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EVOLUTION OF HOST-PARASITE DIVERSITY
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Abstract. —Hosts and parasites often have extensive genetic diversity for resistance and virulence
(host range). Qualitative diversity occurs when the success of attack is an all-or-nothing response
that varies according to the genotypes of the host and parasite. Quantitative diversity occurs when
the success of attack is a graded response that depends on additive genetic variation in the host
and parasite. Community diversity occurs when parasites vary in the success with which they can
attack different host species, leading to a mixture of specialists and generalists. I developed a series
of models that classify components of host-parasite interactions according to whether they cause
stabilizing or disruptive selection for resistance and virulence. Stabilizing selection reduces diversity
by favoring a single optimal phenotype. Disruptive selection creates diversity by favoring a mixture
of widely separated phenotypes. The evolution of maximal resistance and virulence are opposed
by one of three forces: metabolic costs, frequency dependence, or negative genetic correlations
among beneficial traits. The models predict that qualitatively inherited resistance and virulence
traits typically cause greater diversity than quantitatively inherited traits. However, each natural
system is composed of many stabilizing factors that reduce diversity and disruptive factors that
promote diversity. I advocate a style of modeling in which families of related assumptions are
compared by their equilibrium properties, and general conclusions from equilibrium properties
are tested by complete dynamical analysis. The comparison among models highlights the need for
empirical studies that compare levels of diversity among related host-parasite systems.

Key words. —Community ecology, disease, genetic polymorphism, herbivory, specialist versus gen-
eralist.
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Genetic diversity often occurs in host-parasite
interactions. Qualitative diversity occurs when
the success of a parasitic attack tends to be an
all-or-nothing response caused by relatively few
genetic variants. For example, Burdon and Ja-
rosz (1991) classified 67 wild flax plants into 10
distinct resistance genotypes when tested against
six races of flax rust. One host genotype was com-
pletely resistant to all six pathogen races, whereas
another genotype was susceptible to five of six
races.

Quantitative diversity occurs when the resis-
tance to attack is a graded response, and the vari-
ation in resistance has a genetic basis. For ex-
ample, Simms and Rausher (1989) found additive
genetic variation for seed number in the host
plant Ipomoea purpurea when herbivores were
present, but no variation when herbivores were
excluded.

Community diversity occurs when parasites
vary in the success with which they can attack
different host species. For example, Via (1991)
found genetic variation among pea aphid clones
for their ability to attack alfalfa and red clover.
Those clones most successful on one host tended
to be least successful on the other host, suggesting
a genetically based trade-off in performance. Spe-

cialization may evolve in response to this trade-
off.

Many details of diversity remain unclear (e.g.,
Fritz and Simms 1992). I develop new models
that clarify a variety of comparative questions:
Are qualitatively inherited traits more or less
diverse than quantitatively inherited traits? Are
the benefits of resistance and virulence (host
range) more commonly balanced by metabolic
costs, frequency dependence, or negative genetic
correlations among beneficial characters? What
explains the fact that some parasites are highly
specialized to attack only a single host species,
whereas other parasites are generalists that can
attack a wide array of hosts?

The processes that cause diversification can be
studied by detailed models of dynamical sys-
tems. This approach requires assumptions about
birth and death rates, epidemiology, patterns of
inheritance, and the way in which host and par-
asite traits affect the success of an attack. Dy-
namical analysis, usually by computer simula-
tion, establishes how numerous parameters
interact to determine fluctuating patterns of dis-
ease, population size, and genetic diversity. Such
analysis is crucial because nonequilibrium fluc-
tuations and colonization-extinction dynamics
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often play as great a role as the location of equi-
libria.

Dynamical analysis has certain drawbacks,
however. Realism is achieved by time-consum-
ing computer models, large parameter spaces with
complex behavior, highly specific assumptions
and, consequently, little generality.

I attempt a more general analysis of diversi-
fication. My primary method is equilibrium
analysis of a dynamical system, but game theory
proves to be a powerful supplementary method.
My goal is to provide a framework for rational
speculation about diversity, where the analysis
is easier than a complete dynamical study but
derives from a formal dynamical model. This
approach provides hypotheses about diversity
based on various biological assumptions. More
detailed dynamical study can follow when inter-
esting assumptions have been identified and
stronger conclusions are needed. Extensive dy-
namical analyses for a qualitative model of plant-
pathogen coevolution (Frank 1993) and a quan-
titative model of host-parasite coevolution (Frank
1994) show that my approach gives a very good
first approximation for the evolution of diver-
sity.

I develop several new models for host-parasite
diversity that classify the components of inter-
actions according to whether they cause stabiliz-
ing or disruptive selection. Stabilizing selection
reduces diversity by favoring a single optimal
type. Disruptive selection creates diversity by
favoring a mixture of widely separated pheno-
types. To give one example, the models predict
that qualitatively inherited resistance and viru-
lence traits typically cause greater diversity than
quantitatively inherited traits. However, each
natural system is composed of many stabilizing
factors that reduce diversity and disruptive fac-
tors that promote diversity. I show how general
predictions can be derived by the comparison of
expected diversity among a variety of models.

BAsic MODEL

The evolutionary dynamics of the host-para-
site interaction follow a system of Lotka-Volterra
equations (e.g., May 1974):

Ah, = hi[n - E rahy — m E Aiupu]

Ap; = p,.[—s + b x,,jh“}. (1)
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The values of 4; and p; are the abundances of
hosts of type i and parasites of type j. Each type
is a haploid genotype of an asexual population
when thought of in a genetical context and a
species when thought of in an ecological context.
Each host type has n resistance traits, i = {i,, i,,
..., I,}, and each parasite type has n matching
virulence traits to counter host defense, j = {j,,
J2> - -« » jn}. All values of {i,} and {j,} range be-
tween zero and one. The sums are, depending on
context, for u over all host types, i, or parasite
types, j.

The terms r;, 2 r,h,, s, and b; have their usual
meanings in Lotka-Volterra systems: these are,
respectively, host i’s intrinsic rate of increase,
density dependent competition among hosts with
carrying capacity normalized to one, parasite
death rate, and parasite j’s intrinsic birth rate.
The \; are the success of parasite j when attacking
host i.

Two types of assumption determine the gen-
eral properties of genetic diversity and com-
munity evolution. First, how do host and para-
site traits interact to determine the success of a
parasitic attack? Second, what constrains the
evolution of universally resistant hosts or uni-
versally successful parasites?

Success of Attack

All models assume a one-to-one correspon-
dence between the » traits in the hosts and par-
asites. In the sequential defense models an at-
tacking parasite must get past all n host defense
traits. A parasite’s success is the product of its
successes at handling each of the » barriers. In
symbols, \;; = I1, fi,, j.), where fdetermines the
interaction between the matching pairs of host-
parasite traits. Multiplicative interaction means
that a parasite’s failure against any single defense
trait, f{i, j,) = 0, implies total failure, \; = 0.

In the simultaneous defense models, a parasite
succeeds according to how well the host can de-
fend each of several points of attack. In this case,
it is natural to take the sum of the successes at
each point, \; = 2, fli,, j.)

Costs and Constraints

Three different assumptions are used that pre-
vent hosts or parasites from always evolving to
a maximally resistant or virulent type.

1. The effectiveness of resistance may depend
on the phenotypic match between host and par-
asite traits. For example, suppose \; = I1,, |/, —
i,|. The advantage for a phenotype depends on
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distance between host and parasite phenotypes.
No inherent advantage to large or small trait
values exists in the absence of antagonists. This
assumption is similar to traditional models of
frequency dependence. In those models, the rel-
ative resistance value of different host traits de-
pends on the frequency distribution of parasite
traits (Clarke 1979; Slatkin and Maynard Smith
1979).

2. Hosts and parasites may pay metabolic costs
for traits that increase success (Leonard and Czo-
chor 1980; Simms 1992). For example, suppose
an increase in a host trait i, improves resistance
with respect to pathogen trait j,. This host benefit
in interactions with parasites is associated with
a cost that applies to fecundity or viability in-
dependently of interactions with parasites. This
metabolic cost for host i will typically be a re-
duction in the intrinsic rate of increase such that
r,=r 1, (1 — ai,), where the cost of resistance
per trait is @ multiplied by the trait level, i,.
Similarly, cost for parasites is given by b; = b I1,
(I = v

3. There may be negative trade-offs (genetic
correlations) between the resistance or virulence
contribution of one trait and the effectiveness of
other traits (Gould 1983; Mitter and Futuyma
1983). In the simplest form for hosts, 2, i, = nJ,
where the average trait value, 7, is a constant,
such that increased resistance for one trait causes
lower resistance in other traits. The analogous
constraint for parasites is 2, j, = #J.

I refer to traits as ‘“‘directional” if selection
favors higher trait values when costs or trade-
offs are ignored.

METHODS OF SOLUTION

Ideally one would like to know the equilibria
and the dynamics for equation (1). An equilib-
rium point occurs for a set of abundances for
host genotypes, 4;, and for parasite genotypes, p;,
such that no further change in abundances will
follow because A4, = Ap; = 0 in equation (1) for
all genotypes i and j. Dynamical analysis pro-
vides information about the local stability of
equilibria and the global behavior of the system.
An equilibrium is locally stable if, when geno-
typic abundances are perturbed by a small amount
from an equilibrium point, the abundances re-
turn to that nearby equilibrium. Global analysis
describes whether a system attains a stable equi-
librium given any initial starting condition, or
whether nonequilibrium changes in genotypic
abundances occur indefinitely.
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Analysis of equation (1) requires attention to
the specific structure of the biological interaction.
For example, when there are no metabolic costs
then host and parasite traits affect equation (1)
only through A;, where host resistance is pro-
portional to —)\; and parasite virulence is pro-
portional to A;;. In this case we can analyze equa-
tion (1) in two stages.

First, an equilibrium genotype frequency dis-
tribution can be found for hosts and parasites.
This stage can be analyzed independently of the
total abundance of the hosts and parasites when
traits affect only A;;. In this case, the direction of
selection on the frequency distribution of host
genotypes depends only on the frequency distri-
bution of parasite genotypes, and the direction
of selection on the frequency distribution of
parasite genotypes depends only on the frequen-
cy distribution of host genotypes. Thus, the
direction of the global dynamics for genotype
frequencies can be analyzed by focusing solely
on A;.

Second, given equilibrium distributions for ge-
notype frequencies, equation (1) can be solved
for Ah; = Ap; = 0 to obtain the equilibrium abun-
dances of hosts and parasites. In particular, A; =
A is a constant for all i and j at genotypic equi-
librium, thus the total equilibrium abundances
of hosts and parasites that solve equation (1) are
H* = s/b\ and P* = r(1 — H*)/mA.

Game theory can be used to obtain the ge-
notype frequency distributions for the first stage
of the analysis. The interaction between host and
parasite forms a zero-sum game because, with
respect to genotype distribution, host resistance
is proportional to —\;;, and parasite virulence is
proportional to \;;. Stable equilibria for this game
can be obtained from the minimax solution,
which provides powerful analytical (von Neu-
mann and Morgenstern 1953, ch. 3; Luce and
Raiffa 1957, ch. 4) and numerical techniques
(Luce and Raiffa 1957, Appendix A6.5; Fryer
1978, ch. 8; Press et al. 1986, sec. 10.8). The
minimax solution occurs at the point where a
player’s probability distribution of strategies (ge-
notypes) minimizes the opponent’s maximum
gain. Stable strategy distributions in a zero-sum
game satisfy the minimax criterion.

The equilibria obtained by this two-step pro-
cess are solutions to Ak, = Ap; = 0 in the full
dynamical system given in equation (1). The dy-
namical stability properties of the minimax so-
lution are, in principle, easy to evaluate in the
context of equation (1), but in practice this may
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TasLE 1. Framework for classifying models of host-parasite interaction and types of analysis that have been
completed.
Cost or Stability
Kind of trait trade-off Equilibrium analysis analysis
Match distance
Quantitative none solution of eq. (1)* game th.}
trade-off solution of eq. (1)* game th.{
Directional
Qualitative trade-off solution of eq. (1)* game th.}
cost solution of eq. (1) globalf
Quantitative trade-off shape of fitness function game th.§
cost (n=1) solution of eq. (1) global ||
cost (n > 1) shape of fitness function none

* Uses minimax solution as intermediate step. See Methods of Solution section.

1 Refers to game-theoretic stability. See Methods of Solution section.

f Global dynamic analysis by computer iteration of system in equation (1). The analysis is presented in Frank (1993).

§ Numerical analysis of minimax solution supports the predicted pattern of stabilizing and disruptive selection shown in

table 3.

|| Local stability analysis by algebraic study and global dynamic analysis by computer iteration of equation (1). These analyses

are presented in Frank (1994).

be difficult. I do not address this problem, but
instead analyze the stability of minimax solu-
tions only in the game-theoretic sense—that is,
whether a minimax solution is a stable solution
to the zero-sum game determined by interaction
between host and parasite genotype frequencies.
Table 1 summarizes the assumptions and
methods of solution for each of the models in
the following sections. Further details are pro-
vided below. I have focused in this section on
the use of game-theory techniques because the
approach is unusual but, as shown in table 1, this
approach is used in only one-half of the cases.
For example, when resistance or virulence traits
have pleiotropic metabolic costs that affect growth
parameters r; and b;, the analysis focuses simul-
taneously on abundance and frequency.

MATCH DISTANCE

Suppose that a close match between host and
parasite traits allows a host to resist attack. A
parasite’s success is therefore a function of dis-
tance between the » matching host-parasite traits:
if traits are used sequentially in an attack, \; =
I1.|j. — i.|%, and if traits are used simultaneously,
Ny = 2,1/« — i.|*. The parameter z describes
whether attack success increases in an acceler-
ating (z > 1) or decelerating (z < 1) manner with
increasing match distance. In this model, traits
do not have metabolic costs, that is, r, = r and
b; = b. Defense and attack traits affect fitness only
through A, thus the analysis follows the minimax
approach outlined in the Methods of Solution
section.

No Constraints

If there are no constraints that force an asso-
ciation among characters, then each character is
optimized independently. The minimax prob-
lem can therefore use the payoff |j — i|* for both
simultaneous and sequential models.

The solution for z > 1 is all hosts adopting the
middle trait value, i = 2, and parasites splitting
equally between the extreme values, that is, half
of the individuals of the parasite community have
Jj =0 and other half have j = 1. The solution can
be understood by recalling that hosts are favored
to be as close as possible to the distribution of
parasites, and parasites are favored to be as far
as possible from the distribution of hosts. With
z > 1, attack success accelerates with increasing
distance, thus the hosts can do no better than
stick to the middle and force the parasites to the
extremes. The contribution to A;; for each trait is
(Y2)7 at the equilibrium.

For n traits, and z > 1, the parasites are spread
equally among the 2" vertices of an n-dimen-
sional hypercube, and all hosts are at the center
of the cube. Thus, the parasite community is
highly diversified but each parasite is equally a
generalist on the monotypic hosts. This joint dis-
tribution of hosts and parasites is the unique
minimax solution, and therefore is globally sta-
ble in a game-theoretic sense. I have not analyzed
stability in the context of the dynamical system
in equation (1).

For z < 1, the minimax solution is an identical
probability distribution of host and parasite traits,
where the shape of the distribution depends on
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Fic. 1. Frequency distribution of character values under match distance model. No genetic constraints exist
and z < 1.

z(fig. 1). This solution was obtained numerically
by the techniques listed in the Methods of So-
lution section. Numerical convergence suggests
local and probably global stability in a game-
theoretic sense.

The hosts and parasites are spread equally near
the 2" vertices of the unit hypercube when z is
less than one and not close to zero. For the se-
quential (multiplicative) model, this creates a
community with many highly specialized host-
parasite pairs, where each parasite can attack the
hosts only at the opposite vertex. For the si-
multaneous (additive) model, the community has
the same degree of phenotypic diversification but,
from each parasite’s point of view, the hosts are
split into # groups with resistance increasing lin-
early with the number of matching traits. The
general patterns of stabilizing and disruptive se-
lection are summarized in table 2. If increasing
distance caused greater resistance rather than
greater virulence, then the roles of the host and
parasite would be reversed in each entry.

Genetic Correlation among Traits

Traits may be genetically correlated within
hosts or parasites. I analyze the case with two

traits, n = 2, and Z, j, = 1, such that 7 = 0.5.
The average trait value for hosts, 7, varies be-
tween zero and one. The results are based pri-
marily on numerical studies backed up with sup-
porting analysis.

The minimax equilibrium for the sequential
attack model (multiplicative fitness), \; = IL,|/,
— 1,/ has two forms depending on the average
value of host traits, i. In essence, when hosts are
narrowly constrained then hosts diverge over a
narrow range, and parasites evolve to be mono-
morphic generalists. When hosts can vary over
a wide range, then hosts evolve to an interme-
diate monomorphism and parasites diverge but
remain equal generalists on the single host type.

TaBLE 2. Effects on host and parasite diversification
caused by accelerating (z > 1) or decelerating (z < 1)
virulence with increasing distance in a match distance
model with no constraints: S, stabilizing; D, disruptive.
Ordered pairs of S and D are for host and parasite,
respectively.

Ajj = ILF Aj=ZF
z>1 S, D S,D
z<1 D,D D,D

s
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Specifically, for 1 — \/3/2 < 7 < \/3/2, the
parasites are split equally near the two vertices
that satisfy the constraint (j,, j,) = (1, 0) or (O,
1), and the hosts are monomorphic at i, = 7 for
all k. For small and large values of 7, the parasites
are monomorphic at the midpoint, (j,, j,) = (0.5,
0.5), and the hosts are split evenly between (i,,
i) = (0, 27) and (27, 0) for 7 < Y, and (i, i) =
(1,2r— 1)and 21 — 1, 1) for 1 > YA

These results can be obtained by noting that
when parasites take the midpoint, the hosts use
the split strategy, yielding parasite fitness [(}2) |2
— 27|J?, and when parasites play the split strategy
and hosts play the monomorphic strategy, par-
asite fitness is [f(1 — 7)]°. The fitnesses of these
two strategies are equal when 7= 1 — \/3/2. In
effect, because fitness is multiplicative, parasites
attempt to maximize the average and minimize
the variability in success for each trait, whereas
hosts attempt the reverse.

When interactions follow the simultaneous at-
tack model (additive fitness across traits), the
outcome depends on whether parasites gain ac-
celerating (z > 1) or decelerating (z < 1) success
with increasing distance. For z > 1 and j = 1/n,
parasites spread uniformly over the n vertices at
which one trait has value one and the others have
value zero; hosts are monomorphic at i, = . The
results for z < 1 and »n = 2 are similar to the
multiplicative model because, in this case, par-
asites again seek to maximize average success per
trait while minimizing the variability across traits.
The results can be given as the transition values,
x, for which 7 satisfying x < 7 < 1 — x yield
monomorphic hosts at 7 and parasites spread near
the vertices where traits sum to one. For small
and large values of 7, hosts split between the two
strategies given above and parasites are mono-
morphic at the midpoint. The transition values
for z = 0.1, 0.5, 0.9 are, respectively, x = 0.14,
0.10, 0.03.

QUALITATIVE TRAITS

Many interactions are governed by matching
major-gene factors in hosts and parasites (Bur-
don 1987; Frank 1992; Thompson and Burdon
1992). Each matching pair contributes either a
fixed level of resistance or provides no defense.
For example, in the gene-for-gene interactions
between plants and their fungal parasites (Flor
1956, 1971), the host has several loci each of
which provides either a resistant or susceptible
phenotype. For each host locus, the parasite car-
ries a matching locus with either a virulent or
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avirulent phenotype. A resistant phenotype at a
host locus matched with an avirulent phenotype
at the parasite locus confers a fixed level of re-
sistance (usually complete); the other three com-
binations of host and parasite phenotype at this
matching pair do not affect the success of attack.

The host phenotype at the kth locus is set to
one for resistance and zero for susceptibility. The
parasite phenotype is set to one for avirulence
and zero for virulence. The success of attack de-
pends on the number of matching ones. For ad-
ditive effects over n loci, A\; = f{M), where M is
the number of matches, 2, i j,, and fis a de-
creasing function of M. For multiplicative effects,
Ay = IL(1 — i,j,), which is one for no matches
and zero for one or more matches.

Genetic Correlation among Traits
There may be a limit to the number of resis-
tance and virulence factors that hosts and par-
asites can carry. Suppose that a host can carry x
resistance alleles and a parasite can carry y vir-

ulence alleles. Thus, <;) host and (;) parasite phe-

notypes exist. Clearly an equal frequency of each
host phenotype is favored because any concen-
tration would be countered by avoidance by the
parasites and a reduction in the number of
matches. Likewise an equal frequency of each
parasite phenotype is favored because any con-
centration causes a shift in hosts toward the con-
centration and an increased probability of a
match. The uniform host and parasite distribu-
tions are favored for either additive or multipli-
cative interactions. These uniform distributions
are the minimax solution.

Given uniform distributions, the probability
of M matches between randomly chosen hosts
and parasites is

Prob(M matches) = <x _y M) / K
B2

< y .>
=By -1

B8, = max(0, x — )

BZ = min(n - y’ X),

(2)

where M ranges from (8, to 8,. Some examples
of this probability distribution are shown in fig-
ure 2. For each fixed number of resistance alleles,
the associated contour shows the probability dis-
tribution for the number of matches. The dis-
tributions in figure 2 show, for an additive mod-
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y=2

F1G. 2. Probability distribution for the number of matches between host resistance and parasite avirulence.
The number of resistance and virulence alleles per individual is fixed by constraint; the distribution of phenotypes
evolves under these constraints. The top row is for #n = 10 loci, the bottom for 100 loci. The number of virulence
alleles, y, is shown for each panel. In an additive model more matches corresponds to greater resistance. The

graphs were obtained from equation (2).

el, how each parasite has a range of hosts that it
can attack with decreasing success as the number
of matches increases.

When the interaction is multiplicative, a par-
asite succeeds if there are zero matches or fails
if there are one or more matches. The probability
of successful attack (zero matches) between ran-
domly chosen pairs of hosts and parasites is shown
in figure 3. A high probability means that par-
asites are generalists and can attack most hosts;
a low probability means that each parasite phe-
notype is specially adapted to attack a small frac-
tion of hosts.

Both the additive and multiplicative models
support heritable variation for resistance and vir-
ulence at equilibrium. For example, one would
typically observe a strong response of hosts to
selection for resistance against a single parasite
phenotype, and likewise a strong response of par-
asites to selection for virulence against a single
host phenotype. In the additive model, the re-
sponse is quantitative because resistance is based

on the number of matches between qualitative
traits. In the multiplicative model, the response
is in the frequency of all or none resistance. The
genetic variability is maintained by the tendency
for hosts and parasites to diversify in response
to each other.

Metabolic Costs

The previous section showed the consequences
of genetic constraints for polymorphism and de-
gree of specialization. In this section, no fixed
limits are assumed for numbers of resistance and
virulence alleles per individual. Instead, meta-
bolic costs of resistance and virulence alleles
maintain polymorphism in qualitative traits. The
model presented here is based on results given
in Frank (1993).

Hosts pay a cost by reduction in intrinsic rate
of increase for each resistance allele carried, r, =
r(1 — a)*, where x is the total number of resis-
tance alleles in the host, and a is the cost per
resistance allele. Similarly, parasites pay a cost
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FiG. 3.

The probability of successful attack (zero matches) between randomly chosen hosts and parasites in a

multiplicative model. The number of resistance and virulence alleles per individual is constrained. A high
probability of successful attack corresponds to generalist parasites; a low probability corresponds to specialist
parasites. The left panel is for n = 10 loci, the right panel is for 100 loci. The graphs were obtained from equation

(2) with M = 0.

by reduction in birth rate for each virulence allele
carried, b, = b(1 — vy, where y is the total num-
ber of virulence alleles in the parasite and v is
the cost per virulence allele.

The equilibrium of the system cannot be ob-
tained by simple game theory analysis because
fitness now depends on an interaction between
benefits in the A; term of equation (1) and the
metabolic costs. Instead the system of equations
must be solved directly for the point at which no
changes occur. When the equilibrium is ex-
pressed as the probability distribution of hosts
carrying x resistance alleles and parasites car-
rying y virulence alleles, the result is nearly in-
dependent of the birth and death rates and de-
pends almost entirely on the number of loci, n,
and the costs of resistance and virulence, a, and
v (Frank 1993):

x = (z>vx(1 — )
v, = @(1 ~ ayar
y=0,1,...,n—1 4)

v=(=ap(l —HY y=n (5

r=v/ 2 (6)
S
= b1 — )

where A*, the probability of hosts with x resis-
tance alleles, follows a binomial distribution with
parameters (n, v), and p¥, the probability of par-

asites with y virulence alleles, approximately fol-
lows a binomial distribgtion with parameters (#,
1 — a). The probability #¥ is spread equally among

the (;} different ways in which a host can carry
x resistance alleles, and the probability p¥ is
spread equally among the (;) different ways in

which a parasite can carry y virulence alleles.
The system can maintain extensive host and
parasite polymorphism at equilibrium. Associ-
ated with this polymorphism is a high heritabil-
ity for resistance of hosts to particular parasite
genotypes and high heritability for virulence of
parasites to particular host genotypes. The global
dynamics of the system were analyzed elsewhere
(Frank 1993) and will not be discussed except to
note that extensive polymorphism is often main-
tained when the system fluctuates over time.
The probability that a parasite can attack a
randomly encountered host is a measure of gen-
eralization, G, and is given by (Frank 1993)

_ a1 — a1l — H*)

R T . ©

where H* is given in equation (7). Figure 4 shows
the effects of cost per locus and number of loci
in equilibrium systems. An increase in the num-
ber of traits (loci) causes a decrease in general-
ization even when costs of resistance and viru-
lence are low. This result also appears to hold in
nonequilibrium systems. Fluctuating allele fre-
quencies and abundances also appear to reduce
generalization below the equilibrium level pre-
dicted in figure 4.
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TaBLE 3. Effects on host and parasite diversification
caused by accelerating (Acc) or decelerating (Dec) ben-
efits in a quantitative model with constraints: S, sta-
bilizing; D, disruptive. Ordered pairs of S and D are
for host and parasite, respectively.

Host Parasite Ajj = ILF Aj=ZF
Acc Dec D,S D, S
Dec Acc 2,? S,D

’ >

QUANTITATIVE TRAITS

In this section, I consider » continuously vary-
ing traits in the host and parasite with directional
selection on each trait. Without an opposing force,
hosts evolve to maximal resistance, and parasites
evolve to maximal virulence. The following sec-
tions examine patterns of divergence under con-
straints or metabolic costs.

Genetic Correlation among Traits

Correlations are caused here by constraints of
the form 2i, = ni and Zj, = nj, where overbars
denote average trait values. A conjecture, given
below, provides a general overview of host and
parasite divergence according to the minimax
solution for interactions given by A;. The inter-
actions A, are the sum or product of terms of the
form F=(1 + j, — iFor F=1— [i,(1 — j)F
(this second form is equivalent to the gene-for-
gene model in the qualitative section if i, and j,
are constrained to be either zero or one).

Here is some background needed for the con-
Jecture. First, classify the interaction function A,
according to whether hosts gain an accelerating
or decelerating resistance benefit for increases in
any trait, i, or, put another way, whether 8*(—\;)/
di? is greater or less than zero. For the terms of
A; given above, accelerating host benefits imply
decelerating virulence benefits for the parasite
(02\;;/9j% < 0), and decelerating host benefits im-
ply accelerating parasite benefits. This antago-
nistic relationship is the outcome of combining
pairwise trait interactions in a zero-sum game.
Second, classify A; according to whether terms
are added (\; = 2 F) or multiplied (\; = II F).

The conjecture is given by the general patterns
of divergence for these assumptions as summa-
rized in table 3. The Acc labels indicate accel-
erating gains and the Dec labels indicate decel-
erating gains. Each entry in the table shows an
ordered pair of letters for hosts and parasites,
respectively, that denote stabilizing selection (S)
to a monomorphic state or disruptive selection
(D) to numerous widely separated phenotypes.
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FiG. 4. The probability of successful parasite attack
on a randomly chosen host in a qualitative model with
metabolic costs. The figure is obtained from equation
(8) with equal cost for hosts and parasites, a = v, and
with s = 0.5 and b = 4 to obtain H* from equation
(7). An increase in s or a decrease in b lowers the
surface. A probability of zero corresponds to the case
where parasites are absent at equilibrium. The change
between each contour line for cost is 0.01; the change
between each contour line for loci is 3.

For example, if hosts diverge and parasites con-
verge, (D, S), and 7 is an integer, then hosts are
spread with uniform probability among the ver-
tices of the hypercube with nf ones and n(1 — 1)
zeroes, and all parasites have j, = j for each trait.

I do not have a general proof of this conjecture,
but the logic is straightforward. Decelerating gains
cause stabilizing selection and accelerating gains
cause disruptive selection. These properties are
sufficient if traits combine additively, but traits
that combine multiplicatively impose additional
selection pressures. The additional pressure on
hosts is disruptive because a product (in this case
susceptibility, A;) is reduced when its terms vary.
The additional pressure on parasites is stabilizing
because the product \; (virulence) is increased
when variation among terms is reduced. An en-
try in table 3 with a question mark means that
opposing tendencies will be resolved according
to the particular form of A\; and the specific pa-
rameters.

Numerical analysis supported the conjecture.
I conducted a limited test by analysis of both A
= 2 Fand \; = II F for each of the two forms
of F given in the first paragraph of this section.
I used the numerical techniques described in the
references on minimax problems listed in the
Methods of Solution section. The test was a 2¢
factorial design with two characters (n = 2) and
varying parameters I = 0.3, 0.7, = 0.3,0.7, z =
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TABLE 4. Predicted effects on host and parasite di-
versification caused by components of the interaction
in a quantitative model with metabolic costs: S, sta-
bilizing; D, disruptive; N, neutral; Dec, decelerating
benefits; Acc, accelerating benefits.

Host factor Effect Parasite factor Effect
Il — ai) S Il — vj) S
Dec S Acc D
Acc D Dec S
Ajj = IIF D Ajj = IIF S
ANj=2ZF N Nj=2ZF N
H(l - vj‘,) X )\ij S

0.5, 2.0, and either additive or multiplicative
effects across traits.

I classify an outcome as disruptive if genotypes
are spread equally among the most distant pos-
sibilities and stabilizing if the genotypic distri-
bution is monomorphic. For example, if 7 = 0.7,
j7=0.3, z=0.5, and traits are additive, then the
prediction from table 3 is disruptive selection on
hosts and stabilizing selection on parasites (up-
per-right cell in the table). Thus, hosts are ex-
pected to split equally between (0.4, 1.0)and (1.0,
0.4), where ordered pairs are trait values for the
first and second traits, respectively. Parasites are
expected to be monomorphic for (0.3, 0.3).

Results for all 16 cases in the factorial design
matched the predictions in table 3. In the four
cases for which z = 2 and traits combined mul-
tiplicatively, no prediction was made (?,?) in ta-
ble 3. The outcomes were disruptive for hosts
and stabilizing for parasites (D,S) for all four of
these cases.

Metabolic Costs

Metabolic or structural costs may prevent the
evolution of maximal resistance or virulence
when there are no genetic or developmental con-
straints. Specifically, each host trait i, is free to
vary independently of the other » — 1 traits, but
increasing resistance benefit for this trait carries
a cost. The cost over all traits is imposed on the
intrinsic rate of increase such that r, = rII (1 —
ai,), where a provides a scaling for the cost per
unit benefit. Similarly for parasites, each viru-
lence trait j, varies independently of other traits
but carries a cost such that the birth rate is b; =
bII (1 — vj,), where v provides a scaling for the
cost per unit benefit.

The host-parasite interaction is no longer a
zero-sum game with this combination of costs
of benefits. A direct analysis of the dynamical
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system given by equation (1) is needed. Such an
analysis is, in general, very difficult because of
the nonlinearity and high dimensionality. Else-
where [ have given a detailed study of this system
for a single trait in the host and parasite (n = 1)
and a form of A\;; proportional to F = (1 + j, —
i,)* (Frank 1994). Here I give a set of qualitative
conjectures about how various components of
the interaction cause stabilizing or disruptive se-
lection on host and parasite traits. These con-
jectures are based on the detailed analysis for n
= 1 and on the results given in the previous
section.

Table 4 shows the ways in which different
components of the host-parasite interaction af-
fect diversity. The first line shows that costs, by
accumulating multiplicatively, impose stabiliz-
ing selection on resistance and virulence traits.
This occurs because minimum variation among
traits maximizes the products shown in the first
line. These products are proportional to growth
rates, thus maximum values are favored.

The second and third lines of table 4 show that
decelerating benefits stabilize trait values, and
accelerating benefits diversify trait values. On
each line, host and parasite are paired with op-
posing tendency. This opposing tendency is true
for the two explicit forms of interaction men-
tioned above, F= (1 + j, — i;))and F=1 —
[7:(1 — j)I?, and is also true for many plausible
forms of interaction. It is possible to construct
F such that these tendencies in host and parasite
are concordant rather than discordant, but such
cases appear to have reduced pairwise interac-
tion between traits, for example, F = 1 + jy —
17, where the contribution of host and parasite
traits is independent.

The fourth and fifth lines of table 4 show that
the way in which interactions accumulate over
traits influences patterns of diversification. In the
multiplicative (sequential) model, variation in
the contribution of each trait reduces ;. This
causes hosts to diversify, because —A\; is pro-
portional to the resistance of the hosts. Parasites,
however, are stabilized by this factor because
they favor an increase in A;, which is propor-
tional to virulence. In the additive (simulta-
neous) model, variation among terms has no ef-
fect.

The bottom line of table 4 shows an additional
stabilizing factor that applies only to parasites.
The interaction between costs and benefits is
multiplicative in parasites because the parasites
give birth only when successful in interacting with
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hosts (Frank 1994). This multiplicative inter-
action favors a reduction in variation among par-
asite traits to reduce the product shown in the
table, which is proportional to the actual birth
rate of the parasites.

Looking over table 4, it appears that parasites
will most often be monomorphic unless benefits
accelerate rapidly enough to overcome several
stabilizing effects. On the host side, several op-
posing tendencies exist, such that either mono-
morphism or divergence appear to be possible
equilibrium states. These general tendencies of
parasite monomorphism and the host’s sensitiv-
ity to particular assumptions were observed in a
detailed study of a single trait (Frank 1994).

CONCLUSIONS

The results show many ways by which poly-
morphism and specialization can evolve. The
different components of host-parasite interac-
tions can be arranged by their tendency to cause
diversity (tables 1-4). For example, multiplica-
tive pleiotropic costs of resistance and virulence
cause stabilizing selection (table 4, row 1). Dis-
ruptive selection occurs in hosts when resistance
benefits accumulate multiplicatively across traits,
whereas multiplicative virulence benefits cause
stabilizing selection in parasites (table 4, row 4).

A host-parasite interaction has many com-
ponents. Thus, a theory cannot predict with cer-
tainty that, for example, qualitatively inherited
traits will be more diverse than quantitatively
inherited traits, even though there is a tendency
in that direction. Instead, the approach I advo-
cate for both theoretical and empirical study is
a family of related comparisons. For example, if
a particular host-parasite interaction involves
both qualitative traits and quantitative, direc-
tional traits, the qualitative ones are likely to be
more diverse. Comparison is the key: only for
relative predictions can one obtain the required
data. Isolated estimates of diversity and herita-
bility are always difficult to interpret.

Studies of nonequilibrium dynamics also em-
phasize the need for comparison. Temporal dy-
namics will often be difficult to measure, whereas
comparison of diversity patterns across space can
differentiate between an attracting equilibrium
and fluctuating polymorphisms (Thompson 1988;
Burdon et al. 1989, 1990; Frank 1989, 1991).
Similarly, the role of particular demographic or
genetic properties in nonequilibrium dynamics
cannot be assessed within a single system. In-
stead, comparison among systems that differ in
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a few parameters must be used to test specific
predictions.
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