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I evolved boolean regulatory networks in a computer simulation. I varied mutation,
recombination, the size of the network, and the number of connections per node. I measured
the performance of networks and the heritability and epistasis of genetic effects. Networks
of intermediate connectivity performed best. The distinction between metabolic and
quantitative genetic additivity explained some of the variation in performance. Metabolic
additivity describes the interaction between changes in a single network, whereas quantitative
genetic additivity measures the consistency of phenotypic effect caused by gene substitution
in randomly chosen members of the population. I analysed metabolic additivity by the
distribution of epistatic effects of pairs of mutations in individual networks. I measured
quantitative genetic additivity by heritability. Highly connected networks had greater
metabolic additivity for perturbations to individual networks, but had lower additivity when
measured by the average effect of a gene substitution (heritability). The lower heritability of
highly connected nets appeared to reduce the effectiveness of recombination in searching
evolutionary space.
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Introduction

Gene networks control the expression of
characters. Such networks can be studied from a
mechanistic point of view. What are the
particular gene products involved? How do
control factors turn on and off the expression of
individual genes? How is the timing of expres-
sion controlled? What is the relation between
regulatory dynamics and character expression?

These mechanistic questions can be com-
plemented by population-level questions. How
variable are characters? How variable are par-
ticular regulatory loci? What is the relationship
between variability in the regulatory cascade and

variable expression of the character? In the
statistical language of quantitative genetics, what
is the nature of heritability, dominance, and
epistasis?

Mechanistic and population-level questions
concern description of regulatory networks.
What about the evolutionary processes that have
shaped gene networks? Are there design proper-
ties of regulatory cascades that are the hallmarks
of natural selection or of evolutionary history?
Are there predictable mechanistic and popu-
lation-level features?

I analyse a simple model of a regulatory
network. The network controls a quantitative
character that is favored to be highly expressed
through the first half of life and turned off during
the second half of life. This can be thought of as* E-mail: safrank"uci.edu.
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a fitness function that favors high expression
during early development and juvenile growth
followed by shutting down of expression in adult
life. I begin with a population of individuals,
each of which has a randomly connected
network. I evolve this population through a
typical cycle that includes selection, mating,
recombination, and mutation.

I use this model to address the final question
from the above framework: are there predictable
population-level features of regulatory networks
designed by natural selection? My model cannot,
of course, address even this very limited question
in a general way. But the model does provide
some insight into how regulatory networks
accumulate mutations and epistatic interactions.
Perhaps more importantly, such models are
helpful in clarifying how to proceed with the
interesting questions that define the subject.

Background

 

Kauffman (1969, 1974) initiated a series of
studies on boolean networks as models of gene
expression and control of developmental pattern
(Fig. 1 defines boolean networks). These models
assume that all components of a regulatory
network can be approximated by a boolean
function of digital states. Although Kauffman
emphasized that this is clearly inexact, he
outlined three benefits of his approach (for
synthesis, see Kauffman, 1993). First, many
kinetic control components exert their influence
according to thresholds which are well approxi-
mated by a boolean function. Second, boolean
networks have great computational power—
sufficient to model the essential features of most
control structures. Third, arbitrary control
structures are too complex to draw any general
theoretical conclusions; abstraction to purely
boolean control allows some theoretical analysis.

Kauffman (1993) characterized networks by
the number of nodes, n, and the number of
inputs to each node, k. He analysed the
dynamics of networks with randomly chosen
boolean functions. The dynamics can be studied
in classical fashion by the extent to which a small
perturbation changes the subsequent trajectory.

F. 1. Example boolean function. The left column is the
output of the function (0 or 1) given the input states (0 or
1) in the other three columns. The table shows one step in
the regulatory control of the lysis–lysogeny switch of the
bacteriophage ! (McAdams & Shapiro, 1995). The virus is
in the integrated prophage (pro) state of the lysogeny
pathway in the next time step (a) if the virus is currently a
prophage and the concentration of the Int regulatory
protein is below a threshold (top two rows) or (b) if Int
concentration is above its threshold and the concentration
of the Xis regulatory protein is below its threshold (middle
two rows).

Kauffman showed that weakly connected net-
works with relatively small k tended to be frozen,
that is, small perturbations had little or no effect
on subsequent trajectories. Such limited effects
occurred because perturbations were propagated
slowly or not at all through the network. By
contrast, strongly connected nets with relatively
high k tended to be chaotic, that is, small
perturbations cause large, rapid deviations in
subsequent trajectories. Networks with inter-
mediate connectivity respond to small changes in
network control with small deviations in
subsequent trajectories.

Kauffman argued that natural networks must
evolve to an intermediate level of connectivity. If
k is too high, then small changes in control
structure lead to chaotic, unpredictable conse-
quences, clearly a poor property of a control
system. If k is too low, then adjustments in
output are difficult because control information
is not propagated effectively. Kauffman used the
colorful phrase ‘‘edge of chaos’’ to describe
intermediate connectivity. I prefer ‘‘zone of
linearity’’ because Kauffman is in fact emphasiz-
ing that control structures are most useful when
changes in input have approximately linear
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effects on output. Thus the key is to find the zone
of linearity within control structures such as
boolean nets that, for most topologies, tend to
propagate in a highly nonlinear fashion. The
models I present below clarify the meaning of
linearity in this context and connect these ideas
to traditional quantitative genetic concepts such
as heritability.

Kauffman & Smith (1986) evolved boolean
networks to analyse the evolutionary approach
to fitness optima. In particular, they used a
fitness function that measures the number of
matching bits (states of nodes as either 0 or 1) to
some arbitrary pattern. They compared the
ability of networks with k=2 and k=10 inputs
per node to approach a local fitness optimum.
Interestingly, there was no difference for low and
high k with respect to the best network of a
population—in both cases the best networks
were able to match about 70% of the target bits.
When the best network of a population was
mutated at a single component, an interesting
difference was observed between weakly (k=2)
and strongly (k=10) connected networks. The
weakly connected networks suffered small,
continuous fitness degradation as additional
mutations were added to the best network,
whereas very few mutations reduced the best of
the strongly connected networks to the fitness of
an average member of the population. These
observations support Kauffman’s (1993) theor-
etical analysis of random boolean nets, in which
k=2 is typically associated with the zone of
linearity.

   

Three distinct points of view are commonly
used to discuss genetic effects on regulatory
networks—metabolic, population genetic, and
quantitative genetic (Phillips, 1998). It is im-
portant to distinguish clearly the aims, methods,
and language used by each approach.

Metabolic studies analyse the effects of each
gene product in a biochemical network of
interactions (Kacser & Burns, 1979; Hartl et al.,
1985). Consider, for example, the statement that
two gene products act additively to influence the
total flux through the pathway. This may mean
that, if each mutated gene increases flux by x%,
then both mutants together increase flux by

2x%. This statement does not necessarily have
any relationship to fitness or to the pattern of
genetic variability found at various steps in the
biochemical network. The measurements assume
a particular wild-type set of gene products
against which the performance of variants is
measured.

Population genetic analyses assume, or
measure, the relationship between variants and
fitness. A full analysis must be able to assign a
fitness value to each genotype. If genetic
variation is rare, then each genotype is likely to
have only one or two allelic variants in a
particular biochemical network when compared
with the common (wild) type. Then statements
about fitness can be closely related to the
metabolic descriptions in the previous para-
graph. For example, if variants have particular
effects on flux, then fitnesses must be assigned to
different levels of flux for each variant alone and
in combination. If genetic variation is common,
then there may be almost as many genotypes as
individuals in the population. Assignment of
fitnesses for each genotype requires almost
complete knowledge of the biochemical outcome
of simultaneous variation at many steps in the
network and the relationship of the biochemical
outcome to fitness. This kind of population
genetic analysis is therefore limited to small
networks of two or three components or to
rare variants in an otherwise homogeneous
population.

Many regulatory networks appear to have
significant genetic variation. Metabolic and
population genetic analyses are therefore of
limited use at the population level. Instead, a
statistical or quantitative genetic approach is
used to characterize populations (Keightley,
1989; Clark, 1991). Most importantly, a statisti-
cal rather than metabolic notion of additivity
plays a central role. I emphasize two measures.

The first measure of additivity is based on
Fisher’s (1958) average effect of a gene
substitution. The average effect is the average
phenotypic consequence of replacing an allele, in
each individual in the population, by a particular
genetic variant. This measure is important
because, in a sexually reproducing population,
parents transmit alleles rather than whole
genotypes. A parent’s contribution to the future
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of the population depends on the average effects
of its alleles over the distribution of genetic
backgrounds in the population. The amount of
phenotypic variation in the population explained
by average effects of alleles is called the additive
genetic variance. The ratio of additive variance
to total phenotypic variance is the fraction
of variability that is transmissible to future
generations, thus this ratio is also called the
heritability (Falconer & Mackay, 1996; Lynch &
Walsh, 1998).

The second key measure is the amount of
non-additivity, or epistasis, that occurs between
pairs of alleles. Consider a network in which two
control coefficients are varied, for example, an
individual with two mutations affecting enzymes
of a metabolic pathway. For many theories
of population genetics, it is most useful to
define such interaction on a logarithmic scale
(Kondrashov, 1988, 1993; Charlesworth, 1990).
First, define W(x) as the performance of a
mutant genotype divided by the performance of
a standard, non-mutated genotype. Given this
measure of relative performance, the expected
relative performance of a double mutant with
both mutations i and j is defined as

Expected(log[W(i, j )])= log[W(i )W(j )]

= log[W(i )]+ log[W(j )]

under the assumption that the effects of
mutations are additive on the logarithmic scale.
Here W(i, j ) is the performance of the double
mutant and W(i ) and W(j ) are the performances
of the single mutants.

With these definitions we can express the
interaction, or deviation from additivity, for two
mutations, i and j, as

I(i, j )= log[W(i, j )]− log[W(i )]− log[W(j )].
(1)

When I=0, the mutations act additively on a
logarithmic scale; I! 0 implies that the mu-
tations have a positive interaction, performing
better when together than expected from the sum
of their individual effects; and I" 0 implies
negative interaction and poorer performance for
the pair than expected from their individual
effects. Population genetic theories suggest that
whether the typical value of I tends to be positive

or negative has a strong influence on the
evolution of genetic systems (Kondrashov, 1988,
1993; Charlesworth, 1990). Although this
measure can be applied to the metabolic effects
in a particular individual, the key measure in
evolutionary theories of genetic systems is the
distribution of I for all pairs of mutations over
all individuals in the population.

Model

Each individual in the population is a boolean
network with n nodes. Each node contains: the
current state, 0 or 1; a list of k inputs from other
nodes, where any particular input can be
unconnected and register a constant value of 0;
and a boolean function that maps each of the 2k

possible input states to an output of 0 or 1. A bit
string of length 2k encodes the boolean function.
Because each the 2k possible input states
corresponds to a variable output bit, there are
22k possible boolean functions for k inputs
(Kauffman, 1993).

I encoded the information for each of the n
nodes of an individual along a single linear
chromosome (haploid genetics). Each individual
expresses two characters. I designated the first
eight nodes as character one and the second eight
nodes as character two. For each character, the
position of the eight output nodes is given by
i=0, . . . , 7, and the phenotype is z=!i2iSi ,
where Si is the state of the i-th node. Each
character is an unsigned byte with range
0, . . . , 255. This encoding yields quantitative
characters with control that varies in effect by
seven steps of magnitude two, providing an
opportunity for major effects as well as smaller
modifying effects.

The genotype of each individual encodes the
list of inputs and a boolean function for each of
the n nodes. The phenotype is the trajectory of
bivariate character states over D developmental
steps, in which the network is updated in each
step by assigning the state for each node from its
input state and boolean function. The initial
state for all nodes is zero. The developmental
period is divided into two phases. In the first
phase, selection favors maximal expression of
character one and minimal expression of charac-
ter two. Selection favors reversal of character
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F. 2. Optimal trajectory for two characters. The development of each individual occurs over D=50 time steps.
Character 1 is favored to be maximally expressed in the first half of life and off in the second half, whereas character 2
is favored to be expressed only in the second half of life. The deviation of fitness from the optimum is measured by the
average distance of the bivariate trajectory from the optimal trajectory.

expression in the second phase, that is, minimal
expression of character two and maximal expres-
sion of character one. The bivariate trajectory
with maximal fitness is shown in Fig. 2. In
general, if zij is the average expression of the j-th
character during the i-th phase of development,
then fitness is proportional to F=(z11− z12) +

(z22− z21). Each character ranges over
0, . . . , 255, so the maximum of F is 510. Figure 3
shows a sample developmental sequence.

This simple fitness function has two advan-
tages. First, regulatory problems in development
often concern timing of expression—many mor-
phogens and hormones must be expressed for

F. 3. Sample developmental sequence. The left column is the time step in the sequence. The bit strings show the state
of the n=50 nodes in each time step. The first eight bits define character 1; the second eight bits define character two.
The right columns show the decimal values for characters one and two. Initially, all states are set to zero. The first updated
time step is labeled zero in the left column. The first half of the sequence is steps 0–24; the second half is steps 25–49. The
first few steps and the middle steps near the transition are shown. Character one is maintained at a high level and character
two at a low level during the first half as favored by selection. The optimal time for switching is between steps 24 and 25,
after which high expression of character two and low expression of character one are favored. This particular genotype
produced a fitness of 437, or 86% of the maximum value of 510.
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a particular period during early life and then
turned off while some other regulatory molecule
is turned on for the remainder of life. Second,
this formulation expresses the problem of
regulatory control very clearly in terms of the
trajectory of network dynamics. Optimal fitness
concerns tuning a transient leading to an
attractor; the fitness function neatly summarizes
the distance of variant trajectories perturbed
from this optimal path.

A simulation run begins with a population of
individuals. Each individual is initialized with a
random genotype, which includes for each node
the k input connections to other nodes and a
boolean function. A generation consists of
evaluating the fitness of each individual,
choosing two parents to mate by sampling in
proportion to fitness, mutating and recombining
parental genotypes to form an offspring, and
continuing this process to create a full popu-
lation of offspring. The parents are then
discarded and the offspring generation is used to
start the cycle again. In each generation parents
are chosen with replacement for mating.

The base mutation probability is ". Mutation
occurs in two steps. First, for each of the n nodes,
mutation of one input connection occurs with
probability "k, where k is the number of inputs.
Mutation of an input occurs by first selecting
with uniform probability one of the k connec-
tions. Then that input is set to a null connection
with probability one-half, otherwise the connec-
tion goes to one of the n nodes with uniform
probability. Null connections provide constant
zero input. The second mutational phase affects
the boolean function, which is a string of 2k bits.
A mutation occurs by flipping a particular bit,
that is, by changing the output state for a given
input state. The expected number of bits flipped
for each node is "2k. This mutational scheme
makes the probability that a particular input or
output changes independent of n and k.

The haploid offspring genotype is created by
recombining the two haploid parental chromo-
somes. The first of n nodes is taken from a
randomly chosen parent. The next node is taken
from that parent with probability 1− r and from
the other parent with probability r, where r is the
recombination fraction. Each successive node is
taken from the same parent as the last node with

probability 1− r. Recombination does not occur
within nodes.

In summary, the key parameters are: n, the
nodes per net; k, the inputs per node; p, the
population size; D, the number of developmental
steps to determine phenotype; g, the number of
generations per run; ", the mutation rate; and r,
the recombination fraction between nodes.

Analysis

The parameter space is too large to vary all
parameters in an orthogonal way. For all runs,
I set the number of generations as g=10000, the
number of developmental steps as D=50, and
the population size as p=500. My analysis
focuses on the remaining four parameters each
varied over three levels in a 34 factorial design.
The levels are: the number of nodes, n=50, 100,
200; the maximum number of connections per
node, k=2, 4, 6; the mutation rate, "=10−4,
10−3, 10−2; and the recombination rate,
r=0.005, 0.05, 0.5. To test the role of
population size, I repeated this design with
p=1000 and n=50. The larger population size
had no significant effect, so I confine my analysis
to the main 34 design.

The mutation rates may seem high relative to
the typically quoted values on the order of 10−5

or 10−6 per locus. But in this simulation the
character under study directly determines fitness,
thus selection is approximately two orders of
magnitude more intense than for a typical
quantitative trait. The ratio of mutation to
selection in the simulations is roughly consistent
with the norm. This ratio determines many
aspects of population-level characteristics in
theoretical analyses (Barton & Turelli, 1989). In
addition, approximately 70–90% of single
mutations had no effect on phenotype. Thus the
effective mutation rate was about one order of
magnitude less than ".



Most evolutionary simulations of boolean
networks, neural networks, and other control
systems focus on the best parameters for quickly
and effectively discovering optimal performance.
By contrast, my goal is to evaluate the attributes
of a population shaped by natural selection.
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F. 4. Distribution of phenotypes in three runs. Plots
show the cumulative distribution function for each case.
Parameters are n=50; "=10−3; r=0.05; and k shown on
each curve. The parameter k is the maximum number of
inputs per node. The actual number of inputs per node for
the best phenotype in the population was 1.52 for k=2
(—), 2.75 for k=4 (– – –), and 3.92 for k=6 (. . .).

The x-axis shows the three levels of mutation,
which determine the greatest portion of the
variation. Intermediate mutation of 10−3 pro-
duces the best performance. The rows show
varying recombination rate. High recombination
(top row) yielded lower performance than the
lower treatment values. The columns show
varying levels of k. An intermediate value of
k=4 yielded the highest performance.

The best performance was observed for
intermediate values of the three key parameters:
"=10−3, r=0.05, and k=4. The full distri-
bution for this combination, with n=50, was
shown in Fig. 4 along with the distributions for
k=2 and k=6.

I described above Kauffman’s theory concern-
ing the connectivity per node and the expected
evolutionary performance of boolean networks.
According to Kauffman’s theory, randomly
connected networks have the greatest evolution-
ary potential when the connections per node is
near 2. Lower connectivity causes little response
to change and higher connectivity yields chaotic
response. In my simulations, k is the maximum
number of inputs per node. My nets can be
shaped by selection to have fewer connections, so
k represents the potential rather than actual
connectivity. Over parameter values k=2, 4, 6,
my simulated networks performed best with
k=4. Figure 6 shows the actual connectivity of
the nets when compared with the maximum
connectivity, k.

I measured the connectivity values in Fig. 6 as
follows. I found the best performing network in
the population at the end of a run. From each of
the 16 output nodes, I traced the network back
through each input. This yielded the set of
connected nodes in the network, which was less
than n, the number of nodes available to form
the network. For each node in the network,
including the output nodes, I calculated the
average number of inputs per node.

Interestingly, when measured by the best
individual in the population, the best performing
networks were the k=4 class. These had about
three active inputs per node. However, the
fitnesses of the k=4 and k=6 classes dropped
off more quickly when moving from the best
individuals in a population to the median
individual (Fig. 4). In particular, the sharp jump

Nonetheless, the performance, measured by the
distribution of fitness in the population, is a good
place to begin my analysis. This allows
connection to the optimization of evolutionary
performance in other studies and a point of
departure for describing the state of the
population created by natural selection.

I measure performance by the character value
for each individual as defined above. Analysis of
variance shows that the mutation rate determines
most of the variation in performance. The
recombination rate and the maximum number of
inputs, k, also have some effect, as does the
interaction between k and the mutation rate. The
number of nodes, n, has negligible effect.

The distribution of character values at the end
of a run describes the performance of the
population. Figure 4 shows distributions for
three runs. It is difficult to draw plots for the
distributions over many parameter values, thus I
summarize performance by examining percen-
tiles of the distribution. There was little
difference between the trends when analysing the
median or the upper percentiles. I show in Fig. 5
the 96th percentile to represent the performance
of the best few percent in each population.

Figure 5 is a matrix of nine plots showing the
performance over three levels of three par-
ameters. Each point is the 96th percentile of
character value at the end of a particular run.
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F. 5. Influence of mutation, recombination, and number of inputs on the evolutionary performance of a population.
Performance is measured here by the 96th percentile of the phenotypic distribution. Each panel shows variation in response
to changes in mutation, each row shows variation in response to recombination, and each column shows variation in
response to the maximum number of inputs.

in the k=2 class in Fig. 4 near the maximum
shows that most individuals in that population
had fitnesses close to the best individual. By
contrast, fitnesses dropped off more quickly in
the k=4 and k=6 populations. I return to this
subject in the section on the distribution of
mutational effects.



There are several ways to measure and
interpret heritability (Falconer & Mackay, 1996;
Lynch & Walsh, 1998). I used the regression
coefficient of offspring phenotype on the average
phenotype of the pair of parents. This offspring–
midparent regression measures the extent to
which offspring phenotype is predicted by
parental phenotype. The interpretation of inter-
est here concerns how well one can predict the
effect of individual alleles when the alleles are
placed in a randomized genetic background. This

measures the statistical additivity of allelic effects
in the context of the existing genetic variation in
the population. This statistical additivity does
not necessarily imply metabolic additivity, as
discussed above in the section on Population and
Quantitative Genetics.

I measured heritability as follows. At the end
of a run, I calculated the phenotypic value of
each individual in the population. I truncated the
lower percentage # of the population to simulate
the fact that the weakest individuals in the
population rarely survive to reproduce. I defined
as T the phenotypic value of the population that
corresponds to the #-th percentile—the trunca-
tion point in phenotypic units. I then made 5000
babies by choosing pairs of parents randomly
with replacement.

I created an offspring in the standard way of
this model, by combining parental chromosomes
to form a diploid stage, and then following a
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F. 6. Number of inputs per node. The x-axis shows the
maximum number of inputs, k. The y-axis shows the
average number of inputs per node for the best performing
network in the population. The points represent all of the
parameter combinations for the 34 design.

Perturbation reveals the individual steps in the
cascade and the interaction between steps. In
quantitative genetics, the statistical distribution
of mutational effects influences the patterns of
genetic variation and the level of heritability.

I analysed the distribution of mutational
effects by performing the following steps on each

F. 7. Heritability as a function of the mutation rate and
the number of inputs, k.

meiotic step with recombination to make a
haploid offspring. I assumed the recombination
probability was 0.5 for measuring heritability
independently of the recombination rate for that
run. Higher recombination provides better
mixture of alleles and a better estimate of the
effect of each allele in a random genetic
background. I then calculated the offspring’s
phenotype; if less than T the offspring was
discarded under the assumption that it would be
unlikely to survive. If the offspring survived, then
the midparent and offspring phenotypes were
added to the data vector for the regression
calculation. I used various values of #. I report
here for #=5%.

Mutation explains most of the variation in
heritability, with an interaction between mu-
tation and the maximum number of inputs, k
(Fig. 7). Note that heritabilities are highest with
an intermediate mutation rate of 10−3, which
corresponds to the mutation rate that yielded the
best performance. Put another way, best
performance corresponds to the highest level of
statistical additivity for allelic effects. It may be
that with less mutation the nets are not able to
evolve to the zone of additivity, and with more
mutation the nets are not able to maintain this
additive zone.

   

Mutational analysis is a classical method in
genetics for the study of regulatory pathways.
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individual in the population: (1) copy the
original genotype and save the copy; (2) calculate
phenotype of the original genotype; (3) mutate
the original genotype once, choosing the location
and mutational change at random; (4) calculate
the phenotype of the mutated copy; (5) copy the
unmutated original again, mutate the new copy,
and calculate the new mutant’s fitness; (6) start
with the original genotype and create an
individual that has both of the new mutations
that were studied in prior steps; (7) measure the
fitness of the double mutant. I repeated this cycle
five times for each individual in the population.
This section reports data on the single mutants.
The following section analyses the double
mutants.

Figure 8 shows the distribution of mutational
effects for three runs. The x-axis is the fitness of
an individual with one mutation divided by the
fitness of the original genotype, presented on a
logarithmic scale. The right panel shows the
same distribution as the left panel but restricts
the range of fitness effects to those of 5% or less.
Note that a sizable fraction of the mutations
have small fitness effects and that nets with
higher connectivity (k) have more mutations of
small effect.

Networks that respond to single mutations
with small changes in output are in the zone of
linearity, in which small changes in input cause
correspondingly small deviations in dynamical
trajectory. Interestingly, networks with the

highest connectivity (k=6) generated the most
mutations of small, positive effect, yet did not
have the highest heritability or performance.
This positive relationship between connectivity
and the fraction of mutations with small effect
counters Kauffman’s theory that high connec-
tivity leads to a large, often chaotic response to
perturbation. This may point to one difference
between the randomly connected nets studied by
Kauffman and the evolved nets analysed here.

I abbreviate the percentage of mutations that
cause no phenotypic effects as the percent zeros.
Figure 9 shows the percent zeros in response to
the mutation rate and the maximum number of
inputs, k. The other parameters had little effect
on variation in the percent zeros.

The percent zeros provide further clues about
the distinction between evolved nets and random
nets. When the maximum number of inputs, k,
is high, an increase in the mutation rate causes
a strong decline in the percent zeros. One
possibility is that increased mutation causes a
rise in the actual number of inputs per node and
thus a greater probability that a changed node
has a phenotypic effect. But the actual number of
inputs per node is not strongly affected by the
mutation rate. For k=6 and log 10 mutation
rates of −4, −3, and −2, the median numbers
of actual inputs are 4.5, 3.7, and 3.9, respectively.
Thus higher k leads to more mutations with
non-zero effect (Fig. 9) but each mutation has,
on average, a smaller effect (Fig. 8). This further

F. 8. Cumulative distribution of the effects of single mutations. The effect of a mutation is measured on a logarithmic
scale as the fitness of the mutant relative to the original genotype. Each curve is for a single run with parameters p=500,
n=50, "=10−3, and r=0.05. The values of k for each run are shown. Mutations with zero effect were not included in
the distributions. The heritability ($) and fraction of mutations with zero effect (%) were: for k=2, $=1.02 and %=0.77;
for k=4, $=0.79 and %=0.79; and for k=6, $=0.87 and %=0.65.
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F. 9. Fraction of mutations with zero effect on
phenotype.

intermediate mutation rate but had lower
average performance than the k=4 nets. This
contradicts Kauffman’s (1993) suggestion that
increasing connectivity leads to small pertur-
bations creating large effects. It is consistent,
however, with Kauffman & Smith’s (1986)
suggestion that intermediate connectivity pro-
vides a smoother landscape for evolutionary
progress.

The fraction of mutations that has small,
positive effect is another interesting measure.
Figure 11 shows the fraction of mutations with
effects in the range (0, 0.05) relative to the
fraction with effects (−0.05, 0.05), where all
mutations have non-zero effect. Higher mutation
rate leads to a more symmetrical distribution of
small mutational effects. This again suggests
that, under low mutation, the nets are stuck near
a relatively low adaptive peak whereas, under
high mutation, the nets are pushed away from a
peak by mutation pressure.

   

The previous section outlined the methods for
mutational analysis and the results for single
mutants. This section presents results for the

supports the conclusion that the evolved nets
have different properties from random nets with
respect to the role of connectivity and dynamics.

The fraction of mutations of small effect
measures the extent to which small perturbations
cause small dynamical changes. Figure 10 shows
the fraction of mutations with effects in the range
(−0.05, 0.05), given that the mutations have
non-zero effect. For k=2, mutations have
relatively large effects independently of the
mutation rate. Low connectivity apparently
yields fragile nets.

The higher connectivity levels are more
interesting. Intermediate mutation rate (10−3)
yields the most mutations of small effect,
corresponding to nets with the best performance.
It may be that lower mutation rates lead to nets
that are poorly adapted and fragile to pertur-
bation, whereas higher mutation rates disrupt
the nets and maintain a population of poorly
adapted individuals. This corresponds to
Kauffman’s suggestion that small response to
perturbation (mutation), or the zone of linearity,
is indeed a property favored by selection.
Interestingly, the higher connectivity (k=6)
yielded the most mutations of small effect at

F. 10. Fraction of mutations with small effect on
phenotype, in the range (−0.05, 0.05).
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F. 11. Fraction of mutations with small positive effect
on phenotype.

method shown in Fig. 12, which corresponds to
eqn (1). Following that equation, the expected
fitness of the double mutant is log 10(M1/
P)+ log 10(M2/P), where P is the fitness of the
unmutated parental genotype, M1 is the fitness of
the parental genotype with a single additional
mutation, and M2 is the fitness of the parental
genotype with a single mutation that differs from
M1. The double mutant is the parental genotype
with the mutations of both M1 and M2. The
observed fitness of the double mutant is the
actual fitness of this doubly mutated parental
genotype. The difference between the observed
and expected fitnesses of double mutants is I(i, j )
of eqn (1) and the deviation from the line in
Fig. 12.

Figure 13 shows the distribution of epistatic
values for three runs. The left panel shows the
full distribution which spans several orders of
magnitude. The right panel shows epistatic
values of 5% or less. Two points deserve
mention. First, more strongly connected nets
(higher k) have smaller epistatic effects. This
matches the greater additivity of strongly
connected nets described in an earlier section.
The second point is that all distributions are
nearly symmetric with medians close to zero.
(See the right panel, where the median, or 50th
percentile, is emphasized by the intersection of
the horizontal line and the distributions.)

The distribution of epistatic values was
centered very close to zero for all runs. None of
the parameters explained a significant fraction of
the variance in the median epistatic value. The
median epistatic value was less than 1% in 75%
of all runs.

The epistatic distributions were skewed
toward negative (synergistic) epistasis. Compari-
son of the first and third quartiles of the epistatic
distribution provides a simple measure of skew.
The median over all runs of the first quartile was
−0.22. The median of the third quartile was
0.04. On the whole, the epistatic distributions
were centered near zero and skewed toward
negative (synergistic) epistasis.

Conclusion

Are there predictable population-level features
of regulatory networks designed by natural

phenotypic effects of double mutants. These
results provide information about the degree of
non-additivity (epistasis) between pairs of alleles.

There are many ways to measure non-
additivity, as discussed in the earlier section on
Population and Quantitative Genetics. I use the

F. 12. Measurement of epistasis. Expected fitness of a
double mutant is calculated under the assumption of
additivity of single mutant effects when measured on a
logarithmic scale (see text). When the observed fitness of
double mutants is less than expected, the negative value for
the interaction is measured by the deviation from the line
as shown in the figure. Negative interactons are sometimes
called synergistic epistasis because two deleterious mu-
tations have a worse effect when together than expected
from their effects when alone.
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F. 13. Cumulative distribution of epistatic effects. The values plotted are I(i, j ) from eqn (1). Each curve is for a single
run with parameters p=500, n=50, "=10−3, and r=0.05. Values are not included for pure additivity, which implies
zero epistasis with I=0. The percentages of zeros for k=2 (—), 4 (– – –), 6 (. . .) are, respectively, 89, 87, and 72. These
percentages exaggerate the degree of additivity because many single mutations have zero effect. Some of these mutations
may be unconnected to the outputs and therefore regarded as null mutants.

selection? Kauffman (1993) argued that the
number of inputs per node is the crucial factor
in network architecture. His theory of random
nets predicts that, in response to perturbation,
low connectivity causes limited output response
and high connectivity causes large, unpredictable
response. Intermediate connectivity should
therefore be favored by selection.

My results supported the prediction that
intermediate connectivity leads to higher evol-
utionary performance (Fig. 5). But the reasons
for this do not seem to match Kauffman’s theory
of random nets. In my simulations of evolved
networks, the more highly connected the
network, the smaller the effect of mutational
perturbation on phenotype (Figs 8 and 10 for
low and intermediate mutation rates).

What causes the greater performance of
intermediate connectivity? The distinction be-
tween metabolic and quantitative genetic addi-
tivity provides a clue. Metabolic additivity
describes the interaction between changes to a
single network, whereas quantitative genetic
additivity measures the consistency of pheno-
typic effect caused by gene substitution in
randomly chosen members of the population. I
analysed metabolic additivity by the distribution
of epistatic effects of pairs of mutations to
individual networks. I measured quantitative
genetic additivity by heritability.

Heritability declined with increasing connec-
tivity of networks (Fig. 7). Interestingly, more

highly connected nets produced more mutations
of small effect (Fig. 10 for low and intermediate
mutation rates) and had lower levels of
metabolic epistasis (Fig. 13). Thus highly
connected networks had greater metabolic
additivity for perturbations to individual net-
works, but had lower additivity when measured
by the average effect of a gene substitution
(heritability). The lower heritability of highly
connected nets appears to reduce the effective-
ness of recombination in searching evolutionary
space because new gene combinations formed by
recombination interact non-additively. Thus
particular alleles will often be advantageous in
one genetic background and disadvantageous in
another.

I used a simple boolean control structure and
a simple environmental challenge. It would be
interesting to expand the theoretical analysis to
a variety of control structures and challenges in
order to develop a comparative theory of
networks. Szathmáry (1992) has made an
important contribution to a comparative theory,
but little else has been done along these lines.

My research is supported by National Science
Foundation grant DEB-9627259.
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