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Abstract: I develop a framework for interpreting the forces that act on any population
described by frequencies. The conservation of total frequency, or total probability, shapes
the characteristics of force. I begin with Fisher’s fundamental theorem of natural selection.
That theorem partitions the total evolutionary change of a population into two components.
The first component is the partial change caused by the direct force of natural selection,
holding constant all aspects of the environment. The second component is the partial change
caused by the changing environment. I demonstrate that Fisher’s partition of total change
into the direct force of selection and the forces from the changing environmental frame of
reference is identical to d’Alembert’s principle of mechanics, which separates the work done
by the direct forces from the work done by the inertial forces associated with the changing
frame of reference. In d’Alembert’s principle, there exist inertial forces from a change in the
frame of reference that exactly balance the direct forces. I show that the conservation of total
probability strongly shapes the form of the balance between the direct and inertial forces. I
then use the strong results for conserved probability to obtain general results for the change
in any system quantity, such as biological fitness or energy. Those general results derive
from simple coordinate changes between frequencies and system quantities. Ultimately,
d’Alembert’s separation of direct and inertial forces provides deep conceptual insight into
the interpretation of forces and the unification of disparate fields of study.

Keywords: hamiltonian dynamics; information geometry; population genetics; theoretical
biology; theoretical physics
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1. Introduction

The fundamental theorem of natural selection divides total evolutionary change into two
components [1]. The first component is the partial change caused by the direct force of natural selection.
The second component is the partial change caused by all other forces.

The theorem states that the change in fitness caused by the direct force of natural selection equals
the genetic variance in fitness. We can interpret “genetic variance” to mean the component of variance
associated with things that are transmitted through time. Natural selection is the force that changes the
frequencies of those transmissible things.

Fisher wrote clearly about the distinction between the direct force of natural selection and the other
evolutionary forces [1,2]. Yet much confusion followed in the history of the subject. Essentially
all commentators considered only the total evolutionary change, rather than Fisher’s split into two
partial components.

A correct interpretation of Fisher’s partial components eventually developed, starting with Price [3]
and Ewens [4]. However, both of those authors concluded that Fisher’s split of total change into
components provided little value.

In this article, I show that Fisher’s split of evolutionary change is equivalent to d’Alembert’s split of
the general causes of dynamics into direct and inertial forces. d’Alembert’s principle is the foundation
for essentially all of the key results of theoretical physics, starting with Newton’s laws and leading to the
subsequent generalizations via Lagrangian and Hamiltonian mechanics.

Lanczos [5], in his great synthesis of the variational principles of mechanics, elevates d’Alembert’s
principle to the key insight that ties together the whole subject. To Lanczos, the tremendous value of
d’Alembert’s principle follows from the fact that it “focuses attention on the forces, not on the moving
body . . .” In the same way, Fisher’s goal was to isolate and interpret the force of natural selection, rather
than to emphasize the dynamics of total change.

The study and interpretation of force requires separating the action of a force from the frame of
reference. A force affects change, and the measurement and interpretation of that change depends on
the changing frame of reference of the system. To understand the force as distinct from the frame of
reference, force and frame of reference must be separated.

That separation between force and frame of reference is exactly what Fisher did and was exactly how
he discussed his analysis. I argue here that connecting Fisher’s theorem to d’Alembert’s principle will
help to clarify the separation of direct force and frame of reference.

In Fisher’s analysis, he was vague about the mathematical form of the changes associated with the
frame of reference. Here, by using the Price equation, I make explicit the connections between Fisher’s
theorem and d’Alembert’s principle.

My argument follows three steps. First, I derive the general form of the Price equation. Second,
I connect the Price equation to d’Alembert’s principle. Third, I discuss the fundamental theorem of
natural selection in the context of d’Alembert’s separation of the direct forces and the inertial forces
associated with the changing frame of reference. By d’Alembert’s separation, we obtain a partition of
total evolutionary change in fitness into the change by the direct force of natural selection and the change
by the inertial forces of the changing environmental frame of reference.
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The analysis is much more general and powerful than a theorem limited to natural selection. Instead,
we find a broad analysis of the dynamics of any population or aggregation that can be characterized
by frequencies. The conservation of total frequency, or total probability, establishes a symmetry that
defines many of the characteristics of aggregate dynamics. Those characteristics of aggregate dynamics
apply to natural selection, to many problems in mechanics, and to any analysis of the changes in
probability distributions.

2. The Price Equation

The Price equation [6,7] describes the change in an average value obtained over some aggregation or
population. Each component of the population has a weighting, q, and a value, z. Begin with a discrete
analog of the chain rule for differentiation of a product

∆(qz) = (q + ∆q)(z + ∆z)− qz
= (∆q)z + (q + ∆q)∆z

= (∆q)z + q′∆z

in which q′ = q + ∆q and z′ = z + ∆z. The same chain rule can be applied to vectors. By using dot
product notation, we obtain an abstract form of the Price equation [7–9]

∆(q · z) = ∆q · z + q′ ·∆z (1)

in which a dot product is understood in the usual way as q · z =
∑
qizi.

This equation can be interpreted in various ways. For our purposes, we can take qi to be the frequency
associated with a subset, i, of the initial population, such that the total frequency is

∑
qi = 1. Thus,

z̄ =
∑
qizi is the average of z, in which zi is a function that maps i to some value. Similarly, we have a

second population, with frequencies q′i and values z′i, in which
∑
q′i = 1.

One can use various rules for the relations between qi and q′i and between zi and z′i, allowing a wide
variety of different perspectives on the transformations that relate the two populations [7]. For our
purposes, we can operate abstractly and not worry about the particular rules. Our only restriction is that
we can map the index i between the two populations.

3. Fitness as a Change in Frequency

The function zi can map subset i to any value. When studying frequency changes, let us rename the
variable as m ≡ z, and choose

mi = log
q′i
qi

to describe the ratio of frequencies between the two populations associated with i. We can think of mi as
a growth rate, or as a kind of force that moves the system from qi to q′i. In particular, the above expression
is equivalent to exponential growth driven by mi as

q′i = qie
mi
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We may call mi fitness, because it expresses the relative growth of the weighting associated with i. The
term mi is, in effect, a growth rate relative to an unspecified underlying scale of change. We can take mi

as a given force of growth and derive q′i, or we can take the outcome q′i as given, and derive the effective
force, mi, that is consistent with the outcome.

If we thought of i as a particular individual or a particular type, thenmi would express the growth rate
associated with that individual or type between the two populations. However, the equations allow us
simply to make the definition that relates qi to q′i, and not restrict ourselves to a particular interpretation
of what i means in those terms.

I confine my analysis to small differences, ∆qi → dqi ≡ q̇i, in which q̇i = q′i − qi is small. For small
differences we have (see Methods for assumptions)

mi =
q̇i
qi

Using this definition and the substitution mi ≡ zi in the Price equation Equation (1) from the prior
section, we obtain a general expression for the total change in fitness as

˙̄m = q̇ ·m + q · ṁ

in which we ignore the second order term q̇·ṁ in this description of small changes, with ∆z→ dz ≡ ṁ.

4. Conservation of Total Probability, Entropy Momentum, and Fisher Information

With the definition of fitness as a growth rate, mi = q̇i/qi, average fitness is

m̄ = q ·m =
∑

q̇i = 0

This equation expresses the conservation of total probability or total frequency. It follows that the change
in average fitness, ˙̄m, must also be zero

˙̄m = q̇ ·m + q · ṁ = 0 (2)

The term q̇·m has a wide variety of interpretations related to information theory and classical mechanics.
For example, this term expresses entropy momentum or Fisher information [10,11], as

q̇ ·m =
∑

q̇i ˙log qi =
∑ q̇2i

qi

The term mi = ˙log qi = log q′i/qi is the change in entropy in each dimension, i, describing an entropy
velocity or nondimensional entropy momentum relative to an unspecified underlying scale of change.
Thus, q̇ ·m may be interpreted as the gain in entropy momentum, which must be balanced by the loss
of entropy momentum in the second term, q · ṁ, to achieve overall conservation, ˙̄m = 0.

Note that I have used − log qi as the entropy in each dimension, consistent with the information
theory concept of self-information or surprise as − log qi. That definition leads to system entropy as the
expectation over the different dimensions, −

∑
qi log qi. Some people prefer to define the entropy in

each dimension as −qi log qi, and system entropy as the sum over each dimension, in which case my
usage of entropy or information momentum does not make sense.
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The term
∑
q̇2i /qi is widely used as the Fisher information metric, particularly in the study of

information geometry [11]. Thus, the first term in ˙̄m = 0 is the gain in Fisher information, and the second
term is an exact balancing loss in Fisher information. The balance leads to an overall conservation of
Fisher information, as emphasized by Frieden [10].

We have transcended our original formulation of biological fitness in these descriptions of probability,
information, and entropy. The expressions here apply to any problem that can be expressed in terms of
changing frequencies in populations or aggregates, subject to the conservation of total frequency.

5. d’Alembert’s Principle

We may write d’Alembert’s principle [5] as

(F + I) q̇ = 0

Here, all terms are vectors, and the implicit dot product with q̇ distributes over the parentheses. The
vector q locates the system, and q̇ is a virtual displacement of the system from its current location to a
nearby location. A virtual displacement is like an imaginary displacement, in which the system is held
fixed in its current state, and then one moves its location without changing anything else. All forces and
the frame of reference for measurement are held constant [5].

A virtual displacement must be consistent with all forces of constraint. In our case, the primary force
of constraint on a virtual displacement, q̇, is that the sum of the frequencies is one. Thus,

∑
q̇i = 0

expresses the force of constraint set by the conservation of total frequency or probability. Because a
virtual displacement must be consistent with the forces of constraint, we need only analyze those forces
that are in addition to the forces of constraint. In particular, we need to track the direct forces, F, and
inertial forces, I.

The term F is the vector of direct forces acting on the system, and the term I is the vector of inertial
forces that balance the direct forces to achieve no net change. d’Alembert’s principle can be thought of
as a generalization of Newton’s second law of motion [5], in which F̃ = µÃ is read as the total force,
F̃, equals mass, µ, times total acceleration, Ã. Total force and total acceleration must include forces of
constraint. If we write total inertial force as Ĩ = −µÃ, then Newton’s law is F̃ + Ĩ = 0.

When we study an actual system, we are usually interested in how the direct, or applied, forces
influence dynamics. To do that, we need to separate the direct forces from the constraining forces. For
example, in studying the frequency dynamics and evolutionary change caused by natural selection, we
usually wish to analyze the direct force of growth rate, or fitness, separately from the force of constraint
imposed by the conservation of total probability.

In d’Alembert’s formulation, the direct and inertial forces typically do not sum to zero, F + I 6= 0,
because those terms do not include the constraining forces. Instead, in d’Alembert’s expression
(F + I) q̇ = 0, the term q̇ · F combines the direct and constraining forces, and the term q̇ · I combines
all inertial forces, including any forces of constraint. Newton’s law is a special case of the more general
principle of d’Alembert [5].
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6. Interpretation of d’Alembert’s Principle

Here is a simple intuitive description of d’Alembert’s principle [12]. You are sitting in a car at rest,
and the car suddenly accelerates. You feel thrown back into the seat. But, even as the car gains speed,
you effectively do not move in relation to the frame of reference of the car: your velocity relative to the
car remains zero. That net zero velocity can be thought of as the balance between the direct force of the
seat pushing on you and the inertial force sending you back as the car accelerates forward.

As long as your frame of reference moves with you, then your net motion in your frame of reference is
zero. Put another way, there is always a changing frame of reference that zeroes net change by balancing
the work of direct forces on a system against the work of a balancing inertial force. Although the system
is a dynamic expression of changing components, it also has an overall static, equilibrium quality that
aids analysis. As Lanczos [5] emphasizes, d’Alembert’s principle “focuses attention on the forces, not
on the moving body . . .”

7. d’Alembert and the Conservation of Total Probability

This section transforms the conservation of total probability expressed by Equation (2) into a form of
d’Alembert’s principle. We first note that (see Methods for ˙logm notation)

q · ṁ =

(
q

q̇
� ṁ

)
q̇ =

(
ṁ

m

)
q̇ = ˙logm · q̇

The symbol “�” denotes element-wise multiplication of vectors, the ratio denotes element-wise division,
and dot products distribute over parentheses. With this expression, we can rewrite our general result in
Equation (2) for the conservation of total probability, or the change in fitness, in the general form of
d’Alembert, (F + I) q̇ = 0, as (

m + ˙logm
)
q̇ = 0 (3)

We equate this expression with d’Alembert by interpreting m ≡ F as the force of growth, or fitness,
or, more generally, the direct forces acting on frequency change. We interpret ˙logm ≡ I as the inertial
forces, which typically are described in terms of acceleration with respect to the frame of reference.

8. Direct and Inertial Forces

The expression in Equation (3) describes d’Alembert’s principle for systems that follow conservation
of total probability. This section considers how we should interpret (F + I) q̇ = 0 for the direct and
inertial forces in terms of Newtonian concepts of force and acceleration.

The dot product expression in Equation (3) can be written as a sum over the individual dimensions of
the system (

m + ˙logm
)
q̇ =

∑(
mi + ˙logmi

)
q̇i

The first term on each side, q̇ ·m ≡ q̇ · F, is the virtual displacement times the direct force. We may
call this term the virtual work of the direct forces, because physical work is displacement times force.
We can write this component of virtual work solely in terms of frequencies from our prior definition
of mi = q̇i/qi.
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The second term on each side, q̇ · ˙logm ≡ q̇ · I, is the virtual work of the inertial forces. To interpret
the inertial forces with respect to acceleration, it is useful to express ˙logm as

˙logmi =
q̈i
q̇i
− q̇i
qi

(4)

The term q̈i is the second order infinitesimal change, or acceleration. Thus, I ≡ ˙logm expresses
how the changing frame of reference, arising from changed frequencies, leads to inertial forces that
are accelerations.

We can now write d’Alembert’s principle under the conservation of total probability solely in terms
of the probabilities, or frequencies, as(

m + ˙logm
)
q̇ =

∑(
q̇i
qi

+
q̈i
q̇i
− q̇i
qi

)
q̇i = 0 (5)

Distributing the virtual displacement, q̇i, across the parentheses in the sum and splitting the sum into
direct and inertial components yields∑ q̇2i

qi
+
∑(

q̈i −
q̇2i
qi

)
=
∑

q̈i = 0 (6)

The sum of q̈i is zero because
∑
q̇i = 0 by conservation of total probability, and thus the accelerations,

q̈i, also sum to zero. However, in a particular dimension, there may be an imbalance between direct
and inertial force, q̈i. That imbalance arises because the force of constraint on total probability differs
across dimensions.

9. Unitary Coordinates and Path Lengths

From Equations (5) and (6), we may express d’Alembert’s balance between the total direct and inertial
components as (

m + ˙logm
)
q̇ =

∑ q̇2i
qi
−
∑ q̇2i

qi
= 0 (7)

The
∑
q̇2i /qi terms can be understood as distances by considering the curvature caused by the

constraining force of the conservation of total probability. To get a proper sense of distance in that
curved geometric space, we need to change the coordinates.

Let the new coordinates be r =
√
q. Then the total Euclidean length of the vector r is the square root

of the sum of squares in each dimension, which is

|r| =
√∑

r2i =
√∑

qi = 1

Vector lengths in the new coordinates are always one, which provides a pure expression of the
conservation of total probability. In general, the q may be arbitrary weightings, such that

∑
qi is

conserved, and thus
∑
q̇i = 0. Here, I focus on conserved probability, in which the qi are positive

and sum to one.
The path lengths of motion take on simple interpretations in terms of distance in the unitary

coordinates. The transformed coordinates yield∑ q̇2i
qi

= 4
∑

ṙ2i
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which shows the simple Euclidean interpretation of squared distance in the r coordinates as a sum
of squared differences. This expression of distance is also equivalent to the Fisher information
metric [10,11]. However, geometry is perhaps more fundamental than information, because the distance
arises inevitably from curvature of paths caused by analyzing probability displacement subject to unitary
conservation of total probability.

10. Geometry

This section briefly reviews the geometry of frequency change dynamics that follow from two
assumptions. The first assumption is that direct force, mi, causes exponential growth

q′i = qie
mi

This growth expression establishes a natural logarithmic scaling for comparing frequencies, because

mi = log
q′i
qi

When changes are small, mi = ˙log qi = q̇i/qi. We could interpret those changes with respect to log qi

as entropy or information. But the geometry of force and growth may be a better way to think about the
fundamental nature of these expressions.

The second assumption is that total frequency or probability is conserved,
∑
q̇i = 0. That

conservation imposes a constraint on paths of change. The constraint may be expressed by the geometry
of the unitary coordinates, r =

√
q, which yields a conserved length |r| = 1. The path lengths for virtual

displacements times direct or inertial forces are
∑
q̇2i /qi = 4

∑
ṙ2i . The essential geometry arising from

growth and from conservation of total probability sets the form of the distances.

11. Canonical Coordinates and Conservation in Each Dimension

Hamiltonian expressions in canonical coordinates often provide the deepest insight into the
symmetries of a system [13]. To obtain the Hamiltonian, the use of r =

√
q coordinates was a first

step, because we can rewrite d’Alembert’s principle in Equation (7) as

1

4

(
m + ˙logm

)
q̇ =

∑
ṙ2i −

∑
ṙ2i = 0

However, the net balance only applies to the total system rather than separately in each dimension. If
we can find the proper canonical coordinates, then the forces of constraint will appear independently
in each dimension, and the balance of direct and inertial forces will also appear independently in
each dimension.

In a Hamiltonian formulation, we assign two values to each component, usually considered as position
and momentum [13]. In our nondimensional system, our primary factor is the conservation of total
probability, which we express through the unitary coordinates r =

√
q, such that the length of r is

always one
|r| = √q · √q = 1
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If, for each point, we take ri =
√
qi for position and pi =

√
qi for momentum, then r · p = 1, and the

conserved Hamiltonian is
H = ṙ · p− r · ṗ = 0

This expression satisfies the requirements for Hamiltonian canonical coordinates of position and
momentum, which are that ∂H/∂ri = −ṗi and ∂H/∂pi = ṙi. The differential of the Hamiltonian
often provides a useful expression

Ḣ = r̈ · p− r · p̈ = 0 (8)

which, in each separate dimension, is zero

Ḣi = r̈ipi − rip̈i = 0 (9)

because ri = pi =
√
qi, and

r̈i = p̈i =
1

2
√
qi

(
q̈i −

q̇2i
2qi

)
thus we can write the Hamiltonian in each dimension as

4Ḣi =

(
q̇2i
qi
− 2q̈i

)
−
(
q̇2i
qi
− 2q̈i

)
= 0

Here, the curvature from the force of constraint is divided into equal and opposite contributions in the
direct and inertial force components, recovering a Newtonian F̃i − µÃi = 0 perspective independently
in each dimension.

We can rewrite Equation (8) as a d’Alembert’s principle expression

Ḣ =
(
p� ˙log ṙ− r� ˙log ṗ

)
ṙ = 0

for virtual displacement ṙ, direct force F = −p � ˙log ṙ, and inertial force I = r � ˙log ṗ. The symbol
“�” denotes element-wise multiplication of vectors, and dot products distribute over parentheses. Thus,
Ḣ = (F + I) ṙ = 0, with the Newtonian equality Fi + Ii = 0 satisfied in each dimension.

12. Coordinates for Quantities Correlated with Force

We can analyze any quantitative system property by transforming coordinates. We start with the
general results for the conservation of total probability and information momentum, ˙̄m = 0. We
then obtain an expression for the change in the system quantity, ˙̄z, by the change in coordinates
(m, ṁ) 7→ (z, ż), in which the different coordinates now have an arbitrary relation rather than the earlier
equivalence. That change in coordinates generalizes the ˙̄m form of the Price equation (Equation (2)), to
give the change in the average value of z as

˙̄z = q̇ · z + q · ż

The zi values are the averages of z in each dimension, i. Because z can be any quantity, calculated in
any way, this equation gives the most general expression for ˙̄z, the change in the average of z. One can
think of z̄ =

∑
qizi as a functional of the arbitrary function, z, that maps i 7→ zi. The only restriction on



Entropy 2015, 17 7096

the expression for ˙̄z shown here is that changes be small. For large changes, the exact form of the Price
equation in Equation (1) should be used.

We can relate ˙̄m to ˙̄z by writing the change in coordinates, m 7→ z and ṁ 7→ ż, as the
regression equations

z = βzmm + ε

ż = βżṁṁ + γ

in which the regression coefficients, β, are obtained by minimizing the length of the “error” vector. To
analyze the length of the error vector, we can use standard identities from the theory of least squares for
regression [14].

In particular, the first regression equation follows from choosing βzm to minimize |εq|2 =
∑
qiε

2
i , in

which εq =
√
qiεi denotes a

√
q weighted vector. Choosing βzm to minimize the length of εq leads to

mq · εq = 0, because the minimum length of εq occurs when that vector is orthogonal to mq. Note that
q̇i = qimi, thus

q̇ · ε =
∑

qimiεi = mq · εq = 0

In the equation for ż, minimizing
∣∣γq

∣∣2 sets βżṁ. We also have, by standard theory, q · γ = 0.
Using these identities,

q̇ · z = βzmq̇ ·m + q̇ · ε = βzmq̇ ·m (10)

q · ż = βżṁq · ṁ + q · γ = βżṁq · ṁ (11)

from which we obtain the change ˙̄z in terms of the original coordinates for ˙̄m as

˙̄z = βzmq̇ ·m + βżṁq · ṁ = (βzm − βżṁ) q̇ ·m (12)

the right expression arising from the fact that q̇ ·m + q · ṁ = 0. The total change, ˙̄z, is split into the
virtual work term, βzmq̇ ·m, and the inertial force term, βżṁq · ṁ. The regression coefficients rescale
coordinates (m, ṁ) 7→ (z, ż).

If z̄ is a conserved quantity, or the system is at an equilibrium with respect to z̄, then ˙̄z = 0. We can
write a d’Alembert form

˙̄z = (βzmm− βżṁm) q̇ = 0

which, when q̇ · m 6= 0, implies βzm = βżṁ, and the d’Alembert equality holds separately in each
dimension. In this case, the dynamics of z are influenced by both the conservation of probability and by
additional constraints set by the conservation of z̄. We may, of course, choose the changing reference
frame, ż, such that ˙̄z 6= 0, in which case the direct and inertial forces do not completely balance.

13. The Fundamental Theorem

We may set βżṁ = 0, either because the changing value of z̄ is unaffected by the changing reference
frame, or because the effects of the changing reference frame are ignored by assumption. We then have
an expression for the partial change caused by the direct forces, holding constant the frame of reference

˙̄zs = q̇ · z = βzmq̇ ·m
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in which the s subscript emphasizes that this is a partial change ascribed to the direct forces, or the forces
of selection. This form includes, as special cases, Fisher’s fundamental theorem of natural selection, the
breeder’s equation of genetics, and other common expressions for the change in populations caused by
natural selection.

Note that q̇ ·m = Vm, the variance of m, because

q̇ ·m =
∑

q̇imi =
∑

qi

(
q̇i
qi

)
mi =

∑
qim

2
i

which is the variance of m, because m̄ = 0.
If we take z = m in order to study the change in fitness caused by the direct forces, then ˙̄ms = Vm,

the change in mean fitness caused by selection, ˙̄ms, is the variance in fitness, Vm. Fisher was interested
in the transmissible change in m̄ associated with genetic factors, g, thus he partitioned fitness as
m = g+ δ. Here, the genetic factors are partial regressions associated with particular genes, such that g
is chosen to maximize the amount of the total variance in fitness, Vm, associated with the transmissible
genes [4,9,15,16]. The δ terms are residuals in the regression, such that one gets the additive partition of
total variance from classical regression theory as Vm = Vg + Vδ.

The change in fitness caused by the direct forces can now be written as

˙̄ms = Vg + Vδ

and thus the transmissible change in fitness caused by natural selection and associated with genetic
factors is

˙̄ms|g = Vg

in which Vg is the variance in the transmissible effects of the genetic factors on fitness, or the
genetic variance in fitness. That partial change in fitness caused by direct forces and associated with
transmissible factors is what Fisher emphasized in his fundamental theorem of natural selection. By
defining the genetic factors, g, as the only direct forces of interest, the residual forces of selection, δ, are
added to the other inertial forces that define the changing frame of reference.

In models of evolutionary change, Fisher chose to ascribe the direct force of change associated with
g to natural selection, and all other forces to the inertial frame that he called environmental causes.
That d’Alembert interpretation of the split between direct and inertial forces provides a clear way in
which to understand Fisher’s fundamental theorem of natural selection. There is, of course, an arbitrary
aspect to such a partition, because the split between direct and inertial forces depends entirely on how one
chooses to define the frames of reference. For example, a change in how one defines the set of potentially
transmissible factors, g, alters how one splits forces between direct and inertial components [15].

14. Conclusions

The fundamental equations for change are identical between many laws of physics and evolutionary
change by natural selection. However, the different histories of those subjects and the long and confused
debates in biology about Fisher’s fundamental theorem have obscured the simple, common basis of the
underlying theory.
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I unified different theories by combining d’Alembert’s conceptual frame with the abstract expressions
of the Price equation. That combination led to a simple and very general basis for understanding
populations or aggregations, in which one can interpret total frequency or total probability as a conserved
quantity. By combining conservation of total frequency with a notion of change based on exponential
growth, I showed the geometric and algebraic forms of change that arise from d’Alembert’s partition of
direct and inertial forces. I also provided an elegant Hamiltonian expression in canonical coordinates,
which recovers the Newtonian balance of force and acceleration independently in each dimension for the
corresponding direct and inertial forces of d’Alembert.

Finally, I showed that arbitrary system quantities, such as biological traits, or any total system quantity
such as energy, can be interpreted through two steps. First, begin with the universal results that arise from
conservation of total probability and the notion of change as exponential growth. Second, apply a simple
coordinate transformation between frequency change and system quantities to obtain general expressions
for the change in system quantities.
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Appendix A: Methods

The assumption of small changes associated with the overdot notation does not imply that forces
are weak. Instead, the scale of change is small, in the sense typically associated with continuous
time derivatives in differential equations. However, I have avoided classical derivative notation and
differential equations in order to retain the more general form of the abstract Price equation [7,8].

For example, in the definition mi = q̇i/qi, the overdot notation can be interpreted as a small
change in qi, such that q̇i ≡ dqi. Fitness in biology is sometimes given as an absolute number or
as a nondimensional change in frequency, consistent with mi, and sometimes as a rate or Malthusian
parameter, which might be given as

Mi =
mi

dτ
=

q̇i
qidτ

=
d log qi

dτ
(13)

Here, dτ is the underlying scale of change, which is typically a small change in time. However, we
can take dτ as an abstraction of the underlying scale of change, which may have any units or be
nondimensional. If we take the units on τ as the square of time, then we move toward traditional
definitions of force or acceleration. Because dτ is small, the quantities of rates, forces, or accelerations
may be large.

In the text, we are always looking at equivalences between left and right hand sides of equations.
So we can always multiply or divide by various functions of dτ interpreted with respect to arbitrary
dimensions. The abstraction in the text is intentional, because the interdisciplinary connections between
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seemingly different subjects and results arise only when one focuses on the abstract structure of the key
results. For example, the need for such abstraction arose elsewhere when studying the relation between
Fisher’s fundamental theorem and Fisher information [7,8,17].

The abstract structure shows the unity among a broad array of fundamental expressions in mechanics,
in biology, in information theory and information geometry, and in many other kinds of problems that
can be cast in variational form.

I have made the assumption that the scale of change is small, and thus all quantities with overdots
are small. In biology, that assumption is often associated with models of populations with overlapping
generations described in continuous time differential equations [16]. In mechanics, that assumption
corresponds to the classical differential equation expressions in continuous time.

The analysis of discrete changes that are not small, typically associated with discrete time models,
remains an open problem. The exact Price expression in Equation (1) gives a hint at how to proceed when
changes are not small. The connection to the continuous expressions of mechanics and d’Alembert might
be achieved by careful use of differential geometry and construction of discrete changes as sums of small
changes along continuous paths. But that analysis remains an open problem for the future. Some results
based on the analysis of the exact, discrete Price equation may provide a point of departure [7,8].

The ˙logmi notation is interpreted as
˙logmi =

dmi

mi

which is the change in the relative distance of mi from zero. This interpretation is consistent with the
expression of ˙logmi in terms of the changes in qi given in Equation (4).
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