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DEMOGRAPHY AND SEX RATIO IN SOCIAL SPIDERS
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Department of Biology, University of Michigan, Ann Arbor, MI 48109-1048

Abstract. —Spiders that live in large cooperative societies are scattered among several taxonomic
groups. All quasisocial species appear to have female-biased sex ratios, while congeneric species
with less advanced forms of sociality have 1:1 sex ratios. I present two sex-ratio models that
examine the interaction between the genetic structure of populations and two aspects of colony
demography— the changes as the colony grows larger in fecundity per female and in colony sur-
vivorship. In the first model, I assume that all members of the population produce the same sex
ratio under all conditions (monomorphic strategy), while in the second model I assume that the
sex ratio can be adjusted according to stage in the colony growth cycle (conditional strategy). The
results of these models are consistent with the typically observed effects of within-sex competition
among relatives; the sex ratio is biased toward the sex with less intense competition. In addition
to these effects, a number of interesting interactions are revealed among relatedness, demography,
and constraints of the sex-determining mechanism (monomorphic vs. conditional strategies). For
example, when survivorship or fecundity increases as the colony grows larger, the predicted sex
ratio becomes more female-biased. These demographic factors of changing viability and fecundity
with changing colony size interact synergistically with relatedness, and the effect of this interaction
on the sex ratio depends on the constraints of the sex-determining mechanism.

There are two related roles for the models presented here. First, these models provide some
general predictions about how complex variables of demography and population structure interact
in shaping the evolution of social spider sex ratios. Second, the development of the models illustrates
a theoretical method that provides a simple description of complex interactions between demog-
raphy and population structure, as well as an example of the synergistic interaction between
relatedness and cooperation in the context of a particular life history.
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Spiders that live in large cooperative so-
cieties occur in at least five genera scattered
across four families (Buskirk, 1981). A sin-
gle social unit typically contains hundreds
or thousands of adult spiders living in a
single large web, which is cooperatively built
and maintained. Females do nearly all of
the work, most females reproduce, and there
is often shared responsibility for the tending
of egg cases and rearing of young (Wickler,
1973; Lubin, 1982; Christenson, 1984). This
advanced form of cooperation, which I refer
to here as "social," is technically classified
as quasisocial, and is more complex than
forms of sociality observed in other spiders
(Wilson, 1971 pp. 130-134; Buskirk, 1981).
Social spiders provide an excellent oppor-
tunity for evaluating ideas about the evo-
lution of social behavior (Darchen and De-
lage-Darchen, 1986), since these ideas have
mostly been applied to Hymenoptera and
their generality continues to be debated
(Andersson, 1984).

1 Present address: Department of Zoology, Univer-
sity of California, Berkeley, CA 94720.

Life histories vary widely among the so-
cial spiders, and details of social structure
are poorly known for most species. Re-
cently, life histories and social biology were
studied in Anelosimus eximius (Theridi-
idae) (Brach, 1975; Tapia and De Vries,
1980; Vollrath, 1982, 1986a, 1986b; Voll-
rath and Rohde-Arndt, 1983; Christenson,
1984; Aviles, 1986b; Smith, 1986), Achaer-
anea wau (Theridiidae) (Lubin, 1982, 1986;
Lubin and Robinson, 1982; Lubin and Cro-
zier, 1985), Agelena consociata (Agelenidae)
(Darchen, 1978; Riechert, 1985; Riechert et
al., 1986), and Mallos gregalis (Dictynidae)
(Jackson, 1978a, 1978b, Tietjen, 1986).

One life-history trait that appears to be
consistent among social spiders is a strik-
ingly female-biased sex ratio (Darchen,
1967; Jackson, 1978b; Lubin and Robin-
son, 1982; Aviles, 1986a, 1986b, 1987;
Vollrath, 1986a, 1986b). By contrast, non-
social spiders typically have equal numbers
of males and females. In two cases, subso-
cial species have 1:1 sex ratios, while con-
generic social species have female-biased sex
ratios (Anelosimus eximius [Vollrath, 1986a]
and Achaearanea wau [Y. D. Lubin, un-
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publ.]). Since many aspects of social behav-
ior affect the reproductive values of sons
and daughters, the study of sex ratios pro-
vides a window onto the patterns of selec-
tion and constraints that have shaped the
social structure of a population. I have iso-
lated two factors that are likely to be im-
portant in shaping sex ratios of social spi-
ders, and more generally, in the evolution
of social structure and life history. The first
factor is the genetic structure of the popu-
lation, that is, the relatedness among indi-
viduals within the colonies. Aviles (1986a,
1986b, 1987) and Vollrath (1986a) have re-
cently addressed this aspect of sex-ratio
evolution in social spiders. The second fac-
tor is the relationship between reproductive
efficiency and colony size, where efficiency
is measured as expected reproductive suc-
cess per female and has both fecundity and
colony-survivorship (viability) compo-
nents.

The predicted qualitative trends in the
sex ratio with respect to population struc-
ture and efficiency are simple. As related-
ness within colonies increases, the sex ratio
is expected to become more female-biased,
since the levels of local mate competition
and inbreeding increase (Vollrath, 1986a),
or, alternatively, the strength of group se-
lection increases (Aviles, 1986a, 1986b,
1987; see general reviews by Charnov [1982
pp. 67-92] and Frank [1986a]). As the rate
of increase in reproductive efficiency in-
creases with expanding colony size, the sex
ratio is again expected to become more fe-
male-biased since the rate of colony expan-
sion depends on the number of females pro-
duced in each generation. I present here
formal models incorporating these two fac-
tors. The models reveal an interesting syn-
ergistic effect between population structure
and colony efficiency, which in turn depends
on constraints imposed by the sex-deter-
mining mechanism. The magnitude of the
effects on sex ratio caused by these two de-
mographic characters may also be evalu-
ated. Beyond the implications for social spi-
der evolution, the techniques employed in
developing the models illustrate a general
approach for studying the complex inter-
actions between demography and popula-
tion structure.

General Assumptions
The two models presented below are based

on the following assumptions and defini-
tions. i) A colony is founded by either a
single spider or a group of spiders that is
small in number relative to mature colony
size. ii) Mating occurs within discrete gen-
erations. iii) The founding group produces
offspring (referred to as generation 1), and
the sex ratio (proportion of males) produced
by this founding generation is x 0 . These first-
generation offspring grow to adulthood and
produce the second generation, with a sex
ratio of x l . In general the sex ratio produced
by the jth generation is 3c1 . iv) The repro-
ductive efficiency of the colony, measured
by expected reproductive success per fe-
male, may increase as the colony grows larg-
er. The efficiency in the jth generation is hw ,
which describes either fecundity or colony
survivorship (see below for details). v) When
the population is in sex-ratio equilibrium,
maximum efficiency is achieved by the
adults of the gth generation, who produce
the (g + 1)th generation with a sex ratio of

vi) There is no immigration into estab-
lished colonies. From generation 1 to g there
is no emigration. After generation g, females
emigrate in groups of one or more individ-
uals, so that the number of females staying
home to reproduce is constant in each gen-
eration. Dispersing groups from different
colonies may mix before settling to form a
new colony. The founding groups are of
constant size in any particular population.
vii) Sex-ratio control is by the mothers, so
that is the sex ratio by the jth generation
of mothers when producing the U + 1)th
generation.

These assumptions are rigid when com-
pared with actual social spider biology. The
conclusions of the models are, however, rea-
sonably insensitive to realistic adjustments
in the assumptions. The robustness of the
models is evaluated in the Discussion.

Methods

The evolutionarily stable strategy (ESS)
method will be used here (Maynard Smith
and Price, 1973; Maynard Smith, 1982;
Taylor, 1988). First, assume that the pop-
ulation (collection of colonies) is in sex-ratio
equilibrium and that the equilibrium values
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for the jth generation females are {x*,}. Next,
assume that rare individuals produce a sex
ratio { } , where each Ej is small. If we
can find the set of equilibrium sex ratios
{x*,} such that, for each j, the fitness asso-
ciated with {x*j } is greater than the fitness
associated with fx*, + 	 for any small E.

we have found the ESS, which is a local
fitness maximum.

The first task is to decide how to measure
fitness. The reasonable choice is a method
that will measure relative contribution to
the gene pool in future generations, follow-
ing Fisher's (1958 pp. 27-30) general ar-
gument about reproductive value. The idea
that present behavior affects contribution to
the gene pool several generations into the
future has also been discussed in the context
of sex ratios, where the concept is referred
to as relative contribution to the "asymp-
totic gene pool" (Oster et al., 1977; Benford,
1978; Taylor, 1988, unpubl.).

Contribution to the asymptotic gene pool
can be measured by first developing a mea-
sure of expected number of descendants,
where, by construction, each descendant has
equal reproductive value. This measure of
long-term reproductive success, sometimes
called an "adaptive function," can then be
used in the Price (1970, 1972) equation,
which translates reproductive success and
patterns of interactions among relatives into
a measure of genetic success (Grafen, 1985;
Wade, 1985). A measure of long-term re-
productive success under the spider model
is obtained by assuming i) that an individ-
ual's number of descendants is proportional
to the total number of dispersing groups
produced by its colony, weighted by the in-
dividual's relative contribution to these dis-
persing groups and ii) that each of these
descendants has equal reproductive value.
This technique will be used to construct
adaptive functions. Further arguments con-
cerning this and other fitness measures used
below are delayed until the Discussion.

The second task is to choose a method
for finding the equilibrium sex-ratio values
{x*j} under the ESS criteria discussed above.
The values {x*j } are an ESS set if the current
frequency, q, of rare deviants with sex ratio
{x*, + €,,} is greater than q', the rare de-
viants' projected contribution to the asymp-

totic gene pool after one cycle of selection
(P. D. Taylor [unpubl.] has presented a sim-
ilar approach). In other words, we need to
find {x*,} such that Aq = q' - q is negative
for any set of small Ej . The Price equation
is a tool for locating an ESS that is valid for
any given population structure. The form
of the Price equation most useful for locat-
ing an ESS is

(°°)Aq = COv(ws(''), qs)

+	 asRs(ws,(°°), qsi) Vs(qs,),	 ( 1)

with the following definitions: Woo is pro-
portional to the size of the asymptotic gene
pool, as projected after one cycle of selec-
tion; an s-type colony has a frequency of
deviant individuals qs , and has a projected
contribution to the asymptotic gene pool in
proportion to ws(°°); the frequency of s-type
colonies is a s ; qs , characterizes the pheno-
type of an individual (let (La = 0 if the in-
dividual produces the common equilibrium
sex ratio, and qsb = 1 if it produces a deviant
sex ratio); ws,0°) is proportional to the total
reproductive value of an individual's de-
scendants after one cycle of selection, which,
depends on the phenotypes of other mem-
bers of the same s-type colony (wsa(°°) refers
to individuals producing the common equi-
librium sex ratio, and wsboo refers to indi-
viduals producing a deviant sex ratio); Rs
is the regression coefficient of w5 ,0°) with
respect to qs1 ; and Vs(qs ,) is the variance in
sex-ratio types (deviant or common) within
an s-type group.

If we let x*, = xja and x*j + = xjb , then
using a standard ESS technique, x*, can be
found by setting to zero the derivative of
W oo 464 with respect to xm, evaluating this
expression at xj, = xja = x*,, and checking
to insure that x*, is a local maximum.

Monomorphic Strategy

In this first model, I assume that there is
a single sex ratio produced by all individ-
uals, i.e., a monomorphic strategy. In the
second model below, I allow individuals to
adjust their sex ratios conditionally with re-
spect to generation (size) of their colony in
the growth and dispersal cycle. Notation-
ally, a monomorphic strategy is described
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by the constraint x*, = x* for all j, and for
the search process, xia = xa, = xb , and
E.) = E for all j. This condition may be viewed
as a constraint imposed by the sex-deter-
mining mechanism, in that particular ge-
netic mechanisms (e.g., haplodiploidy) ap-
pear to allow greater flexibility in conditional
sex-ratio adjustment than do other genetic
mechanisms (e.g., heterogametic sex chro-
mosomes).

A solution x* will be obtained by finding
expressions for wsoo , wsaoo and wsboo , sub-
stituting into (1), and following the proce-
dure outlined above. The value wsboo is
measured as the number of descendants of
a b-type (deviant) foundress that emigrate
from the colony during one cycle, where a
cycle begins with the founding generation
(generation 0) and ends with the death of a
colony. The progeny produced by mothers
of generation 0 through generation g — 1
do not emigrate; from generation g onward,
a portion of the progeny stay at home to
maintain a constant plateau-size colony,
while the rest disperse. Cycle fitness of a b-
type depends on the size of a plateau colony
(the result of growth during generations 0
to g — 1) and on the proportion of the col-
ony expected to have descended from a b-
type foundress, multiplied by the expected
number of dispersers per colony member
(dispersal from generation g to colony death)
and by the proportion of dispersers that are
expected to have descended from a b-type
individual.

To develop a measure of cycle fitness, a
measure is first needed for the effect of col-
ony size on the reproductive efficiency of
females living in an s-type colony during
the jth generation. Since the expected effect
of colony size on reproductive efficiency is
assumed to be the same for all females in
the colony, it will often be convenient to
refer to this measure as colony efficiency.

Two different interpretations of efficiency
will be used, corresponding to fecundity, on
the one hand, and colony survivorship, on
the other. Since efficiency may increase with
colony size, and since the colony size pla-
teaus in the gth generation, let colony effi-
ciency be one in g and later generations. A
simple way to describe colony efficiency in
the jth generation is as a function of the ratio
of colony size in the jth generation to final

plateau size in the gth and later generations.
Define the colony efficiency of an s-type col-
ony in the jth generation as

F(1)'
hsu)	 Jig

Pg)

where Fsw is the number of females in an
s-type colony in the jth generation, flg) is
the number of females in a plateau phase
colony with no deviant individuals, and 0
is a nonnegative parameter that determines
the rate of increase in efficiency as the col-
ony grows. The number of females is used
since females do nearly all of the work in
hunting, defending the colony, provisioning
the young, and maintaining the web, and
since the rate of colony growth depends on
the number of reproductive females and
their efficiency.

Next, a description is needed for the suc-
cess, in each generation, of deviant b-types
living within an s-type colony, denoted by
Zsb , which is proportional to the number of
grandprogeny of a deviant individual and,
therefore, represents the fitness of b-types
with respect to the total population. One
commonly used measure is a modification
of the Shaw-Mohler (Shaw and Mohler,
1953) equation that was first used by Ham-
ilton (1967):

xb
Zsb = — (1 — x5) + 1 — xb,

xs

where x, = p sxa + qsxb , and 19, and q, are
the frequencies of a-types and b-types, re-
spectively, in an s-type colony.

The total reproductive value, per cycle,
of descendants by a b-type living in a s-type
colony can now be written as

wsb(°°)	

(g- 1

Zsbhsu)
J=0

6Z,b  11 +1 1

• t L2(1 — x*)]

(Zsb)g( 
	 Zsb 

2(1 " OZsb

g— 1

. 11 h5U),	 (2b)
j=0

where 6 is the probability, in each genera-

(2a)



— g, (3c)

(3d)

(3e)

(30
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tion, of g and later generations successfully
producing offspring, and kw may be inter-
pretated as either the probability of colony
survival in generation j or the relative fe-
cundity of females. The first term in (2a) is
the expected size of a plateau-phase colony,
including a component for the probability
that the colony survives to the dispersal
phase if hso) is interpretated as a colony-
viability measure, and the second term is
the expected number of dispersing females
produced per adult female in the colony.
Each term is weighted by Zsb , the success
of b-types that live in an s-type colony, rel-
ative to the population as a whole.

There are two cases to consider. In the
first, hsw is a fecundity measure, and, in the
second, it is a measure of the likelihood of
colony survival. Since we are interested in
wsb(°°) as a function of xb or xs , it is useful
to rewrite the product of the h50) values as

g-

hs(j) =	
hwXsui	 - 1]	 (3a)

j=0

g— 1

= (XSfJ hu)	 (3b)
j=0

for fecundity, with

and as
g—
	 g-

kJ) = 11 1/0)(A-sr
J=0	 J=0

g— 1

= (xsy fJ hu)

j=0

for survival, with

lYg(g — 1)
2

where Xs [(1 — xs)/(1 — x*)] , and h' is
the efficiency of a colony with no deviant
individuals.

To obtain a solution, expressions are
needed for substitution into (1) for Cov(wsoo,
qs) and Rs(ws,("), qs,) in terms of xa , xb , and
xs . The value for wsoo is obtained from wsboo
by replacing xb with xs in (2b), and

Cov(ws( qs) =	 asws(—)(qs - q).

Sl	 qSI) is

Rs( si(°°) , qs1) = Wsb	 sa

since qsb = 1 and qsa = 0, where wsaoo is
obtained by replacing b with a in (2b). Sub-
stituting into (1) and setting to zero the de-
rivative of W Aq with respect to xb, eval-
uated at xa = Xb = x*, yields

—2(F + G)Va + G
(  — 2x)

= 0 (4)

where F was given in (3c) for a fecundity
model, and in (3f) for a colony-survival
model, G = g + 1/(1 — (5) is proportional
to the expected life span of the colony, Va
is the variance in qs among colonies, and.
Vwg is the average variance in qs, within col-
onies. Solving yields

(1 — p)
x* =	 (5)

2[1 + p(—
G

)]

where p = Va/Vt and Vt = Va + Vwg is the
total variance in qs, in the population. The
form of p suggests that it is some sort of
genetic correlation measure, and, following
the conjecture by Frank (1986a, 1986b),
supported in a similar study by Taylor
(1988), the proper interpretation of p in this
situation appears to be a pedigree or regres-
sion coefficient of relatedness of the con-
trolling genotype (mothers in this case) to a
male or female (depending on the context)
chosen randomly from the progeny gener-
ation within the colony.

The interpretation of the ESS is easier
when the sex ratio is written in ratio form
(genetic value of sons) : (genetic value of
daughters) (Frank, 1986a, 1986 b), yielding

(1 — p): (1 + p) + 2p— (6)
G •

The term for sons and the first term for
daughters is (1 — p):(1 + p), which is the
result for this sort of multigeneration model
when there is no association between colony
size and efficiency (Frank, 1986a). For a
multigeneration model in which the local
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carrying capacity is reached before the gen-
eration in which dispersal occurs (fecundity
declines with increasing colony size), the ge-
netic value of daughters is (1 + p), minus a
discount for competition among daughters
and female relatives once the carrying ca-
pacity has been reached (Frank, 1986a). This
discount for females is the product of p and
the intensity of competition among females
and, with respect to the genetic value of
daughters, represents a negative synergism
between relatedness and competitive inter-
actions among females over resources nec-
essary for reproduction.

The form of the second term of the genetic
value of daughters in (6), 2p(F/G), suggests
that in the spider model there is a positive
synergism between relatedness, p, and co-
operative interactions among females in
generating or conserving resources neces-
sary for reproduction or in increasing the
likelihood of colony survival. This positive
synergism has simple interpretations. For
the case of fecundity, when the colony is in
its early stages of growth and is increasing
in efficiency in each generation, making a
daughter i) confers a benefit equally to all
members of the colony during the current
generation, since fecundity depends on the
number of females and ii) confers a benefit
to all future colony members, since the col-
ony will grow faster because it is more fe-
cund and will become fecund faster since
fecundity depends on colony growth. For
the case of colony survival, an extra daugh-
ter increases survivorship equally for all
members of the colony in the current prog-
eny cohort and enhances the survivorship
of future generations by increasing the size
of future cohorts, but this case lacks the
positive feedback between growth and ef-
ficiency that occurs in the fecundity case.
The magnitude of the effect (F) for fecundity
[Eq. (3c)] is therefore greater than or equal
to the magnitude of the effect for colony
survival [Eq. (3f)]. In each, the increase in
efficiency is the cooperative effect repre-
sented by 2F/G, and the genetic value of
this cooperative effect depends on p, the
mother's relatedness to females with whom
her daughters interact.

It is useful to dissect the cooperation term,
2F/G, and gain some insights into what the
model tells us about demography and sex

ratio. G = g + 1/(1 — 6) is the expected
lifespan of a colony with nonzero cycle fit-
ness, i.e., one that has successfully produced
a (g + 1)th generation, which includes the
first dispersing females. For the case in which
efficiency has a fecundity interpretation, r,
given in (3c), describes the rate at which the
size of the plateau-phase colony increases
with an increasingly female-biased sex ratio,
Xs , that can be attributed to increased effi-
ciency during the g generations of growth.
When efficiency is interpretated as the prob-
ability of colony survivorship, F in (3f) is
the relative likelihood of a colony success-
fully achieving the plateau-phase size and,
therefore, of successfully producing females
that disperse. Limiting cases are instructive
and apply equally to fecundity and survival
interpretations. As t 0, the increase in
efficiency with increasing colony size goes
to zero (F --+ 0), and the cooperative effect
disappears. If g = 1, then the number of
progeny produced by the founding genera-
tion is the plateau size of the colony, there
is no opportunity for cooperative effects, and
again F = 0. As 6 approaches one, the ex-
pected lifespan of the colony, G, approaches
infinity; therefore the relative number of
generations in which there is an opportunity
for cooperation by producing extra daugh-
ters (the first ggenerations) approaches zero,
and 0. In general, cooperative effects
increase when g is large and 6 is small, so
that opportunity for cooperation is rela-
tively frequent, and also when t is large, so
that the effects of cooperation on efficiency
are large. The effects of these parameters on
the sex ratio are illustrated in Figure 1, for
the case in which r is interpreted as a mea-
sure of increasing fecundity with colony size.
The trends are the same when r is a measure
of colony survival, but the magnitude of
female bias is slightly less. For example,
when g 4, 5 = 0.5 (the graph in the middle
of the upper row) and p = 19- = 0.5 (dot in
the center of the graph), then x* = 0.1875
when efficiency is interpreted as fecundity
and x* = 0.20 when efficiency is interpreted
as colony survivorship.

Conditional Strategy

Suppose that instead of producing the
same sex ratio in every generation, x*, = x*
for all j, a female spider can adjust the sex
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FIG. 1. Predicted sex ratios for the monomorphic-strategy model, where efficiency is interpreted as having
an effect on fecundity. There are four parameters in the model: p is the relatedness of the genotype that controls
the sex (here assumed to be mothers) to a randomly chosen member of the colony from the progeny generation;
d determines the rate at which efficiency increases as colony size increases, where /3 = 0 is no increase and /.3 =
1 is a linear increase; g is the number of generations during which the colony grows without dispersing progeny;
and (5 is the probability, in each of the gth and later generations, that a colony survives and reproduces. The
height of each graph, x, is the equilibrium sex ratio (males/total) predicted by the model, and the dashed lines
mark sex-ratio contours at 0.1, 0.2, 0.3, and 0.4. The large dot at the center of each graph is at p = = 0.5.

ratio of her progeny conditional on her gen-
eration in the growth cycle of the colony or,
equivalently, on the size of her colony com-
pared with the size of a plateau-phase col-
ony. Instead of xa , xb , and x„ we must now
consider fx,a 1, {xi-0 and fx1. To develop a
conditional model of this sort, a revised no-,
tion of cycle fitness is needed. In the mono-
morphic case above, wsb(°°) represents the
projection of the total reproductive value of
deviant b-types after one complete cycle of
deviant sex-ratio behavior, where a cycle is
from the founding generation until the col-
ony dies. For a model in which sex ratio is
conditional on generation, j, the proper
measure of fitness is wsbo --), where j Go
denotes the effect of deviant sex-ratio be-
havior, in the jth generation, on the total
reproductive value of descendants relative
to the asymptotic gene pool. See the Dis-
cussion for a more complete argument about
fitness measures.

The strategy for a solution {x } is to as-.
sume, for each j, that b-types produce a de-
viant sex ratio in the jth generation and the
normal equilibrium sex ratio in all other
generations. The terms wsb°—) a  ,  and

ws(i- Qc) are used to obtain the covariance and
regression terms for (1), as in the mono-
morphic case, and then, for each j, vi/o0Aq
is differentiated with respect to xib , evalu-
ated at xib = xja = x*,, and this derivative
is set to zero. Since we will differentiate with
respect to xj-b , we need only the part of wsbo-°°)
that depends on xib . From (2b)

 fl hs(k) < g
S
	

k=j-E1
	

(7)

where Zjsb is the same as ZSb (see mono-
morphic case above), with xa, xb, and xs
replaced by xia, xib and xis. A more conve-
nient form of hs(k) is needed for (7), as in
(3),

k-

hs(k) = h(k) fJ
 

(XdS) 1 
+0)k-d-	(8a)

d=0

Zisb	 g

for fecundity, and

hs(k) = h(k)(Xds)	 (8b)

for colony survival where Xds = (1 — xds)/



1 — p 

2(1 + fyyj)

( 1 —p)	 g — 1
2

(9a)

j < g — 1

{

(1 + 0)g-	 — 1
0

j < g 1
(9b)j g — 1

with

=
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FIG. 2. Predicted sex ratios for the conditional-strategy model, where efficiency is interpreted as having an
effect on fecundity. This figure is identical to Figure 1, except that the predicted sex ratio, x*,, in the conditional
model does not depend on 6, but does depend on the generation, j, in the colony growth cycle.

(1 — x*,), and d is a subscript referring to
generation. Following through yields Eeyj) =

1	 _ 12
G

for fecundity, and with

(g — 1 —	 j < g — 1 (9c)0	 j g — 1

for colony survival. Equation (9a) in the
ratio form of genetic value of sons to genetic
value of daughters is

(1 — p): (1 + p) + 2pftyj .	 (10)

The relationship between the monomor-
phic and conditional solutions is simple and
instructive, and it applies equally to fecun-
dity- or survivorship-interpretations of ef-
ficiency. For colonies that successfully dis-
perse individuals,

In words, FIG is the average cooperative
effect (on either fecundity or survival) of the
conditional strategy over all generations,
and this average is equivalent to the coop-
erative effect in the monomorphic case,
shown in (6). When the spiders can adjust
their sex ratio conditionally, the coopera-
tive effect is strongest in the early genera-
tions and disappears once the colony reach-
es its plateau-phase size. The sex-ratio effects
for the fecundity interpretation of efficiency
are illustrated in Figure 2, for the same pa-
rameter values as Figure 1, except that j now
determines the conditional strategy and 6
has no effect. The survivorship interpreta-
tion of efficiency yields the same trends,
but with a slightly smaller effect on the mag-
nitude of sex-ratio biases towards an excess
of females. For example, the dot in the mid-
dle graph of the upper row is x* = 0.154,
when efficiency is interpreted as fecundity,
and would be x* = 0.167 for the same pa-
rameter values, if efficiency were interpret-
ed as survivorship.

DISCUSSION

The theory presented in this paper has
two functions. First, it has a place in formal

=
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sex-ratio theory and, more generally, in the
theory of social evolution. Second, these
models clarify patterns of selection that may
be important for understanding social evo-
lution in spiders and suggest a number of
directions for future empirical and theoret-
ical work.

Formal Theory

Methodology. -The use of Price's (1970,
1972) covariance method, or hierarchical-
selection theory, for sex-ratio problems has
been discussed in detail elsewhere (for the
manner presented here, see Frank [1986a,
1986b, 1987]; for a different treatment, see
Taylor [1988]). The essence of the method
is to examine the effect of a current behavior
on relative contribution to the gene pool at
some time in the distant future (asymptotic
gene pool [Oster et al., 1977; Benford, 1978;
P. D. Taylor, unpubl.]) by combining Fish-
er's (1958 pp. 27-30) concept of reproduc-
tive value under complex demographic as-
sumptions with Hamilton's (1964a, 1964b,
1972) concept of genetic value for interac-
tions among relatives. Reproductive value
is embodied in the adaptive function, which
is a statement about the number of equally
valuable descendants following one cycle of
selection, when measured relative to the
asymptotic gene pool. Reproductive value
can then be translated into genetic value by
use of the Price equation, which corrects for
the effects of interactions among relatives.
Here, I will discuss the multigeneration life-
cycle measure of reproductive value — the
adaptive function—that I used with the Price
equation to derive the models presented in
this paper.

The model assumed that the colony was
founded by a small group of males and fe-
males or by already mated females. The in-
dividuals forming the founding group may
be from different parent colonies; the only
restriction is that there be a fixed number
of females in the founding group. The col-
ony grows for g generations, without any
immigration or emigration, and after g gen-
erations the colony has reached its stable
plateau-phase size. In the (g + 1)th and later
generations most of the offspring disperse,
and only enough remain at home to main-
tain the colony size. A measure of the num-
ber of direct descendants is needed, in which

each descendant is weighted so that it has
an equal reproductive value; in this context
we need the effects of sex-ratio phenotypes
on reproductive value after one cycle of se-
lection. The definition of "one cycle of se-
lection" must be considered with respect to
the technique used to find the ESS.

One way to describe the method is to be-
gin by assuming that there is a common
allele and a rare allele at the locus that con-
trols the sex ratio, and that both homozy-
gotes and heterozygotes have the same sex-
ratio phenotype. Suppose, however, that
during one cycle of selection, the rare allele
causes its bearers to produce a sex ratio that
deviates slightly from the typical value. Af-
ter this one cycle, both homozygotes and
heterozygotes again produce the common
sex ratio. Then, by using an adaptive func-
tion and the Price equation, one can project
onto the asymptotic gene pool the change
in the frequency of the rare allele. If the rare
allele is less frequent in the asymptotic gene
pool than before the deviant cycle, for any
small deviation, then the common sex ratio
must be an ESS (P. D. Taylor, unpubl.).

The definition of a "cycle" for the mono-
morphic case is straightforward. Recall that
for a monomorphic strategy, the sex ratio
must be the same in each generation of the
growth- and plateau-phase of a colony, in
spite of the possibility that selection may
favor different phenotypes at different phas-
es of colony growth. So, beginning with the
founding generation and continuing on until
the death of its colony, a deviant mono-
morphic phenotype will be subjected once
to each selection regime, and thus this pe-
riod is a single cycle of selection. Next, the
results of one cycle of selection must be
translated into an adaptive function—in
other words, a statement about the numbers
of descendants of equal reproductive value.
The method used in this paper is to weight
equally each group of potential foundresses
dispersed by the colony and to weight the
value of each group by the relative contri-
bution of deviant types. The only difficult
assumption implicit in this method is that
the value of a group dispersing in a partic-
ular generation is exactly the same as the
value of groups dispersing in later genera-
tions. For this particular sex-ratio model,
the relative valuation of sons and daughters
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is not affected by a difference in the relative
number of generations of future growth
available to different sets of dispersers, since
any advantage of extra generations is con-
ferred equally to sons and daughters. There-
fore, it is justified in this case to weight each
dispersing group equally, independent of the
generation in the plateau-phase in which
they were born.

The method for constructing cycle fitness
and asymptotic contribution differs for the
conditional-strategy model. Since sex ratio
is now conditional on generation number in
the growth of the colony, each generation
has to be treated separately. Suppose we are
searching for the equilibrium sex ratio in
the jth generation, x*,. Once again, it is as-
sumed that there is a common allele and a
rare allele and that both homozygotes and
heterozygotes typically produce the same sex
ratio, although their common sex ratio now
depends on generation in the colony. Only
in the jth generation of a single colony-
growth period is the slight deviation of the
heterozygotes expressed. Therefore, one
cycle of selection is simply the jth genera-
tion of a particular colony-growth period,
and is represented by Zjsb in (7). The con-
sequences of one cycle of selection with re-
spect to numbers of equally valuable de-
scendants are not as simple in this case.
During the growth phase of a colony, extra
daughters (but not extra sons) can increase
the reproductive success of all progeny in
the same and following generations by in-
creasing the colony efficiency (either fecun-
dity or survival); see Equation (7) for the
case j < g, where cycle fitness, Zjsb , is
weighted by an efficiency factor that de-
pends on xi . This weighting gives a proper
measure of the total reproductive value of
descendants as a function of deviant sex ra-
tio in the jth generation of one-colony growth
period.

Fitness, Fecundity, and Colony Surviv-
al. —Colony efficiency is assumed to in-
crease with increasing colony size in all
models, at a rate described by the parameter

For example, when t —> 0, there is no
increase in efficiency with size, and when

= 1, efficiency increases linearly with size.
Efficiency in the models has two separate
interpretations, each leading to similar

qualitative results, which differ slightly in
magnitude. In each case, genetic variability
for the sex ratio among colonies leads to
variability in efficiency, since the rate of col-
ony growth depends on the sex ratio.

By one definition, efficiency describes the
effect of colony size on the fecundity of fe-
males in the colony. As the colony grows
larger, it may become more efficient in web
maintenance, hunting, care for young, and
so on, ultimately leading to more energy
available for reproduction. Differences in
efficiency among colonies lead to differences
in fecundity and productivity among colo-
nies and so may favor an increased female-
bias in the sex ratio by the process of group
selection, according to the amount of ge-
netic differentiation among colonies (Col-
well, 1981). I have presented the results of
the models in an alternative and equivalent
way (Frank, 1986a), by considering the in-
teraction between increasing efficiency and
relatedness in the local group, p. This allows
causal mechanisms to be identified more
clearly, as in (6) and (10) (see below).

By a second definition, efficiency de-
scribes the effect of colony size on the prob-
ability of colony survival (viability), which
in turn affects individual survival, where
survival increases with increasing colony size
at a rate described by /9-. Differences in ef-
ficiency among colonies lead to differential
rates of extinction and, therefore, may also
favor an increased female bias by a process
of group selection. Again, I used an alter-
native description. The production of more
daughters (and fewer sons) by a female con-
fers a benefit to colony members, related by
p, because an extra daughter leads to greater
colony growth and, therefore, a greater like-
lihood of survival.

Sex-Ratio Theory. - Past work on mul-
tigeneration sex-ratio models has been re-
viewed by Charnov (1982 pp. 72-73) and
Frank (1986a). The main class of models
assumes that each patch is colonized by a
constant number of already mated females,
the colony grows for a fixed number of gen-
erations, and then either the already mated
females of the final generation disperse and
begin the cycle again, or mating occurs ran-
domly in the dispersal pool before females
settle out and begin to colonize new patches
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to form the next generation. This model is
called the haystack model (Bulmer and Tay-
lor, 1980). In a previous paper (Frank
1986a), I studied a haystack model, with a
monomorphic strategy, in which there is a
fixed carrying capacity in each patch. I found
that the earlier in the growth cycle that a
colony reached its carrying capacity, the less
female-biased its sex ratio would be (see also
Wilson and Colwell [1981]). My interpre-
tation of this result is that the density-in-
dependent equilibrium is favored early in
the growth cycle, before the carrying capac-
ity is reached, and that a 1:1 sex ratio is
favored in those generations after the car-
rying capacity is reached. The monomor-
phic strategy is the result of a weighted av-
erage of the phenotypes favored by different
selection regimes.

The models presented here are extensions
of the haystack model. Instead of increasing
competitive interactions with increasing
density, an assumption of the spider model
is that there is an increasing efficiency with
increasing density, leading to increased fe-
cundity or, alternatively, to increased col-
ony survivorship. The conditional model
discussed above shows that selection often
favors different sex-ratio phenotypes in dif-
ferent generations, because of the changing
effect with generation of current sex ratio
on future efficiency. When extra females
have a strong positive influence on future
efficiency, then selection favors a more fe-
male-biased sex ratio. This effect is strong-
est in the earliest generation and declines
steadily to zero when the colony reaches its
plateau-phase size. The monomorphic
strategy is simply the average of the con-
ditional strategies, taken over all genera-
tions.

The conditional model clarifies the pat-
tern of selection across generations. In ad-
dition, comparison between the conditional
and monomorphic models provides a way
to quantify the constraint of the sex-deter-
mining mechanism on the optimization of
(additive) autosomal fitness. This type of
measure would be useful when considering
the joint evolution of sex ratio and sex-de-
termining mechanism.

Social Evolution Theory. -An interesting
result of these spider models is that the sex

ratio is affected by an interaction between
a cooperative-effects term and a genetic-re-
latedness term. The cooperative effects are
the increased efficiency in future genera-
tions caused by extra females (and fewer
males) produced by an individual in the jth
generation. The value of increased efficiency
arising from extra females in the jth gen-
eration is and averaged over all genera-
tions is FIG. Since the optimal sex ratio can
be viewed as the genetic value of sons rel-
ative to the genetic value of daughters, the
genetic value of daughters is increased by
p-y,, the cooperative effects through in-
creased efficiency conferred on all members
of the colony, 7;, weighted by the average
relatedness, p, of the mothers (or unit con-
trolling the sex ratio) to colony members.
This synergism between cooperative effects
and relatedness is of the general form pre-
sented by Queller (1985), and the synergistic
interpretation arises naturally from the con-
text of the spider model.

Social Spider Biology

The models have thus far been treated as
formalisms, arising from a simple set of as-
sumptions. I now examine these assump-
tions and their consequences in light of the
biology of social spiders. First, I relate the
predicted qualitative trends in the sex ratio
and the assumptions of the model to the life
history of social spiders. Second, I suggest
ways to construct a more complete descrip-
tion of the traits that affect the sex ratio and
social structure of spiders.

Both the monomorphic and conditional
models make testable predictions about the
relationship between sex ratio and patterns
of colony growth and population structure.
Many of these predictions have been men-
tioned above while developing and discuss-
ing the theory; however, it is useful to recast
these predictions in a more applicable form.
The predictions apply equally to both via-
bility and fecundity interpretations of effi-
ciency. The magnitudes of the effects tend
to be slightly greater for the fecundity in-
terpretation.

The first two predictions hold for both
monomorphic and conditional strategies: i)
the greater the genetic differentiation among
colonies (relatedness within colonies, p) , the
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more female-biased is the predicted sex ra-
tio (Aviles, 1986b); ii) the greater the in-
crease in colony efficiency with colony size,
/9-, the more female-biased is the predicted
sex ratio. The following predictions focus
on differences between the two types of sex-
ratio control: iii) if the sex ratio is mono-
morphic, then the greater the ratio of gen-
erations of colony growth, g, to generations
in which the colony is at a constant plateau
size, G - g, the more female-biased is the
predicted sex ratio (Fig. 1); iv) if the sex
ratio is conditional, the more generations
remaining before the colony achieves its sta-
ble-plateau size, g - j, the more female-
biased is the predicted sex ratio (Fig. 2).

Although selection will usually favor con-
ditional over monomorphic behavior, the
advantage of conditional behavior may be
negligible in some situations. A conditional
strategy will be increasingly favored over a
monomorphic strategy v) as the potential
increase in efficiency caused by extra fe-
males, t, increases, vi) as the number of
generations, g, in which the colony grows
before reaching its plateau size increases,
and vii) as the expected number of gener-
ations that the colony survives during its
plateau phase, G - g, increases. The data
presently available do not indicate that sex
ratio varies with colony size in the social
theridiids Achaearanea wau (Y. D. Lubin,
unpubl.) and Anelosimus eximius (Aviles,
19861); Vollrath, 198 6b), although these data
are not sufficient to rule out conditional be-
havior by these species. No data are avail-
able on whether the sex-determining mech-
anism might be sufficiently flexible to allow
conditional behavior to evolve, but it is
worth noting that conditional sex-ratio ad-
justment has been demonstrated in diploid
aphids (Yamaguchi, 1985). See Vollrath
(1986a) and Aviles (1986b) for a discussion
of possible sex-determination mechanisms
and their implications for social spider sex
ratios.

These predictions suggest the sort of field
data that is needed in order to gain a deeper
appreciation of the patterns of selection and
constraints that have shaped the sex ratios
and social structures of spiders. However,
these predictions are the logical results de-
rived from a rather rigid set of assumptions
about the life histories of social spiders (see

General Assumptions above). This set of
assumptions was chosen both for making
the mathematics tractable and for its ro-
bustness; in other words, the predictions are
often insensitive to realistic departures from
these assumptions. I now present some evi-
dence and further arguments for my claim
of robustness and point out where I feel
extensions of the theory would be most use-
ful.

In order to simplify the algebra, the
models were based on a sharp change be-
tween colony growth with no dispersal early
in the life cycle and dispersal with no further
increase in colony size late in the life cycle.
The switch between growth and dispersal in
the models depends on generation number
rather than colony size. Colony size and
generation number are equivalent in the for-
mal equilibrium models presented above,
and therefore one may freely switch be-
tween size and generation-number interpre-
tations of the models. It seems likely that
colony size is the more important demo-
graphic variable in nature, with colonies
perhaps switching from mainly growth to
mainly dispersal above a certain size (see
below), a trend for which these models are
reasonably robust in their predictions.

The rate of increase in efficiency is pa-
rameterized by t, where = 0 implies that
efficiency is independent of colony size. For
example, if t = 0.5 and the colony does not
gain in efficiency after it has N females, then
efficiency at size N/2 is 1/0 = 0.71. A for-
mal assumption of the model is that once a
size of N females is achieved, the colony
disperses many individuals and grows no
larger. The general trends predicted by the
models require only that dispersal increases
and that efficiency does not decline with in-
creasing colony size (see Frank [1986a] for
the case of declining fecundity). The general
trends therefore hold even when N is not
the largest size obtained by the colony, but
the size beyond which efficiency no longer
changes. Formally, the model handles a wide
range of efficiencies, so robustness is not a
problem. The model could be extended so
that efficiency is a general function of chang-
ing colony size — perhaps increasing while
the colony is small and growing and then
decreasing after it achieves some particular
size. Most of the interesting predictions of
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the present formulation depend on efficien-
cy increasing during the early phases of col-
ony growth, so data on this point are of
interest.

Long-term studies of colony growth and
survivorship in social spiders are generally
lacking. Small colonies, which are typically
young, have lower survivorship than large
colonies, which are typically older in the
social species Anelosimus eximius (Voll-
rath, 1982), Agelena consociata (Riechert,
1985; Riechert et al., 1986), and Achaear-
anea wau (Lubin, unpubl.). Silk deposition
per female declines considerably as the
number of females per local group increases
(Riechert et al., 1986; Tietj en, 1986). A nine-
fold decline was observed in laboratory
studies of Mallos gregalis as the number of
females increased over the range 1-20, with
total web size and complexity also increas-
ing (Tietjen, 1986). These data suggest that
two components of efficiency increase with
colony size: survivorship, and energy in-
vested in web maintenance. However, com-
petitive interactions among females of A.
consociata may also increase with colony
size, leading to lower fecundity (Riechert,
1985; Riechert et al., 1986). It is an open
question whether the combined effects of
changes in viability and fecundity with in-
creasing colony size lead to an overall in-
crease in expected reproductive success.

The models assume a rigid pattern of im-
migration, emigration, and colony growth
(assumption vi). Colonies grow and do not
disperse individuals during a fixed number
of generations, g, and in later generations
disperse a large proportion of individuals.
In general, the qualitative conclusions of the
model hold as long as there is a tendency
for dispersal to increase with increasing col-
ony size. These assumptions concerning
growth and migration are based on the bi-
ology of Achaearanea wau, on one hand,
and on an analogy with social insects, on
the other. Colonies of A. wau grow for two
or more generations without dispersal. Only
large (old) colonies of A. wau produce dis-
persal swarms. The swarms generally con-
stitute a large fraction of the colony popu-
lation (Lubin and Robinson, 1982). Oster
and Wilson (1978 p. 55) have shown, under
a very wide range of assumptions, that so-
cial insect colonies are favored if they pro-

duce only workers during the first several
generations after founding, and then switch
abruptly to making a large fraction of re-
productives. The reasoning is similar to the
spider model: social insect colony efficiency
increases during the early generations and
then eventually reaches a plateau-phase.
Production of reproductives (dispersing in-
dividuals) generally begins when there is lit-
tle potential for a further increase in effi-
ciency. Oster and Wilson's (1978 p. 56)
review of the available data suggests that
this pattern of growth and reproduction is
typical of social insects. This leads to another
analogy with social insects: the extra fe-
males favored early in colony growth in the
conditional spider model represent an in-
crease in the worker force of the spider col-
ony, since in all social spiders the females
do the majority of the work in the web
(Wickler, 1973; Brach, 1975; Tapia and De
Vries, 1980; Lubin, 1982; Vollrath and
Rohde-Arndt, 1983; Christenson, 1984). In
this sense, a single female spider embodies
both a worker and a reproductive.

While there is some preliminary evidence
on colony growth and female movement,
the situation for males is less clear and is a
good focal point for empirical and theoret-
ical studies. If the relatedness among colony
members is high, then some dispersal may
be favored, even though dispersal is likely
to be very risky (Hamilton and May, 1977;
Frank, 1986c). If males successfully emi-
grate into established colonies or founding
groups, this would affect population struc-
ture, p, and would reduce the competition
among male relatives. This would perhaps
affect the genetic value of males, which
would affect the predicted sex ratio. See Lu-
bin (1986) for a discussion of mating com-
petition among males and dispersal in
Achaearanea wau. Electrophoretic studies
of A. wau by Lubin and Crozier (1985) sug-
gest that nearly all of the genetic variability
in the study population is among geograph-
ically separated clusters of colonies. Similar
results were obtained for Anelosimus exi-
mius (Smith, 1986), and Agelena consociata
(Riechert et al., 1986). Male migration over
short distances may therefore have little ef-
fect on population structure.

In general, if migration between geneti-
cally differentiated groups is as rare as the
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present evidence suggests, the actual details
of mixing will have little effect on the con-
clusions of the models. From a formal the-
oretical point of view, however, it is worth
noting some uncertainties that may arise if
migration is more common than presently
believed. I have treated p as a given param-
eter of the models, rather than a variable
subject to selection. Previous experience
suggests that this is often justified in an equi-
librium analysis and that one may calculate
p based on the particular assumptions of
migration and then substitute the result into
the general model (compare Bulmer [1986]
with Frank [1986b]). A difficulty may arise,
however, since migration rates for spiders
are likely to be under selection: changes in
migration will affect patterns of interactions
among male relatives, which influence the
sex ratio. Formal robustness of these simple
models can only be determined by a global,
dynamic model that treats all of these fac-
tors simultaneously, and by further studies
of male movement in natural populations.

The difficulties of simultaneously treating
selection of migration rates and population
structure, rather than treating population
structure as a given parameter of the model,
suggest that further theoretical work may
reveal additional complexities important for
understanding social spider evolution. The
qualitative predictions are, however, rea-
sonably insensitive to the patterns of mi-
gration, except perhaps for the presently
unobserved case when males frequently mi-
grate, and are robust when dispersal tends
to increase with increasing colony size. The
seven general predictions presented above
are therefore useful and robust guidelines
for future studies of sex ratio and social evo-
lution in spiders.
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