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A MODEL OF INDUCIBLE DEFENSE
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Hosts often amplify the expression of defensive
structures or chemicals in response to an increasing
probability of attack by parasites, herbivores or pred-
ators (Harvell, 1990). I address two questions here.
First, what is the optimal pattern of amplification by
the host in response to an increasing abundance of
parasites? Second, what are the population dynamics
of the host-parasite system when the hosts follow an
optimal pattern of amplification?

I use an extension of the basic Lotka-Volterra model
to describe the effects of hosts and parasites on each
other:
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where h, is the numerical abundance of the ith host
genotype, i = 1, . . N, and p is the numerical abun-
dance of the parasite. The model has the usual de-
mographic parameters of the Lotka-Volterra formu-
lation: v and d are the host birth and death rates, m is
the morbidity and mortality per parasitic attack, and
b and s are the parasite birth and death rates. All of
these parameters are greater than zero. The host pop-
ulation has density dependent competition for limited
resources represented by the term with summation over
h1 in the dh,/ dt equations. The carrying capacity of hosts
is standardized to one.

The host has the ability to induce defensive struc-

tures or chemicals in response to parasite density. The
level of induction for a host of genotype i is t which
may depend on the abundance of parasites, the abun-
dance of hosts, and the parameters of the model. The
value of ranges from zero to one. Induced defense
has both costs and benefits. The costs are reduced fe-
cundity by a proportion at, and increased death rate
by a proportion bt,. The benefit is reduced morbidity
and mortality as a result of parasitic attack by a pro-
portion ye,. The ability of a parasite to gain from an
attack on a host of genotype i is reduced by the pro-
portion lit, thus the overall birth rate of a parasite is
b X1 h1(1 — 70. The cost and benefit parameters all
range between zero and one.

The optimal pattern of induction can be obtained
by finding the maximum of dh,/ dt as a function of t,.
It is easy to show that dh,/ dt is monotonically increas-
ing in t, if m-yp > (va + — h,), is monotonically
decreasing in t, if the inequality is reversed, and is
independent of E if the relation is an equality. Any host
genotype i that follows the optimal pattern of induction
will have a rate of increase, dh,/ dt, that is greater than
the rate of increase for any genotype that does not
follow the optimal pattern. Thus no host polymor-
phism is maintained and we can drop the i and j sub-
scripts.

The optimal pattern of induction is

(va + 0(1 — h)
P >

my
(2)

(va + 0(1 — h)
• <

my

where the level of induction has no effect on fitness
when equality holds. The level of induction is more
likely to be high when parasite pressure, p, is high, as
would be expected. A bit surprising at first glance is
the fact that induction is more likely to be high when
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NOTES AND COMMENTS

host abundance, h, is high. This apparently occurs be-
cause, at high density, the rate of growth (dh/ dt) of the
host population is low, and thus there is a higher pre-
mium on surviving parasitic attack rather than on pro-
ducing new offspring.

The conditions in Equation (2) define an optimal
transition between the induced and uninduced states
given the host and parasite densities, (h, p). If we
assume that the genetic equilibrium has been obtained,
then the population dynamics of host and parasite can
be examined by study of Equation (1). The equilibrium
of the system is

(3)
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This equilibrium is locally stable when h* is between
zero and one, and p* is greater than zero.

Combining the optimal level of induction, Equation
(2), with the location of the equilibrium, yields the
conditions for the host to be induced at equilibrium
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where the level of induction is a neutral character when
equality holds. These conditions can be translated to
read: induction is favored at equilibrium when the rate
of increase in resistance benefits with increasing in-
duction, 7, is greater than the marginal rate of increase
in resistance costs with increasing induction, (va + d6)/
(v - d).

The global dynamics of the system are peculiar be-
cause of the sharp transition between induced and un-
induced states shown in Equation (2). Many of the
general features of the dynamics can be seen in Figure
1. The line through the middle of the figure shows the
transition for the host between induced and uninduced
states given in Equation (2). When below the line the
host is uninduced and the system follows a spiral to-
ward an attracting point given by the symbol "U" in
the figure that would be an equilibrium if the host never
induced [Equation (3) with = 0]. The spiral trajec-
tories from the uninduced region soon cross the tran-
sition line at which the host induces. Trajectories start-
ing in the induced region spiral toward the equilibrium
for the induced state. The equilibria for the induced
and uninduced states are always on the same side of
the transition line; the side is determined by the con-
ditions in Equation (4).

When a trajectory hits the transition line, there are
two possible outcomes. First, if the dynamical flow in
the opposite state is away from the line, then the tra-
jectory will continue. This is shown in the trajectory
farthest to the left and the two trajectories farthest to
the right in Figure 1. Second, if the direction of flow
is toward the line from both sides, then the system may
move reasonably quickly along the line until the flow
on one side changes direction, or the system may move

Host Abundance
FIG. 1. The dynamics of a host-parasite system with

inducible defense, where the host follows the optimal
amplification pattern given in Equation (2). Details are
explained in the text. The parameters for this figure are
v= 3, d = 0.5, m= 1, b = 6, s = 0.8, a = 0.5, 6 = 0.5,
y = 0.8.

very slowly while staying close to the transition line.
The dynamics near the line are difficult to examine
because of the discontinuous transition between in-
duced and uninduced states. The particular parameters
in Figure 1 show a case in which the flow moves toward
the line from both sides over a considerable distance.
For many other parameter combinations, the length of
the transition line over which opposite flows meet is
smaller and the system moves more smoothly toward
the equilibrium determined by Equation (3) and Equa-
tion (4).

Four conclusions can be drawn from this simple
model. (1) Natural selection favors a phenotypically
plastic response by hosts with a sharp transition be-
tween induced and uninduced defensive states. (2) High
parasite density favors induction of defense, as ex-
pected. (3) Surprisingly, high host density also favors
a transition to the induced state because density de-
pendent competition places a higher premium on sur-
viving parasitic attack. (4) The forces favoring induc-
tion follow a simple rule when the system is at both
genetic equilibrium for patterns of host induction and
ecological equilibrium for the abundance of host and
parasites: the hosts are favored to be in the induced
state when, with increasing level of induction, the rate
of increase in resistance is greater than the marginal
costs of induction imposed on the intrinsic rate of in-
crease.

The model presented here assumes that hosts assess
and immediately adjust their phenotype in response to
the probability of attack. This may be a reasonable
approximation for certain chemical or cellular defens-
es. By contrast, structural defenses tend to develop
slowly in response to parasite challenge in nudibranchs,
barnacles, bryozoans, and other aquatic invertebrates
(Harvell, 1990). Developmental lags lower the corre-
lation between expression of defense and actual chal-
lenge; this unpredictability may lower the induction
threshold (Clark and Harvell, 1992).

The induction of defense in response to parasite
abundance is sharp in some organisms but graded in
others (Harvell, 1990). The present model predicts a
sharp transition because of the linear relationship as-
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sumed between the costs and benefits of induction.
Nonlinear cost-benefit functions may cause a graded
response that follows a pattern similar to the marginal
value rule in conclusion (4) above.
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