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Over the past four decades, several authors have stressed that it is not just good
performance, on the average, that matters in evolution but that variation in
performance also plays an important role in determining long-term evolutionary
trends. Several independent lines of research have arisen from considering differ-
ent kinds of variation. Dempster (1955) introduced a model in which temporal
fluctuations in reproductive success for competing genotypes favor the genotype
with the highest geometric-mean reproductive success. Levene (1953) studied a
case in which the relative success of alleles varies spatially within a generation.
These two papers established the dichotomy between temporal and spatial varia-
tion that most authors continue to use. Gillespie (1974a) considered still another
kind of variation, variation in the reproductive success of each individual, in
which the amount of variation depends on factors such as developmental homeo-
stasis. Gillespie's (1974a) model has led to extensive discussion of the idea of
evolutionary "bet hedging" (Slatkin 1974; Seger and Brockmann 1987).

In still another lineage of models, several authors have considered the problem
of how variability in resource acquisition by different individuals affects reproduc-
tive success (Caraco 1980; Real 1980; Rubenstein 1982). These models suggest
that individuals tend to avoid behavioral strategies that lead to variation in
resource acquisition and have led to discussions of "risk aversion" (e.g.,
Stephens and Krebs 1986).

In this paper we develop a framework for analyzing these different types of
variation. The key to our approach is the partitioning of the variance of reproduc-
tive success of a genotype into parts attributable to the variance of individual
reproductive success and parts attributable to correlations in reproductive suc-
cess among individuals. We use our approach to show the simple relationships
among the models mentioned above, which have previously been treated in
different ways. We generalize these models to include any correlation structure in
the reproductive success among individuals of the same and different genotypes.
We also apply our method to two examples: a model of developmental homeosta-
sis, and a model of competition between semelparity and iteroparity when there is
variable resource acquisition. Finally, we discuss some generalizations that
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emerge from considering these models together, in particular, the geometric-mean
principle and ideas of bet hedging and risk aversion.

THE GENERAL MODEL

In this section we develop the main equations for describing gene-frequency
change. We first consider haploid individuals carrying alleles A 1 and A2 at the
locus of interest, with initial frequencies q 1 and q2 . We define the reproductive
success of an individual as the total number of offspring produced by that individ-
ual. The average genotypic reproductive successes of A 1 and A2 and the average
population reproductive success are, respectively,

 

+ al = 11 1 al

Nq 2

1R2 -   (112 + azi) – [12 + 612
/N q 2

R = q i R i + q2R2

where N is population size, Il i and I.L2 are the expected reproductive successes of
A 1 and A2 individuals, and the au and az; are the random deviations from the
expectations for particular individuals. The a l i and a21 have zero expectations and
variances of oi and o-3. We assume throughout that cri and cri are of the same order
of magnitude as [L i – R2 and that both are small relative to fit, = + q2p.2.
Under these assumptions, we can set fi, = 1 without loss of generality.

The frequency of A 1 after one time period is

 

qi = q i (R i lk) = q iF , (2)
where we define F1 as the relative fitness of A i . Because reproductive success is a
random variable, frequency changes are also random variables. The change in the
frequency of the A1 type over one time interval is Aq i = qi The expected
change in gene frequency is

E(Aqi) = E(q1) — q 1 = E(q 1 R 1 1R) – q 1 . (3)
One feature of equation (3) is worth noting here. The right-hand side contains

the expectation of the ratio of two random variables, and the denominator R
depends on q l , so that the dependence of E(Aq i) on q 1 may be much more
complicated than is suggested by equation (2). In particular, even if R 1 and R2 are
independent of q 1 , E(Aq i) induces the action of frequency-dependent selection on
A 1 when the R' s are subject to stochastic variation. We discuss the significance of
this observation later.

We cannot analyze equation (3) under arbitrary assumptions about reproductive
success because the right-hand side includes the expectation of a ratio of two
random variables for which no general formula is available. We proceed as above
by assuming that differences in reproductive success between individuals are
small relative to average reproductive success in the population, expanding the

1 
Nqi

= Nq

(1)
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denominator of equation (3) in a Taylor series in -a l and a2, and keeping only the
first two terms:

E(Aq i ) q 1 q2 – 11.2) + [cov(R2 , R) – cov(R 1 , F?)]} (4)
Equation (4) is equivalent to Gillespie's (1977) approximation.

To predict the long-term gene-frequency changes, we need the variance of Aq1,
var(Aq i). If E(Aq i) and var(Aq i) are of the same order of magnitude, then by
diffusion theory we can describe the directional tendency of gene-frequency
change by the ratio E(Aq i)/var(Aq i) (Ewens 1979, chap. 4; Karlin and Taylor 1981,
chap. 15). From equation (2) we can obtain, using the same type of approximation
as in equation (4),

var(Aqi) qiq3var(R 1 – R2) . (5)
Equations (4) and (5) depend on variances and covariances in average genotypic

reproductive successes R 1 and R2 and can be used to translate measures of
reproductive success into relative genotypic fitnesses. We can relate the variance
of individual reproductive success to the variance and covariance of average
genotypic reproductive success by noting, from equation (1), that

var(R 1 ) = picri
var(R2) = p2o-3 (6)

cov(R i , R2) = P 120102

where pi, P29 and p12 are the correlations in reproductive success between ran-
domly chosen pairs of A 1 , A2, or A 1 and A2 individuals, respectively.

By substituting equations (1) and (6) into equations (4) and (5), we obtain
E(Aqi) qvq2 {(P,1 – 112) + [q2P2cr2 – q iPicr i + (q1 – q2)P12cr 10-2]} , (7)

var(Aq i) giaPicri + P20-3 – 2P12cr 1cr2) • (8)
Gillespie (1974b) and Karlin and Taylor (1981, chap. 15) presented results that

are of a form similar to equations (7) and (8), but they did not partition genotypic
variance into individual-level variations, o- 2 , and the correlations among individ-
uals, p, as described in equation (6). This partitioning is the key to our analysis
because the interactions between each individual and the environment and the
interactions among individuals are the biological determinants of the genotypic
variances.

TYPES OF VARIATIONS

Types of biological variability experienced by populations have usually been
divided into distinct categories, such as developmental or within-individual fluc-
tuations, temporal environmental changes, spatial variability among distinct
patches, and variable rates of resource acquisition for particular behavioral strate-
gies or physiological pathways. Each of these categories has been modeled in a
different way, and each has a separate literature. We show that all of these
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categories can be cast in the framework presented in the preceding section and
that our method of partitioning genotypic variance into individual variance and
correlations among individuals provides a simple and natural way of generalizing
previous models.

Gillespie's Model of Individual Variation
Gillespie (1974a) introduced a model in which the reproductive success of each

of the N haploid individuals in the population depends on its interactions with the
environment during development. The reproductive successes of different indi-
viduals are independent because, by Gillespie's assumptions, different individuals
experience different conditions and develop in an uncorrelated way. Never-
theless, the finite population size ensures that an individual's reproductive suc-
cess correlates with the average reproductive success of its genotype. The corre-
lation of two randomly chosen A i 's is p i = 1/(Nq 1 ), because there are Nqi
individuals of type A i , and hence a chance 1/(Nq i) of choosing the same individual
twice. By the same reasoning, p 2 = 1/(Nq2). Clearly, p 12 = 0 because different
individuals experience different conditions. Substituting these values into equa-
tion (7), we find that E(Aq i) > 0 for any gene frequency when

 

– cri/N > 112 – 0-3/N . (9)
Since this condition no longer depends on q, it is sufficient to describe long-term
evolutionary advantage without the need to consider polymorphism and fre-
quency dependence. Here, an allele with a long-term advantage is more likely to
become fixed than a neutral allele with the same initial gene frequency.

With our approach, we can easily generalize Gillespie's result. In equation (7),
if p 12 = 0, then E(Aq i) > 0 when – q i p icri > 112 - q2p2cr2. Since this condition
depends on q 1 and q2 , the direction of expected gene-frequency change may
switch according to current gene frequency. However, if pi = k i lq i and p2 = k21
q2 , where the k's are independent of the q's, then the condition for an expected
increase in A i is

/qui > k20-3 • (10)
Under Gillespie's assumptions, k 1 = k2 = 1IN. Our generalization allows for
correlations among individuals caused, for example, by developing under similar
environmental conditions.

In the Appendix, we show that equation (10) describes a condition for long-term
advantage and therefore includes Gillespie's result in equation (9) as a special
case. Below, we apply equation (10) to show how this result can be used to make
specific predictions.

Temporal and Spatial Variation under Global Population Regulation
Dempster (1955) studied a model in which the success of an allele varies from

one generation to the next in response to the environment, but within each
generation, all alleles of the same type have identical success. Variation occurs
among generations (temporal) rather than within generations (spatial). For a
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haploid model, Dempster concluded that the allele with the highest geometric-
mean success would prevail. Several other workers have analyzed more-general
models of temporal variation in selection intensities (e.g., Kimura 1954; Haldane
and Jayakar 1962; Gillespie 1973, 1978; Hartl and Cooke 1973; Karlin and Liber-
man 1974).

In Dempster's model, all alleles of the same type have identical reproductive
success within a generation, p i = p2 = 1, and by assumption, p 12 = 0. The
expected change in allele frequency is therefore (see eq. [7])

E(Aq i) q1q2 q1Cri) (12 - q20i)] •

This equation illustrates an important general feature of evolution in variable
environments, namely, that rare types have an inherent advantage when there is
global regulation of population density. This apparent frequency dependence is an
example of the phenomenon that we mentioned just below equation (3): taking the
expectation of the ratio of two random variables, both of which depend on q l , can
induce frequency dependence even if the reproductive successes are not fre-
quency-dependent in each generation. To understand the frequency dependence
in this particular example, suppose q 1 is_ small. In equation (4), cov(R i , R) is
relatively small compared with cov(R 2 , R); hence, A i has an advantage. The
opposite is true when A2 is rare. A graphic description of rare-type advantage is
shown in figure 1.

In spite of the inherent rare-type advantage, polymorphism is not maintained in
this model (Gillespie 1973; Hartl and Cook 1973; Karlin and Liberman 1974)
because of the high variance of gene-frequency change (see eq. [8]). When one
allele is very rare, reproductive success and relative fitness are linearly related
(fig. lb), and thus, geometric-mean reproductive success determines the course of
gene-frequency evolution (Gillespie 1973; Hartl and Cook 1973; Karlin and Liber-
man 1974; diploidy and multiple alleles have been treated in several papers,
including Gillespie 1974b, 1978, 1980; Levikson and Karlin 1975; Turelli and
Gillespie 1980; Turelli 1981).

We can generalize the Dempster model by allowing variation in reproductive
success among individuals of the same genotype, which in effect allows for some
spatial variation. This type of spatial variation differs from models of spatial
variation considered in the following section. Here, we are assuming global
regulation of the population. In the following section, we consider the Levene
model and generalizations of it, in which regulation of population size occurs in
each patch. We represent the effects of spatial variation by allowing p i and p2 to be
less than one, which reduces the variance of average genotypic success. The
general condition for the A i 's to increase can be expressed by comparing
geometric-mean reproductive successes:

Pl Cr i/2 > 112 - p2o-2/2 . (12)

This condition applies for any haploid model in which the average correlation in
reproductive success among individuals does not depend on gene frequency,
population regulation is global, and the correlation between types P 12 is zero.
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FIG. 1.—a, Increasing variation causes a decrease in expected value when there are
diminishing returns. Here, average reproductive success, R, is ps, but deviations of ± 8 occur,
with increases and decreases at equal frequencies. The gain in relative fitness, F, for an
increase of 8 units of reproductive success is less than the corresponding loss in fitness when
reproductive success is p – 8. Average fitness therefore declines as the frequency and
magnitude of deviations increase. Note that the discount to fitness depends on the curvature
of the relationship of fitness and reproductive success. b, The curvature of fitness versus
reproductive success depends on the correlation between genotypic reproductive success
and population reproductive success. The numbers above each curve represent different
strengths of this correlation. If two haploid genotypes are uncorrelated, then, because R =
q i R i + q2R 2 , the correlation between genotypic reproductive suzcess and population suc-
cess, p, is the frequency of the genotype. Note that there is little curvature when a genotype is
rare, which explains the rare-type advantage discussed in the text.

Spatial Variation and Local Population Regulation
Levene (1953) assumed that the environment is divided into a large number of

patches and that competition for limited reproductive opportunities occurs locally
and independently within each patch. In a haploid model, one allele is favored in
some patches, and the alternative allele is favored in others. Unlike models of
global population regulation, the Levene model does maintain polymorphism.
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Gillespie (1974b, 1978) has presented a diffusion analysis in which the number of
locally regulated patches increases from one (Dempster) to infinity (Levene). The
results in this section are not new, but our method for deriving them is. The
advantage of our method is that it shows simply the relationship between this
model of spatial variation and other models of spatial and temporal variation.

As in Gillespie's (1974b, 1978) models, we combine temporal and spatial varia-
tion with mode of population regulation. Let there be K independent patches.
After each generation, each patch contributes the same fixed number of propa-
gules (adults) to a global pool; then propagules recolonize the patches from this
global pool. The number of successful colonists is large enough that the variance
of gene frequency among patches is negligible. Within each patch, there is no
variance of success among alleles of the same type; put another way, within
patches, p i = p2 = 1 and p12 = 0. Let cri and oi be the variances of the reproduc-
tive successes of A 1 's and A2 's chosen randomly from different patches.

To carry out our analysis, we have to modify equation (3) to account for the
regulation of population size in each patch. The local regulation of population size
induces frequency-dependent interactions at the level of each patch for the same
reasons discussed above. If local regulation occurs in each of K patches, and each
patch contributes equally to the global population, then

[E(Aq i) = [X E(e) R ik) I kk)) 1 q1 (13)

where RP and k(k) are the average reproductive successes, respectively, of Ai
individuals and of all individuals in each patch.

The relationship between the Levene model of spatial variation and the Demp-
ster model of temporal variation can be better appreciated by formulating the
Levene model as a model of temporal variation. As noted by Gillespie (1974a,
1978), the Levene model of K patches, in which A i is favored in pK patches and
A2 is favored in (1 – p)K patches, can be regarded as a model of K patches in
which each patch has a probability p in each generation that A i will be favored and
a probability of 1 – p that A2 will be favored. With that view, the principal
difference between the Levene model and the Dempster model is whether popula-
tion size is regulated globally or locally.

If the deterministic component of success does not dominate (the II's), then rare
types have an intrinsic advantage. Since, in the standard Dempster model, this
rare-type advantage is not sufficient to overcome the large variance of gene-
frequency change, no polymorphism is maintained. In the present case, because
the process is averaged over K patches, the variance of gene-frequency change is
the variance of the average change over all patches, or 11K multiplied by the
variance within each patch. The variance of gene-frequency change declines as K
increases, which allows the rare-type advantage to come into play and maintain
polymorphism. Because Levene's model assumes in effect that K is large, the
rare-type advantage is deterministic. Intermediate values of K have been studied
by Gillespie (1974b).

As K becomes large, the change in gene frequency given in equation (7)
becomes essentially a deterministic process (a random Levene model in Gillespie
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and Langley 1976). We can therefore solve for the equilibrium by setting E(Aq i ) =
0, which yields

g l /q2 = — 112 + P2'32)4112 — 11 1 + Picr i) (14)
where the p's, which are within-group correlations in this equation, describe the
amount of spatial variation in reproductive success within a locally regulated
patch. This equation can also be obtained as an asymptotic result from Gillespie's
(1974b) formula for the stationary density of gene frequency by allowing his
measure of patchiness to become large.

Diploidy
Thus far we have considered only haploid individuals. In this subsection, we

consider diploid individuals and illustrate our method with a result for an N-patch
model. We treat diploid individuals as patches that are cohabited by haploid
genotypes, thus generating particular patterns of correlations among the haploid
genotypes.

Equation (4) for E(Aq i) still applies, but we need new expressions for R 1 , R2,
and R. First, for the deterministic aspect of selection, dominance relationships
can be treated in the usual way: replace the reproductive-success differential –
'1,2 with – 11,2)[2q2 + 2h(q i – q2)], where h is a parameter for the degree of
dominance. Second, the random components of reproductive success need to be
recalculated in order to obtain the covariance terms. If we let the random effects
of each allele be additive for example, if a l and a2 are the random effects of A1
and A2 alleles such that an A 1A2 heterozygote has a random reproductive-success
component a 1 + a2—then the random components 8( ) for reproductive-success
averages for A i 's, A2 's, and the population as a whole are

8(Ri) cho-t(ihom) ^ q2(zipet) sa2het))/2 (15)
8(R2) q2,5t(2hom) • ch(15tpet) -45.2het))/2 9 (16)
8(k) qi-apom) ^ 651-(2hom) chq2(itet) -612het)) (17)

where UtP°In) and &Pet) are the average random components per A 1 allele in homo-
zygotes and heterozygotes, respectively, with similar definitions for .5.(2h0m) and
(ape°. These equations can be obtained by writing expressions similar to equation
(1) for diploids and assuming approximate Hardy-Weinberg frequencies.

The simplest application, which is similar to Gillespie's (1974a) N-patch model,
is the case in which the random effect of each allele is independent of the effect of
its homologue and of all other_ alleles in the population. A straightforward calcula-
tion then shows that cov(R 2 , ) – cov(R , R) = (a-3 – cri)/4N, where o-i and 0-3
are the variances of the effects of randomly chosen A 1 and A2 alleles. When the
deterministic effects of the alleles are additive (h = 1/2), then the condition for the
increase of the A 1 allele is (ps i – cr ii4N) (112 – o2l4N), which differs from the
haploid case only by the factor of four in the denominator of the variance terms
(see above). Since the correlations depend on the inverse of gene frequency,
substitution into equation (7) yields a frequency-independent condition.
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Variable Resource Acquisition and Nonlinearity
The previous models ignore the particular mechanisms that cause variation in

reproductive success. For example, foraging success may vary among individuals
and lead to variation in viability and fecundity. If foraging success and reproduc-
tive success are linearly related, then foraging success can be regarded as a scaled
measure of reproductive success. However, because a nonlinear relationship
between resource acquisition and reproductive success is probably common,
variation in foraging success affects both the mean and the variance of reproduc-
tive success.

Several recent papers have assumed a nonlinear relationship between resource
acquisition and reproductive success and then calculated the effect of variable
resource acquisition on average reproductive success (Caraco 1980; Real 1980;
Rubenstein 1982; further references in Stephens and Krebs 1986). These models
have used average individual reproductive success to determine which strategies
are likely to evolve. This method fails to translate individual reproduction into
relative genotypic success and is therefore insufficient to predict evolutionary
patterns. We extend these models by relating variable resource acquisition to the
mean and variance of genotypic reproductive success, which we can then trans-
late into relative genotypic success by the methods introduced above.

Begin by letting the reproductive success of the jth individual of the ith
genotype be

Xii = ai + ci [1. + g(yii)].

The term ai is the component of reproductive success that does not depend on the
trait of current interest, and c i is the average reproductive success of this trait;
thus, the relative magnitudes of ai and ci determine the fraction of average
reproductive success explained by this particular trait. Fluctuations in resource
acquisition are described by the random variable -y ip which has a mean of zero and
a variance Vi. The function g translates fluctuations in resource acquisition into
variation in reproductive success. By Taylor-series expansion, the expectation
and variance of Oyu) are approximately (1/2)g"(0)Vi and g'(0)V i , respectively,
where primes denote first and second derivatives (for a discussion of the applica-
bility of this approximation, see Stephens and Krebs 1986, pp. 145-146).

We can now write the expectation and variance of individual reproductive
success for the ith genotype as

E(Xii) = ai + ci[l + (1/2)g"(0)Vi] , (18)
var(Xu) = g' (0)V (19)

Using these equations, we can express the variance of genotypic reproductive
success as p icri and apply all aspects of the above theory. Clearly, if the correla-
tions among individuals expressed by the p's are not small, then one must take
account of the variance of genotypic reproductive success when describing rela-
tive genotypic success. For example, if a significant component of variable forag-
ing success by a particular strategy depends on environmental fluctuations, then
the success of individuals pursuing the same strategy will be highly correlated. A
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study of relative genotypic success is required in such a case, as illustrated in the
second example below.

TWO EXAMPLES OF MODELS OF EVOLUTION IN A VARIABLE ENVIRONMENT

Developmental Homeostasis
Our formulation focuses on correlations in reproductive success among individ-

uals. Such correlations arise when a group of individuals experience the same
conditions. As a specific example in which groupings are fixed, suppose that there
are K discrete flowering periods during a season and that each individual flowers
during one period only. All A2 types have strict canalization and flower during the
same period, and each A 1 type has weak developmental homeostasis and flowers
in any particular period with probability 11K. Conditions for pollination success or
seed set vary among periods in an unpredictable and uncorrelated manner, be-
cause of variation in pollinator service, weather, etc. Furthermore, assume that
the correlation in reproductive success between individuals flowering in a single
period is X. Under these assumptions, p 2 = X, p i = X/K, and p 12 = X/K, and
for simplicity, we assume that the variance of reproductive success caused
by vagaries of environment and pollination is the same for all individuals, cri =
cri =

Because the correlations have constant values in this model, the genotype with
the larger geometric-mean reproductive success dominates (eq. [12]). If K is large,
then the condition under which A 1 has an advantage is > 112 – p2o-2/2.

Correlations and variations in reproductive success caused by patterns of
developmental homeostasis can therefore be of sufficient magnitude to outweigh
sizable differences in expected reproductive success. In this particular model,
developmental homeostasis and strict canalization are disfavored by selection.
Bull (1987) has examined models that reach a similar conclusion. Others (Slatkin
and Lande 1976; Orzack 1985) have reached similar conclusions using models that
allow for the possibility of temporal autocorrelations in environmental conditions.
We have not analyzed the effects of temporal autocorrelations, although our
general approach of considering the variances and covariances of individual
reproductive success might be useful in considering autocorrelated environments.

Variable Resource Acquisition, Nonlinearity, and Life History
In this subsection, we show how variable resource acquisition fits within our

framework by extending a model that compares semelparous with iteroparous
reproduction (Charnov and Schaffer 1973; Hastings and Caswell 1979; Bulmer
1985). Here, variation in behavioral success affects both the expectation and the
variance of genotypic reproductive success; and the variance of genotypic repro-
ductive success in turn affects relative genotypic success. Previous studies of
variable behavioral success have ignored the translation from reproductive suc-
cess to relative genotypic success.

Let Xi; be the reproductive success of the jth individual of the ith genotype,

X i; = pi + [bi – .f (pi)] + (20)
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where pi is the probability that an adult survives to the next season after reproduc-
ing; b i is the expected number of surviving offspring (birthrate) if pi = 0; f (pi) is
the reduction in the expected number of offspring as a function of parental
survival; and 'yi; is the random component for the number of surviving offspring of
the jth individual of the ith genotype.

Before analyzing this model, we make a few simplifying assumptions. First, let
Pi = 0; thus, the genotype i = 1 is semelparous. Next, assume that the expecta-
tion of Pyi; is zero and its variance is Vi for all i and j; in words, the percentage of
fluctuation in offspring production has the same long-term distribution for all
individuals of a particular genotype, even though different individuals may experi-
ence different conditions in any particular season.

We can obtain the mean p., i and the variance picr of genotypic reproductive
success in the manner leading up to equations (18) and (19):

---- pi + [bi - f (pi)] [1 + (1/2)g"(0)Vi] ;
pia'? pi [bi — f (p i )]2 g i (0)V

Solutions for two-allele haploid models with global regulation take one of two
forms. If the correlations p are inversely proportional to gene frequency, p i =
kilqi , then semelparity prevails when 11 1 — ki wi > pd2 k2(r2 (see eq. [10]). If,
instead, the correlations are independent of gene frequency, then the genotypic
geometric means determine long-term success, and the condition for semel-
parity is [L i — p icri/2 > 112 - p20-3/2 (see eq. [12]).

Variable success in resource acquisition has two effects. First, when g is a
diminishing-returns function, the expected reproductive success decreases with
increasing variability because g" is negative. This is the effect studied by previous
models of variable resource acquisition (e.g., Caraco 1980; Real 1980; Rubenstein
1982). Second, the variability in individual resource acquisition affects the vari-
ance of average genotypic reproductive success, as in models discussed previ-
ously. The magnitude of the variance of average genotypic success depends, as
always, on the correlation among individuals of that genotype. If environmental
fluctuations affect resource acquisition by all members of the same genotype in
the same way, then p i is large, and this second effect is significant. However, if
genotype affects the variance of an individual's success in a way that is not
correlated with that of other members of the same genotype, then expected
reproductive success is typically the dominant effect.

THE GEOMETRIC-MEAN PRINCIPLE

The geometric-mean principle states that, of two competing genotypes, the
genotype with the higher geometric-mean fitness increases in frequency (see, e.g.,
Seger and Brockmann 1987). The difficulty in applying this principle is that it is
not necessarily clear to which definition of fitness the geometric mean applies. In
fact, several types of geometric-mean principles have been proposed. If the fitness
is relative fitness, defined in equation (2) as the ratio of a genotype's reproductive
success to the mean reproductive success, then the geometric-mean principle is
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always true. For a haploid model, this can be proved simply by recursive applica-
tion of equation (2). For a diploid model, equation (2) is still correct if F1 is the
marginal allelic fitness of A l . Consequently, the allele with the higher geometric-
mean marginal fitness increases in frequency.

When stated in terms of relative or marginal fitness, the geometric-mean princi-
ple is always true but not very useful. The problem is that in a stochastic model
there is usually no simple relationship between geometric-mean relative fitness
and measurable quantities such as individual or genotypic reproductive success.
In particular, relative fitness is unpredictable because it depends on gene frequen-
cies that fluctuate stochastically (eq. [3]). Therefore, one cannot use the fact that
the geometric-mean principle is true for relative fitness to conclude that the
geometric-mean reproductive success or the geometric-mean success in foraging
tends to increase under selection. We have shown that the actual course of gene-
frequency changes depends on the detailed assumptions about how spatial, tem-
poral, developmental, and behavioral variation affect the reproductive success of
each individual and the correlations in reproductive success among individuals.

Gillespie's (1974a) model of individual variation is an example in which the
geometric-mean reproductive success does not predict the outcome of selection.
We showed that, in a generalization of Gillespie's two-allele haploid model, the
sign of – kioi) ([1,2 – k2cr2) determines which allele tends to increase in
frequency, where Ili and ol are the mean and variance of reproductive success of
an individual of the ith genotype, and k1 is defined by p i = k 1/q1 , where p, is the
correlation in reproductive success between two individuals of genotype i. As
discussed above, Gillespie's (1974a) result follows for the special case in which
different individuals of the same genotype have uncorrelated reproductive suc-
cesses.

In our generalization of Gillespie's (1974a) model, the difference in geometric-
mean reproductive successes of genotypes A 1 and A2 is approximately – kicri/
(2q 1 )] – [pi2 – k29-3/(2q2)]. This expression depends on gene frequencies, q, and
may change sign as gene frequencies change. The correct condition to predict
which allele will increase in frequency does not depend on q (see the preceding
paragraph). Therefore, geometric means are not useful for this important class of
models.

There are geometric-mean principles that can be applied. For example,
geometric-mean reproductive success does predict the outcome of selection in
Dempster's (1955) model and its generalizations. In a Levene (1953) model, Seger
and Brockmann (1987) noted that a different geometric-mean principle applies;
namely, selection favors the maximization of the geometric-mean reproductive
success of different patch types (Li 1955; Cannings 1973). Although this result is
true for the Levene model, it is a special case that cannot easily be generalized. In
any model, it is possible to find some quantity whose geometric mean tends to
increase; this quantity in a particular model does not provide a guide to determin-
ing the appropriate quantity in other models.

An idea similar to the geometric-mean principle is "variance discounting"
(Caraco 1980; Real 1980; Stephens and Krebs 1986). Under variance discounting,
the expected reproductive success of a behavior is the expected amount of the
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resources acquired minus a function of the variance of the resources acquired (see
eq. [18]). Variance discounting of this sort is a valid principle to the extent that
average reproductive success is sufficient to predict evolutionary change in these
models. This is true only when the behaviors on which the models focus do not
cause a variance of reproductive success among individuals pursuing the same or
different strategies. As we have shown in many cases, the dynamics of gene-
frequency evolution also depend on the variance of reproductive success among
individuals (e.g., eq. [19]).

To summarize, in some cases, a geometric-mean or related principle does
predict the outcome of selection in a variable environment. Without a careful
analysis, however, it is not clear how each of these principles applies to a variety
of evolutionary problems. We see our approach as a preferable alternative to
applying one of these principles in a general way. Environmental or develop-
mental variation affects the means and variances of individual reproductive suc-
cess and the correlations in reproductive success among individuals. These quan-
tities determine which alleles, and hence which strategies, will be favored by
natural selection.

BET HEDGING AND RISK AVERSION

The idea of bet hedging (Slatkin 1974; Seger and Brockmann 1987) can be
understood in terms of our partitioning the genotypic variance of reproductive
success into correlations among individuals and the variance of individuals. Bet
hedging can be thought of as occurring at two levels, the level of the genotype and
the level of the individual (Seger and Brockmann 1987). At the level of the
genotype, bet hedging occurs if a trait or behavior reduces the correlations in
reproductive success among individuals of a genotype, in effect increasing the
number of independent samples, or bets, for each genotype. Our model of flower-
ing periods and developmental homeostasis illustrates this genotypic-level bet
hedging.

Bet hedging at the individual level can also be understood by correlations.
Variance of individual reproductive success can be partitioned into variance of the
success of particular offspring and the correlation in success among offspring
(similar to eq. [6]). Putting one's eggs in different baskets reduces the correlations
among offspring and thus reduces individual-level variance.

Bet hedging, the reduction in correlations either among individuals of the same
genotype or among offspring of an individual, is always favored when there are no
associated costs, since it reduces the variance of a genotype's average reproduc-
tive success. The interesting question is how this reduction in variance is balanced
against particular costs. Our method provides a formal structure for comparing
these costs and benefits.

An idea related to bet hedging is "risk aversion." Stephens and Krebs (1986)
and Real and Caraco (1986) summarized recent work on this subject. Risk aver-
sion can be defined within our approach as a trait or behavior that increases
average reproductive success by lowering the variance of resource acquisition;
this depends on reproductive success increasing at a diminishing rate with increas-
ing resources (eq. [18]).
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Bet hedging differs from risk aversion because, at the particular level being
analyzed, bet hedging reduces the variance of success, whereas risk aversion
increases average success. This difference can be illustrated by considering once
again the case of variable resource acquisition at the individual level. In compari-
sons of two strategies in which each behavioral episode has a higher or lower
variance of resource reward, choosing the lower-variance reward is a case of risk
aversion. Risk aversion is favored because of the diminishing relation between
resources and reproduction. By contrast, sampling from several independent
patches in order to reduce the correlation among resource rewards for each
episode, and thereby the overall variance of reproductive success, is a case of bet
hedging. Bet hedging is favored because a lower variance of individual reproduc-
tive success is advantageous to genotypic success as, for example, in the case
presented in the subsection "Gillespie's Model of Individual Variation," above.

Sometimes it is not so easy to decide whether a behavior should be considered
an example of risk aversion or bet hedging. An analysis comparing these two
categories can help to clarify the biological assumptions and conclusions of a
model. Consider Real's (1980) paper, which is widely cited in the context of risk
aversion and variance discounting. There are actually two parts to Real's model.
First, he assumed that reproduction increases at a diminishing rate as resources
increase; therefore, a relatively high variance of resource acquisition leads to a
relatively low expected reproductive success as in equation (18). Second, Real
partitioned the total variance of individual resource acquisition into the variance
associated with each type of resource-acquiring behavior that an individual pur-
sues and the correlations among the successes of each of these behaviors, a
partitioning of variance similar to equation (6) but at a different level. Real (1980)
stressed that, within an individual, diverse behaviors with low correlations among
themselves reduce the variance of resource acquisition and therefore increase
expected reproductive success. The first part of the model, that high variance of
resources reduces expected reproductive success, is consistent with our descrip-
tion of risk aversion. Real's main point, however, is that diverse behaviors lead to
a lower variance of resource acquisition, consistent with our definition of bet
hedging as a reduction in variance by increased sampling. Which description one
chooses depends on the level being analyzed. As a final note, Real's analysis did
not address the effect of variable resource acquisition on the variance of reproduc-
tive success and is therefore an incomplete study of evolutionary consequences.
A fuller analysis is contained in equations (18) and (19).

CONCLUSIONS

We have developed a theoretical framework with which to analyze the evolu-
tionary consequences of variable environments. Our approach emphasizes that
means and variances of individual reproductive success and correlations in the
reproductive successes of different individuals are sufficient to predict the long-
term course of evolution under a wide variety of conditions. Different assump-
tions about developmental, behavioral, spatial, and temporal variation in factors
that affect reproductive success lead to different variances of and correlations in
reproductive success. By focusing on processes at the individual level, we have
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shown the relationship among several kinds of models of variation. We have also
shown the relationship of such ideas as bet hedging, risk aversion, and variance
discounting to the more conventional models of selection.

Our analysis is not completely general. We assume that environmental variation
affects reproductive success in such a way that the mean and variance of the
changes in allele frequency are sufficient to predict the course of evolution. That is
the assumption necessary to use the mathematical tools of diffusion theory. In
effect, this assumption restricts our method to cases in which the variance of
reproductive success is small relative to the mean. We did not analyze cases in
which there are correlations in environmental conditions between generations.
Our approach does, however, allow the analysis of a large class of models that
have been and will continue to be of interest to evolutionary biologists.

SUMMARY

We develop a general model for the effects of variation in reproductive success
on gene-frequency change and phenotypic evolution. Our approach is based on
distinguishing among individual, genotypic, and population-level reproductive
success and on relating these three levels through correlations. For example, the
variance of genotypic reproductive success can be expressed by individual-level
variance and by the correlations among individuals. We use these correlations to
show the simple relationship among earlier models of selection on the variance of
reproductive success, of temporal variation in selection, of spatial variation in
selection, and of variation in behavioral traits. Our approach also applies to
diploid individuals by regarding diploidy as a way to induce correlations in
reproductive success between pairs of alleles. We apply our method to patterns of
developmental homeostasis, the evolution of iteroparity, and the effects of vari-
ability in resource acquisition under nonlinear gains. Finally, we discuss the uses
and limitations of the geometric-mean principle, and we provide a precise descrip-
tion and formal methods of analysis for bet hedging and risk aversion.
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APPENDIX
We prove a general result about diffusion theory that we used to extend Gillespie's

(1974a) model of individual variation in reproductive success. Our notation here is based on
that of Ewens (1979, chap. 4). We assume finite population size, and therefore accessible
boundaries, and a haploid model with global population regulation. We continue to make
the particular assumptions about magnitudes of effects in equation (1) so that a diffusion
analysis is valid.

We claimed in the text that if E(Aq i ) > 0 V q l , then A 1 has a greater probability of fixation
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than a neutral gene; that is, the probability of fixation is greater than q 1 . This
the use of the condition presented in equation (10). We now prove this clai

Let the frequency of some allele be q and its probability of fixation be P(q).
neutral, then P(q) = q, and we must show that P(q) > q when E(Aq) > 0 V q
a(q) and var(Aq) = b(q). Now, by definition,

tli(Y) = exp 2 fY [a(z)/ b(z)1 dz} .

claim justifies
m.
If the allele is

. Let E(Aq) =

The probability of fixation at a frequency of one is

P(q) = 4(y)dy Vy) dy

(Ewens 1979).
We need to show that P(q) > q or, equivalently,

fq VY ) dY > jo VYWY •
q 0

Note that ji(y) is a monotonically decreasing function of y since, by assumption, a(z)lb(z) is
always positive. Thus, the left-hand side of this inequality, which is the average area under
tp(y) over the interval (0, q), must be greater than the right-hand side, which is the average
area under Vy) over the interval (0, 1).
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