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The Price equation describes the change in populations. Change concerns
some value, such as biological fitness, information or physical work. The
Price equation reveals universal aspects for the nature of change, inde-
pendently of the meaning ascribed to values. By understanding those
universal aspects, we can see more clearly why fundamental mathematical
results in different disciplines often share a common form. We can also inter-
pret more clearly the meaning of key results within each discipline.
For example, the mathematics of natural selection in biology has a form
closely related to information theory and physical entropy. Does that mean
that natural selection is about information or entropy? Or do natural selec-
tion, information and entropy arise as interpretations of a common
underlying abstraction? The Price equation suggests the latter. The Price
equation achieves its abstract generality by partitioning change into two
terms. The first term naturally associates with the direct forces that cause
change. The second term naturally associates with the changing frame of
reference. In the Price equation’s canonical form, total change remains zero
because the conservation of total probability requires that all probabilities
invariantly sum to one. Much of the shared common form for the mathe-
matics of different disciplines may arise from that seemingly trivial
invariance of total probability, which leads to the partitioning of total
change into equal and opposite components of the direct forces and the
changing frame of reference.

This article is part of the theme issue ‘Fifty years of the Price equation’.
1. Introduction
Problems often concern change. How does natural selection alter a population?
Howdoes force changepositionandvelocity?Howdoes climate affect biodiversity?

Many forces act on a system. We cannot know all of them. The Price
equation helps by partitioning change into components. One component
isolates particular forces. The second component includes everything else.

For a system that changes in a specific way, the equation does not tell us
which forces to isolate. We could focus on climate. Or we could focus on a
meteor explosion. No matter what forces we isolate, the overall system changes
in the same way.

The Price equation’s isolation of forces helps because it ‘focuses attention on
the forces, not on the moving body’ [1, p. 89]. Force associates with cause. We
may be more interested in understanding cause rather than describing motion.

Different fields focus on different forces. Yet, no matter the focus,
disciplines often share a common underlying expression of force and a
common partitioning of total change into components.

That unity arises from a simple conservation law for total change. The Price
equation partitions the conserved total into a component for the direct forces
and a component for the changing frame of reference.

From the Price equation’s abstract partitioning, one obtains many of the
fundamental mathematical equations of change that recur across disciplines.
For example, common expressions of information arise as a simple invariant
measurement scale of geometric divergence caused by the forces of change.
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Table 1. Definitions of key symbols and concepts.

symbol definition equation

q vector of frequencies with
P

qi ¼ 1 (2.1)

z values with average �z ¼ q � z; use z≡ a, F, etc. for specific interpretations (2.1)

Δq discrete changes, Δqi = qi0 − qi, may be large (2.1)

dq small, differential changes, Δq→ dq (5.2)

a relative change of the ith type, ai ¼ Dqi=qi ! _qi=qi ¼ log q0i=qi (3.1)

m Malthusian parameter, m = log q0/q, log of relative fitness, w (8.1)

w relative fitness, wi = qi0/qi, with m = log w (3.1)

F direct nondimensional forces, may be used for values z≡ F (4.2)

I inertial nondimensional forces, may be interpreted as acceleration (6.4) (6.3)

Δq · F abstract notion of physical work as displacement multiplied by force (4.2)

F Fisher information, nondimensional expression (5.3)

L likelihoods, Lu, for parameter values, θ; interpreted as force, F≡ L (9.2)

ΔF partial change caused by direct forces, e.g. Δq · F or Δq · ϕ or Δq · L (4.2)

k�k Euclidean vector length, e.g. kzk or kFk or kDqk (4.1)

r unitary coordinates, r ¼ ffiffiffi
q

p
, with krk ¼ 1 as invariant total probability (5.4)
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In prior articles, I used the Price equation to show the
unity among the fundamental equations of many different
fields of science [2,3]. This article emphasizes the basic
concepts and geometric intuition.1
2. The Price equation
I begin with an abstract mathematical derivation of the Price
equation. I then connect the abstract mathematical equations
of change to particular examples.

The examples in later sections include the work done by
physical forces, the information gained by the force of natural
selection, and the updated Bayesian inference achieved by the
‘force’ of new data. See Frank [2] for further examples.

The Price equation describes the change in the average
value of some property between two populations [4,5].
A population is a set of things. Each thing has a property
indexed by i. Those things with a common property index
comprise a fraction, qi, of the population and have average
value, zi, for whatever we choose to measure by z. See
table 1 for a summary of notation.

Write q and z as the vectors over all i. The population
average value is �z ¼ q � z ¼ P

qizi, summed over i.
A second population has matching vectors q0 and z0.

Here, qi0 is the fraction of the second population derived
from entities with index i in the first population. Similarly,
zi0 is the average value in the second population of members
derived from entities with index i in the first population. Let
Δ be the difference between the derived population and the
original population, Δq = q0 − q and Δz = z0 − z.

The difference in the averages is D�z ¼ q0 � z0 � q � z. By
using the definitions for Δq and Δz, we can write the change
in the average as the abstract form of the Price equation

D�z ¼ Dq � zþ q0 � Dz: (2:1)

The first term, Δq · z, is the partial difference of q holding z con-
stant. The second term, q0 · Δz, is the partial difference of z
holding q constant. In the second term, we use q0 as the con-
stant value because, with discrete differences, one of the
partial change terms must be evaluated in the context of the
second set.

Note that q has a clearly defined meaning as frequency,
whereas z may be chosen arbitrarily as any values assigned to
members. The values, z, define the frame of reference. Because
frequency is clearly defined, whereas values are arbitrary, the
frequency changes, Δq, take on the primary role in analysing
the structural aspects of change that unify different subjects.

The primacy of frequency change naturally labels the first
term, with Δq, as the changes caused by the direct forces
acting on populations. Because q and q0 define a sequence
of probability distributions, the primary aspect of change
concerns the dynamics of probability distributions.

The arbitrary aspect of the values, z, naturally labels
the second term, with Δz, as the changes caused by the
forces that alter the frame of reference. Those forces that
change the frame of reference are sometimes called the inertial
forces [1].

It is, of course, possible to interpret the terms in other
ways. The equation itself is a simple mathematical identity.
That identity has no intrinsic meaning beyond the fundamen-
tal partitioning of the change in an average value, D�z, into
two components of change.

The Price equation is often written as

D�z ¼ Cov(w, z)þ E(wDz),

in which w is relative fitness, as defined below equation (3.1).
This expression is equivalent to equation (2.1), because
Cov(w, z) = Δq · z and E(wΔz) = q0 · Δz. The ‘E’means the expec-
tation or average. I focus on the form in equation (2.1), with
vectors and dot products. That form emphasizes the geometry,
with natural interpretations in terms of force, distance and con-
straints imposed by conserved quantities. The commonly used
statistical expressions are alternative notations for the same
fundamental aspects of distances and geometry [5].



0.5 1.0 1.5 2.0

(r1, r2)

(r¢1, r¢2)

ΩΩr·ΩΩ =

ΩΩrΩΩ = 1

0.2

0.4

0.6

0.8

1.0

÷
æq1

÷
æ
V

w÷
–q

Dq
= =

÷
æq2

q1 q2,

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

÷
æq1 ÷

æq2

q¢1 q¢2,

÷
æJ ÷

æF
÷

æF/2

(b)(a)

Figure 1. Geometry of change by direct forces. (a) The abstract physical work of the direct forces as the distance moved between the initial population with
probabilities, q, and the altered population with probabilities, q0. For discrete changes, the probabilities are normalized by the square root of the probabilities
in the initial set. The distance can equivalently be described by the various expressions shown, in which Vw is the variance in fitness from population biology,
J is the Jeffreys divergence from information theory, and F is the Fisher information metric which arises in many disciplines. (b) When changes are small, the
same geometry and distances can be described more elegantly in unitary square root coordinates, r ¼ ffiffiffi

q
p

, with _r ; dr. The arrow denotes the limit for small
changes. From Frank [2]. (Online version in colour.)
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3. Conservation of total probability
Probabilities are typically normalized to sum to one,P

qi ¼
P

q0i ¼ 1. That normalization is usually thought of
as a trivial aspect of the definition of probability. However,
the conservation of total probability profoundly shapes the
form of fundamental equations. Seemingly different subjects
often share common expressions because they share invariant
total probability and its geometric consequences. The Price
equation reveals that unity.

To describe the conservation of total probability in the
Price equation, define

ai ¼ Dqi
qi

¼ q0i
qi
� 1 ¼ wi � 1: (3:1)

In biology, wi = qi0/qi may be interpreted as relative fitness.
In the Price equation, we can use any value for z. Let

z≡ a. The Price equation becomes

D�a ¼ Dq � aþ q0 � Da ¼ 0: (3:2)

The equality to zero follows because the average of a is
always zero: �a ¼ P

qiai ¼
P

Dqi ¼ 0. All of the changes in
probability, Δqi, must sum to zero in order to keep the total
probability constant at one.

We can first study universal aspects of the canonical
invariant form based on a in equation (3.2). We can then
derive broader results by simply making the coordinate
transformation a 7! z, yielding the most general expression
of the abstract Price equation in equation (2.1).
4. Distance, force and work
The first term of the Price equation expresses an abstract
notion of physical work. The nondimensional work is the
product of a force acting on an entity multiplied by the
distance that the entity moves.

For example, consider natural selection as a force. The
strength of natural selection multiplied by the distance
moved by the population is the work accomplished by
natural selection.
When we think about distance, force and work abstractly,
we obtain general insight. Natural selection and other pro-
blems arise as special cases. To see that generality, begin by
writing the standard Euclidean geometry vector length as
the square root of the sum of squares

kzk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiX

z2i
q

: (4:1)

For any vector z, the first term of the Price equation is

Dq � z ¼ kDqkkzk cosv,
in which ω is the angle between the vectors Δq and z. If we
interpret z≡ F as an abstract, nondimensional force, then

DF�z ¼ Dq � F ¼ kDqkkFk cosv (4:2)

expresses an abstract notion of work as the distance moved,
kDqk, multiplied by the component of force acting along
the path of motion, kFk cosv.

This expression for work arises in the first term of the Price
equationas thepartial change in response to thedirect forces,DF�z.
5. Geometry of change in populations
(a) Divergence between populations
If we let z≡ a describe the relative growth of the various prob-
abilities, ai = Δqi/qi, then the divergence between populations
caused by the directly acting forces can be expressed as

DF�a ¼ Dq � a ¼
X Dqiffiffiffiffi

qi
p

� �2

¼ Dqffiffiffi
q

p
����

����
2

¼ Vw: (5:1)

If we choose to interpret a as an abstract notion of force, or fit-
ness, acting on frequency changes, then Δq · a is thework, with
magnitude kDq= ffiffiffiffiffiffi

qkp 2
, that separates the probability distri-

bution q0 from q. In this article, the division of vectors, such
as Dq=

ffiffiffi
q

p
, means elementwise division.

That value of work is equal to the variance in fitness, Vw.
From equation (3.1), ai =wi− 1. Thus, Δq · a =Cov(w, a) =Vw.
The variance in fitness simply describes the geometric diver-
gence between populations caused by the force of natural
selection (see figure 1a).
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(b) Small changes, paths and logarithms
The Price equation provides an exact description for large,
discrete changes. Small, continuous changes are included as
a special case.

In prior articles, I developed the theory fully for discrete
changes. In the remainder of this article, I focus on small,
continuous changes. That focus on continuity makes the math-
ematics simpler and highlights conceptual aspectsmore clearly.

Think of the separation between populations as a
sequence of small changes along a path, with each small
change as Δq→ dq. This notation means that as the changes,
Δq, approach zero, we write those changes in differential
notation, dq. With that notation

a ! dq
q

¼ d log q: (5:2)

With the differential notation, the partial change by the direct
forces separates the probability distributions of the two popu-
lations by the path length

DF �a ¼ Dq � a ! dq � a ¼ dqffiffiffi
q

p
����

����
2

¼ F , (5:3)

in which F is an abstract, nondimensional expression of the
Fisher information distance metric [6].
(c) Unitary geometric coordinates
Let r ¼ ffiffiffi

q
p

. Then krk ¼ 1, expressing the conservation of total
probability as a vector of unit length, in which all possible
probability combinations of r define the surface of a unit sphere.

The unitary coordinates, r, also provide a direct description
of Fisher information path length as a distance between two
probability distributions

4kdrk2 ¼ 4kd
ffiffiffiffiffiffi
qk

p 2 ¼ dqffiffiffi
q

p
����

����
2

¼ F : (5:4)

The constraint on total probability makes square root coordi-
nates the natural system in which to analyse Euclidean
distances, which are the sums of squares (see figure 1b).
6. Direct forces and frame of reference
(a) Direct and inertial forces
For small changes, we can write the canonical Price equation
for the conservation of total probability in equation (3.2) as

d�a ¼ dq � aþ q � da ¼ 0:

To emphasize the first term as the direct forces acting on fre-
quency change and the second term as the inertial forces that
change the frame of reference, write

(Fþ I) � dq ¼ 0: (6:1)

The first term describes the direct forces

F ; a ¼ dq
q

¼ d log q, (6:2)

as in equation (5.2). The second term describes the inertial
forces

I ¼ q
dq

da ¼ da
a

¼ d log a, (6:3)
in which multiplication and division of vectors is element-
wise, and d log is an operator acting on nonzero quantities
that maps an argument x to dx/x. (Note that d log maps
its argument to its outcome in a single step, rather than
as a logarithm and then a differential. Thus, a can be
negative here.) This expression for the inertial forces can
be expanded as

I ¼ d log a ¼ d log (d log q) ¼ d log2 q: (6:4)

The relative differential, d log, describes relative change. The
second relative differential, I = d log2 q, describes the relative
acceleration in frequency changes. Thus, the inertial forces
acting on the frame of reference can be related to an acceleration.

(b) D’Alembert’s principle
Substituting the expressions for the direct and inertial
forces by the relative change and the relative acceleration of
frequencies yields

(Fþ I) � dq ¼ (d log qþ d log2 q) � dq ¼ 0: (6:5)

When written in this form, the canonical Price equation of
equation (3.2) is an abstract, nondimensional generalization
of d’Alembert’s principle for probability distributions that
conserve total probability [2,3,7].

D’Alembert’s principle is a fundamental expression of
physical mechanics [1]. The principle generalizes Newton’s
second law, force equals mass times acceleration. In one
dimension, Newton’s law is F =−mI, for force, F, and mass,
m, times acceleration, −I. In my abstract nondimensional
expressions, m drops out, so that F + I = 0.

D’Alembert generalizes Newton’s law to a statement
about motion in multiple dimensions such that, in conserva-
tive systems, the total work for a displacement, dq, and total
forces, F + I, is zero. Work is the distance moved multiplied
by the force acting in the direction of motion.

In terms of the canonical Price equation with conserved
total probability, the change of a probability distribution
between two populations can be partitioned into the balan-
cing work components of the direct forces, dq · F, and the
inertial forces, dq · I. We can often specify the direct forces
in a simple and clear way. The balancing inertial forces
may then be analysed by d’Alembert’s principle [1].

(c) Frame of reference
Here is a simple intuitive description of d’Alembert’s principle
[8]. You are sitting in a car at rest, and the car suddenly accel-
erates. You feel thrown back into the seat. But, even as the
car gains speed, you effectively do not move in relation to
the frame of reference of the car: your velocity relative to the
car remains zero. That net zero velocity can be thought of as
the balance between the direct force of the seat pushing
on you and the inertial force sending you back as the car
accelerates forward.

As long as your frame of reference moves with you, then
your net motion in your frame of reference is zero. Put another
way, there is a changing frame of reference that zeroes net
change by balancing the work of the direct forces against the
work of the inertial forces. Although the system is a dynamic
expression of changing components, it also has an overall
static equilibrium quality that aids analysis. As Lanczos [1]
emphasizes, d’Alembert’s principle ‘focuses attention on the
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forces, not on the moving body…’. (These two paragraphs are
from Frank [3].)

(d) Conservative and nonconservative systems
From equation (5.3), the work of the direct forces, dq � F ¼ F ,
is the Fisher information path length that separates the prob-
ability distributions, q0 and q. The inertial forces cause a
balancing loss, dq � I ¼ �F , which describes the loss in
Fisher information that arises from the recalculation of the
relative forces in the new frame of reference, q0.

The balancing loss occurs because the average relative
force, or fitness, is always zero in the current frame of refer-
ence, q � a ¼ P

qi( _qi=qi) ¼ 0. Any direct gain in relative
fitness by direct forces, dq � F ¼ F , must be balanced by an
equivalent loss in relative fitness, dq � I ¼ �F , from the chan-
ging frame of reference in which relative fitness is calculated.

The movement of probability distributions in the canonical
Price equation is always conservative, d�a ¼ 0, so that d’Alem-
bert’s principle holds. When we transform to the general
Price equation by a 7! z, then it may be that d�z = 0 and the
system is not conservative [2,3,7]. In that case, wemay consider
constraints on d�z and how those constraints influence the
possible paths of change for dq.

(e) Interpretation of force
I have equated force with change. For example, F = a= d log q.
The duality of force and change arises from the following
relation. Given the initial condition and the force that acts on a
population, we can deduce frequency change. Given the initial
condition and the frequency change, we can induce the force [9].

The deduce–induce relation arises from the notion that
force causes change. However, in the abstract mathematics,
we only have the relation between force and change. The
mathematics does not express primacy of one over the other.

The value of the abstract Price equation arises from its
purelymathematical nature. By equating forcewith relative fre-
quency change, we intentionally blur the distinction between
external causes and internal effects. By describing change as
the difference between two abstract sets rather than change
through time or space, we intentionally blur the scale of
change. By separating frequencies, q, from property values,
z, we intentionally distinguish universal aspects of change
between sets from the particular interpretations of property
values in each application.

The blurring of cause, effect and scale, and the separation
of frequency from value, lead to abstract mathematical
expressions that reveal the common underlying structure
among seemingly different subjects.
7. Value of the partition
The conservation of total probability and the constancy of rela-
tive success are by themselves trivial. So one might say that the
Price equation is simply some notation to describe trivial facts.

However, many fundamental equations from different
disciplines follow immediately and easily from the Price
equation partition. It seems that each discipline has, in its
own way, come to the same essential invariant geometry of
an underlying conservative system.

Interpretation indifferent disciplines reduces to two aspects.
First, one must separate the forces of direct interest from those
other forces that alter the frame of reference. Second, one must
distinguish the underlying conservative foundation from the
coordinates of property values for particular problems.

The Price equation does exactly and only those two
aspects on which interpretation depends. By focus on those
essential aspects, the Price equation brings out the unity of
analysis between seemingly different subjects.

My prior publications have shown how key results from
different disciplines arise simply and naturally from the Price
equation [2,3,7]. I have already described a generalization of
d’Alembert’s principle of physical mechanics. The remainder
of this article briefly sketches two additional examples.
8. Information
The Price equation separates frequencies from property values.
That separation shadows Shannon’s separation of the infor-
mation in a message, expressed by frequencies of symbols in
sets, from the meaning of a message, expressed by the proper-
ties associatedwith themessage symbols. Price [10]was clearly
influenced by the information theory separation between
frequency and property in his discussion of a generalized
notion of natural selection that might unify disparate subjects.

With regard to frequencies, the Price equation simply
describes the universal expression of divergence between
sets. By contrast, information theory interprets frequencies
and changes in frequencies in terms of the information
content of messages.

What is the relation between the general, abstract Price
equation description of frequencies in relation to the conser-
vation of total probability and the information theory
interpretation of frequencies as having some deeper meaning
in terms a concept of ‘information’?

I begin with the Price equation, which has no notion of
‘information’. I show that key quantities and classic expressions
of information theory follow immediately from the Price
equation. I then consider the following question.

Given that key expressions and results of information
theory follow from the abstract Price equation, should we
think of those results as deriving from information theory
or from the expression of more basic principles of invariant
geometry that arise solely from the conservation of total
probability? I argue in favour of the second interpretation.
(a) Information expressions from the Price equation
I showed in equation (5.3) that the first term of the Price
equation is

dq � F ¼ dq � a ¼ dqffiffiffi
q

p
����

����
2

¼ F ,

in which F is an abstract, nondimensional expression of the
Fisher information distance metric. The second term of the
Price equation is

dq � I ¼ q � a ¼ �F :

Thus, d’Alembert’s principle for the Price equation

(Fþ I) � dq ¼ F � F ¼ 0

expresses the conservation of total information. Fisher infor-
mation [11] has occasionally been raised as a candidate for
a fundamental principle underlying physics.
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By the Price equation, we see Fisher information and the
conservation of information arising as simple consequences
of the conservation of total probability. There is no essential
need for an underlying notion of ‘information’.

The information theory interpretation can be very useful.
The point here is to understand the underlying assumptions
and mathematics that lead to such expressions.

The Kullback–Leibler divergence [12,13] is another key
expression of information theory

D(q0kq) ¼
X
i

q0i log
q0i
qi
¼ q0 � d log q

and

D(qkq0) ¼
X
i

qi log
qi
q0i
¼ �q � d log q:

This divergence measures the separation between two
probability distributions, q and q0. The Kullback–Leibler
divergence provides an equivalent expression of Shannon
information when the divergence is taken from an initial
uniform distribution. Thus, the Kullback–Leibler divergence
is often described as relative information—the change in
information relative to some given initial distribution.

In information theory, it is often useful to consider the sumof
the forward and backward divergences, which creates a sym-
metric measure. That sum is known as the Jeffreys divergence

J ¼ D(q0kq)þD(qkq0) ¼ dq � d log q
¼ dq � a ¼ F :

These results followwhen changes are small. For analysis of dis-
crete changes, see Frank [2,3].

Note that, in biology

log
q0i
qi
¼ log wi ¼ mi, (8:1)

in which log fitness, log wi =mi, is often called the Malthusian
parameter. The information measures D, J and F can all be
expressed in terms of the Malthusian parameter.

(b) The interpretation of information
All of the ‘information’ results in the prior section arose directly
from the canonical Price equation’s description of conserved
total probability. No notion or interpretation of ‘information’
is necessary.

In many disciplines, information expressions arise in the
analysis of the specific disciplinary problems. This sometimes
leads to the idea that information must be a primary general
concept that gives form to and explains the particular results.

Here, the Price equation explains why those information
expressions arise so often. Those expressions are simply the
fundamental descriptions of force and change within the con-
text of a conserved total quantity. In this case, the conserved
total quantity is total probability.

Information does have many useful interpretations [6].
The next section provides an example.
9. Inference: data as a force
Following Bayesian tradition, denote the force of the data as
~L(Dju), the likelihood of observing the data, D, given a value
for the parameter, θ. To interpret a force as equivalent to
relative fitness, the average value of the force must be one
to satisfy the conservation of total probability. Thus, define

wu ¼ Lu ¼
~L(Dju)P
u qu~L(Dju) :

We can now write the classic expression for Bayesian
updating of a prior, qu, driven by the force of new data,
Lu ¼ L(Dju), to yield the posterior, q0u, as

q0u ¼ quLu: (9:1)

By recognizing L as a force vector acting on frequency
change, we can use all of the general results derived from
the Price equation. For example, the Malthusian parameter
of equation (8.1) relates to the log-likelihood as

m ¼ log
q0

q
¼ D log q ¼ log L: (9:2)

This equivalence for log-likelihood relates frequency
change to the Kullback–Leibler expressions for the change
in information

Dq � log L ¼ D(q0kq)þD(qkq0), (9:3)

whichwemay thinkof as the gain of information from the force
of the data. Perhaps the most general expression of change
describes the relative separation within the unitary square
root coordinates as the Euclidean length

Dq � L ¼ Dqffiffiffi
q

p
����

����
2

,

which is an abstract, nondimensional expression for the work
done by the displacement of the frequencies, Δq, in relation
to the force of the data, L.

I defined L as a normalized form of the likelihood, ~L,
such that the average value is one, �L ¼ q � L ¼ 1. Thus, we
have a canonical form of the Price equation for normalized
likelihood

D�L ¼ Dq � Lþ q0 � DL ¼ 0: (9:4)

The second terms show how the inertial forces alter the
frame of reference that determines the normalization of the
likelihoods, ~L 7! L. Typically, as information is gained from
data, the normalizing force of the frame of reference reduces
the force of the same data in subsequent updates.

All of this simply shows that Bayesian updating describes
the change in probability distributions between two sets. That
change between sets follows the universal principles given by
the abstract Price equation.

Prior work noted the analogy between natural selection
and Bayesian updating [14–16]. Here, I emphasized a more
general perspective that includes natural selection and
Bayesian updating as examples of the common invariances
and geometry that unify many topics.
10. Discussion
How useful is it to understand the common mathematical
basis of different disciplines? The generality by itself does
not alter the well known results within each discipline.
However, three points suggest potential value.

Universality. First, we can evaluate other claims of univers-
ality more clearly. For example, information expressions often
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occur in the fundamental equations of different disciplines.
That commonality tempts one to think of information as a
primary quantity.

The Price equation shows that information expressions
arise from the basic geometry of divergence between popu-
lations. Invariance and geometry set the universal foundations.

Force and cause. Second, I support Lanczos’ [1, p. 89] advo-
cacy of d’Alembert’s principle because ‘it focuses attention on
the forces, not on the moving body.’ The principle highlights
causal interpretation of the forces that shape complex dynamics.

D’Alembert’s principle transforms a changing system into
an equilibrium system. The direct forces by themselves cause
nonequilibrium dynamics. The addition of the inertial forces
brings the total system into equilibrium, (F + I) · dq = 0.

Lanczos emphasizes that
 Trans.R.Soc.B
375:
By this device dynamics is reduced to statics.
This does notmean that we can actually solve a dynamical problem
bystaticalmethods. The resulting equations are differential equations
which have to be solved.We have merely deduced these differential
equations by statical considerations. The addition of the force of
inertia I to the acting force F changes the problem of motion to a
problem of equilibrium. [1, p. 89]
 20190351
This quote describes a great benefit of conservation laws
in analysis.

In modern physics, d’Alembert’s principle is often rele-
gated to a historical footnote. The principle applies only to
conservative mechanical systems. Most mechanical systems
are not conservative, because they have forces, such as friction,
that prevent changes from being reversed without loss.
Because real systems are rarely conservative and reversible,
d’Alembert’s principle is limited even within its primary
domain of mechanics.

These criticisms of d’Alembert are true. But they miss the
abstract mathematical power and insight of d’Alembert’s
expression, emphasized by Lanczos. Much of the great
advance of modern physics came from the abstract structure
of conservation laws and their invariances, which often have
the balancing form of d’Alembert.

The canonical Price equation is a pure abstract expression
of d’Alembert’s balance between direct and inertial forces. In
the canonical Price equation, with focus on frequencies and
the change in probability distributions, the abstract system
is frictionless, conservative, and reversible. Thus, the Price
equation expresses the underlying mathematical structure
that unifies so many seemingly different fundamental results
of distinct disciplines, which share the same conservation of
total probability or a similar conservation.

For example, the equations of change by natural selection
can initially be described in terms of changes in relative fitness.
Because relative fitness concerns only frequencies, it matches
the canonical Price equation, with a total change in relative fit-
ness of zero. Within that equilibrium system, we can partition
the change into the direct forces of natural selection and the
changing frame of reference caused by altered frequencies.

Typically, one is interested in the change in some trait
value of organisms, z, rather than in the the change of relative
fitness, a. Because z is not conserved in the same way as a,
additional forces may come into play. We can address those
additional forces by a variety of powerful supplemental
analytical methods, which include Jaynesian maximum
entropy as a special case [2,3]. However, there can never be
a complete universal expression that captures all aspects of
nonconservative systems.

Particular versus general. Third, the Price equation reveals
that many particular explanations in science derive from gen-
eral underlying principles.

Physical work and information are well defined quantities
with very useful applications. Yet the basic equations of
change often arise from a general conservation law rather
than from the particular qualities of work and information.

To understand the fundamental results for physical work
and information, one has to see the underlying invariant struc-
ture. Otherwise, one is naturally inclined to favour explanations
in terms of particular physical or informational properties.

We certainly do not need the Price equation to understand
work or information or the generic forms of probability distri-
butions. But we are much more likely to see the fallacy of the
particular if we begin from the Price equation perspective.
The Price equation focuses attention on the invariant generic
structure, not on the particular details.

In summary, the Price equation expresses the conserva-
tion of total probability. That conservation law constrains
the dynamics of populations. The invariant geometry of
change revealed by the Price equation explains why funda-
mental results in different disciplines often share the same
underlying form.
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