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Spatial variation in coevolutionary dynamics
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Summary

Computer simulations of coevolutionary dynamics between two hosts and two parasites show that extensive
spatial variation in polymorphism can be maintained among environmentally identical patches. Spatial
variation can be maintained under frequent migration when the dynamics within patches are locally
unstable, and the cycles in host and parasite abundances remain out of phase among patches. Additionally,
spatial variation can be maintained when host-parasite interactions cause local extinctions, and migration
subsequently allows for recolonization. The temporal dynamics that cause spatial variation are difficult to
study directly because of the long time scale over which they occur. The simulations suggest that sampling
over space at one or a few points in time may provide much information about temporal dynamics.
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Introduction

Disease, herbivory, and parasitism maintain much of the genetic diversity within and between
populations of living organisms. Four attributes of diversity describe a pattern that recurs in these
antagonistic coevolutionary interactions. For convenience I will describe these attributes in terms
of different genetic strains of a single parasitic species interacting with several host genotypes.

(1) Abundant polymorphism exists among hosts, with each host genotype varying in resistance
to different parasite strains.

(2) Abundant polymorphism exists among parasites, with each strain varying in virulence
according to host genotype.

(3) The frequencies of both host and parasite genotypes vary widely on a spatial scale.
(4) The frequency of disease (successful parasite attack) varies widely on a spatial scale.

A similar pattern applies at the species level to plant-herbivore interactions and at the genomic
level to systems of meiotic drive and their suppressors. The variety of biological interactions
described by antagonistic coevolution are considered further in the Discussion.

The polymorphisms in hosts and parasites are well known both empirically and theoretically, as
summarized, for example, by Burdon (1987). In this paper I focus on spatial variation in
population density, polymorphism and successful parasitism. There are a few scattered empirical
reports of spatial variation (attributes (3) and (4), see Discussion), but no comprehensive survey
is available. Theoretically, spatial variation has been invoked as a factor in maintaining global
polymorphism and diversity (Levins and Culver, 1971; Slatkin, 1974; see Discussion), but no
work has directly addressed the amount of spatial variation and the coevolutionary dynamics that
maintain such variation.

The theory I develop follows two interwoven lines of research. On the deductive side, I
quantify the expected amount of spatial variation under various assumptions. On the inductive
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side, I quantify the power of various observable statistics for inferring the processes and temporal
dynamics that cause spatial variation in antagonistic coevolutionary systems.

From the deductive work, I will show that antagonistic coevolutionary dynamics often lead to
interactions with the four attributes of diversity. More importantly, I will establish reasonable
alternative hypotheses about the underlying processes and dynamics. For example, spatial
variation among patches may be caused primarily by stable cycles of densities within each patch
that occur out of phase with cycles in neighbouring patches. Alternatively, local extinctions and
recolonizations by immigration may also lead to a spatial mosaic of population densities for each
host and parasite genotype. The deductive analysis will provide a quantitative description of
conditions that lead to one or the other of these temporal dynamics.

On the inductive side, the main difficulty is that coevolutionary dynamics typically occur over
time scales too long to observe directly. I will show that observable spatial statistics collected over
short time periods can be used to infer a long-term pattern in spatial variation and, to some extent,
the processes and temporal dynamics that affect polymorphism and spatial variation. For
example, I will analyse the power of spatial statistics for separating two alternative hypotheses
about how temporal dynamics maintain spatial variation: local limit cycles out of phase on a
spatial scale versus repeated local extinctions and recolonizations.

My method is to use a computer to simulate an antagonistic coevolutionary interaction. I
therefore know the true processes such as migration rate and population growth patterns and the
temporal dynamics that occur over thousands of generations. The populations in the simulation
are located in several spatially discrete but otherwise identical patches which may be coupled by
an adjustable migration rate. In the course of the simulation I analyse the information about
processes and temporal dynamics available from purely spatial statistics — that is, data collected
from several spatially distinct locations at a single point in time.

I have chosen a very general Lotka—Volterra model with two types pursued (e.g. prey or
hosts) and two types pursuing (e.g. predators or parasites) rather than a model based on the
natural history details of a particular system. This has the advantage that the above four patterns
and the proposed statistics can be analysed without particular assumptions. In the Discussion, I
relate the results obtained from the general Lotka—Volterra model to a variety of biological
interactions.

Models and methods

Within patch dynamics and spatial arrangement

Within-patch dynamics. The model can be described most generally as one of coevolutionary
pursuit (Hamilton, 1986), in which there are species or strains that gain by attacking and those
that gain by avoiding the aggressors. To be concrete I will refer to hosts and parasites.

The model approximates dynamics for a wide range of specific assumptions about natural
history by calculating future densities based on, first, current densities and the intrinsic rates of
growth and decay, and second, the squares and cross-products of these densities as
approximations for the frequencies of interactions within and among types. This is the standard
Lotka—Volterra aproach to dynamics. Following May's (1973) equation (3.20), we can write the
changes in the densities of the ith host, h i and parasite, p i , in a 2n-dimensional system as

n

(nAh i = hi ri — 1 ciirik — E milpi

j=i	 i=i

APi = Pi ( —si+Ebijhj )

(1)
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The parameters r and s are the intrinsic rates of growth and decay for the hosts and parasites,
respectively, in the absence of any within or among species interactions. Interactions are
described by cif , the reduction in the rate of growth of the ith host caused by competition with the
jth host, the reduction in the growth of the ith host caused by attack from the jth parasite, and
b,1, the increase in growth for the ith parasite from attacks on the jth host. The carrying capacity
of the ith host in the absence of interactions with other types is llcii . I will use normalized forms of
these equations, so that this carrying capacity is one for all hosts, that is, cii = 1 for all i.

When n = 2 the dynamics of this 4-dimensional system are fairly complex. There is a single
equilibrium point, which establishes necessary conditions on the parameters for the stable
maintenance of all types at fixed, non-zero densities. Hamilton (1986) found some conditions
under which limit cycles probably exist, but little is known at present about necessary and
sufficient conditions and the amplitude of cycles. Frank (1991a) studied some dynamical aspects
of higher-dimensional systems of Equation 1.

Qualitative analyses by Hamilton (1986) and my own simulations suggest several characteristics
of the 4-dimensional system. When the system is decoupled into two 2-dimensional pairs of host-
parasite systems, with all interaction parameters zero when i # j, then the equilibrium point is
more likely to be stable than when interaction occurs. As the interaction parameters are
increased, limit cycles spread from the fixed point with steadily increasing amplitudes.
Competition and parasitism tend to push the cycles of the two coupled systems out of phase with
each other.

Within patch noise. After a round of deterministic selection or interaction given by Equation 1,
stochastic perturbations influence densities. The magnitude of such pertubations typically
depends on current densities, since more common types have greater absolute fluctuations than
rare types. Within-patch noise is introduced by

h; =	 (1 + sei)	 177 = hi + Ahi	
(2)

P; = PT (1 8€i + n)	 pi = Pi + APi

where primes denote frequencies in the next time step, 8 is a parameter that determines the
variance of the noise process, and each E is a 2n-dimensional vector of independent, normally
distributed random variables with a mean of zero and a variance of one. The variance in h;, given
the 2n densities in the previous time step, is 82(14)2 , with a similar expression for pi'.

Extinction and mutation. The densities of types rarely become zero (or less) with the above
equations and realistic parameters, but the densities may become very small. In nature rare types
will frequently become extinct after a period of time. To mimic this extinction process I set the
density of a type to zero if the density falls below a cutoff point described by the parameter
Trunc. Since densities are normalized to fall between zero and one, a typical value for the cutoff
would be 0.005. This value was used in all simulations presented here.

Once a type is lost from a patch it may be reintroduced by mutation or migration. Since rare
mutations have little net effect on densities, I have approximated the mutation process by
changing only zero densities of a host or parasite type to Trunc plus dMuta = dMigr (see next
section), if a uniform random number on (0, 1) is less than Muta multiplied by the density of the
other host or parasite type, respectively.

Spatial arrangement and migration. The full model consists of a 2-dimensional square array of
patches, with each dimension containing PopArr = 25 patches for a total of 625 patches. The
processes determining within-patch dynamics are the same for all patches. Migration among
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patches follows an island model scheme, in which immigrants are equally likely to have come
from any patch irrespective of distance (Wright 1969). The role of emigration on patch densities
is subsumed in the intrinsic growth rates, r and s. Immigrants of each type arrive in a single-sized
packet that increases the local density by dMigr. A value of 0.005 was used for dMigr in all
simulations presented in this paper. Immigration is an alternative to mutation for reintroducing
an absent type. When immigrants land in a patch that is extinct for the type, the density of that
type is set to Trunc plus dMigr. An immigration event for a particular type occurs with a
probability of migr multiplied by the average density of the type over all patches. Migration of the
2n different types occurs independently.

In the present paper I assumed that all patches are identical except for the densities of the 2n
types. Spatial variation in patch quality would be an interesting extension to the present model.

Major goals and methods

In the course of a simulation run, I collected summary statistics over all patches and all
generations, and over a sample of patches in one generation midway between the beginning and
end of the simulation run. The variation among patches at a single sampling time will be used to
determine the utility of spatial statistics for inferring temporal dynamics and long-term patterns
of change in the composition of host and parasite populations.

Local and spatial polymorphism. I will quantify polymorphism among patches with the F statistics
of population genetics (e.g. Wright, 1969; Crow and Kimura, 1970). For example, in a particular
patch let the frequencies of types (host genotypes or host species within a guild) be qik , where i is
the type and k is the patch, and let —q-ci be the frequency taken over all patches. When there are two
possible types, n=2, then the total variance is vt=442, which is a measure of total
polymorphism. The average within-patch variance, or local polymorphism, is V, = /k Zkqlkq2k,
where Zk is the total abundance of types in the kth patch divided by the total abundance over all
patches. Variation among patches is Va = Vt — V,, so a measure of spatial variation in
frequencies is the fraction of the total variance that is among patches, which is traditionally
defined as F„ = Va/Vt.

Spatial variation in predation or disease. From Equation 1, the total burden on rate of growth of
the ith host or prey in the kth patch, normalized by the potential growth rate, is tik = miihikpikl
(hikri) =	 The average burden over all host types and patches is =
where qi = Ikhikailkhik and qiqk(i) = hikailkhik. The qi are the frequencies of the ith type in the
total population, and the q kW are the frequencies in the kth patch of the total population of the
ith type.

The total variance in burden is

Rt = 	(ix/kW (tik .02 =EE gig k(i) (kik -	 Eqi	 D2 =	
+ Ra

where (3a is the variance in fitness among patches for each type, averaged over the i types; and 13i
is the variance among the average fitnesses of the types. p a is therefore a measure of the spatial
variation in the fitness of a particular genotype or host type caused by spatial variation in the
abundance of successful pathogens or predators.

Colonization-extinction and temporal dynamics. I will study whether spatial data over a sample of
patches can be used to infer the temporal dynamics that cause spatial variation. The temporal
dynamics are primarily a combination of three processes: migration, stochastic pertubation, and
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deterministic dynamics within patches. In particular, I will examine whether spatial data can
determine the relative importance of two possible causes of spatial variation: stable limit cycles
within patches that are out of phase among patches and repeated local extinctions and
colonizations.

Design of the simulations

Choice of parameter values

The choice of parameter values is difficult because there are many parameters even with a small
system of two host and two parasite types. Worse, the interaction between parameter values is so
complex that no simple conclusions can be drawn. For example, small changes in a few
parameters may either increase or decrease spatial variation depending on complex interactions
among the parameters.

The problem is that the dynamics within patches are governed mainly by the dominant
eigenvalue of the system of equations given in Equation 1 (May, 1973). This eigenvalue is a
complicated function of the growth, decay and interaction parameters. A simple solution is
possible, however. Since the eigenvalues determine dynamics in a fairly simple way, I first chose
different dominant eigenvalues to study and then randomly chose sets of parameters that satisfied
the constraint imposed by this eigenvalue. This approach was justified by the observation that
different randomly chosen sets of parameters for each dominant eigenvalue explained only a very
small fraction of the variation in the simulations (see below).

A second important component of the dynamics within patches is the location of the
equilibrium point. The particular system given in Equation 1 happens to have only one fixed
point within the 2n-dimensional unit rectangle. This centre point was also chosen as a 'treatment'
of each design. The parameters therefore satisfied the constraints imposed by the dominant
eigenvalue and the centre point. The underlying dynamic parameters from Equation 1 were
chosen in a completely symmetrical way such that ai = a1 and all = a1, for any parameter a. The
symmetry assumption does not play a major role in determining dynamics and the global
behaviour of the system, since the eigenvalues and system dynamics change slowly and smoothly as
the system departs from symmetry. This smooth behaviour of the system is typical of dynamic
systems (Guckenheimer and Holmes, 1983). The details of how the parameters were calculated
are given in the Appendix.

This novel approach to choosing parameter values allows the simulations to focus on the global
dynamics of spatial variation. The way in which particular parameters affect global dynamics can
be analysed by studying algebraically how a parameter affects the dominant eigenvalue and the
centre point, and then evaluating by simulation how the eigenvalue and the centre point affect
the global dynamics of spatial variation. The Appendix outlines the algebraic analysis while the
body of the paper is concerned with simulations of global dynamics. The Appendix also includes
a summary of the particular parameter values used in the simulations.

The choice of the eigenvalues was made according to well-known properties of dynamic
systems (May, 1973). If the square of one plus the real part of the dominant eigenvalue plus the
square of the imaginary part is less than one, then the system is locally stable and will be attracted
to its fixed point when nearby. By contrast, if this value, called the modulus, is greater than one,
then the system is locally unstable and will move away from its fixed point when nearby. There is
a qualitative shift in the dynamics as the modulus moves through the unit circle. Based on
simulations, when the system was locally stable it generally appeared to be globally stable, and
when the system was locally unstable, it had a globally attracting limit cycle. From these
qualitative properties, I chose dominant eigenvalues with modulus slightly less than and slightly
greater than one in order to study the transition from stability to instability.
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The centre point may have important effects on the results. First, when it is closer to zero in
some dimension then extinction of that type is more likely. For example, when the fixed point for
a particular host is 0.15 rather than 0.3, then that host type is usually more likely to become
extinct in a particular patch. Second, when the fixed point is lower, then deviations of a particular
magnitude will have a greater relative effect and may therefore increase spatial variation.

Another key parameter affecting spatial variation is the migration rate, migr. The migration
scheme is described above. Three levels of migration were used: 0.001, 0.05, and 0.5. I also
varied the intensity of the mutation process described above and the noise parameter 8 from
Equation 2.

Experimental designs

I will report the results from two major factorial designs. The treatment levels are given in Table
1. In addition, a third set was conducted to study temporal dynamics; the design for this third set
is described in the Results section below.

Table 1. Treatment levels for parameters. Eigenvalues given in real plus one
and imaginary parts. Centre given in host-parasite coordinates.

Level	 Migr	 Eigen (r, i)	 Centre (h,p)	 Muta	 Noise

1	 0.001	 0.99, 0.1	 0.15, 0.15	 0.0	 0.0
2	 0.05	 0.99, 0.05	 0.15, 0.30	 0.1	 0.015
3	 0.5	 1.00, 0.05	 0.30, 0.15	 0.03
4	 1.00, 0.1	 0.30, 0.30	 –	 -

Design I. The noise parameter was set to 0.015, and the 3 x 4 x 4 x 2 = 96 treatment
combinations of migration, eigenvalue, centre point and mutation were analysed. For each
treatment combination, the underlying parameters for Equation 1 were chosen according to the
procedure outlined in the Appendix. Each treatment combination was repeated three times, each
time with a different randomly chosen set of underlying parameters, yielding a total of 288 runs.
The main effect of the replications and its first-order interactions with the other four variables
was examined to test the method of choosing parameters. In the five separate univariate
ANOVA's analysed, this main effect plus the first-order interactions explained at most 2% of the
total variance with 20 of the 287 total degrees of freedom.

Design II. Mutation was set to zero, and the 3 x 4 x 4 x 3 = 144 treatment combinations of
migration, eigenvalue, centre point and noise were analysed. As in the first design, three
repetitions with randomly chosen parameters were performed for each combination, yielding 432
runs. The main effect of the replications and its first-order interactions with the other four
variables was examined to test the method of choosing parameters. In the five separate univariate
ANOVA's analysed, this main effect plus the first-order interactions explained at most 1.8% of
the total variance with 22 of the 431 total degrees of freedom.

Results

In each run of a design, 2000 generations were first completed for initilization. In the following
5000 generations, statistics were calculated in each generation and then averaged over all
generations. These same statistics were calculated from data collected only in the 4500th
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generation, which is the middle of the temporal sequence of generations in which statistics were
calculated. In each of the sections below I will first analyse the long-term averages, and then
examine the information about long-term averages contained in a single spatial sample.

Local and spatial polymorphism

Total polymorphism. Because of the symmetry of the model (see Appendix), the host types are in
very nearly equal frequencies when averaged across all patches. Total polymorphism of the host
types Vt = 4142 is a maximum at 0.25 when the average frequencies of the two types are equal. In
Design I, total polymorphism for both hosts and parasites is greater than 0.245 in more than 97%
of the 288 runs. Total variance can therefore be treated as a constant, and F„ = Va/Vt is sufficient
to describe both the proportion of total polymorphism among patches and the amount of
polymorphism within patches.

Mutation and noise. Mutation has little effect on polymorphism in Design I. In an ANOVA of
this design, the main effect of mutation and its first-order interactions with the other three factors
explains less than three percent of the total observed variance in F„ for hosts or parasites. It
seems likely that as the number of types in the system, n, increases, that mutation would become
an increasingly important force for the local introduction of an absent type that may be rare in the
patches exchanging migrants.

Noise has little effect on polymorphism over the parameter ranges in Design II. For hosts,
noise and its first-order interactions with the other factors explains less than 2% and less than 3%
of the total variance in F, for hosts and parasites, respectively.

Migration, eigenvalue, and centre point. In Design I, an ANOVA model for hosts with the main
effects of the centre point, eigenvalue, and migration rate, plus the first-order interactions

2
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Figure 1. Spatial variation in polymorphism. The left and right columns are for centre = 1 and 4,
• respectively. The top and bottom rows are for hosts and parasites, respectively. Treatment levels are given

in Table 1.
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between migration and, respectively, centre and eigenvalue, explains 77% of the observed
variance in F5  with only 20 of the 287 total degrees of freedom. For parasites, the same model
explains 59% of the total variance. In Design II with 431 total degrees of freedom, this model
explains 79% and 62% of the variance for hosts and parasites, respectively.

The quantitative effects of migration, eigenvalue and location of the centre point are illustrated
in Fig. 1. As expected, increasing migration reduces polymorphism among patches. The most
striking result is that as the system passes from locally stable to unstable, with the modulus of the
dominant eigenvalue passing through the unit circle in the transition of eigen from level 2 to level
3 (Table 1), the spatial variation in the frequency of types begins to rise rapidly. The rise occurs
even under fairly high levels of migration. The centre point, with the left column in Fig. 1 at level
1 and the right column at level 4 (Table 1), affects spatial variation because the lower centre is
closer to the zero boundary and is therefore more susceptible to extinctions (see below).

Information in a spatial sample. Within each run the F statistics are the averages over the values
calculated in each of 5000 generations. The correlation between the value calculated from a single
spatial sample in the middle generation and the averages over all generations is very high. For
example, using the 432 runs in Design II, Spearman's coefficient for the non-parametric
correlation between the 5000 generation average of F5  and the single generation sample is greater
than 0.98 for both hosts and parasites. This suggests that, for F„, spatial data alone can provide
an excellent estimate of long-term differentiation among patches.

Spatial variation in predation or disease

In this section I will analyse the burden suffered by the hosts through successful attack by the
predators, parasites or pathogens. The average burden of a host is given as the proportional
decrease in the intrinsic rate of growth caused by attack. Definitions for the average burden and
the spatial variance in burden are given above.

The main focus of this analysis is the spatial variation in the fitness of a host caused by spatial
variation in the abundance of parasites and by the fitness consequences of interactions between
particular host-parasite strains. I will present spatial variation as the coefficient of variation (CV)   

0.0 	 	 0.0
2	 3	 4

Eigen

.	 .
1	 2	 3	 4

Eigen

Figure 2. Spatial variation in host fitness caused by parasite burden. Left and right panels are for centre = 1
and 4, respectively. Missing values in left panel for migr = 0.001 are 1.70 and 1.77 for eigen = 3 and 4,
respectively.
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in fitness burden measured among patches. Since the CV is the ratio of the standard deviation to
the average, I give a brief treatment of the average burden to establish the magnitude of the
effect.

Average burden is unaffected by noise in Design II; only 0.8% of the variance for 18 of a total
of 431 degrees of freedom is explained by noise and its first-order interactions with migration,
eigenvalue, and centre point. When the centre point is far from a boundary (centre = 4 in Table
1) then mutation has little effect, but when the centre point is near a boundary and migration is
rare (centre = 1, migr = 1), local extinctions are important and mutation reduces the time that a
type remains extinct in a patch (see below). The burden was therefore somewhat lower when
mutation and migration were relatively low, and when the centre point was near a boundary. In
Design II, when centre = 4, the average and standard deviation of the median burden within the
twelve migration-eigenvalue groups is 0.423 and 0.059, respectively. The medians are nearly
twice as high at centre = 1, which reflects the greater parasite burden that maintains a lower
equilibrium abundance of hosts.

The CV in host fitness among patches is presented in Fig. 2. Variation increases rapidly as the
local dynamics pass from stable to unstable, as measured by the transition of the modulus of the
dominant eigenvalue through the unit circle when eigen goes from two to three. Increased
migration reduces the variation among patches, but the effects of local instability remain strong
even under high migration rates. When migration is low and the centre point is near a boundary
(left panel in Fig. 1), variation among patches is high because of occasional local extinctions of
parasites (see below). An ANOVA on the logarithm of CV in Design II shows that migr, centre,
eigen, and the first-order interactions between migr and the other two factors explains 64% of the
total variance with only 20 of the 431 total degrees of freedom. The main effect of noise, with two
degrees of freedom, explains an additional 7% of the variance.

A single spatial sample provides nearly complete information about the average burden and
the spatial variation in burden. Spearman's non-parametric correlation between a spatial sample
and the long-term averages for the average burden and the logarithm of the CV in burden is
greater than 0.98 when analysing the 432 runs in Design II. This suggests that the array of patches
is in a temporally stationary condition with respect to these statistics even though host and
parasite abundances are changing continually within patches.

Extinction frequencies

The location of the fixed point, centre, and the amount of migration, migr, are the primary
determinants of extinction frequencies. Surprisingly, over the range of parameters studied, the
mutation rate and the amount of noise have relatively little influence. To support these
conclusions I will present a few results for extinction frequency for one of the two hosts and one
of the two parasites when averaged over all 625 patches in each generation and over all 5000
generations of each run.

The role of mutation can be seen in Design I. For centre = 1 and migr = 1 the median
extinction rates over 12 runs are: for the hosts, 0.245 when there is no mutation and 0.238 when
the mutation rate is 0.1; for the parasites, 0.422 when there is no mutation and 0.385 when the
mutation rate is 0.1. For centre = 4 and migr = 1 the median extinction rates over 12 runs are: for
the hosts, 0.005 when there is no mutation and 0.009 when the mutation rate is 0.1; for the
parasites, 0.023 when there is no mutation and 0.010 when the mutation rate is 0.1. The median
extinction rates are zero for all other treatment combinations when centre is 1 or 4.

The role of noise can be seen in Design II. For centre = 1 and migr = 1 the median extinction
rates over 12 runs are: for the hosts, 0.215 when there is no noise and 0.232 when the noise rate is
0.03; for the parasites, 0.514 when there is no noise and 0.454 when the noise rate is 0.03. For
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centre = 4 and migr = 1 the median extinction rates over 12 runs are: for the hosts, 0.003 when
there is no noise and 0.023 when the noise rate is 0.03; for the parasites, 0.039 when there is no
noise and 0.096 when the noise rate is 0.03. The median extinction rates are zero for all other
treatment combinations when centre is 1 or 4.

The information in a single spatial sample about long-term averages of the extinction rates can
be seen from the correlations between sample extinction rates and long-term average rates. In
Design II, withi migr = 1 treatments, Spearman's non-parametric correlation coefficient
between sample and long-term averages for hosts is 0.997 and for parasites is 1.0, with 144
observations for each coefficient.

Temporal dynamics

Introduction. The focus of this paper is on spatial variation in polymorphism and in successful
attacks on hosts. The above results document the potential for extensive spatial variation among
environmentally identical patches even when migration rates are high. The major processes
affecting spatial variation are deterministic components of within-patch dynamics given in
Equation 1, stochastic perturbations given in Equation 2, and migration. These three processes
lead to global patterns in temporal dynamics. Loosely speaking, spatial variation may be
maintained by temporal dynamics that are dominated by repeated local colonizations and
extinctions or by stable limit cycles within patches that are out of phase among patches (Maynard
Smith, 1974, Chapter 6). In an array of identical patches, mixtures of local extinction-
colonization cycles and stable limit cycles determine patterns of spatial variation.

From a deductive point of view, the previous section documented that frequent extinction of
types may be associated with high amounts of spatial variation, but that extinction is not a
necessary condition for spatial variation. From an inductive point of view, all of the results have so
far supported the idea that the long-term pattern can be assessed from a single spatial sample,
including the frequency of extinctions. This agreement between the long-term pattern and a
single spatial sample implies that the global distribution of types is at an equilibrium (stationary
distribution) even though changes may be occurring in all patches in each generation.

How much information about within-patch dynamics and the presence of stable limit cycles can
be obtained from a spatial sample? I will present a series of plots to show that a surprisingly large
amount of information about within-patch dynamics can be obtained from spatial data collected
at a single point in time.

Design. I have shown above that extinction frequencies are strongly dependent on the location of
the fixed point determined by the treatment level of centre in Table 1. I therefore conducted two
sets of runs: one at centre = 4, which should have low extinction rates, and one at centre = 1,
which should have relatively higher extinction frequencies. For each centre point I examined three
treatment combinations: (1) a dominant . eigenvalue associated with local instability and the
potential for limit cycles, eigen = 4, low migration, migr = 1, and small amounts of stochastic
noise, noise = 2; (2) as in (1) but with higher local perturbations caused by more migration, migr
= 2, and more noise, noise = 3; and (3) as in (1) but with local stability, eigen = 1.

These six treatment combinations, three for each centre point, were decided upon before any
graphics had been observed for similar parameter sets. Each combination was run only once and
the resulting graphics were used for the plots below, except for treatment (1) and centre = 1, in
which a second run was used because it provided a better illustration of a key feature of the
dynamics.

Within each run, 2000 generations were completed without statistics being collected, then for
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Figure 3. Spatial distribution and temporal dynamics of host—parasite abundances. The hash marks in the
lower left corner of each plot locate the point at which abundance is zero. The maximum value in each
dimension is a standardized abundance of one (Equation 1). The left column is the distribution from a
spatial sample from 625 patches at a single point in time. The right column is the temporal dynamics of a
single patch over 2000 generations. Treatment levels are centre = 4, eigen = 4, migr = 1, and noise = 2 (see
Table 1). The HO—PO plots are very similar to the H1—P1 plots.

the following 2000 generations the sequence of host and parasite abundances were collected for a
single randomly chosen patch among the 625 patches. These are the temporal data discussed
below. The host and parasite abundances in each patch over all 625 patches were collected in a
single spatial sample in the 3000th generation, the midpoint of the sequence of generations over
which temporal data were collected.

Low extinction rates. The results are plotted for centre = 4 and treatment combinations (1-3) in
Figs 3-5. The left column in each figure shows the spatial data, and the right column shows the
temporal dynamics in a randomly chosen patch. The top row shows the bivariate abundances for
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Figure 4. Spatial distribution and temporal dynamics of host—parasite abundances. The treatments include
more migration and noise than in Fig. 3 but are otherwise the same. Treatment levels are centre = 4, eigen =
4, migr = 2, and noise = 3. The HO—PO plots are very similar to the Hl—P1 plots.

one of the two host-parasite systems in each patch. The bottom row shows the bivariate
abundances of the two hosts within each patch. These host-host dynamics determine patterns of
polymorphism within and among patches.

For centre = 4 and treatment (1), in which migration is low and the noise is small, the stable
limit cycle is clearly seen in the top and bottom right (Fig. 3). Remarkably, the spatial data
provide an almost perfect description of the temporal abundances. Note the rare local extinctions
along the bottom of the upper left panel and along the boundaries of the lower left panel. The
lower left shows the pattern of spatial polymorphism for hosts in the sample generation, in which
Fs was 0.469.

For centre = 4 and treatment (2) (Fig. 4), in which migration is much higher (0.05) and noise is
twice as great, the patterns are similar to Fig. 3, but show greater perturbations. The clarity of the
cycle under high migration and noise is striking. The lower left shows the pattern of spatial
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Figure 5. Spatial distribution and temporal dynamics of host—parasite abundances. The treatments include
lower eigenvalues than in Fig. 3 but are otherwise the same. Treatment levels are centre = 4, eigen = 1, migr
= 1, and noise = 2. The HO—PO plots are very similar to the H1—P1 plots.

polymorphism for hosts in the sample generation, in which F„ was 0.427. The slightly lower F5
value compared with (1) is caused by fewer local extinctions.

Last in this group where centre = 4, is the case of local stability under treatment (3) (Fig. 5).
The results show the sort of local stability over time and global stability over space expected when
extinctions are rare and the modulus of the dominant eigenvalue is within the unit circle. The
lower left panel shows the pattern of spatial polymorphism for hosts in the sample generation, in
which F5  was 0.046.

High extinction rates. For centre = 1, local extinctions are expected to be much more frequent
because hosts are kept well below their carrying capacity by parasite attack or disease. In
treatment (1), local instability is expected, since eigen = 4, and migration and noise are both low.
The upper left panel (Fig. 6) for spatial data on host-parasite abundances shows three types of
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Figure 6. Spatial distribution and temporal dynamics of host—parasite abundances. The treatments include a
lower centre point than in Fig. 3 but are otherwise the same. Treatment levels are centre = 1, eigen = 4, migr
= 1, and noise = 2. The HO—PO plots for temporal dynamics has PO = 0 over all generations (local
extinction), whereas the spatial plot is very similar to the H1—P1 plot.

patches: a clear outline of a limit cycle, data that indicate local stability near the centre point in
some patches and, along the boundaries, local extinctions of the parasite in 52% of the patches
and of the host in 30% of the patches.

The temporal dynamics in the sample patch can be inferred from the right pair of panels. From
the lower right panel, one or the other of the hosts was extinct most of the time, with a transition
between the two extinction states. When HO went extinct, H1 was maintained near the
equilibrium frequency by interaction with P1, which was also maintained with its density near the
equilibrium point. The ball of points in the upper right is an equilibrium with the HO—PO pair
extinct. These points are clustered near the fixed point and near where the cluster is in the centre
of the limit cycle in the upper left. The lower left panel shows the pattern of spatial polymorphism
for hosts in the sample generation, in which F5  was 0.814.
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Figure 7. Spatial distribution and temporal dynamics of host—parasite abundances. The treatments include
more migration and noise than in Fig. 6 but are otherwise the same. Treatment levels are centre = 1, eigen =
4, migr = 2, and noise = 3. The HO—PO plots are very similar to the H1—P1 plots.

For centre = 1 and treatment combination (2), local instability is still expected since eigen = 4,
but migration is high (0.05) and noise is increased over treatment (1). The most striking result is
that migration greatly reduces local extinctions and therefore stabilizes the limit cycle (upper left
panel of Fig. 7) (Hamilton, 1986). Local extinctions in the spatial sample are less than 1% in this
run. The lower left panel shows the pattern of spatial polymorphism for hosts in the sample
generation, in which F5t was 0.430.

For treatment (3) and the low centre point, with low migration and low noise, dynamics are
locally stable but local extinctions are high (Fig. 8). The pattern of extinctions is most clearly seen
in the lower left panel, which shows eight clusters of points — four in the interior and four along
the boundaries with one or the other type extinct. The lower right shows a temporal transition
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Figure 8. Spatial distribution and temporal dynamics of host—parasite abundances. The treatments include
lower eigenvalues than in Fig. 6 but are otherwise the same. Treatment levels are centre = 4, eigen = 1, migr
= 1, and noise = 2. The HO—PO plots for temporal dynamics has PO = 0 over all generations (local
extinction), whereas the spatial plot is very similar to the Hl—P1 plot.

between two of these attracting clusters. In the spatial data, HO was extinct in 32% of the patches
and H1 in 30%, with an F„ of 0.564 among hosts.

Discussion

Conclusions from the simulations

Spatial variation. Coevolutionary dynamics can maintain high levels of spatial variation in
polymorphism (Fig. 1). Spatial variation can be high even when successful migration is frequent
and when there is no environmental cause of the spatial variation. These conclusions contrast
with the typical beliefs that moderate amounts of migration will quickly reduce spatial variation
in polymorphism and that the most likely cause of spatial variation in coevolutionary systems is
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environmental variation among patches. Coevolutionary dynamics in an array of identical
patches can also maintain high levels of spatial variation in the fitness burden of hosts caused by
successful attack from parasites, herbivores, pathogens or predators (Fig. 2).

The meaning of 'frequent' migration in this context may require clarification. Successful
migration in these simulations implies that, in a fully populated patch, approximately 1% of the
patch members in each time period (generation) are derived from propagules that immigrated in
the previous time period. In traditional population genetic models, the absolute number of
immigrants determines spatial variation (Slatkin, 1985). In those models, a few successful
migrants in each generation is sufficient to prevent spatial variation. In the present model,
successful immigration of 1% per patch may represent thousands or millions of new arrivals in
each generation.

Temporal dynamics: limit cycles versus extinctions and recolonizations. The spatially separate
patches in the simulations are environmentally identical, and the parameters governing
interactions are identical among patches. Patterns of spatial variation are therefore determined
by the dynamics of changing abundances within patches that are out of phase among patches.

Two types of spatial asynchrony contribute to spatial variation: stable limit cycles within
patches that are out of phase among patches and repeated local extinctions and recolonizations.
The simulations show that either or both types of spatial asynchrony may occur. For example, in
Figs 3, 4, and 7, spatial variation is dominated by local limit cycles with phases that are
uncorrelated spatially. In Fig. 8, local extinctions cause most of the spatial variation. In Fig. 6,
both local extinctions and spatially uncorrelated local limit cycles contribute to spatial variation.

Information in a spatial sample. The simulations have shown that data collected from several
identical patches in a single spatial sample provide much information on both the long-term
patterns of spatial variation among patches and the temporal dynamics within each patch. The
simulations have assumed identical patch types and free migration (see below), so further work
will be required to establish what can be inferred under different conditions and sampling
schemes.

As an example of estimating long-term pattern, the correlations between Fs, estimated from a
single spatial sample and the average Fs, for a temporal sequence of 5000 spatial samples is
greater than 0.98. For estimating temporal dynamics, Figs 3-8 show that each patch of a spatial
sample is very much like a randomly chosen temporal sample from the dynamic history of a single
patch. Spatial data contain this information because the temporal phase of the dynamics within a
patch is weakly correlated among patches even with substantial amounts of migration.

The potential for inferring temporal dynamics with spatial data may represent a substantial
breakthrough for analysing evolutionary processes underlying the distribution and abundance of
disease and herbivory. In the past, direct empirical studies of dynamics have usually not been very
informative because of the long time course of evolutionary dynamics. Further considerations for
empirical programs will be discussed below.

Inferring temporal dynamics from spatial data is not a new idea. Darwin's (1984) analysis of the
formation of atolls remains one of the most elegant examples. Applications in ecology have been
discussed recently by Pickett (1989).

The assumptions of identical patch types and free migration. In the simulations the environmental
conditions and carrying capacity were the same for all patches. This assumption allowed the
simulation results to show clearly that high levels of spatial variation can be caused solely by
coevolutionary dynamics. The assumption of identical patch types is therefore conservative with
respect to the claim for spatial variation in polymorphism.
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Environmentally identical patches make it considerably easier to use spatial data for estimating
the pattern of temporal dynamics within a patch. For example, if the variation among patches is
caused primarily by environmental variability, then spatial variation provides no information
about temporal aspects of coevolutionary dynamics. Any empirical information or statistical
techniques that allow spatial variation to be partitioned into environmental and biotic
components would be particularly valuable.

The migration scheme in the simulations followed an island model (Wright, 1969). Under this
model an immigrant is equally likely to have come from any patch; there is no correlation
between distance and probability of successful colonization. Most population genetic and
ecological models use this migration scheme. Alternative migration patterns include the stepping-
stone model (Kimura and Weiss, 1964), in which migrants come only from neighbouring patches,
or the isolation by distance model, in which the probability of successful migration decreases with
increasing distance (Wright, 1969).

The free migration of the island model used in the simulations is likely to be the least conducive
to the maintenance of spatial variation. The simulation has in this case used a conservative
assumption. It is more difficult to produce a simple and general conjecture about the role of the
migra\ion pattern in the maintenance of total polymorphism across all patches and in the patterns
of extinction versus stable cycling.

Relation to past work on overall population stability. Much research has been done on
coevolutionary systems in patchy environments. Recent extensions and references to past work
can be found in Sabelis and Diekmann (1988), Hanski (1989) and Pimm and Gilpin (1989). All of
this work has focussed on stability conditions, that is, the conditions that are required to maintain
a certain number of host and parasite or predator and prey species. The simulations described
here extend or differ from this past work in three ways.

(1) The present study focusses on the amount of variation among patches and the frequency of
local extinctions rather than on the global existence of types. As far as I know, no other
study has addressed these quantitative questions.

(2) Past work has analysed systems with one predator and one prey species (e.g. Hilborn,
1975; Hastings, 1977). The present study extends the analysis of patch models to systems
with two predator and two prey species.

(3) Maynard Smith (1974, Chapter 6) noted that the migration pattern plays an important role
in detefmining whether spatially distinct patches can cycle out of phase and thus contribute
fo global maintenance of types. When migration is continuous and occurs over a shorter
time scale than the life cycle, then migration tends to synchronize fluctuations in densities
among patches. In this case of continuous migration, environmental patchiness cannot
increase the probability that types are maintained. By contrast, if migration occurs
discretely and, in effect, only a few times during the life cycle, then spatially distinct
patches may have uncorrelated dynamics. Zeigler (1977) extended this analysis and
provided a review of several related studies of discrete or continuous migration events and
continuous Lotka–Volterra or similar dynamics. In the present study the discrete time-
steps are equivalent for the life cycle and migration. Asynchrony among patches
sometimes occurs in this discrete-time migration and discrete-time Lotka–Volterra model.

Biological applications

The Lotka–Volterra model in Equation 1 captures the general qualitative features of antagonistic
coevolutionary dynamics. Recently, more realistic models have been developed for particular
types of interaction which, for example, include recovery of a host type after infection by a
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parasite and subsequent host immunity (Hassell and May, 1989). The specific assumptions that
would extend Equation 1 to describe particular interactions would change the relationship
between particular parameters, such as the intrinsic rate of growth, r, or host morbidity and
mortality, m, and the eigenvalues of the dynamic system. In the extended models, the stability of
local dynamics in each patch will still be governed primarily by the dominant eigenvalue of the
system. Thus, the conclusions from the simulations presented here should apply generally, since
they are based on generally applicable assumptions about migration pattern, spatial arrangement,
and local dynamics as governed by the dominant eigenvalue.

I briefly list some antagonistic coevolutionary systems, in which 'hosts' and 'parasites' have
different interpretations. Within genomes, patrilineally inherited Y chromosomes and matri-
lineally inherited cytoplasmic genes are in conflict with autosomes over the allocation of
resources to sons and daughters or pollen and ovules (Hamilton, 1967). In hermaphroditic plants,
matrilineally inherited genes often cause pollen sterility, and this sterility can be suppressed by a
variety of autosomal restorer genes. The complex antagonistic coevolutionary dynamics of
cytoplasmic male sterility have been studied for single patches by Charlesworth (1981),
Delannay et al. (1981), and Frank (1989). Some observations on spatial variation in cytoplasmic
male sterility have been reviewed by Gouyon and Couvet (1985) and Frank (1989).

Meiotic drive is another type of antagonistic genomic coevolution. In meiotic drive systems,
one allele or supergene distorts the normal Mendelian segregation ratio and increases its
transmission to offspring relative to its competing homologous allele (Zimmering et al., 1970;
Crow, 1979). The action of the distorting supergene is often suppressed by alleles distributed
throughout the genome – there is an antagonistic coevolutionary interaction between distorting
complexes and genome-wide suppressors. Spatial variation in the array of distorting and
suppressing genotypes is known within a few well-studied species (Hartl and Hiraizumi, 1976).
Frank (1991b) and Hurst and Pomiankowski (1991) have suggested an important role of spatial
divergence in meiotic drive for certain types of between-population and between-species hybrid
sterility.

Plant-pathogen interactions are one of the most clearly defined and best-studied types of
antagonistic coevolution, in which particular host genotypes are resistant to a subset of the
diverse array of pathogen genotypes known (Burdon, 1987). Burdon (1987, pp. 138-42) reviews
data showing considerable spatial variation in disease resistance for several species. Most often,
the spatial variation in genetics is attributed to climatic differences among locations. Climate
probably plays an important role in spatial variation, but the results presented here suggest that
significant spatial variation is to be expected even in an array of identical patches because of the
continual dynamics from local cycles, extinctions and recolonizations.

When genomic conflict interactions are added to the many parasites and pathogens that attack
each species, it seems plausible that many loci throughout the genome are involved in an
antagonistic coevolutionary dynamic system. Selection pressures are intense in genomic conflict
and disease; in different patches these loci and the linked parts of the genome may be evolving
rapidly and in different directions at any point in time. The contributions of such antagonistic
coevolutionary dynamics to genetic diversity among populations and among recently diverged
species has received little theoretical or empirical attention. When the different 'host' and
`parasite' types are actually different species of host plant and different species of herbivore, or
host insects and parasitoids, the conclusions concern spatial divergence of species composition
and abundance.

Testing hypotheses about dynamics

Cycles. Hamilton (1980, 1982) has advocated the idea that stable limit cycles in the abundances of
host and pathogen genotypes favour sexual over asexual reproduction. Assuming that particular
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types of cycling can plausibly explain sex, how can one obtain empirical support for the
widespread occurrence of such cycles?

One approach to testing the role of pathogens in maintaining diversity and, indirectly, in
favouring sex, has been to study the relative fitness of rare and common host genotypes in local
populations. A condition likely to be necessary for stable limit cycles is that rare host genotypes
will have an advantage over common genotypes because of relatively lower pathogen attack. Of
two studies directly addressing this issue, one study found support for a rare-type advantage
(Schmitt and Antonovics, 1986), whereas the other did not (Parker, 1989).

Although such experimental studies provide valuable insight into the dynamics of host-
pathogen interactions, they do not actually address the key issue for sex: temporal variation in
the relative fitnesses of host genotypes. For example, suppose that the dynamic system of host
and pathogen genotypes is at a stable equilibrium when all types are equally abundant. Then a
rare-type advantage would be expected even if there were no tendency for temporal variation in
relative fitnesses.

To document repeated fluctuations in relative fitnesses of host types within a single patch
would, of course, require a very long time. Worse, the results from the simulations suggest that a
patch may be temporarily frozen in a fixed state with no cycling even when cycling and fluctuating
fitness is typical of most patches at any one time. Thus, sufficient temporal samples can rarely be
obtained for a single patch, and single patches are not necessarily good indications of typical
dynamics. Alternative experimental and field approaches suggested by the simulations are
discussed below.

Spatial variation. Much recent work has focused on the forces that maintain genetic subdivision of
populations (Slatkin, 1985). Roughly speaking, hypotheses for spatial variation tend to fall into
two classes. First, selection is assumed to be a weak force and subdivision is dominated by
migration, drift and mutation. Unless migration is rare, subdivision is expected to be low.
Second, selection is assumed to be strong and to vary spatially and in a systematic way, yielding a
cline in selection coefficients (Endler, 1977). Subdivision can be maintained in spite of high
migration because of the strong selection.

The simulations suggest a third hypothesis about the maintenance of spatial variation under
relatively high migration (Maynard Smith, 1974, Chapter 6). Selection is intense for disease and
resistance loci involved in the coevolutionary dynamic, but selection coefficients vary spatially in
a manner that is partly uncorrelated with geography. The selection coefficients vary spatially and
temporally because they are induced by an interaction between the fluctuating gene frequencies
of hosts and parasites. The strong selection can overcome high migration rates and maintain
spatial variation. Spatial variation in selection coefficients may be caused by asynchronous limit
cycles or by continuing local extinctions and recolonizations.

Experimental studies. Experimental laboratory systems can be used to test how coevolutionary
dynamics and migration interact to determine patterns of local colonization-extinction, cycles and
spatial variation and to test how much can be learned by spatial sampling. Considerable work has
been done on coevolution between E. coli and the T bacteriophages in single 'patches' (Levin and
Lenski, 1983; Lenski and Levin, 1985). In these studies the primary source of new genotypes in
the patch is mutation. An extended design suggested by the simulations would allow
simultaneous coevolution in many separate patches (e.g. chemostats) with various patterns of
controlled migration between patches. Levin and Lenski (1985), and Lenski (1988) have
discussed the possible roles in bacteria-bacteriophage coevolution of migration and local
extinctions and recolonizations.
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Field studies. Advances in technology will soon allow widescale screening of genetic variation in
natural populations. Study of nearly neutral loci could be used to establish patterns of gene flow
and the colonization histories of patches. Simultaneous screening of particular resistance and
virulence loci would allow separation of coevolutionary selection dynamics from the forces of
migration and drift that would also be acting on the nearly neutral loci. Many useful DNA
markers are likely to become available soon because of the economic importance of disease and
herbivore attack on crop plants and the extensive genetic study of certain laboratory animals such
as mice. The subdivided population structure of many mouse species may make this group a
particularly good organism for future research.

Sampling from many spatial locations over a few generations would provide the outlines of
dynamical flow in the host-parasite interaction. For example, imagine that in the upper left panel
of Fig. 3, instead of each point for a single sample there were beginning and ending frequencies
within each patch. The plot would then be a set of arrows indicating the direction of change in
abundances, or dynamical flow. Combined space-time data (Bennett, 1979) will almost certainly
turn out to be the most powerful method for analysing coevolution in natural populations.
Several theoretical, statistical and practical difficulties must be overcome before such studies
could be accomplished and interpreted. Many lines of research are converging toward this goal.
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Appendix

In this appendix I sketch the method by which the parameters for Equation 1 were chosen for n =
2 given the centre point and the dominant eigenvalue. First some symmetry and general
assumptions:

c11 = C22 = 1

C12 = C21 = C

= r2 = r>0.02
si = S2 = S>0.02

= b22 = bi >0 .02
b12 = b21 = b2<bi
mil = m22 = m 1 >0 .02
m12 = m21 = m2<mi

With these symmetries the unique fixed point will have the same value for both host types.
Likewise both parasites share the same abundance at equilibrium. Let the fixed point abundances
be h and p for hosts and parasites, respectively. The eigenvalues are given by the solutions in X. to
the following pair of equations

X2 + X[rh(1 — c)} + hp(b 1 — b2)( — m2) = 0
X2 + X[rh(1 + c)] + hp(b1 + b2)(m 1 + m2) = 0

where the top equation yields the dominant eigenvalue given the above constraints on the
parameters. Note that instability increases with greater competition between hosts, c, whereas
stability typically increases with a higher degree of cross-virulence, m 2 and b2 (Hamilton, 1986).

Four linear constraints are imposed by h, p, and the real R and imaginary I parts of the
dominant eigenvalue of the system of recursions (R is one plus the real part of the eigenvalue of
the difference equations in Equation 1):

h = sl(b i + b2)
p =	 — (1 + c)h]l(m i + m2)
X = rh(1 c)/2
Y = X2 — hp(m 1 m2)(b 1 — b2),

where, if Y 0,

R = 1— X +
/ = 0,

and, if Y <0,

R = 1  X
1=	 1'

The parameters are then randomly chosen for each run by following these steps and a few other
consistency tests. (1) These constraints must be met: hp > (1/0.8)2 , h < 0.5, and R> 1 — (1 + d)hpl
[2(1 — h)], where d is defined next. (2) Define d = b2lb i = m2/m 1 ; d is the fraction difference
between like and coupling parameters of the host-parasite interaction system. Choose d
randomly over [0, 0.2], implying that each host-parasite pair is only weakly coupled with the
other pair through cross infectivity. (3) The parameters m 1 and b 1 are chosen randomly such that
they satisfy the constraint m ib i = [(1 — R)2 + 12]1[12p(1 — d)2]. (4) The parameters s, r, and c can
now be obtained by solving three simultaneous linear equations:
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Table 2. The range of parameters studied. For each centre and eigen treatment pair (C,E) from Table 1, the
top row and bottom row is the 95% confidence interval and the middle row is the median.

(C,E)	 c	 r	 s b2b1	 m1	 M2

1,1	 0.015	 0.135	 0.073	 0.482	 0.002	 0.686	 0.004

	

0.214	 0.169	 0.107	 0.653	 0.065	 0.848	 0.083

	

0.380	 0.215	 0.166	 0.943	 0.170	 0.992	 0.175

1,2	 0.013	 0.135	 0.020	 0.132	 0.001	 0.670	 0.007

	

0.201	 0.167	 0.028	 0.171	 0.018	 0.836	 0.086

	

0.378	 0.214	 0.044	 0.253	 0.046	 0.990	 0.174

1,3	 1.000	 0.037	 0.021	 0.135	 0.001	 0.162	 0.002

	

1.000	 0.131	 0.041	 0.250	 0.026	 0.558	 0.048

	

1.000	 0.237	 0.142	 0.848	 0.122	 0.972	 0.162

1,4	 1.000	 0.114	 0.076	 0.495	 0.003	 0.515	 0.003

	

1.000	 0.185	 0.121	 0.725	 0.071	 0.782	 0.074

	

1.000	 0.244	 0.168	 0.979	 0.171	 0.989	 0.175

2,1	 0.060	 0.141	 0.038	 0.250	 0.001	 0.361	 0.002

	

0.537	 0.288	 0.068	 0.414	 0.041	 0.675	 0.061

	

0.702	 0.448	 0.148	 0.856	 0.146	 0.984	 0.164

2,2	 0.022	 0.136	 0.020	 0.117	 0.002	 0.341	 0.006

	

0.322	 0.196	 0.025	 0.152	 0.020	 0.471	 0.062

	

0.607	 0.339	 0.043	 0.244	 0.044	 0.726	 0.135

2,3	 1.000	 0.062	 0.020	 0.120	 0.001	 0.13f	 0.002

	

1.000	 0.164	 0.033	 0.199	 0.022	 0.349	 0.035

	

1.000	 0.338	 0.097	 0.560	 0.090	 0.671	 0.121

2,4	 1.000	 0.128	 0.038	 0.251	 0.001	 0.283	 0.002

	

1.000	 0.303	 0.072	 0.432	 0.044	 0.645	 0.059

	

1.000	 0.473	 0.157	 0.940	 0.151	 0.980	 0.163

3,1	 0.149	 0.078	 0.078	 0.253	 0.001	 0.320	 0.002

	

0.693	 0.217	 0.143	 0.433	 0.043	 0.650	 0.058

	

0.818	 0.366	 0.313	 0.906	 0.147	 0.981	 0.163

3,2	 0.099	 0.074	 0.021	 0.068	 0.000	 0.300	 0.003

	

0.684	 0.211	 0.037	 0.113	 0.011	 0.633	 0.058

	

0.817	 0.365	 0.091	 0.260	 0.043	 0.976	 0.164

3,3	 1.000	 0.040	 0.021	 0.068	 0.000	 0.097	 0.001

	

1.000	 0.214	 0.044	 0.132	 0.014	 0.526	 0.044

	

1.000	 0.412	 0.238	 0.724	 0.093	 0.968	 0.160

3,4	 1.000	 0.110	 0.077	 0.250	 0.001	 0.281	 0.002

	

1.000	 0.263	 0.145	 0.438	 0.043	 0.636	 0.057

	

1.000	 0.416	 0.312	 0.937	 0.145	 0.982	 0.163

4,1	 0.279	 0.092	 0.040	 0.129	 0.001	 0.174	 0.002

	

0.839	 0.416	 0.081	 0.246	 0.025	 0.565	 0.046

	

0.913	 0.774	 0.279	 0.824	 0.122	 0.978	 0.159

4,2	 0.126	 0.076	 0.020	 0.059	 0.000	 0.152	 0.001

	

0.737	 0.253	 0.032	 0.097	 0.010	 0.370	 0.037

	

0.883	 0.570	 0.088	 0.255	 0.041	 0.703	 0.128
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0.020	 0.060	 0.000
	

0.072
	

0.001

	

0.036	 0.109	 0.012
	

0.319
	

0.030

	

0.166	 0.495	 0.073
	

0.665
	

0.121

	

0.039	 0.127	 0.000
	

0.157
	

0.001

	

0.080	 0.242	 0.024
	

0.573
	

0.047

	

0.287	 0.862	 0.120
	

0.980
	

0.161

s = hb i(1 + d)
r = pm 1 (1 + d)/(1 - (1 + c)h)
c = (k - 2(1 - R)(1 - h))I(k - 2(1 - R)h),

where k = hpmi(1 + d).
Table 2 summarizes the range of parameters studied. This table shows the distribution of

parameter values satisfying the above conditions for the dominant eigenvalues and centre points
in Table 1. Each distribution in Table 2 is taken from a computer program that follows the
protocol above for 10 000 replications. Table 2 shows that all parameters range over biologically
realistic values.

In the parameter ranges in Table 2, c = 1.0 whenever the modulus of the dominant eigenvalue
is greater than one. This is not a necessary condition for instability under the above protocol. For
example, when the centre point is h = p = 0.3 and the dominant eigenvalue is R = 0.995 and I =
0.12 for a modulus of 1.0044, the 95% confidence intervals are 0.77-0.96 for c, 0.14-0.80 for r,
0.06-0.31 for s, 0.18-0.91 for b 1 , 0.0-0.14 for b2 , 0.21-0.98 for m l , and 0.0-0.16 for m2.

The simulations in this paper addressed quantitative aspects of global dynamics as functions of
the treatments in Table 1 (migration, dominant eigenvalue, equilibrium point, mutation rate, and
noise). The simulations show that particular parameters, such as the host competition coefficient,
c, or the host intrinsic rate of increase r, affect global dynamics primarily through the equilibrium
(centre) point and the dominant eigenvalue. The effects of each parameter on the equilibrium
and the dominant eigenvalue, and hence on the global dynamics, can be studied algebraically by
extending the equations given in this Appendix. For example, in the biologically typical case
where Y <0, the condition for the modulus of the dominant eigenvalue to be greater than one is

(mi - m2)(b i - b2) 
((b i + b2) - (1 + c)s) �1 - c

(mi + m2)(bi + b2)

or, using a single coupling parameter d = m2/m 1 = b2lb 1 , the same condition is

(1 - d)2 
1 + d2 

((b
1
 + b2) - (1 + c)s) �1 - c

In the first condition local stability is independent of r, and in the second it is independent of both
r and m. An increase in s always promotes stability, whereas an increase in b tends to destabilize
the system. Further analysis of stability and the equilibrium point can be pursued in a similar
manner. The simulations show how global dynamics depend jointly on the equilibrium and the
dominant eigenvalue.

4,3

4,4

1.000
1.000
1.000

1.000
1.000
1.000

0.059
0.262
0.587

0.126
0.472
0.825


	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25

