded the colon crypts at the end of develop-

ment.

Alternatively, suppose that occasional clonal succession occurs with-

in crypts (Figure 14.1b). Then two lineages within a crypt will on average

be more similar to each other than a pair of lineages sampled from dif-

ferent crypts. Within crypts, the current cells trace back to a recent com-

mon ancestor at the time of the last clonal succession. Between crypts,

cells trace back to a more distant common ancestor that preceded the

separation of the ancestral stem cells at the end of development.

Yatabe et al. (2001) showed that less variation in methylation occurs

within crypts than between crypts, supporting the clonal succession

model (Kim and Shibata 2002). Full evaluation of the data requires var-

ious assumptions about the number of stem cells per crypt, the rate

of cell division, and the accuracy of the methylation measurement pro-

cedure (Ro and Rannala 2001). The overall conclusion of clonal suc-

cession appears to be well supported, but the estimated rate for clonal

successions depends on several assumptions in the quantitative analy-

sis. Based on those assumptions, Yatabe et al. (2001) infer that clonal

succession happens on average about every 8.2 years.

COLON CRYPTS WITH AN INHERITED APC MUTATION

Inherited mutations to the APC locus cause familial adenomatous

polyposis (FAP). In FAP, individuals may develop thousands of indepen-

dently transformed crypts that lead to polyps or more aggressive tumors

(Kinzler and Vogelstein 2002).

Mutations to APC play a role in stem cell dynamics (Kinzler and Vo-

gelstein 2002). So Kim et al. (2004) hypothesized that those individuals

who inherit an APC mutation may have altered patterns of stem lineage

evolution in crypts when compared to normal individuals. To test this

hypothesis, they compared the diversity of methylation patterns within

crypts. Those crypts that carry germline APC mutations had higher

methylation diversity than did crypts from normal individuals.
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Methylation diversity in APC-mutated crypts may be higher because

each stem lineage may survive longer, slowing down the rate of clonal

succession. In Figure 14.1a, long-lived stem lineages retain methylation

differences that arise in the separate lines, creating relatively high di-

versity over time. By contrast, in Figure 14.1b, each clonal succession

drives out the diversity carried by the extinct lineages, keeping diversity

low within the crypt.

Alternatively, APC mutations may increase methylation diversity by

raising the number of stem lineages within a crypt. More stem lineages

provide greater opportunity for the origin and maintenance of variation.

In either case, the greater methylation diversity in crypts with APC

mutations signals that those crypts accumulate more genetic variation

than normal crypts. Initially, that genetic variation may be neutral in

the sense that it does not directly affect the survival or expansion of cell

lineages. However, some of that variation may predispose to subsequent

progression.

For example, a mutation to one allele of a tumor suppressor gene may

have no consequences because the other, normal allele masks the effect

of the mutation. But the hidden mutation poses a risk, because the next

mutation to the normal allele knocks out function and may be a key step

in progression (Nowak et al. 2002; Kim et al. 2004). So greater genetic

diversity in crypts may itself be a predisposing risk.

STEM CELL HIERARCHY IN HAIR RENEWAL

Mammalian hair follicles renew throughout adult life. I described the

hair renewal cycle in Section 12.2. Figure 14.2 reviews the main steps.

The cell lineage history within the hair follicle remains a puzzle (Pot-

ten and Booth 2002). One hypothesis suggests that, as a new hair cy-

cle begins, stem cells in the bulge region divide, and their daughters

move down to the follicular base to form the progenitors for the next

round of growth. Those follicular progenitor cells act as the stem lin-

eage during the growth phase, dividing to produce a transit lineage that

moves up and forms the growing hair. As the growth cycle ends for that

follicle, the follicular germ regresses to form the resting morphology

(Figure 14.2).

If the follicular germ cells die off during regression, then the next

round of growth must be seeded by new daughter cells from the stem
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Figure 14.2 Life cycle of a mammalian hair follicle. As the follicle moves from
the rest phase to the growth phase, the follicular germ region moves downward
and becomes an active site of cell division. Transit cells from the follicular germ
move upward to form the growing hair. After a growth phase, the follicular germ
region regresses to reform the rest phase morphology. From Potten and Booth
(2002).

cells in the bulge region. That cycle would create a hierarchy of stem-

transit lineages: bulge stem cells divide to start the cycle; daughters

of the bulge cells form the follicular germ stem cells to feed the transit

lineages for hair growth; the follicular germ stem cells die and the follicle

regresses to resting morphology; the bulge cells divide again to start a

new cycle. In this cycle, only the rarely dividing bulge lineage remains

over time. Some evidence favors this stem cell hierarchy (Morris et al.

2004), but interpretation of the evidence remains ambiguous (Potten and

Booth 2002).

Kim et al. (2006) analyzed methylation patterns of human hair folli-

cles to evaluate the lineage history. Methylation patterns do not allow

one directly to reconstruct the lineage history. Instead, one uses the fact

that the frequency of methylated CpG nucleotide sites tends to increase

with mitotic age—the number of cellular generations back to the zygote

(Issa 2000; Yatabe et al. 2001). The actual methylation frequency in each
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cell varies stochastically but, on average, the methylation frequency pro-

vides an indicator of the number of cellular divisions.

If bulge cells divide rarely and continue to be the ultimate progenitors

of hair renewal throughout life, then methylation will increase little with

age. In particular, the average methylation of follicles should rise very

early in life as cellular division during development creates the bulge

stem cells, then follicular methylation should remain nearly constant

during the remainder of life. Kim et al. (2006) found exactly that pattern:

increasing methylation up to around two years of age, followed by a long

plateau through the rest of life.

The bulge cells appear to be the ultimate stem cells in the follicle

hierarchy. If so, then in each hair cycle the bulge cells seed the follicular

germ with new daughter cells; those daughters act as stem cells for one

cycle and then die.

During each cycle, the follicular germ cells divide, and their daughter

transit lineages expand to produce the growing hair. The mitotic age of

cells temporarily rises as the hair cycle progresses.

Kim et al. (2006) analyzed whether mitotic age measurably increases

during a hair cycle by comparing methylation frequency between short

and long hairs. Short hairs tend to be earlier in a given hair cycle than

long hairs, and so the short hairs should on average have lower methy-

lation frequency. The observed methylation patterns match this predic-

tion of less methylation in short compared with long hairs. At the end

of the hair cycle, the follicular germ apparently dies off, to be reseeded

in the next cycle by relatively young and weakly methylated daughters

of the bulge cells.

These particular conclusions about mitotic age and stem cell hier-

archies remain tentative. The analysis does show clearly the potential

value of inferring lineage history from molecular markers.

VARIABLE LENGTH OF MICROSATELLITE REPEATS

Loss of DNA mismatch repair raises the mutation rate in repeated

DNA sequences. One type of repeat, the microsatellite, mutates often

in cells that are deficient in mismatch repair. I discuss two studies that

measured variation in microsatellite repeats among a set of cells at one

point in time, and used variation in those repeated regions to reconstruct

historical aspects of the cell lineages involved in tumorigenesis.
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Tsao et al. (1999) used microsatellite variability to reconstruct the

cell lineage history of colorectal cancer progression in tissue that is de-

ficient in mismatch repair. They tested two alternative scenarios for cell

lineage history between tissues sampled from adenomas and adjacent

cancerous outgrowths. Figure 14.3 shows the two alternatives.

In Figure 14.3a, the tissue progresses through repeated clonal suc-

cessions. At any time, all cells derive from the common ancestor of the

most recent clonal succession. Under this scenario, cells derived from

the adenoma and the neighboring cancerous outgrowth have a relatively

recent common ancestor.

In Figure 14.3b, clonal successions occur rarely. Instead, the tissue re-

tains multiple distinct lineages. Under this scenario, cells derived from

the adenoma and the neighboring cancerous outgrowth have a relatively

distant common ancestor.

Tsao et al. (1999) tested these alternatives by measuring relative times

as follows. Loss of mismatch repair (MMR−) initiates an increased mu-

tation rate that speeds cancer progression and also increases the rate of

microsatellite mutations. By comparing the microsatellites of the ade-

noma and cancer samples with other tissues, one can estimate the to-

tal accumulation of microsatellite variation since the loss of mismatch

repair. The microsatellite variation between the adenoma and cancer

samples can then be scaled relative to the total variation, providing an

estimate for the relative timing of the adenoma-cancer split compared

with the loss of mismatch repair.

Figure 14.4 shows samples from two patients. The lineage history of

each patient closely matches the hypothetical pattern of Figure 14.3b,

in which the lineages derive from a relatively distant ancestor. Those

observations support the hypothesis that colorectal cancer progression

can retain several independent lines of progression following a key ini-

tiating event, in this case, loss of mismatch repair.

14.2 Demography of Progression

Changes in the age-onset curve of cancer measure the causal effect

of carcinogenic processes. In this regard, different cell lineage histories

have significant consequences to the extent that they alter age-specific

incidence. I discuss a few examples.
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(a)  The common ancestor shifts with clonal succession

(b)  Early common ancestor preserved with multiple lineages
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Figure 14.3 Alternative hypotheses for the relative time to the common ances-
tor between cells from a colorectal adenoma and an adjacent cancer. Time is
measured relative to the ancestral loss of a component of DNA mismatch repair
(MMR−). Lightest gray shows the ancestry of cells sampled from the current ade-
noma. Black shows the ancestry of cells sampled from the current cancer. (a)
Successive clonal expansions during multistage progression continually move
the most recent common ancestor within the tissue to the recent past. Thus,
the divergence is recent between the samples of the remaining adenoma tissue
(A) and the developing cancer (C1 and C2) when compared with the time back
to the ancestral loss of MMR. (b) After the initial MMR− event, the tissue retains
multiple independent lines of progression. At diagnosis, two samples from the
remaining adenoma (A1 and A2) derive from a relatively recent ancestor, and
similarly, two samples from the developing cancer (C1 and C2) also derive from
a recent ancestor. By contrast, cells from the adenoma and cancer derive from a
more distant common ancestor, relatively close to the original MMR− mutation.
Redrawn from Tsao et al. (1999).

MITOTIC AGE

Mitosis is perhaps the greatest risk factor in carcinogenesis (Peto

1977; Preston-Martin et al. 1990; Ames and Gold 1990; Cairns 1998).
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Figure 14.4 Reconstruction of cell lineage histories from samples of adenoma
and cancer tissues in two patients. The accumulation of microsatellite variation
caused by mismatch repair deficiency (MMR−) measures time in proportion to
the number of cell generations. The lengths of the branches represent inferred
time. The dashed lines show the estimated 95% confidence intervals for the
timing of the branch points. (a) Samples from an adenoma and an adjacent
cancerous outgrowth. The branch between the adenoma and the cancer hap-
pens fairly far back in the cell lineage history, as in Figure 14.3b, supporting
the pattern of multilineage progression following MMR loss rather than fre-
quent clonal successions. (b) The adjacent adenoma and cancer samples again
suggest a fairly distant common ancestor, supporting multilineage progression
since the origin of the MMR− phenotype. Redrawn from Tsao et al. (1999).

Cell division induces new heritable variants and provides the opportu-

nity for cellular competition and selection. The number of cell divisions

in a lineage—mitotic age—provides a simple summary statistic of lin-

eage history (Shibata and Tavare 2006).

Age-specific rates of mitosis can influence the age of cancer onset. In

tissues such as the retina or the bones, mitosis and cancer happen rela-

tively frequently early in life but rarely in adults. By contrast, renewing

epithelial tissues in the colon and lung suffer increasing rates of cancer

as the number of mitoses rises with age.

METHYLATION MEASURES MITOTIC AGE

Retina and bone differ qualitatively in mitotic pattern from colon and

lung. These contrasting tissues lead to obvious comparisons in inci-

dence. In other tissues, it may be difficult to guess the age-specific pat-

terns of mitosis. So, Shibata and colleagues took the next step, by em-

pirically estimating the number of lifetime mitoses in a lineage—mitotic

age—from DNA methylation patterns.
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Figure 14.5 DNA methylation measures mitotic age. (a) Methylation increases
steadily in the colon with chronological age, reflecting the continual mitosis
in this tissue throughout life. (b) In the endometrium, methylation increases
steadily with age during menstrual cycling and then plateaus after menopause.
Obese women (filled symbols) have higher estrogen levels and greater endome-
trial turnover than non-obese women (open symbols). Obese women also have
greater methylation than non-obese women, supporting the idea that methy-
lation measures number of mitoses: 7 of 8 obese samples fall above the line,
whereas 11 of 17 non-obese women fall below the line. Women with fewer than
three children (stars) have more menstrual cycles and endometrial renewal than
women with three or more children (circles). Women with few children have
greater methylation: 11 of 14 women with less than three children fall above
the line, whereas 9 of 11 women with more than three children fall below the
line. Redrawn from Shibata and Tavare (2006), based on original studies in
Yatabe et al. (2001) and Kim et al. (2005).

Various lines of evidence show that the frequency of methylation at

certain genomic sites increases with the number of mitoses (Shibata and
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Tavare 2006). For example, Kim et al. (2006) measured mitotic age in

hair follicles by the frequency of CpG methylation, as I discussed in an

earlier section.

Two studies report the age-specific frequency of methylation in the

colon and endometrium (Yatabe et al. 2001; Kim et al. 2005). The colon

shows a continuous rise in methylation frequency with age (Figure 14.5a).

That steady rise in methylation supports the usual view of the colon as

a continuously renewing tissue throughout life.

By contrast, methylation of the endometrium increases sharply to the

age of menopause, then levels off through the remainder of life (Fig-

ure 14.5b). The early-life rise in endometrial methylation corresponds

to the period of menstrual cycling and frequent tissue renewal. The late-

life plateau corresponds to the period of reproductive quiescence and

limited turnover of reproductive tissues.

Two further observations support the hypothesis that methylation

correlates with mitotic age. Obese women typically have higher estro-

gen levels and greater reproductive tissue renewal than do lean women;

obese women had correspondingly higher methylation levels of endome-

trial tissue than lean women (Figure 14.5b). Women with two or fewer

children typically have more lifetime menstrual cycles than do women

with three or more children; those women with fewer children and more

menstrual cycles had correspondingly higher levels of methylation than

those women with more children (Figure 14.5b).

MITOTIC AGE AND INCIDENCE IN FEMALE REPRODUCTIVE TISSUES

If mitoses do in fact drive progression, then the patterns of age-

specific mitosis should correspond to patterns of age-specific incidence.

Pike et al. (1983) argued that reduced mitotic rate of the breast after

menopause causes the observed drop in the slope of the age-specific

incidence of breast cancer later in life. Pike et al. (2004) updated the

analysis to include the slowing rate of increase in cancer of the breast,

ovary, and endometrium later in life. In Pike’s formulation of the theory,

incidence increases with mitotic age, so the rise in incidence for female

reproductive tissues slows later in life as mitosis slows.

I use log-log acceleration (LLA) to measure the change in incidence

with age. Figure A.8 shows plots of LLA for ovarian cancer. Those LLA

curves follow the declining acceleration through the later part of life

described by Pike. Figure A.2 shows that breast cancer also has declining
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acceleration with age. Those declining LLA curves fit Pike’s prediction.

However, notice in Figure A.8 that cancers of the kidney, esophagus, and

larynx have declining patterns of LLA that closely match the pattern of

decline for ovarian cancer.

The slowing of mitosis with age in the female reproductive tissues

may very well reduce the LLA of those tissues. But the fact that non-

reproductive tissues show similar declines suggests that ubiquitous as-

pects of aging may dominate the patterns of incidence.

MATHEMATICAL ANALYSIS OF MITOTIC AGE AND INCIDENCE

Pike developed a mathematical expression to link mitotic age to inci-

dence (Pike et al. 1983, 2004). That formulation arises from the correct

notion that the age-specific rate of mitosis may influence age-specific

incidence. However, Pike’s particular formulation incorrectly expresses

the relation between mitosis and incidence. In this section, I show Pike’s

formulation, explain why it is wrong, and discuss the correct way to an-

alyze the problem.

I begin by following Pike’s formulation, but I modify the notation to

match mine. Pike began with the widely used approximation for inci-

dence

I (t) ≈ ctn−1,

where t is time since birth, or, equivalently, age, and c is a constant

that absorbs all terms independent of age. This formulation assumes

that the risk factors driving cancer happen at the same constant rate

throughout life. If mitosis is the main risk factor, and the rate of mitosis

varies with age, then instead of measuring the accumulation of time by

t , one should measure the accumulation of mitoses over time, or mitotic

age, m(t), where m is the cumulative number of mitoses at age t .
Pike therefore substituted mitotic age for age and presented the for-

mula

I (t) ≈ c [m(t)]n−1 . (14.1)

This formulation is incorrect. For example, suppose that the age-specific

rate of mitosis slows to near zero at age 65. The cumulative number

of mitoses since birth at age 65, m(65), may be a large number, and

so according to Pike, the incidence will be high at age 65. However,

incidence at age 65 is the rate of new cases at that age. If mitoses have

slowed to almost zero, then this particular form of multistage theory
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predicts that new cases will be very rare, and incidence at age 65 should

be near zero.

Let us suppose, for the moment, that it is possible to use mitotic age to

obtain an approximation for incidence along the lines followed by Pike.

How would we proceed to get the correct formulation? Start by assuming

that the rate of mitosis determines the rate of transition between stages

in a multistage model. Let the rate of mitosis at age t be u(t). Then

mitotic age at age t is the cumulative number of mitoses at that age,

m(t) = ∫ t0 u(x)dx, where the integral simply means the summing up of

all the mitoses between ages 0 and t .
This measure of mitotic age describes the cumulative number of mi-

toses, so we need to work with cumulative incidence to keep cause and

effect on the same scale. Cumulative incidence is the summing up of

incidence between ages 0 and t , which is notationally CI(t) = ∫ t0 I(x)dx.

Then the widely used approximation that Pike wished to analyze is

CI (t) ≈ c [m(t)]n .

Age-specific incidence, I(t), is the rate of additional cases at age t , which

is the derivative of cumulative incidence with respect to t . Taking the

derivative of both sides of the expression for cumulative incidence yields

I (t) ≈ c [m(t)]n−1 u (t) , (14.2)

which is the correct formula that follows from Pike’s logic instead of

Eq. (14.1). This correct formula can be read as: the rate of cancer at age

t depends on mitotic age, m(t), raised to the n − 1st power, multiplied

by the age-specific rate of mitosis at age t , u(t). Mitotic age raised to the

n−1st power is approximately proportional to the number of individuals

that have progressed through the first n−1 stages of carcinogenesis and

need only one additional step to be transformed into a case of cancer.

The rate of mitosis at age t , u(t), is the rate at which those individuals

in stage n−1 pass the final step and are transformed. If the age-specific

rate of mitosis, u(t), drops significantly at menopause, then the inci-

dence would also decline significantly, and the slope of the incidence

curve would be negative. Pierce and Vaeth (2003) developed this sort of

formulation properly and extensively for a period of carcinogen expo-

sure followed by cessation of exposure. In that formulation, incidence
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depends on cumulative exposure and the current exposure rate, instead

of cumulative mitoses and the current mitotic rate.

Although Eq. (14.2) is the right idea, the approximation will in fact

often be highly inaccurate. The actual incidence at each age depends

on the distribution of individuals in particular stages of progression.

When rates of transition between stages change with age, the distribu-

tion of individuals in particular stages becomes particularly distorted

with regard to the approximation in Eq. (14.2), which assumes a regu-

lar distribution pattern. For these reasons, I always advocate a direct

calculation of the exact pattern of incidence, which can easily be accom-

plished for almost any set of assumptions, as explained in the earlier

theory chapters. I took the trouble here to step through the difficulties

encountered by Pike’s analysis, because his approach and the associated

problems occur often in the literature.

CLONAL SUCCESSION VERSUS MULTILINEAGE PROGRESSION

Frequent clonal expansion during progression causes cells to share

a recent common ancestor. By contrast, less frequent clonal expansion

allows different lineages to persist and differentiate over time. Do the

early stages of carcinogenesis proceed by successive rounds of clonal

expansion or by persistence of multiple lineages?

I discussed two relevant studies earlier in this chapter. Kim et al.

(2004) showed a correlation between multilineage persistence and can-

cer risk. In their study, inherited APC mutations caused colon crypts

to maintain more genetic diversity than crypts without such mutations.

Kim et al. (2004) interpreted the greater diversity to mean that different

cells in APC-mutated crypts traced their ancestry back to a more dis-

tant common ancestor than did cells in crypts that lack APC mutations.

Greater multilineage persistence and genetic diversity in APC-mutated

crypts correlate with a higher rate of cancer, but no evidence directly

links diversity and lineage persistence to progression.

Tsao et al. (1999) studied cell lineage history between tissues sampled

from colorectal adenomas and adjacent cancerous outgrowths. They

analyzed cases in which the tissues had lost DNA mismatch repair, a

key initiating event in carcinogenesis. They found that two patients

apparently maintained distinct cell lineages during much of the time
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course of progression (Figure 14.4). Those observation are consistent

with multilineage progression rather than frequent clonal succession.

Maley et al. (2006) provide further support for the association between

genetic diversity in precancerous lesions and progression. They stud-

ied Barrett’s esophagus, a premalignant lesion that often covers several

centimeters of tissue and is too large for complete removal. Multiple

biopsies provided several tissue samples per individual.

Maley et al. (2006) measured a variety of morphological and genetic

attributes from each patient. Greater size of the premalignant lesion

provided a weak but significant predictor for the risk of progression to

malignancy. Indicators of genetic instability—loss of heterozygosity at

p53 and ploidy abnormalities—provided strong predictors for the risk

of progression.

Genetic diversity within a lesion also provided a strong predictor of

progression. At least two different hypotheses may explain why some

lesions have more genetic diversity than others. First, mutations happen

more often in some lesions than in others. Second, lineages may trace

back to more distant ancestors in some lesions than others, allowing

more time for diversity to accumulate.

To test whether progression depended only on mutation rate rather

than lineage depth, Maley et al. (2006) calculated the effect of genetic

diversity while controlling for indicators of genetic instability and mu-

tation rate. They found that genetic diversity had a strong effect in-

dependently of indicators of mutation rate, suggesting that diversity

caused by deep lineages correlates with progression.

From these observations on Barrett’s esophagus, Maley et al. (2006)

and Shibata (2006) conclude that the maintenance of multiple indepen-

dent lineages accelerates progression. It may be that each clonal succes-

sion drives out genetic variability in a tissue, reducing the opportunity

for future mutations to create combinations of genes that promote car-

cinogenesis.

All of these examples provide only indirect support for multilineage

progression; they certainly do not rule out the importance of clonal ex-

pansion in progression. But remember that we are just in the very first

years during which technology allows direct measurement of genetic

variation in samples of tissues. Advances in technology will eventually

provide better reconstructions of cell lineage history (e.g., Backvall et al.
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2005). Such reconstructions will open a new window onto the dynamics

of progression.

CLONAL EXPANSIONS AND CANCER STEM CELLS

Clonal expansion gives rise to a population of cells. Those cells may

be in a precancerous state, ready to make the next transition along the

pathway of progression. Or those cells may form a malignant tumor

that will continue to grow and evolve.

In a clonal population, what fraction of the cells retain the potential

to be the progenitors of future cell lineages? Put another way, what

fraction can act as the stem cells that renew the population?

Some studies suggest that only a small fraction of cells in a tumor

retain the potential to renew the population—the cancer stem cells (Reya

et al. 2001; Pardal et al. 2003; Huntly and Gilliland 2005; Bapat 2006).

Little information exists about earlier stages in progression.

Suppose, in an early precancerous clonal expansion, only a small frac-

tion of the cells can act as long-term progenitors. Then, in spite of the

large population of cells in the clone, only a small number of cells may

drive progression to the next stage along the pathway to cancer. So

clonal expansions do not necessarily raise the target size for future tran-

sitions and the rate of progression. What matters is the number of cells

that retain the potential to be long-term progenitors.

14.3 Somatic Mosaicism

In each cell division, new heritable changes may arise in DNA se-

quence, in DNA methylation, and in modifications to histone proteins. A

change in the first few post-zygotic divisions alters many descendants;

a change in an epithelial stem cell modifies the descendants within the

local tissue compartment. In either case, the organism develops into a

mosaic of different genotypes.

Most observations of mosaicism derive from some spectacularly no-

ticeable change. Pigmented skin patches mark the bounds of mosaic

regions. A tumor emerges from several heritable changes in a region.

Sometimes, multiple tumors develop within a broader field of altered

cells.

Pigmented skin patches and tumors are rare, but mosaicism may be

common. As individuals age, different tissue regions progress through
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Figure 14.6 Epidermal skin aberrations often follow the lines of Blaschko. This
pattern frequently traces mosaic cells that carry heritable aberrations, but the
particular genetic or epigenetic modifications have not been described for all
diseases (Taibjee et al. 2004; Chuong et al. 2006; Siegel and Sybert 2006). Draw-
ing by Davide Brunelli (http://www.med- ars.it), reprinted with permission.

early, invisible stages of carcinogenesis. As genetic technologies im-

prove, we will be able to measure the hidden mosaic evolution of cell

lineages that drives cancer progression.

In this section, I mention some readily apparent cases of mosaicism.

Those examples hint at the hidden processes of progression and at what

we may learn in the near future.

DEVELOPMENTAL MOSAICISM

A single mutational event during development transmits through de-

scendant cell lineages to create a large mosaic population. Each cell
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division during development may, on average, suffer a high probability

of creating at least one heritable change. Among the trillions of cells in

a human, each of billions of different heritable changes forms its own

distinct mosaic pattern.

Gottlieb et al. (2001) list 30 diseases with reported mosaicism. I briefly

discuss skin disorders with visible phenotypes, because the altered skin

markings provide the easiest examples for study (Happle 1993).

The spatial distribution of the mosaic cells traces the tips of the cell

lineage trees. If descendant cells remain together, then the mosaics form

patches of distinct cells. In some cases, the descendant cell lineages

trace distinctive patterns that reflect the movement of cells during de-

velopment. For example, several visible skin diseases follow the lines

of Blaschko (Figure 14.6). Other distinct patterns also occur in skin dis-

eases (Chuong et al. 2006). Speckled lentiginous naevus and Becker’s

naevus follow a mosaic checkerboard pattern; mosaic trisomy of chro-

mosome 13 causes scattered leaf-like shapes of hypopigmentation.

Familial glomuvenous malformations provide an excellent system to

study the process of developmental mosaicism. These venous malfor-

mations appear on the skin as blue-red nodules (Vikkula et al. 2001;

Brouillard and Vikkula 2003).

Individuals who inherit a mutation to one of the two alleles at the

glomulin locus develop multiple independent nodules distributed ran-

domly across their skin. By contrast, noninherited cases typically arise

as a single, isolated nodule (Rudolph 1993; Boon et al. 1999; Happle and

Konig 1999; Brouillard et al. 2002).

These patterns suggest that nodules form when both alleles of the

glomulin locus have lost function. In inherited cases, the spatial pat-

tern of nodules likely marks the multiple independent inactivations of

the second allele at different locations during development (Happle and

Konig 1999; Happle 1999; Brouillard et al. 2005). Study of individuals

who inherit one nonfunctional allele would provide interesting data on

developmental mosaicism. The number, spatial distribution, and size

of nodules would describe the loss of the second allele, either by direct

mutation, loss of heterozygosity, or epigenetic silencing.

The nodules of glomuvenous malformations record mutational events

in the cell lineage history of the developing organism. Those events fo-

cus on a single locus. Independent heritable changes also accumulate



CELL LINEAGE HISTORY 307

at thousands of other genes. Of those thousands of genes, several hun-

dred affect DNA repair and chromosomal maintenance; probably several

hundred other loci control the cell cycle and cell death.

Heritable changes in any of those hundreds of DNA repair or cell-cycle

genes may advance cancer progression through the first stages. Simple

calculations suggest that such developmental mosaicism may contribute

significantly to the incidence of cancer (Frank and Nowak 2003; Meza

et al. 2005).

FIELDS DERIVED FROM CLONAL EXPANSIONS

Mutations during development can create a population of descendant

cells that have progressed toward cancer. Alternatively, in a fully devel-

oped individual, a single mutated cell may expand clonally to create a

local patch or field of tissue that has progressed through an early stage

of carcinogenesis. Most reported cases of a precancerous field do not

distinguish between developmental mutations and clonal expansions in

the fully developed organism.

Slaughter et al. (1953) introduced the idea that localized tumors may

emerge from a broader precancerous field. Subsequent work on “field

cancerization” almost always assumes that the field grows by clonal ex-

pansion of a mutated cell in the fully developed organism (Braakhuis

et al. 2003, 2005; Hunter et al. 2005).

Several different lines of evidence may indicate a broader field sur-

rounding a localized tumor: neighboring tissue may be histologically

abnormal; genetic analysis may directly measure the spatial distribu-

tion of a mutated gene; and multiple independent tumors may develop

from the same tissue patch. Improved genomic technologies make it

increasingly easy to use direct genetic analysis. Those genetic analyses

often demonstrate a broad field containing the same clonally derived

mutation in tissue that appears normal.

Fields of p53 mutants have been observed in the bladder (Simon et al.

2001), oral cavity (Braakhuis et al. 2003), and skin (Jonason et al. 1996;

Brash 2006). Fields have also been observed in the lung, esophagus,

vulva, cervix, colon, and breast (reviewed by Braakhuis et al. 2003). The

importance of fields in progression depends on the fraction of cells in

the expanded clone that retain the ability to progress further. It may be
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that only a limited fraction of cells retain or could acquire the stem-like

properties needed for progression.

SPATIOTEMPORAL VARIATION IN PROGRESSION

Several developmental mutant patches appear in the case of inherited

glomuvenous malformations; p53 mutant patches can often be detected

in normal tissue. Those fields form large, easily studied mutant patches

on readily accessible surface tissues. Many more mutants must exist

throughout normal tissue, in the hundreds of other genes that can affect

progression.

In other words, the organism evolves continually in a mosaic way.

Patches of varying size progress to different stages on the pathway to

disease. Current data on evolving mosaicism focus on a few genes in

a few tissues, measured over broad tissue patches. Soon, technology

will allow measurement of more genes at finer spatial scales. With such

data, we will begin to infer cell lineage histories with regard to the ac-

cumulation of heritable change. The cell lineage histories provide the

ultimate explanation of somatic evolution and progression to disease.

The diseases affected by somatic evolution may go beyond cancer, to

include various syndromes that increase with age (Wallace 2005).

14.4 Summary

This chapter reviewed recent studies on the somatic evolution of

cell lineages. Because cancer arises from the accumulation of herita-

ble changes in cell lineages, such studies will play a key role in future

analyses of cancer progression. Advancing genomic technologies will

soon yield much greater resolution in the measurement of heritable cel-

lular changes. To interpret those data, we will have to understand how

such changes influence the dynamics of progression and the patterns of

age-specific incidence. Shifts in incidence curves provide the ultimate

measure of causation in cancer.
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Molecular technology promises to reveal the biochemical changes of can-

cer. With that promise has also come an implicit assumption: one will

understand cancer by enumerating the major biochemical changes in-

volved in progression and the linkages of biochemical processes into

networks that control cellular birth and death. But enumerating parts

and their connections is not enough.

Think about a large airplane. If you were on that plane, the flight

trajectory is what you would most care about. Could you predict the

flight trajectory if you knew all of the individual control systems and

their complex feedbacks? Probably not, because an inventory by itself

does not provide all of the rates at which changes occur. Even with all

of the rates for component processes, it would not be easy to work out

the trajectory.

One needs to link the parts to the outcome: how do particular changes

in components shift the plane’s trajectory? One ultimately assigns cau-

sality to parts by how changes in the parts affect changes in the outcome.

In a similar way, a genetic or environmental factor causes cancer to the

extent that it shifts the age-incidence curve—the trajectory of cancer. To

understand a particular type of cancer, we must understand the forces

that shape the age-incidence curve and the forces that shift the curve

from its normal pattern.

This book developed a synthesis between, on the one hand, the bio-

chemical processes that control cells and tissues, and, on the other hand,

the consequences for the age-incidence curve of cancer. There have, of

course, been many attempts to connect biochemistry to progression dy-

namics and incidence. Almost all attempts try to fit some model of

process to the observed pattern of incidence. They usually succeed:

most models can be fit to almost any reasonable pattern. The ease with

which different models can be fit to the same data means that one learns

relatively little from fitting.

In this book, I advocated two steps to move beyond facilely fitting

quantitative models of cellular processes to patterns of incidence. First,

breadth of analysis prevents one from uncritically accepting the first
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quantitative analysis that can be molded to the data. Second, simple

comparative hypotheses create the back and forth loop between predic-

tions and tests that reveal causality.

Breast cancer illustrates the importance of breadth in analysis. Breast

cancer incidence rises rapidly through midlife and rises slowly after

menopause (Figures A.1, A.2); ovarian cancer follows a similar pattern

(Figures A.7, A.8). The rate of cell division in female reproductive tis-

sues declines after menopause. It seems natural to relate cell division to

incidence, because the rate of mitosis sets one of the major risk factors

in cancer. So we may easily fit a model in which mitotic rate shapes the

incidence pattern of breast and ovarian cancer.

My broad synthesis of pattern and process in cancer quickly shows

how little we learn from the fit of the mitotic rate model to breast and

ovarian cancer incidence. On the pattern side, breast and ovarian cancer

incidence do follow changes in reproductive status, but so do cancers

of the kidney, esophagus, and larynx in both males and females (Fig-

ures A.7, A.8).

The broad look at pattern in the Appendix shows that many cancers

have rising incidence through midlife followed by a tendency of the inci-

dence curve to flatten (declining acceleration). This common incidence

trend of many cancers suggests a universal process.

What sort of universal process might explain declining acceleration

later in life? In my theory chapters, I developed a broad conceptual

framework for how various processes of progression affect incidence.

That broad framework showed that many different processes cause de-

clining acceleration with age.

My favored explanation follows from a universal aspect of multistage

progression: as individuals age, they progress stochastically through

the early stages of disease. Later in life, they have fewer steps remaining

to overt symptoms. With fewer stages remaining, incidence accelerates

more slowly with age. This progression scenario fits the data. But I also

showed that environmental or genetic heterogeneity can fit the patterns

of declining acceleration. By looking broadly at the theory, we avoid

latching onto the first good fit.

The theory leaves us with alternative plausible hypotheses, which is

all that we should expect from a quantitative framework. But with so

many alternatives, some might feel that it is too hard to match biochem-
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ical and cellular components to the quantitative processes that drive

progression and shape incidence curves.

Perhaps we should wait for all the molecular and cellular details, af-

ter which the nature of progression and the final outcome of incidence

may be clear. Unfortunately, enumeration will not work. The full list

of parts for our plane does not tell us how it flies. Measurements of

rate processes by which individual components work locally within the

broader system do not solve the problem. To understand cancer, we

would certainly like to know how a genetic variant of a DNA repair sys-

tem alters the somatic mutation rate. But, based on a compilation of

such rates, we would not be able to build a large, system-level model

that has generality, broad predictive power, and insight into causality.

Induction, ever attractive, does not work.

What does work? Simple comparative hypotheses that reveal causal-

ity and the design principles that determine outcome: the usual itera-

tive scientific cycle between, on the one hand, the genetic and physio-

logical variations in cells and tissues that define the causes and, on the

other hand, the rates at which cancer develops that define the conse-

quences.

Knudson (1971), one of the most cited papers in the history of cancer

research, provides a revealing sensor for current trends. Recent cita-

tions of Knudson’s paper reduce his work to an enumerative slogan and

ignore the powerful way in which Knudson himself analyzed causality

in cancer. Almost all recent citations of Knudson ascribe to him the

“two-hit theory”: for many genes, both alleles must be knocked out to

cause loss of function and progression toward cancer. However, the

two-hit theory was in fact raised several times during the 1960s, before

Knudson’s publication.

Knudson primarily contributed by figuring out a way to test theo-

ries of genetic causation in cancer (see also Ashley 1969a). He com-

pared age-specific incidence curves between inherited and noninherited

cases of retinoblastoma. The inherited cases had increased incidence

by an amount consistent with an advance of progression by one rate-

limiting step. This approach provided a method of analysis by which

one could use quantitative comparison of age-specific incidence between

two groups to infer underlying processes of progression. In this case,

the comparison pointed to a genetic mutation as a key rate-limiting step.
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Knudson’s approach was simple: predict how a perturbation to pro-

cess alters outcome. Knudson was particularly successful because he

chose to focus on perturbation to heritable properties of cells, in this

case, perturbation caused by an inherited mutation, and because he

chose to focus on quantitative aspects of the ultimate outcome, the rate

at which cancer occurs at different ages.

Current laboratory studies use the same approach. Those lab studies

analyze genetic causation by comparing the age-onset curves between

different genotypes. If a particular genotype shifts the onset curve to

an earlier age, then one ascribes causation to the genetic differences of

that genotype relative to the matched control. Those lab studies almost

always compare incidence curves in a qualitative way, by simply noting

if the incidence curve of a particular subgroup of animals has shifted to

an earlier age relative to matched controls. They discard all the quan-

titative information about outcome contained in the relative rates of

progression for different groups.

Throughout this book, I have advocated quantitative comparisons of

incidence curves to infer causation. I developed an extensive theoretical

framework from which one can predict how genetic or environmental

perturbations alter incidence curves. Such comparative predictions can

be tested easily in studies of laboratory animals, where the experimenter

can control conditions and treatments for different groups.

I have also advocated comparisons of incidence between subgroups

of humans. Such comparisons provide particularly interesting infor-

mation when the subgroups differ in clearly identified aspects of their

genetics. Knudson’s comparison of inherited and noninherited retino-

blastoma provides one example. In that case, identifying the distinct

subgroups is relatively easy, because the inherited cases have distinc-

tive patterns of tumor formation when compared to the noninherited

cases.

New genomic technologies will soon allow much more refined mea-

surement of genotype in human subjects. With that genetic resolution,

one will be able to compare quantitative aspects of age-incidence curves

between groups with and without certain genetic attributes. Such com-

parisons will allow one to ascribe causation to particular genetic dif-

ferences, and then follow up with analysis of the biochemical processes

associated with those genetic differences. This approach demands quan-

titative evaluation of outcome—the age-incidence curve. I have built the
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framework required to predict changes in incidence curves based on

specific hypotheses about processes of progression.



Appendix:
Incidence

The first section shows plots of cancer incidence for different tissues

(Figures A.1–A.12). The second section shows plots of the male:female

ratio in incidence for different tissues (Figures A.13–A.18).

Plots of Cancer Incidence at Different Times and Places

The following plots show cancer incidence and acceleration patterns

at different time periods and in different countries. In some cases, the

acceleration plots fluctuate between countries because of the nature of

the data, which may have small numbers of cases at early or late ages.

Thus, it is best to focus only on the broad trends in the acceleration plots,

particularly those patterns that recur in different years and in different

locations. For example, prostate cancer shows a remarkably strong and

linear decline in acceleration beginning in midlife (Figure A.2). Some can-

cers show midlife peaks in acceleration, for example, colon and bladder

cancer (Figure A.4).

Cervical cancer has an acceleration close to zero throughout life, with

higher fluctuations outside the USA probably caused by smaller samples

for those other countries (Figure A.12). However, cervical cancer in the

USA follows different patterns of acceleration in different ethnic groups

(not shown), emphasizing that external factors such as environment and

lifestyle can strongly affect incidence and acceleration. Given the vari-

ability in potential causal factors, the data in the following plots can be

used only to suggest possible hypotheses for further study.
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Figure A.1 Age-specific incidence for different time periods and geographic
locations. Male cases shown by solid lines; female cases shown by dashed lines.
The different databases are: SEER 93–97 and SEER 73–77 from the SEER database
(http://seer.cancer.gov/) in the USA for 1993–1997 and 1973–1977 using white
individuals in the standard nine registries that have been in use since 1973;
England, Sweden, and Japan from the CI5 database (Parkin et al. 2002) for 1993–
1997 (for Japan, I excluded the Hiroshima registry, which had data for a different
range of dates).
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Figure A.2 Age-specific acceleration for different time periods and geographic
locations. Male cases shown by solid lines; female cases shown by dashed lines.
Data description as in Figure A.1. The prostate acceleration is shown on a dif-
ferent scale, to accomodate the very high acceleration that occurs in midlife.
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Figure A.3 Age-specific incidence for different time periods and geographic
locations. Male cases shown by solid lines; female cases shown by dashed lines.
Data description as in Figure A.1. SEER plots show combined data for colon and
rectal cancer, other countries show colon cancer only. Colon cancer is more
common than rectal cancer, so these plots are roughly comparable.
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Figure A.4 Age-specific acceleration for different time periods and geographic
locations. Male cases shown by solid lines; female cases shown by dashed lines.
Data description as in Figure A.1. SEER plots show combined data for colon and
rectal cancer, other countries show colon cancer only. Colon cancer is more
common than rectal cancer, so these plots are roughly comparable.
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Figure A.5 Age-specific incidence for different time periods and geographic
locations. Male cases shown by solid lines; female cases shown by dashed lines.
Data description as in Figure A.1.
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Figure A.6 Age-specific acceleration for different time periods and geographic
locations. Male cases shown by solid lines; female cases shown by dashed lines.
Data description as in Figure A.1.
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Figure A.7 Age-specific incidence for different time periods and geographic
locations. Male cases shown by solid lines; female cases shown by dashed lines.
Data description as in Figure A.1.
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Figure A.8 Age-specific acceleration for different time periods and geographic
locations. Male cases shown by solid lines; female cases shown by dashed lines.
Data description as in Figure A.1.
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Figure A.9 Age-specific incidence for different time periods and geographic
locations. Male cases shown by solid lines; female cases shown by dashed lines.
Data description as in Figure A.1.
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Figure A.10 Age-specific acceleration for different time periods and geographic
locations. Male cases shown by solid lines; female cases shown by dashed lines.
Data description as in Figure A.1.
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Figure A.11 Age-specific incidence for different time periods and geographic
locations. Male cases shown by solid lines; female cases shown by dashed lines.
Data description as in Figure A.1.
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Figure A.12 Age-specific acceleration for different time periods and geographic
locations. Male cases shown by solid lines; female cases shown by dashed lines.
Data description as in Figure A.1.
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Sex Differences in Incidence

Figures A.13–A.18 show the male:female ratios for the major adult

cancers. The plots highlight two kinds of information. First, the val-

ues on the y axis measure the male:female ratio, with positive values

for male excess and negative values for female excess. The scaling is

explained in the legend of Figure A.13. Second, the trend in each plot

shows the relative acceleration of male and female incidence with age.

For example, in Figure A.13, the positive trend for lung cancer shows

that male incidence accelerates with age more rapidly than does female

incidence, probably because males have smoked more than females, at

least in the past. Positive trends also occur consistently for the colon,

bladder, melanoma, leukemia, and thyroid. Negative trends may occur

for the pancreas, esophagus, and liver, but the results for those tissues

are mixed among locations. Simple nonlinear curves seem to explain

the patterns for the stomach and Hodgkin’s, and maybe also for oral-

pharyngeal cancers.

The patterns of relative male:female incidence probably arise from

differences between males and females in exposure to carcinogens, to

expression of different hormone profiles, or from different patterns of

tissue growth, damage, or repair. At present, the observed patterns

serve mainly to guide the development of hypotheses along these lines.
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Figure A.13 Ratio of male to female age-specific incidence. The y axis shows
male incidence rate divided by female incidence rate for each age, given on a
log2 scale. This scaling maps an equal male:female incidence ratio to a value of
zero; each unit on the scale means a two-fold change in relative incidence, with
negative values occurring when female incidence exceeds male incidence. Each
plot shows the Spearman’s rho correlation coefficient and p-value; a p-value of
zero means p < 0.0005. Positive correlations occur when there is an increasing
trend in the ratio of male to female incidence with increasing age. Note that the
scales differ between plots, using the maximum range of the data to emphasize
the shapes of the curves. The data are the same as used in Figures A.1–A.11.
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Figure A.14 Sex differences in incidence, as in Figure A.13.
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Figure A.15 Sex differences in incidence, as in Figure A.13.
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Figure A.16 Sex differences in incidence, as in Figure A.13.
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Figure A.17 Sex differences in incidence, as in Figure A.13.
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Figure A.18 Sex differences in incidence, as in Figure A.13.
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