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Trypanosoma brucei infects various domestic and wild mammals in equatorial Africa. The parasite's genome
contains several hundred alternative and highly diverged surface antigens, of which only a single one is
expressed in any cell. Individual cells occasionally change expression of their surface antigen, allowing
them to escape immune surveillance. These switches appear to occur in a partly random way, creating a
diverse set of antigenic variants. In spite of this diversity, the parasitaemia develops as a series of
outbreaks, each outbreak dominated by relatively few antigenic types. Host-specific immunity eventually
clears the dominant antigenic types and a new outbreak follows from antigenic types that have apparently
been present all along at low frequency. This pattern of sequential dominance by different antigenic types
remains unexplained. I use a mathematical model of parasitaemia and host immunity to show that small
variations in the rate at which each type switches to other types can explain the observations. My model
shows that randomly chosen switch rates do not provide sufficiently ordered parasitaemias to match the
observations. Instead, minor modifications of switch rates by natural selection are required to develop a
sequence of ordered parasitaemias.
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1. INTRODUCTION

The infectious protozoan Trypanosoma brucei afflicts various
domestic and wild mammals in equatorial Africa. The
tsetse fly vector also transmits the disease to humans,
causing sleeping sickness and eventually death. This para-
site has attracted much research because of its ability to
change its antigenic surface properties and escape
immune surveillance (Vickerman 1989). Each parasite
cell is covered with a nearly uniform and strongly anti-
genic glycoprotein coat. The parasite's genome contains
several hundred alternative and highly diverged surface
antigens, of which only a single one is expressed in any
individual. A parasite switches its antigenic expression
and entire coat in each cell generation at a rate of 1/1000
to 1/100 (Barry & Turner 1991; Barry 1997; Turner 1997).

These switches appear to occur in a partly random way,
creating a diverse set of antigenic variants (Turner & Barry
1989). In spite of this diversity, the parasitaemia develops
as a series of outbreaks, each outbreak dominated by rela-
tively few antigenic types (Barry 1986; Barry & Turner
1991). Host-specific immunity eventually clears the domi-
nant antigenic types and a new outbreak follows from anti-
genic types that have apparently been present all along at
low frequency. The sequence of dominant antigenic
variants tends to follow a specific order, although the parti-
cular sequence can be influenced by the host immune
response and other factors (Gray 1965; Capbern et al. 1977;
Miller & Turner 1981; Barry 1986; Barry & Turner 1991).

Several hypotheses have been proposed to explain these
dynamics within the host (Seed 1978; Kosinski 1980; Agur

et al. 1989; Antia et al. 1996), but none has gained empirical
support or widespread acceptance (Vickerman 1989;
Barry & Turner 1991). I use a mathematical model of para-
sitaemia and host immunity to show that small variations
in the rate at which each type switches to other types can
explain the observations. Variation in switch rates may also
play an important role in the wide variety of pathenogenic
micro-organisms that undergo programmed antigenic
variation, although at present less is known about the
dynamics of those other systems (Deitsch et al. 1997;
Fussenegger 1997; Nash 1997; O'Connor et al. 1997; Serkin
& Seifert 1998; Zhang et al. 1998).

2. MODEL

I simplified the complex interaction between the
immune system and an infection to three key components:
the number of parasites pi , of each antigenic type i; the
antigen-specific killing capacity of the host's antibodies ai;
and the host's memory of particular antigens m1.

The dynamics are given by

= rpi (1 — Plc) — kp iai +	 vii , ( 1)
dt
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where there are n possible antigenic types, with all sums
from unity to n.
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(b)The parasite dynamics in equation (1) have four
components. The first term describes logistic growth, with
intrinsic rate of increase r, carrying capacity c, and total
parasite abundance over all types P. The second term is
the killing effect of host immunity, determined by the kill
rate per contact k. The third term is the switch from
other antigenic types to type i, where vijis the switch rate
from type j to type i. The final term is the switch rate of
type i to other types.

Three components determine the antibody dynamics
in equation (2). The first is the growth of antibody
production, which increases according to an intrinsic
rate p, the stimulation from memory-related signals mi,
and the saturation kinetics of the antigens such that
is the antigenic level that provides one-half maximum
stimulation. The second term describes the rate of anti-
body loss, p. The final term is the low rate at which
antibody-producing capacity is made from the memory
component.

Memory dynamics in equation (3) maintain low
numbers of specific memory cells when not stimulated
and, when stimulated above a threshold, settle to a
steady-state with a high abundance of memory. The first
term controls the rise to the upper steady-state near abun-
dance b when stimulated above a threshold. The second
term gives the saturating response to antigen. The third
term is the decay rate of memory. The final term is the
intrinsic rate at which specific memory is produced in the
absence of antigenic stimulation.

I first calibrate the immune response to follow the two
key features of specific immunity 	 slow initial response
to challenge by a novel antigen and fast response to
repeat challenge by the same antigen. Figure la shows
response to initial challenge; figure lb shows response to
repeat challenge. I use the parameters in figure 1 for the
remainder of the paper.

Given this immune response by the host, I studied how
natural selection influences the switching rates between
antigenic types. For n antigenic types, I analysed the n x n
matrix with entries vij for the rate at which type j switches
to type i. I express the switch entries non-dimensionally as
vii lr, the switch rate per unit time divided by the parasite's
intrinsic rate of increase r. Thus vii Ir In 2 is the switch rate
of type j to type i per doubling time of the parasite popula-
tion during exponential growth.

I initialized the switch matrix to values of 1 x 10 -3 for
all entries. I then calculated fitness as follows. First, I
numerically integrated equations (1)-(3) over T time
units. Second, I took the average parasitaemia level as
parasite fitness under the assumption that fitness (trans-
mission) increases proportionally with parasite load in
the blood (Vickerman 1989). I then iterated through the
following cycle for N evolutionary steps. (i) Mutate the
switch matrix: randomly choose an entry from the
matrix, each of which has the form M x 10-E ; randomly
choose an integer from the range [1, 9] for the mantissa
M, and randomly choose an integer from the range [3, S]
for the exponent E. The parameter S = 3, . ,6 sets the
limit on the orders of magnitude over which switch rates
vary. (ii) Calculate fitness for the mutated switch matrix.
(iii) If the mutant fitness is higher than the original, use
the mutant matrix for the next iteration, otherwise use
the previous matrix.
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Figure 1. Immune response to initial challenge (a) and repeat
challenge (b). Curves were obtained by numerical integration
of equations (1)-(3) for a single parasite antigen (i=1) and no
switching (v = 0). The long-term dynamics follow damped
oscillations to a stable equilibrium. Time is measured in
non-dimensional units 'T = rt, where r is the intrinsic rate of
increase for the parasite. On the non-dimensional scale, the
doubling time of the parasite population in the absence of
competition is In 2 ti 0.7. The heights of curves are
abundances, expressed non-dimensionally as: fraction of
carrying capacity p/c, for the parasites; normalized killing
aklr, for antibodies; and fraction of carrying capacity mI6,
for memory. For the other parameters I also used
non-dimensional normalizations to reduce the number of
parameters and emphasize the scaling relationships (Segel
1972; Murray 1989): pb/r = 10, 0/c = 0.2, tilr = 0.3,
745kIr2 = 0.01, -y6Ir = 1, bar = 0.5, dIr = 0.01 and €/n5 =10-4.
The initial conditions are (a) plc = 0.01, a = m = 0 and
(b) plc = 0.01, a= 0, mI6 = 1.

Figure 2 shows the dynamics of total parasitaemia after
evolution of the switch matrix. The rows are, from (a) - (d ) ,
for S = 3, 4, 5, 6. For example, in the middle column of
(a) there are n = 10 antigenic types and the switch rates
vary from 1 x 10-3 to 9 x 10'. In the middle column of
(b) the rates vary from 1 x 10-4 to 9 x 10-3 . With a wider
range of switch rates, the parasite is able to spread its
peaks of parasitaemia over longer time periods and
obtain higher fitness. These patterns match in a qualita-
tive way the observations that many antigenic types are
present at any time and the parasitaemia follows waves in
which successive types dominate. In the model here, each
peak corresponds to the increase of a particular type
followed by immune control and reduction of that type's
abundance. At any time, most types are present in low
abundance and a few types are rapidly increasing or
decreasing.

The evolved switch rates separate the transitions into
an ordered sequence of parasitaemias. Figure 3 shows the
switch matrices for four of the corresponding time-series
in figure 2 ((a,b) middle and right columns). The diameter
of each circle in figure 3 is proportional to the switch rate,
with a minimum rate of 10 -3 in figure 3a(i,ii) and 10-4
in figure 3b(i,ii). A quick glance shows that the transitions
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Figure 2. Time-series of parasitaemia dynamics. The rows
vary in minimum switch rate, determined by the parameter S,
which varies over 3, 4, 5, 6 from (a)–(d) . The number of
evolutionary iterations for n = 5,10 is ,Ar = 20 000, and for
n = 20 is N = 40 000. For each case, the antigenic type 1 has
initial non-dimensional abundance pi lc = 0.1, all other initial
abundances are zero for parasites, antibodies and memory.
The non-dimensional time units can be translated into days as
follows. The number of population doublings of the parasite in
the absence of competition is T10.7, as explained in the legend
of figure 1. If we use an approximate doubling time of 5 h
(Turner & Barry 1989), then the number of hours on the
time-scale is 5r/0.7 ti 7 T . Thus 100 non-dimensional time
units is approximately 700 h, or about 29 days. This matches
the order of magnitude for the time-course of observed
parasitaemias (Barry 1986).

are not precisely defined by the switch matrices. Instead,
there is sufficient separation that each type gets, in turn,
a head start of approximately an order of magnitude over
competitors, which provides a sufficient lead for that type
to dominate until controlled by specific immunity. For
example, if one follows types by the column of the switch
matrix, the sequence of dominance for figure 3a (i) is 1, 9,
7, 4, 3, 8, 6, 2, 5, 10 (see figure legend).

3. MECHANISM OF VARIABLE SWITCH RATES

The model suggests that natural selection may favour
some switch matrices over others. This raises two
questions: What is the mechanism by which switch
probabilities are encoded in the genome? Is it plausible to
assume that mutations can modify particular switch prob-
abilities for changing from one antigenic type to another?

Some of the molecular details of antigenic switching
are known (reviewed by Borst et al. 1997; Pays & Nolan
1998). The expressed surface antigen is encoded as part of
a large telomeric transcription unit. There are approxi-
mately 20 such transcription units in the genome, but

usually only one site is active at any particular time. Borst
et al. (1997) list five mechanisms that cause change of the
expressed antigenic variant, of which I discuss three.

(a) Gene conversion of the expressed site by silent
telomeric genes

The genome is estimated to have 100-200 loci
encoding alternative antigenic variants located in
telomeric regions. Most of these telomeric loci have
70 bp repeats upstream that provide homology with the
long 70 bp repeat segment in front of the antigenic
variant in the telomeric expression site. It seems
plausible that the probability of conversion by one of
these sites depends in part on the homology of the loci
and the flanking regions.

(b) Gene conversion of the expressed site by internal
genes

The trypanosome genome contains up to 1000 silent
loci that encode alternative surface variants. These loci
are called 'internal' because they are not located in
telomeric regions. When an internal locus converts the
currently expressed site in a telomeric expression unit,
the surface antigen changes. Again, it seems plausible that
the probability of conversion by a particular internal site
depends in part on the homology of the loci and the
flanking regions.

(c) Switch among the 20 transcription units
This requires activation of a new unit and inactivation

of the current unit. Borst (1991) summarized indirect
evidence and suggested that activation and inactivation of
expression sites occur by stochastic processes. Stochastic
switching may be subject to modification such that the
probability of activation of particular sites depends on base
sequence properties of the site or its flanking regions.

4. EVOLUTIONARY DYNAMICS

My analysis demonstrates that some switch matrices
cause greater total parasitaemias than other matrices. I
searched for a locally optimal matrix by sequentially
comparing a given matrix and a randomly perturbed
(mutated) matrix. When the perturbed matrix produced
a higher total parasitaemia it was used in the next round
of comparison. The final result of many such pairwise
comparisons is a matrix that approaches a locally optimal
parasitaemia when compared with matrices perturbed at
a single entry. Clearly this search method has no relation
to realistic evolutionary dynamics. Thus one must
consider what sort of solution has been obtained.

The switch matrix represents the probabilities of anti-
genic transition per cell division for a particular genotype. I
have assumed that a genotype (matrix) that confers high
total parasitaemia has a higher fitness than a genotype that
confers a relatively low total parasitaemia. Thus a locally
optimal matrix represents a genotype that, once established
in a population, cannot be displaced by a rare mutant geno-
type with slightly differing switch properties. The locally
optimal genotype, once established, is evolutionarily stable.
This method of finding an evolutionarily stable genotype
has proved to be a very powerful method in the study of
complex adaptations (Maynard Smith 1982).
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Figure 3. Matrices of switching for change from type j in columns to type i in rows. The sequence given in the text for the
dominant parasitaemias of (a(i)) can be explained as follows. The initial parasitaemia grows from type 1 because of the initial
conditions. This type switches most frequently to types 7 and 9 (first column). Type 7 has a slightly higher switch rate than type
9 (sum of all switches in columns 7 and 9), thus 9 peaks slightly sooner than 7. These two types both switch most frequently to
type 4, which in turn favours a transition to type 3, which changes most often to 8. Type 8 switches to 6, and now it is difficult to
follow the last changes. Note that the final types (2, 5, and 10) switch frequently to other types. In this model, high antigenic
diversity is favoured at the end of the peak parasitaemias in order to minimize immune attack. Note particularly in the right
matrices (a(ii), b (ii)) with n= 20, that each type switches at a high rate to several other types. This fact and the minimum switch
rate of 10-3 or 10-4 shows that there is no rigidly defined switch hierarchy but rather a sequential pattern of small variations in
initial frequency.

Evolutionary stability leaves open the question of how
a population evolves to a particular stable state 	 the

problem of evolutionary dynamics. This is a particularly
complex problem for switch matrices of antigenic varia-
tion. If a mutant genotype were to arise during the
course of parasitaemia within a host, the success of that
genotype would depend on competition with the resident
genotype and on the history of immune stimulation in
that host. A mutant that would, by itself, produce a
higher total parasitaemia, may have lower fitness in the
environment of its parental competitor and the host
immune response.

How can an improved mutant become established?
There are several stages in the life cycle during which the
population of parasites within a host may come to be
dominated by a new mutant. During uptake of parasites
by the vector, relatively few parasites from a single
location in the host's body are transmitted. Within the
vector, sampling and stochastically influenced differential
success may occur. There is again a sampling process of
parasites upon injection into a new host. Finally, among

the parasites transmitted, only a subset will be the
progenitors of the early parasitaemias that form the
ancestral population within that host.

During any of these sampling phases, a new mutant
can become established as the dominant genotype within
a host. That mutant will then compete with other geno-
types according to its success in transmission to new
hosts, which I have assumed to be influenced by the total
parasitaemia. By such a process, those mutants that
produce higher parasitaemias will eventually dominate
the population until replaced by a superior mutant.

5. DISCUSSION

•

Many authors have noted that multiple antigenic types
must be used sequentially to provide full advantage to the
parasite (Vickerman 1989; Barry & Turner 1991). If all
types become abundant early, then specific immunity will
develop against all types and the infection will quickly be
controlled by the host. By contrast, sequential waves of
parasitaemia stretch the time period over which the



parasite can evade host immunity. The puzzle is how a
large population of parasites can control expression suffi-
ciently to present a temporally ordered set of antigens.

One possibility is a strongly regulated sequence of
expression, each new type being expressed only after a
prior type has succeeded through its rise and subsequent
control by immunity. However, switching appears to be
partly random, with a large number of antigenic types
expressed throughout infection (Barry & Turner 1991;
Barry 1997). Another possibility is that antigenic types
vary in their intrinsic rate of increase (Seed 1978). The
types would then switch in dominance, with the faster
growing ones earlier in the sequence of parasitaemias.
This idea has failed to gain theoretical support (Kosinski
1980; Agur et al. 1989), and one experiment designed to
test this idea failed to find variation in growth rates
among types (Aslam & Turner 1992).

The final, clearly stated theory concerns the
mechanism by which surface antigens are replaced (Agur
et al. 1989). If the process occurs sufficiently slowly, then
many cells will express two antigens while in transition. If
the immune response against these double expressors
varies, then transitions from one dominant antigenic type
to the next will be biased by variable immune suppression
of double expressors. This process may lead to sequential
dominance of types. Although the model of Agur et al.
has failed to gain empirical or popular support, it has not
been properly tested and remains an alternative to my
own hypothesis. (For further discussion of this model, see
Barry & Turner 1991, 1992; Agur 1992; Munoz Jordan et
al. 1996; Borst et al. 1997.)

The idea that small variations in transition rate can
explain loosely ordered parasitaemias has been overlooked
for two reasons. First, a randomly constructed switch
matrix does not provide sufficiently ordered parasitaemias
to match the observations. My results depend on minor
modifications of switch rates by natural selection. Second,
small variations in switch rate, for example, between 10-3
and 10-4, do not seem sufficient at first glance to explain
antigenic dominance. But an order of magnitude differ-
ence in initial frequency allows an antigenic type to gain
temporary dominance over competing variants.

My research is supported by National Science Foundation grant
DEB-9627259.
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