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ABSTRACT

The independence of two phenotypic characters affected by both pleiotropic and nonpleiotropic
mutations is investigated using a generalization of M. Slatkin's stepwise mutation model of 1987. The
model is used to determine whether predictions of either the multivariate normal model introduced
in 1980 by R. Lande or the house-of-cards model introduced in 1985 by M. Turelli can be regarded
as typical of models that are intermediate between them. We found that, under stabilizing selection,
the variance of one character at equilibrium may depend on the strength of stabilizing selection on
the other character (as in the house-of-cards model) or not (as in the multivariate normal model)
depending on the types of mutations that can occur. Similarly, under directional selection, the genetic
covariance between two characters may increase substantially (as in the house-of-cards model) or not
(as in the multivariate normal model) depending on the kinds of mutations that are assumed to occur.
Hence, even for the simple model we consider, neither the house-of-cards nor the multivariate normal
model can be used to make predictions, making it unlikely that either could be used to draw general
conclusions about more complex and realistic models.

W
E will be concerned here with the extent to
which two quantitative characters can be re-

garded as evolutionarily independent. Interactions be-
tween characters can arise from linkage disequili-
brium of loci affecting each character, from pleiotropy
of loci affecting both characters or from selection
acting on both characters together. Linkage disequi-
librium is thought often to be unimportant for main-
taining genetic correlations in populations in approx-
imate equilibrium (TuRELLI 1985), a conclusion that
is supported by the recent theoretical work of HAS-

TINGS (1989) and BURGER (1989). In this paper, we
will ignore linkage disequilibrium and focus attention
on the role of pleiotropic alleles.

The question of importance to evolutionary discus-
sions is whether characters that are apparently inde-
pendent, both because they are genetically uncorre-
lated and because they are affected by different selec-
tion pressures, can indeed be treated as independent
in evolutionary models. If they can be treated inde-
pendently, then it is reasonable to model the evolution
of one or a few characters separately and without
regard to the evolution of most other characters. If
they cannot be treated as independent, then consid-
ering some characters in isolation may yield mislead-
ing conclusions.

Models of maintenance of genetic variation and
covariation in quantitative characters show that the
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extent of independence of quantitative characters de-
pends on genetic details that are not currently known.
The model analyzed by LANDE (1975, 1980), which
assumes a multivariate normal distribution of allelic
effects at each locus, predicts that the genetic corre-
lation coefficient between two characters is sufficient
to determine their evolutionary independence. Under
these assumptions, if there is zero correlation between
two characters, the equilibrium variance of one char-
acter does not depend on the intensity of stabilizing
selection on the other. Further, directional selection
applied to one or both characters will not change the
genetic correlation between them.

In contrast, the model introduced by TURELLI

(1984, 1985), the "house-of-cards" model, reaches a
different conclusion. TURELLI (1985) showed that,
under his assumptions, if two characters are affected
by pleiotropic loci the equilibrium variance of one
character will depend on the strength of stabilizing
selection on the other even if the two characters are
genetically uncorrelated at equilibrium. In each indi-
vidual, both characters may be affected by pleiotropic
alleles but the net effect in the population may still be
no genetic correlation between the characters. If the
house-of-cards model is a better description of the
maintenance of genetic variation, then even geneti-
cally uncorrelated characters cannot be regarded as
evolutionarily independent.

The two models mentioned, the multivariate nor-
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mal model of LANDE (1980) and the house-of-cards
model of TURELLI (1985), represent extremes in a
continuum of possible models in which genetic varia-
tion is maintained by mutation-selection balance.
Roughly speaking, the multivariate normal model is
valid if selection affecting each allele at each locus is
much weaker than mutation, and the house-of-cards
model is valid when selection is much stronger than
mutation (TuRELll 1984). Under the multivariate
normal model there are numerous alleles in roughly
equal frequencies at each locus, and under the house-
of-cards model one allele at each locus is in high
frequency and the others are in very low frequency.
The important question is whether either of these
extreme models makes predictions that are typical of
models intermediate between them. We will show that
neither model can be regarded as being typical, at
least for predicting the evolutionary independence of
uncorrelated characters. We reach this conclusion by
considering a simple model that is intermediate be-
tween the two extreme models and show that the
predictions of this model are in some ways similar to
those of the house-of-cards model and in some ways
similar to those of the multivariate normal model.
Our results represent a counterexample to claims of
generality for either extreme model.

STEPWISE MUTATION MODEL OF A
PLEIOTROPIC LOCUS

We will introduce a model of pleiotropic alleles that
will allow us to consider a wide range of selection
intensities affecting individual alleles. This model is a
generalization of SLATKIN's (1987) stepwise mutation
model of a single quantitative character. We will con-
sider a haploid locus in an infinite population and two
characters with measurements x and y affected by
alleles at this locus. We assume that each allele is
characterized by a pair of indices i and j that indicate
the contribution to each of the two characters (i, j =
0, ±1, ±2, . . .). An individual carrying allele (i, j) will
have x = c„i and y = cyj. For simplicity, we will ignore
the environmental component. It is easy to account
for diploidy in a randomly mating population and for
the presence of other loci under the assumption of
linkage equilibrium.

We assume that mutation can change an allele into
only one of the eight adjacent allelic classes. We will
consider two kinds of mutation, those that change
only i or j, which we will call nonpleiotropic mutations,
and those that change both i and j, which we will call
pleiotropic mutations. We assume that nonpleiotropic
mutations occur at rate Ai and that pleiotropic muta-
tions occur at rate /1 2 . It will be convenient to denote
the net mutation rate by = + kt2 and the fraction
of nonpleiotropic mutations by v = AA' + /22 ). If pi,,

is the frequency of the (i, j) allele, then our assump-
tions imply that after mutation

pig =
	 -itt)Pi,i

(1)

+(L2/4)(pi+i,j+i +pi_1,1±1

where the asterisk indicates the value after mutation.
This model of mutations differs from that assumed

by WAGNER (1989) and allows for more flexibility in
the mutation process. WAGNER assumed that each
locus coded for single product that could be charac-
terized by an underlying variable, y, and that pheno-
typic characters were all linear functions of y. In his
model, mutations affected only the value of y, and the
pleiotropic effects of mutations are constrained by the
functional relationship between y and the phenotypic
characters as specified by the "B matrix." In terms of
our model, WAGNER'S assumption is equivalent to
assuming that only a subset of mutational states con-
fined to a single line are possible. For example, only
the mutational states identified by (i, i) for i = 0, ± 1,
±2, . . . are possible, which in our model is equivalent
to assuming that v = 0, i.e., all mutations are pleio-
tropic.

We assume that stabilizing selection acts independ-
ently on each character. The fitness of an individual
with phenotype (x, y) is w(x, y) = exp[—x 2/(217,x) — y2/
(217„)], which implies that the fitness of an individual
carrying the ij allele is

wi, = exp(-sxi 2 - sj2)	 (2)

where s„ = d/(217,„) and sy = 4/(2Vsy). After selection,
at the beginning of the next generation, the frequency
of the (i, j) allele is

where ID = E(13, ,,w ii) is the mean fitness.
The numerical results presented later were ob-

tained by iterating this set of equations. In the pro-
gram that carries out these iterations, we assumed a
sufficiently large range, n, of allelic classes, i and j,
that the frequencies of the outer allelic classes were
all less than 10' at equilibrium. We then iterated
these equations for p i, ,(—n j n) by assuming that
frequencies outside this range were zero. In the cal-
culations for each set of parameter values, we used
two initial conditions, in one po ,o = 1 and all other
allele frequencies were zero, while in the other all
allele frequencies were equal. We iterated the equa-
tions until the absolute value of the largest change in
allele frequency per generation was less than 10-8.
We found that this criterion for stopping the iteration
ensured that the maximum absolute difference be-
tween the final allele frequencies from the two sets of

(3)
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initial conditions was less than 10, thus indicating
that the final frequencies in the iterations were close
to the true equilibrium frequencies of the system of
equations. We also found that increasing the bounds
on the allelic classes, n, from the ones we chose had
no effect on the equilibrium frequencies we found.

Nine-allele approximation: Equations 1 and 3 al-
low the prediction of allele frequencies given the
mutation rates and the selection intensities. It is pos-
sible to obtain approximate results by assuming that
selection is sufficiently strong relative to mutation that
only the nine central alleles, —1 5_ i, j +1, are
contributing significantly to the genetic variance. As-
suming all other frequencies are zero leads to a set of
three coupled quadratic equations. Our approxima-
tion is a generalization of TURELLI's (1985) five-allele
model but differs in two ways. TURELLI considered
only the pleiotropic alleles (1, 1), (1, —1), (-1, 1) and
(-1, —1), in addition to the central allele, (0, 0), which
in our notation is equivalent to assuming that Ai =
= 0. Also, TURELLI assumed that the alleles other than
the central allele are all in low frequency. We will not
assume those alleles are in low frequency, making our
model a generalization of SLATKIN'S (1987) model for
a single character, but we will assume that the fre-
quencies of alleles other than the nine central alleles
are zero. Using SLATKIN'S approach here, it would be
possible to include the effects of the alleles for which
i or j is ±2, but the small increase in accuracy does
not justify the extra algebra needed.

The assumption that only nine alleles are needed to
approximate the equilibrium for the stepwise muta-
tion model leads to a closed set of equations for their
equilibrium frequencies. Because we have assumed
that both mutation and selection are symmetric in i
and j it is reasonable to use the symmetry of the model
to reduce the number of unknown allele frequencies.
Therefore, we can assume that at equilibrium /31,0 =
P-1,0, P0,1 = po,-1 and p 1 , 1 = pi,—i = p_i,i =P-i,_, giving
three independent allele frequencies. To simplify no-
tation, we will let q] = pi,o, q2 = po,i and q3 = Pi, and
note that Ns) + 2q + 2q 2 + 4q 3 = 1. If we assume
that both selection and mutation are weak forces, then
we can combine Equations 1 and 3 into a single set of
equations for the q's:

- + v(1— 2qi 2q2 — 2q 3 )/4 + (1	 )(q + q2)/4

+ qi [Ex(2qi — 1) + 2Eyg 2 + 4(E, + Ey)q 3 ] = 0

q 2 + v(1 — 2qi — 2q 2 — 2q 3)/4 + (1 — v)(q i + q2)/4

+ q2[4,q1+ Ey( 2q2 — 1) + 4(Ex +	 = 0

q3 + v(qi + q2)/4 + (1 — v)(1 — 2q] — 2q 2 — 4q3)/4

+ q3[E„(2q1 — 1) + Ey(2q 2 — 1) + 4(E, + Ey)q ]= 0

where Ex = s„//2 and Ey = sy/p. indicate the relative
strengths of selection and mutation.

These three coupled quadratic equations do not
have a general solution in closed form but can be
solved for particular parameter values using programs
such as Mathematica or Macsyma. Some results ob-
tained using Mathematica are presented in Figure 1.

EQUILIBRIUM UNDER STABILIZING SELECTION

The first question is how the variance of one char-
acter depends on the intensity of stabilizing selection
on the other character. TURELLI (1985, 1988) showed
that, if the assumptions of the multivariate normal
model are not satisfied, there will be some dependence
of equilibrium variance of one character on the other.
He did not show how strong the effect is for models
intermediate between the house-of-cards and multi-
variate normal models and for mixtures of pleiotropic
and nonpleiotropic mutations.

We have assumed complete symmetry of the muta-
tion model and independence of selection on the two
characters, so the genetic correlation between the
characters is zero at equilibrium for any parameter
values. In our numerical analysis, we assumed that the
additive effects of the two loci are equal, c, = cy = c,
and fixed the values of p., the net mutation rate, and
Vsx , the intensity of stabilizing selection on x. We then
determined how the equilibrium variance of x, var(x)
depends on Vsy , the intensity of stabilizing selection on
y, and v, the fraction of mutations that are non-
pleiotropic.

Figure 1 shows results for both the exact numerical
analysis and the nine-allele approximation that illus-
trate our main point. There are three pairs of results
that are distinguished by different values of c. Parts a
and b, c = 1, which implies that sx = 2.0 X 10-2 and 5
X 10-2	sy >_ 2.5 X 10, so the selection intensities
are both greater than which is 10 in all the
examples. For these parameter values, alleles other
than the central allele are in very low frequency, and
the results are consistent with TURELLI's (1985) results
for his five-allele model. If there are any pleiotropic
mutations (v < 1), then the var(x) does depend on V.
Figure 1, a and b, shows that, as expected, the larger
the value of v, the weaker the effect is. Surprisingly,
the same pattern is found in parts c and d which were
obtained when c = 0.1, for which alleles adjacent to
the central allele are in higher frequency at equilib-
rium. For c = 0.1, sx = 2.5 X 10 -4 and 5 X 10-4 sy

2.5 X 10-6 . In this case, the nine-allele approxima-
tion described above is reasonably accurate. In parts
e and f which were obtained for c = 0.02, only the
exact numerical results are presented. The nine-allele
approximation is not at all accurate for that range of
parameter values.

Only when selection affecting each allele is much
weaker (c = 0.02, i.e., s = 10') or when most muta-
tions are nonpleiotropic (v = 0.9) are the results com-

(4)
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FIGURE 1.—The equilibrium vari-
ance of one character, var(x), plotted
as a function of the strength of stabiliz-
ing selection on the other character,
V. In all cases, = 0.0001 and Vs„ =
20. The exact results were obtained by
numerically iterating Equations 1 and
3 until the maximum change in allele
frequency was less than 10' per gen-
eration. The approximate results in
parts a—d were obtained by using the
FindRoot function in Mathematica
(WOLFRAM 1988) on a NeXT com-
puter. Part a: c = 1, v = 0.5, part b: c

= 1, v = 0.9, part c: c = 0.1, v = 0.5,
part d: c = 0.1, v = 0.9, part e: c=
0.02, v = 0.5, and part f: c = 0.02, v =
0.9. c is the additive effect of each
allelic step and v is the fraction of non-
pleiotropic mutations.
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parable to those obtained using a normal approxima-
tion. In those cases, the equilibrium value of var(x)
depends only slightly on V,. Therefore, we conclude
that the house-of-cards approximation leads to predic-
tions that are also valid if selection affecting each
allele is comparable to mutation and if a substantial
fraction of the mutations are pleiotropic. In contrast,
predictions obtained using the normal approximation
apply only when the effect of selection affecting each
locus is weaker than mutation or if most mutations
are nonpleiotropic.

DIRECTIONAL SELECTION

The other question of interest here is whether
directional selection tends to cause a change in the

genetic correlation between two characters. To an-
swer this question, we assumed that an equilibrium
was reached between mutation and selection. Then
both mutation and stabilizing selection ceased acting
and directional selection in favor of larger values of x
+ y acted for 20 generations. The directional selection
imposed was sufficiently strong that the previously
acting forces can be ignored in the short term. To be
specific, we assumed that the relative fitness of an (x,
y) individual was w(x, y) = 1 + a(x + y), where a is the
measure of the intensity of directional selection.

Figure 2 shows the effect of directional selection on
correlation between the two characters. To obtain
these results, we first iterated Equation 1 and 3 to
obtain the equilibrium distributions of the characters
and then assumed directional selection acted for 20
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much smaller. (Note the difference in vertical scales
in Figure 2, a and b.)

Another way to look at our numerical results is to
consider the change in r„y under directional selection
when changes in the mean are the same. Because the
dynamics of the variances and covariances are differ-
ent for different values of c and v, changes in the
means after 20 generations of directional selection
vary. For each case with c = 1 (the house-of-cards
limit), we applied 20 generations of directional selec-
tion. We then computed the change in the mean of
either character relative to its standard deviation at
equilibrium. The symmetry of our model ensures that
the results for both characters are the same. Then,
with c = 0.1, we applied directional selection until the
relative change in the mean was approximately the
same as for 20 generations under c = 1. The results
in Table 1 confirm the conclusions from Figure 2 that
the increase in r,, caused by directional selection is
much smaller for our intermediate model than it is in
the house-of-cards limit. For some levels of pleiotropic
mutations, v, significant changes do occur, contradict-
ing the prediction of the multivariate normal model.

We conclude that, for the consequences of direc-
tional selection, neither the house-of-cards nor the
normal approximation can predict all of the results
for the intermediate model we have considered. The
actual results for that model depend on both the
strength of selection relative to mutation and the
fraction of mutations that are pleiotropic.

EMPIRICAL STUDIES

0.00
0	 10	 20

generations of directional selection
FIGURE 2.-The change in genetic correlation, between two

characters during 20 generations of directional selection. In both
parts, U. = Vsy = 20 and = 10'. Part a corresponds to Figure 1,
a and b (c = 1), and part b corresponds to Figure 1, c and d (c =
0.1). In both parts the equilibrium was obtained as described in the
caption to Figure 1 and then directional selection of the form w(x,
y) = 1 + a(x + y) with a = 0.1 was imposed.

generations. As shown in Figure 2, there is a dramatic
increase in r,„, the genetic correlation between the
two characters, when the house-of-cards approxima-
tion is valid. The reason is that the response to direc-
tional selection is attributable primarily to the increase
in frequency of the (1, 1) allele which also causes the
increase in the correlation. The increase in r,, is much
less pronounced if variation is maintained by higher
frequency alleles, as shown in Figure 2b. When alleles
are present in higher frequency, the response to di-
rectional selection is absorbed by several of the allelic
classes, making the increase in genetic correlation

Our results suggest two kinds of empirical studies
that might indicate whether genetic variation is attrib-
utable primarily to alleles in relatively high or rela-
tively low frequencies: stabilizing selection of differing
intensities and directional selection on two traits si-
multaneously. We know of no studies of the effects of
stabilizing selection of different strengths applied to
two characters, but there have been several studies of
the effect of directional selection on the genetic cor-
relation between two characters. DEMPSTER, LERNER
and LOWERY (1952) selected for increased egg pro-
duction and found that the genetic correlation be-
tween two components of egg production, egg-laying
rate and survival to the end of the first laying year,
increased from 0.20 in years 1-3 to 0.49 in years 8–
10. FRIARS, BOHREN and MCKEAN (1962) selected
chickens for increased meat production and found a
slight decrease in the genetic correlations in four pairs
of component traits. SEN and ROBERTSON (1964)
found a slight increase in genetic correlation in lines
selected for both increased sternopleural and abdom-
inal bristles in Drosophila melanogaster. BELL (1972)
selected for four combinations of high and low larval
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TABLE 1

A comparison of the numerical results for directional selection in the house-of-cards limit (c = 1) and for our intermediate case (c =
0.1) when the change in the mean relative to the equilibrium standard deviation is fixed

Ax var(x) Zx/var(x)

1.0 0.9 20 0.008 0.045 0.178 0.220
0.1 0.9 40 0.008 0.043 0.186 0.011

1.0 0.5 20 0.013 0.045 0.289 0.669
0.1 0.5 60 0.013 0.044 0.295 0.121

1.0 0.0 20 0.019 0.045 0.422 0.898
0.1 0.0 75 0.019 0.044 0.432 0.334

The model is the same as used to produce the results shown in Figure 2: c is the additive effect of each mutation; v is the fraction of
mutations that are nonpleiotropic; t is the number of generations of directional selection after the equilibrium was reached; Ax is the change
in the mean of x after t generations of directional selection; var(x) is the equilibrium standard deviation; and r, is the genetic correlation
coefficient between the two traits. The value of t for c = 0.1 was chosen so that Ax/var(x) is approximately the same for both values of c.

and pupal weights in Tribolium casteneum and found
no trends in the genetic correlations.

In the most thorough study of the effects of direc-
tional selection on two characters, SHERIDAN and BAR-

KER (1974) selected for four combinations of high (U)
and low (D) numbers of coxal and sternopleural bris-
des in D. melanogaster. They selected four replicate
lines in each of four treatments, making a total of 16
experimental lines. At the end of 10 and 22 genera-
tions, they computed the realized genetic correlations
by performing an additional generation of selection
on samples of individuals from each line. The initial
average realized genetic correlation (ARGC) was 0.24
± 0.08. After 10 generations, in one of the treatments
(UU) the ARGC decreased to 0.15 ± 0.06 and in the
other three it increased to between 0.37 to 0.45. After
22 generations, one of the treatments (UD) had almost
the starting ARGC while the others increased to be-
tween 0.40 and 0.54.

The available evidence suggests that genetic corre-
lations are affected by directional selection on two
characters simultaneously, although that is not always
true. A feature of the results that is difficult to explain
is that directional selection on two characters simul-
taneously often increases the genetic correlation be-
tween them regardless of the direction of selection
applied. In the SHERIDAN and BARKER (1974) study,
the genetic correlation increased in lines selected up-
wards for one character and downwards for the other.
If the genetic correlation increases in one treatment
because of changes in the frequencies of pleiotropic
alleles, then it should decrease in the opposite treat-
ment. That was not found. SHERIDAN and BARKER

(1974) discuss possible developmental causes for their
results.

Available studies do not provide a direct test of the
theory we have developed here. Our model is of two
characters that are initially uncorrelated genetically
and then subject to simultaneous directional selection.
If the two characters are affected by pleiotropic alleles
in low frequencies, as in the house-of-cards model,

then small changes in the frequencies of those alleles
will result in large changes in genetic correlations. If
the two characters are affected by numerous pleio-
tropic alleles in comparable frequencies, as in the
multivariate normal model, then little or no change
in genetic correlation would be expected.

DISCUSSION AND CONCLUSIONS

We have found that neither the house-of-cards nor
the normal approximations leads to robust predictions
about the evolutionary relationships of genetically
uncorrelated characters affected by pleiotropic loci.
A model intermediate between the two extremes
makes predictions that are sometimes consistent with
the those of the house-of-cards model and sometimes
with those of the multivariate normal model. There-
fore, neither extreme can in any sense be regarded as
typical of intermediate cases.

Our results are consistent with those of WAGNER
(1989) when the assumptions are comparable. WAG-
NER assumed that mutation rates are low enough that
TuRELLf s (1985) one-locus house-of-cards results
could be used. Wagner found that under his assump-
tions the equilibrium variance of one character is
decreased by stabilizing selection on other characters
and that the effect could be substantial if there are
numerous characters affected by pleiotropic loci. For
the case of selection much stronger than mutation, we
reach the same conclusion for our model of mutation.

At the present time, the forces maintaining quanti-
tative genetic variation are unknown. TURELLI (1988),
BARTON and TURELLI (1989) and BARTON (1990)
review various theories and available evidence but can
reach no firm conclusion. There seem to be valid
objections to any single theory. In attempting to un-
derstand different possibilities, it is worth distinguish-
ing two questions: (i) What are the forces maintaining
quantitative genetic variation? and (ii) What are the
frequencies of alleles responsible for quantitative ge-
netic variation? The answers are obviously related
because the balance of forces achieved will determine
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allele frequencies. But they are also somewhat inde-
pendent.

The results described in this paper combined with
the results of TURELLI (1985) lead to testable predic-
tions that could restrict the possible answers to both
of these questions. If genetic variability is maintained
in part by alleles that are pleiotropic, then our results
suggest that imposing stabilizing selection on one char-
acter may affect the variances of other characters.
Only if allelic effects at different loci all have an
approximately multivariate normal distribution would
the variances of other characters be independent of
the strength of stabilizing selection on related char-
acters. This prediction does not depend on the mech-
anism maintaining pleiotropic alleles in the popula-
tion. Even if pleiotropic alleles are maintained in the
population by forces other than mutation and stabiliz-
ing selection, additional stabilizing selection on one
character will alter their frequencies and hence alter
the variance of the other character.

If genetic variation is maintained by pleiotropic
alleles in very low frequencies as in the house-of-cards
model, then directional selection would tend to in-
crease the variances of characters and the genetic
correlations between them. TURELLI (1988) has re-
viewed the experimental literature and concluded that
large increases in genetic variance are not found in
the first few generations of directional selection, an
observation that argues against the general applicabil-
ity of the house-of-cards model. KEIGHTLEY and HILL
(1988), however, show that in relatively small popu-
lations, such an increase in variance might be difficult
to detect. Our results lead to another prediction. If
directional selection on two characters together is
imposed, then pleiotropic alleles in low frequency
would be expected to increase substantially the genetic
correlation between those characters.
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