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Wolbachia infections occur in many arthropods. These matrilineally inherited bacteria cause
cytoplasmic incompatibility, in which a cross produces no offspring when between an infected male and
an uninfected female. Some populations harbour multiple Wolbachia strains. Females fail to produce
offspring when crossed to a male with a strain that the female lacks. Prior theoretical work showed
that a panmictic population cannot maintain polymorphism for different strains when each female
carries only a single strain. A few authors suggested that doubly infected females can stabilize
multistrain polymorphism, but conditions for invasion and location of stable equilibria were not
analysed in detail. For two strains, I describe the conditions under which a multiply infected class can
spread. Spread of the doubly infected type stabilizes polymorphism of the singly infected classes. This
analysis also suggests an interesting extension to higher multiplicity of infection. For an arbitrary
number of strains, N, a panmictic population cannot maintain different classes with N−1 infections
unless the class with N infections is also present. This pyramid of polymorphism may explain the
puzzling diversity of incompatibility types observed in some Culex mosquitos. Multiple infection also
has interesting consequences for the dynamics of spatial variation and reproductive isolation.
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Introduction

Many arthropods carry bacterial infections of the
genus Wolbachia. Mothers pass the infection to both
sons and daughters. Infected males rarely transmit the
bacteria. Wolbachia infections often cause cyto-
plasmic incompatibility, in which a cross produces no
offspring when between an infected male and an
uninfected female (reviewed by Werren, 1997a).

Some populations maintain multiple Wolbachia
strains (Rousset & Solignac, 1995; Sinkins et al.,
1995a; Perrot-Minnot et al., 1996). Females fail to
produce offspring when crossed to a male with a
strain that the female lacks.

Models show that single, panmictic populations
cannot maintain more than one strain when each
female carries only a single strain (Caspari & Watson,
1959; Rousset et al., 1991). Polymorphism may occur
when different subpopulations carry different types.
Strains exhibit a remarkable degree of spatial

heterogeneity in a few natural populations that have
been studied intensively (Laven, 1967; Clancy &
Hoffmann, 1996). Spatial segregation leads to
reproductive isolation, because subpopulations carry-
ing different strains cannot produce offspring upon
crossing.

Single individuals may carry more than one
strain (reviewed by Clancy & Hoffmann, 1996;
Werren, 1997a). Two subpopulations with different
strains cannot interbreed, but doubly infected
females can breed with either subpopulation.
Many authors have noted that multiple infection
influences polymorphism and reproductive isolation
(e.g. Sinkins et al., 1995b; Clancy & Hoffmann,
1996; Werren, 1997a,b), but the theoretical
properties of multiple infection have not been
analysed in detail.

I analyse the dynamics of populations that carry
multiple Wolbachia strains. For two strains, I describe
the conditions under which a doubly infected class
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can spread, reducing reproductive barriers among
singly infected classes.

Spread of the doubly infected type stabilizes
polymorphism of the singly infected classes. My work
suggests an interesting extension to higher multi-
plicity of infection. For an arbitrary number of
strains, N, a panmictic population cannot maintain
different classes with N−1 infections unless the class
with N infections is also present. This pyramid of
polymorphism has interesting consequences for the
dynamics of spatial variation and reproductive
isolation.

Equations for Multiple Infection

Assume that there are N distinct Wolbachia strains.
Each individual carries between 0 and N strains. A
cross is incompatible when a male carries a strain that
the female lacks. Label each infection class by
i=0 , . . . , 2N −1. The integer i, written in base two,
yields a bit pattern of length N in which each position
has a 0 or 1 for absence or presence of a particular
strain. The number of strains carried by an individual
of type i is n(i ), the number of 1s in the bit pattern
for i.

The function f(i, j ) is an indicator for the relation
between infection types i and j. The function has a
value of one when, for each 1 in the bit pattern of i,
the type j contains a matching 1 at the same position.
The function is zero when j does not contain all the
bits of i. For type i males and type j females, the
function has a value of one for compatible crosses and
zero for incompatible crosses. The function also
describes whether type i can be generated by loss of
one or more bits of j.

The dynamics depend on three parameters. The
value of a is the reduction in fertility of a female for
each Wolbachia strain that she carries; a female of
type i has fecundity (1− a)n(i). A female in an
incompatible cross has her fecundity reduced by a
fraction z; the fecundity of an incompatible cross is
1− z. Infected mothers occasionally produce
off-spring that are missing one or more maternal
strains. The probability that an offspring is lacking a
particular strain in the mother is m. Thus the
probability that an offspring has a particular set i of
the maternal strains j is (1− m)n(i)mn(j)− n(i).

I assume that all Wolbachia strains have the same
parameter values. This symmetric case is simpler to
write down and study, but the asymmetric case in
which parameters vary among strains does not change
any of the qualitative results.

The frequency of type i is qi . The frequency of type
i after one time period, q'i , is given by

w̄q'i = s
2N −1

j=0

qj f(i,j )(1− a)n(j)(1− m)n(i)mn(j)− n(i)

×$1− z s
2N −1

k=0

qk [1− f(k,a)]%. (1)

The time at which incompatibility acts is described by
a. If incompatibility depends on the infection status
of each egg, and spontaneous loss, m, occurs during
the production of eggs, then a= i. If incompatibility
depends only on the infection status of the mother,
and not on the individual eggs, then a= j. I assume
that incompatibility is a maternal effect, a= j.

The total size of the population is proportional to
w̄, the sum of eqn (1) over all i, noting that Siq'i =1.
If a= j, then w̄ is

w̄= s
2N −1

j=0

qj (1− a)n(j)$1− z s
2N −1

k=0

qk [1− f(k, j)]%.

Dynamics

I studied the dynamics by iterating eqn (1) on a
computer for given parameters and initial conditions.
I checked equilibria by solving numerically eqn (1) at
fixed points, q'i − qi =0 for all i (see also Appendix
A). I studied the case N=2 intensively by examining
the steady state of the system that followed for all
possible initial frequencies over the grid of initial
frequencies with spacing of 0.01.

With two strains, N=2, there are four infection
classes. These classes can be described by bit strings
of length two, where each position defines the
presence or absence of one strain. The frequency of
uninfected individuals is q00, of individuals infected
only by the first strain, q01, of individuals infected only
by the second strain, q10, and of double infections, q11.

The main properties of N=2 are shown in Fig. 1.
The left panel assumes that there are no double
infections, q11 =0. This matches the prior theoretical
work for studies of polymorphism (Caspari &
Watson, 1959; Rousset et al., 1991). With q11 =0, and
the constraint that the frequencies sum to one,
q00 + q01 + q10 =1, the problem can be reduced to two
dimensions, the frequencies of each singly infected
class, q01, and q10. The phase plane is a triangle
because it is restricted by the constraint that
q01 + q10 E 1.
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There are three locally stable equilibria and three
associated basins of attraction. Consider first the
dynamics along the horizontal axis, with q10 =0.
There are two opposing forces. The frequency of
uninfected individuals is raised by the reduction in the
fecundity of infected types, a, and the probability that
the infection is lost during transmission, m. Against
this increase, uninfected types have their fecundity
reduced when they mate with infected types.

The drag on uninfected fecundity depends on the
frequency of the infected class. When infections are
rare, uninfected individuals express their full fecun-
dity and drive the infected class to extinction. When
infected types are common, uninfected fecundity is
greatly reduced and the infected class increases to a
balance between its advantage relative to the
uninfected types and the spontaneous loss of the
infection during transmission. Thus there are two
stable equilibria, at no infection or high infection
levels, separated by an unstable equilibrium. Turelli
(1994) has analysed in detail this case of N=1,
showing the alternative stable equilibria and the
conditions for invasion.

The next step is to add the second infection class
by allowing q10 q 0. The unstable equilibrium is now
a separatrix. When the total infection frequency is
low, the system loses all infected individuals and
attracts to (0, 0), shown in the lower left basin of
attraction in Fig. 1(a). If the total frequency of
infected individuals is sufficient to escape extinction,
then the system attracts toward a monomorphic
equilibrium with whichever infection type initially has

higher frequency. The system cannot maintain both
types (Caspari & Watson, 1959; Rousset et al., 1991).

The parameters for Fig. 1 are symmetric. Thus the
separatrix dividing the basins of attraction for the two
monomorphic equilibria lies along the line q01 = q10.
But there is nothing special about the symmetric case.
Small asymmetries lead only to a small change in the
location of the separatrix.

It is important to understand the negative
frequency dependence that creates the separatrix
between the two monomorphic equilibria (Turelli,
1994). The separatrix occurs where the fitnesses of the
two singly infected types are equal, w01 =w10. If each
infection class has its own parameters, subscripted
according to type, then the condition for equal
fitnesses can be derived from eqn (1) as

k01(1− z10q10)= k10(1− z01q01), (2)

where the left side is w01, the right side is w10, and
ki =(1− ai ) (1− mi ). From a point on the separatrix,
with this condition satisfied, it is clear that a drop in
q01 increases w10 and pushes the system to a
monomorphic equilibrium at which q01 =0. In
general, any reduction in the frequency of a type
causes an accelerating gain to the relative fitness of
opponents, because the opponents suffer fewer losses
from incompatibility.

Figure 1(b) shows what happens when double
infections occur, with q11 q 0. The bottom of the
tetrahedron is the plane in which q11 =0 and is thus
identical to the left panel. The presence of double
infections adds another stable equilibrium in which all

F. 1. Dynamics of single and double infections. Parameters are a= m=0.1 and z=1. Basins of attraction were obtained by starting
the system from each combination of initial frequencies, to a resolution of 0.01: (a) dynamics with no double infections, q11 =0; (b) dynamics
with double infections. The horizontal axis is q01, the other lower axis is q10, and the vertical axis is q11. The angled face on the upper right
of the tetrahedron shows the constraint that q01 + q10 + q11 E 1.
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F. 2. Dynamics of double infection for different values of it and m. The upper left figure is the same as Fig. 1(b), rotated so that one
is looking directly at the constraint plane, q01 + q10 + q11 E 1. For the top row, a=0.1, for the bottom row a=0.03. In the left column,
m=0.1, in the right column, m=0.03. Incompatibility is z=1 for all plots. The lower right plot is visually indistinguishable from a plot
in which a= m=0.03 and z=0.95.

three infection types are present. This is shown by the
sphere near the upper tip of the tetrahedron. There
are now four locally stable equilibria with four
associated basins of attraction. The absence of all
infection flows from any initial condition below the
shaded surface in the lower left corner. The internal,
clear surface near the bottom of the tetrahedron is a
separatrix, above which the system is attracted to the
upper, polymorphic equilibrium. Below the clear
surface, the system moves to one of the two
monomorphic equilibria on the bottom, along the
q11 =0 surface.

Figure 2 shows the basins of attraction for different
parameter combinations. Notice that the fitness cost
of carrying the infection, a, has a strong influence on
the separatrices and basins of attraction, but not the
location of the equilibria. By contrast, the spon-
taneous loss of infection, m, affects both the equilibria
and basins of attraction.

Pyramid of Polymorphism

Suppose, initially, that neighbouring populations
maintain only single infections, each population with
a different strain. The only compatible crosses
between populations occur when rare males lack an
infection. The polymorphism remains in a stable,
spatial mosaic because the dominant strain in each
location prevents the increase of other strains. If the
populations mix, one strain will dominate and the
others will become locally extinct.

Double infections, if they can increase in frequency,
reduce reproductive barriers and maintain multiple
strains. The condition for increase of the double
infection is easiest when the singly infected types are
at equal frequency (Fig. 2). Mixing of previously
isolated populations, monomorphic for different
strains, allows rare doubly infected types to
increase from low frequency. Thus rare horizontal
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transmissions upon hybridization of populations can
be very important for subsequent dynamics.

When there are two strains, polymorphism of the
singly infected classes is maintained only when
protected by the doubly infected class. The same
pyramid of polymorphism occurs in higher dimen-
sions (Appendix B). When there are three strains, the
different doubly infected classes cannot coexist
without protection from the triply infected class. In
general, classes with N−1 infections cannot be
maintained without protection from the class with N
infections.

A pyramid of polymorphism may be important in
highly polymorphic species such as the Culex
mosquitos. Different incompatibility types are often
observed in crosses between strains (Laven, 1967),
even when the strains are isolated across small
geographic distances (Magnin et al., 1987). The large
number of phenotypic incompatibility classes ob-
served in crossing experiments suggests that multiple
infection may occur (Clancy & Hoffmann, 1996). In
particular, if there are T phenotypic incompatibility
types, and multiple infection occurs, then N=log2(T )
genetically distinct strains are sufficient to explain the
observations. By contrast, if only single infections
occur, then the much larger number of genetically
distinct Wolbachia strains, N=T−1, is required to
explain the observed phenotypic diversity.

Guillemaud et al. (1997) studied molecular
diversity in Wolbachia isolates from Culex pipiens
populations with multiple incompatibility pheno-
types. They observed very low molecular diversity.
This suggests either very rapidly evolving incompati-
bility loci, which were not studied directly, or some
type of host–symbiont interaction affecting incompat-
ibility. In summary, widespread polymorphism and
multiple infection have yet to be demonstrated. Culex
provides an intriguing, unresolved puzzle.

My research is supported by NSF grants DEB-9057331
and DEB-9627259.
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APPENDIX A

When parameters are symmetric, then there exists
a polymorphic equilibrium at which each class with
the same number of strains has the same frequency.
One can rewrite eqn (1) with this constraint on
frequency, yielding

w̄Q'i = s
N

j= i

Qj 0N− i
j− i 1(1− a) j (1− m)imj− i$1−

z s
N

k=0

Qk$0Nk1−0ak1%%,

where Qi is the frequency of a type that carries i
different strains, of which there are (N

i ) different
combinations. This system has N+1 dimensions,
compared with 2N−1 dimensions in eqn (1). It is
therefore easier to solve numerically for the
polymorphic fixed point at which Q'i −Qi =0 and
0QQi Q 1. If incompatibility is a maternal trait, with
a= j, then

w̄= s
N

j=0

Qj (1− a) j$1− z s
N

k=0

Qk$0Nk1−0 j
k1%%.
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APPENDIX B

A panmictic population can maintain N strains
only if there are some individuals that have all N
strains. For N=2, the requirement is that some
individuals be doubly infected. Otherwise, negative
frequency dependence among the two singly infected
classes, each with N−1=1 strain, leads to loss of
polymorphism (Caspari & Watson, 1959; Rousset et
al., 1991). The way in which negative frequency
dependence comes into the dynamic equations was
shown in eqn (2) and the discussion that followed.

The extension to higher dimensions is easiest to
understand by studying three strains, N=3, and
comparing the fitness equations for the three doubly
infected classes, N−1=2. These fitness equations

are, in the style of eqn (2),

w011 = k011(1− z100q100 − z101q101 − z110q110)

w101 = k101(1− z010q010 − z011q011 − z110q110)

w110 = k110(1− z001q001 − z011q011 − z101q101).

A reduction in the frequency of any doubly infected
class increases the fitness of the other doubly infected
classes. This negative frequency dependence implies
that only one doubly infected class can be stably
maintained when the triply infected class is absent.
The same argument applies to the instability of
different classes with N−1 infections when the class
with N infections is absent.


