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ABSTRACT
Microbes require several complex organic molecules for growth. A species may ob-
tain a required factor by taking up molecules released by other species or by syn-
thesizing the molecule. The patterns of uptake and synthesis set a flow of resources
through the multiple species that create a microbial community. This article ana-
lyzes a simple mathematical model of the tradeoff between uptake and synthesis.
Key factors include the influx rate from external sources relative to the outflux rate,
the rate of internal decay within cells, and the cost of synthesis. Aspects of demogra-
phy also matter, such as cellular birth and death rates, the expected time course of a
local resource flow, and the associated lifespan of the local population. Spatial pat-
terns of genetic variability and differentiation between populations may also strongly
influence the evolution of metabolic regulatory controls of individual species and
thus the structuring of microbial communities. The widespread use of optimality
approaches in recent work on microbial metabolism has ignored demography and
genetic structure.
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INTRODUCTION
Each microbial species takes up particular compounds and releases others. Biochemical
fluxes between species determine resource flows through the community. To understand
how each species reacts to and in turn influences other species, one must find key
attributes of biochemical fluxes that bring the diffuse interconnected complexity into
sharp focus.

One focal point arises from the complex organic molecules required by many
organisms. For example, several microbes require vitamin B12 (Roth et al., 1996). Only
certain species make that vitamin via an intricate biosynthetic pathway that requires
cobalt, often a rare and potentially limiting factor. Among those species that require B12,
some cannot make it and must take it up, some can make it but cannot take it up, and
some can switch between uptake and synthesis (Bertrand et al., 2012).

Varying patterns of uptake and synthesis occur for different molecules. Each species
evolves its characteristics in response to external availability and internal need.
Interactions between species cause evolutionary and ecological feedbacks that shape
patterns of resource flow through the community.

In this article, I analyze a simple mathematical model for the tradeoff between uptake
and synthesis of a molecule that limits growth. I study the evolutionary response of a
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single species to external availability and internal decay. In additional, the overall
population varies demographically with regard to how long local patches last before
extinction. I particularly emphasize the demographic aspect, because prior work on the
evolution of metabolic regulation rarely accounts for the key ways in which spatial and
temporal variations in resources, survival and reproduction shape evolutionary response
(Frank, 2010d).

The model shows that, under many conditions, species switch sharply between uptake
with no internal synthesis and internal synthesis with no uptake. Pure uptake means
dependence on production by other species, partitioning the community into producers
and nonproducers. Pure synthesis means that the focal species may become a source for
other species. Some conditions lead to a mixture of uptake and synthesis. In that case,
individuals maintain costly internal production but also scavenge the externally available
molecules released by dying cells.

The model illustrates the kinds of scaling relations that influence each species and thus
contribute to the structuring of communities. For example, influx rates from external
sources matter only in relation to rates of outflux, internal decay, and the cost of uptake.
Aspects of demography also matter, such as cellular birth and death rates, the expected
time course of a local resource flow, and the associated lifespan of the local population. I
discuss how spatial patterns of genetic variability and differentiation between populations
may strongly influence the evolution of metabolic regulatory controls of individual
species and thus the structuring of microbial communities.

My main point is that demography and the genetic structure of populations must be
very important in shaping the metabolic properties of species and communities (Frank,
1996 ; Crespi, 2001; Pfeiffer, Schuster & Bonhoeffer, 2001;West et al., 2007 ; Frank, 2010a;
Frank, 2010b; Frank, 2010d ; Frank, 2010c; Frank, 2013). However, the widespread use of
optimality approaches in recent work on microbial metabolism has almost universally
ignored demography and genetic structure (Ebenhoh & Heinrich, 2001; Schuetz, Kuepfer
& Sauer, 2007 ; Banga, 2008). Instead, that recent work has mostly used either growth rate
or biomass yield as the objectives optimized by natural selection. Even the advanced
multi-objective optimizations of the most sophisticated recent analyses ignore
demography and genetic variability (Handl, Kell & Knowles, 2007 ; Sendin et al., 2010;
Higuera et al., 2012; Schuetz et al., 2012).

METHODS
The model analyzes an isolated species’ metabolic design. Fitness optimization provides
specific predictions about the tradeoff between uptake and synthesis. The analysis uses
discounted population size as the measure of fitness (Fisher, 1930; Stearns, 1992; Frank,
2010d). The idea is that, at any time, the long-term contribution of a genetic clone to the
future of the population depends on the number of cells in that clone.

The total fitness of a clone over its full life cycle in a resource patch is the size of the
clone at each time multiplied by the probability that the clone survives to that time. Later
times in the life cycle are discounted because the probability of survival to a particular
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Figure 1 Flows of ametabolic factor between internal cellular stores, I, and the external environmen-
tal store, B. See Table 1 for descriptions of parameters. Based on system dynamics in Eq. (1).

time is a decreasing function of the amount of time that has passed. Thus, factors that
influence the survival of clones and the overall demography of the population strongly
affect fitness and how evolutionary process shapes particular metabolic tradeoffs.

In the Discussion, I consider an extended measure of fitness that accounts for genetic
variability between competing cells in a local population. Genetic variability often
significantly alters the objective fitness measure and associated optimal traits (Hamilton,
1970; Frank, 1998), and therefore has major consequences for metabolic design (Pfeiffer,
Schuster & Bonhoeffer, 2001; Frank, 2010d).

I focus on a particular organic compound that affects cellular growth rate. Various
fluxes determine the flow of the compound through the local population. Fig. 1 shows the
division of fluxes into distinct compartments, which include the extracellular
environment, B, in the local population (patch), the internal cellular environment, I, of
the cells in the patch, and compartments external to the patch.

Independently of the focal cells in a patch, influx of the compound from external
sources, v, is balanced by outflux,m (Fig. 1). In the absence of local cells, the external
concentration comes to an influx-outflux equilibrium. The compound flows into cells via
cellular uptake, α, and is released from cells when they die, at rate d. Cells can make the
compound by de novo internal synthesis, at rate γ . Within cells, the compound decays at
rate p. The internal concentration per cell is reduced following cellular division, because
the existing molecules must be split between the daughter cells. The rate of dilution by
cell division is σ(1 − N ).
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Table 1 Variables and parameters, see Appendix for nondimensional scalings.

State variables:
N number of cells in local population
B number of molecules of metabolic factor outside of cells
I number of molecules of metabolic factor within each cell
t nondimensional time scale
Control variables:
α external uptake rate of metabolic factor
γ internal synthesis rate of metabolic factor
Parameters:
a cost for uptake via diminished population growth rate
g cost for synthesis via diminished population growth rate
d intrinsic cellular death rate
p loss rate of internal molecules of metabolic factor
v extrinsic inflow of metabolic factor
m loss rate of external molecules of metabolic factor
u patch death rate, with average patch survival 1/u
Other processes: (see Appendix)
c scaling for molecules of metabolic factor released at death
k scaling for molecules of metabolic factor taken up by cells

The next section provides the equations that govern the dynamics of the compound
fluxes and cellular growth. The following section finds the optimal tradeoff between
uptake and synthesis for a genetically uniform clone under different assumptions about
flux rates and demography set by patch survival rates. The Discussion considers how
genetic variability within patches affects the optimal tradeoff between uptake and
synthesis.

RESULTS
Dynamics
I focus on the evolution of two control variables: the extracellular uptake of a metabolic
factor at rate α, and the intracellular synthesis of that metabolic factor at rate γ . Three
variables define the state of the system: the number of cells in the local population, N ; the
number of molecules of the metabolic factor outside of the cells, B; and the number of
molecules of the metabolic factor within each cell, I. The dynamics also depend on
several parameters listed in Table 1.

To simplify the analysis, I scale all variables and parameters into nondimensional form.
For example, I express population size, N, as a fraction of the maximum population size
that can be attained, and I express the number of internal molecules, I, as a fraction of the
amount required to achieve one-half of maximum growth rate. The Appendix shows the
full expression of dynamics in terms of all of the dimensional values and the translation
into the scaled nondimensional forms given in the main text. In the following, when I
describe the number of molecules or the rate of a process or the change in time, those
values are understood to be nondimensionally scaled relative to some baseline number or
rate.
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Table 1 shows all of the nondimensional variables and parameters. Using those terms,
the scaled nondimensional dynamics are

Ṅ = [σ(1 − N ) − d]N (1a)

Ḃ = v + dIN − αBN − mB (1b)

İ = (αB + γ ) − pI − σ(1 − N )I , (1c)

with maximum birth rate, σ , of

σ =
(

I
1 + I

)
− (aα + gγ ).

Fig. 1 shows the flows of the metabolic factor between the internal store within cells, I,
and the external store, B.

Clonal structure with variable demography
Suppose that spatially distinct resource patches come and go. A patch could be a host, a
decaying organism, or a sugary runoff. In this section, I assume that a patch may become
colonized by a small genetically uniform clone. The clone grows and sends out dispersers
to colonize new patches. Eventually the patch dies off.

The fitness of a clone in a particular patch is the total number of dispersers sent out of
the patch. To calculate fitness, I assume that, at any time, the rate of successful dispersers
out of a patch is proportional to the population size in the patch. A patch has a constant
death rate, u, and average survival time of 1/u. Thus, total expected fitness over a patch
life cycle is

w =
∫ ∞

t=0
N (t)e−utdt, (2)

which is a classic expression for fitness from life history theory (Fisher, 1930; Stearns,
1992), and was used by Frank (Frank, 2010d) to study microbial metabolism. I calculated
the optimal control rates for uptake, α, and synthesis, γ . Using the dynamics in Eq. (1), I
optimized fitness in Eq. (2) by the computational method of differential evolution (Storn
& Price, 1997 ).

Seven parameters (Table 1) influence the optimal control values presented in Fig. 2.
The axes of each plot show combinations for the costs of uptake and synthesis, a and g.
The different plots vary the values of the inflow and outflow parameters, v andm. The list
at the top of the figure shows the values for the patch lifespan, 1/u, cell death rate, d, and
decay rate within cells, p.

Higher total costs, a + g , do not strongly affect the ratio of uptake versus synthesis,
log(α/γ ). Both control variables tend to decline with a rise in costs. In some cases,
synthesis declines more rapidly than uptake, causing a rise in log(α/γ ).

A decrease in the ratio of costs, log(a/g ), typically favors a rise in the ratio of uptake
versus synthesis, log(α/γ ). Exceptions sometimes occur for high total costs. For example,
in the lower left panel of Fig. 2, when total costs a + g are high, a decline in log(a/g ) first
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Figure 2 Optimal control variables for uptake, α, and synthesis, γ . Optimal values maximize fitness in Eq. (2) using the dynamics from Eq. (1).
Each patch is purely clonal. The center panel shows the labeling for axes. All logarithms use base ten. The height of each surface, log(α/γ ), scaled
between −3 and 3, shows the relative magnitude of uptake versus synthesis. The flat regions show values outside of that range. For the costs of
uptake and synthesis, a and g, it is convenient to present the two dimensions as the sum and the ratio of the parameters. The same dimensional split
into sum and ratio also applies to the inflow and outflow parameters, v and m. Initial values for the state variables are N = 10−5, B = v/m, and
I = (αB + γ )/p.
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causes a sharp rise in the ratio of uptake versus synthesis and then a decline in that ratio.
Associated with the sharp rise, the synthesis rate declines to nearly zero under conditions
that favor uptake and little synthesis.

As the cost ratio continues to decline so that a is dropping rapidly and g is rising
slowly, the uptake rate continues to rise as expected. Interestingly, as the uptake rate
continues to rise, internal synthesis also starts to increase. Under those conditions, uptake
is sufficiently high that the clone gains from costly internal synthesis, because, with
sufficiently high uptake rate, one cell can recycle the internally produced metabolic factor
that is released by death of another cell, leading to synergism between uptake and
synthesis.

An increase in the sum of influx and outflux, v + m, occurs as one moves up a column
of plots in Fig. 2. There tends to be a sharper switch between uptake and synthesis with
high v + m and greater dominance by external flows of the key metabolic factor. At high
v +m, either there is enough of the factor available externally or there is not. Recycling of
the internal stores from cell death has little effect, because the external concentration is
dominated by extrinsic flows.

An increase in the ratio of external influx to outflux, v/m, occurs as one moves to the
right across a column of plots in Fig. 2. Relatively stronger influx favors greater uptake by
providing more of the factor available externally.

Fig. S1 shows the consequences of varying the average patch lifespan, 1/u, and the cell
death rate, d. Longer lasting patches favor relatively more uptake at higher cost ratios of
uptake versus synthesis. Longer lasting patches also favor relatively more synthesis when
the relative cost of synthesis rises and the cost ratio of uptake versus synthesis declines. It
may be that longer patch lifespan provides more opportunity for synergism between
uptake and synthesis, slowing the change in relative dominance by uptake versus
synthesis.

The plot arrays on the right side of Fig. S1 show a higher value of the cellular death
rate, d. Greater cell death interacts with several other parameters to influence the ratio of
uptake versus synthesis.

Fig. S2 shows the consequences of increasing p, the rate of decay of the metabolic factor
within cells. High p reduces the potential for synergism between uptake and synthesis.
When the internal decay is fast, then the clone cannot gain much from uptake of the
factor released from dying cells, because the internal decay within cells is too high and so
less is released upon death. For higher values of p, lack of synergism between uptake and
synthesis leads to a sharper switch between dominance by uptake versus synthesis.

Mixed uptake and synthesis occur for some parameter combinations. Mixed expression
seems to depend primarily on synergistic interactions between uptake and synthesis, in
which internal production by a cell followed by cell death aids neighboring cells that take
up the released products. Thus, synergism seems to be favored when internal production,
a trait that is costly to the individual, provides a benefit to a genetically related neighbor.
If so, then greater genetic variability within patches should reduce the fitness benefit of
aiding neighbors and thus reduce the synergistic effect (see Discussion).
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Other conditions may also favor mixed expression of uptake and synthesis. For
example, averaging over variable environments that sometimes favor uptake and
sometimes favor synthesis may lead to mixed expression, particularly when the cells
cannot switch with sufficient precision between uptake and synthesis in response to
changes in external conditions.

DISCUSSION
Many recent studies of microbial metabolism use optimization methods (Schuetz, Kuepfer
& Sauer, 2007 ). Those studies consider how different aspects of regulatory control
influence success. The idea is that natural selection tends to favor maximum success
subject to constraints that limit possible combinations of traits. Optimality methods
provide a way to interpret data on regulatory control with respect to how particular traits
contribute to success or how those traits are limited by specific constraints.

Analysis of optimality requires choice of a particular measure of success. The measure
of success may have multiple dimensions, with tradeoffs between dimensions. For
example, a simple multi-objective function for success considers the tradeoff between
growth rate and biomass yield (Pfeiffer, Schuster & Bonhoeffer, 2001).

In this article, I analyzed the tradeoff between uptake and synthesis of complex organic
compounds. I showed how optimization of success may lead to different combinations of
uptake and synthesis, most often with a sharp switch between relative dominance by
uptake or synthesis. The balance between alternatives depends on several conditions,
such as the inflow and outflow of the compound from the extracellular environment or
the rate of cellular death.

The measure of success for optimization has a very strong effect on the predictions. I
used a measure that considers total reproduction (yield) discounted by time. My measure
sums each time point from the founding of a local colony to the eventual death of that
colony. At each time, the success is the number of cells in the colony discounted by the
probability that the colony survives to that time. Thus, earlier reproduction is weighted
more heavily than later reproduction, providing a measure that weights rate versus yield
according to the time discount parameter.

Key metabolic tradeoffs, such as rate versus yield or uptake versus synthesis, inevitably
depend on the discounting of future reproduction. In this study, strong discounting,
associated with short average colony lifetimes, typically favored a sharper transition
between relative dominance by uptake or synthesis (Fig. S2).

Most optimality studies of microbes use either growth rate or biomass yield as the
objective function to be optimized, ignoring the demographic consequences of time
discounting (Schuetz et al., 2012). Time discounting has strong consequences and is likely
to be nearly universal (Frank, 2010d). Thus, the many studies that ignore such
demographic factors must be missing an essential force in the evolutionary design of
microbial regulatory control.

Recent optimality studies of microbes typically optimize clonal success (Schuetz et al.,
2012). However, analyses limited to clonal success may be misleading. Several studies
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have shown the very strong and inevitable ways in which patterns of genetic variability
affect the evolutionary design of microbial regulatory and growth related traits (Frank,
1996 ; Pfeiffer, Schuster & Bonhoeffer, 2001; Gardner, West & Griffin, 2007 ;West et al.,
2007 ; Frank, 2010c; Frank, 2010d).

In a prior study, I showed a simplified way to approximate the role of genetic variability
in optimality analyses of microbes (Frank, 2010d) (see Supplemental Information). In
that method, one starts with a particular common genotype and an alternative rare
genotype. When genetic mixtures occur, the common genotype is almost always with
another common genotype. Thus, one can calculate the aggregate fitness of the common
type by analyzing its success as a clone.

By contrast, the rare type will occur in two different kinds of patches. With probability
r, the rare type will settle in a patch with another rare type, and with probability 1 − r , the
rare type pairs with the common type. The aggregate fitness of the rare type is the average
of the two patch compositions. Here, r is the spatial correlation between genotypes within
patches, which is equivalent to the genetic coefficient of relatedness used in studies of kin
selection and social evolution (Hamilton, 1970; Frank, 1998). More mixing between
genotypes reduces r.

A possible optimal type would be one for which fitness when common is greater than
any rare alternative (Maynard Smith, 1982). Here, optimality simply means evolutionary
stable when common against any rare genetic variant. Although this idea is simple and
works well for many problems, it can be technically challenging to find optima for certain
problems. For example, the joint optimization of uptake and synthesis requires
simultaneous optimization in two dimensions. Joint optimization is in principle easy to
do, but challenging in practice because of numerical complexities. Here, I limit my
discussion to a few conjectures about how genetic variability might influence uptake
versus synthesis.

In the Results, I presented several examples in which synergism between uptake and
synthesis seemed to influence the optimal trait values. In those examples, internal
synthesis apparently provides an extra advantage to a cell because, when the cell dies, it
releases its stored internal metabolic factor, which then may be taken up by genetically
identical neighboring cells. Presumably that advantage would decline as genetic mixing
lowered r, the genetic correlation between neighboring cells. Synergism appeared to be a
powerful factor under certain circumstances. Thus, a significant interaction may arise
between the genetic structure of populations and the synthesis-release-uptake cycle.

In general, interactions often arise between genetic structure and traits that influence
competition or cooperation between cells (Frank, 1996 ; Crespi, 2001; Pfeiffer, Schuster &
Bonhoeffer, 2001;West et al., 2007 ; Frank, 2010a; Frank, 2010b; Frank, 2010c; Frank,
2010d ; Frank, 2013; Diard et al., 2013). Such interactions can be analyzed by optimality
and other analytical methods only when genetic structure is included explicitly as an
aspect of the target objective function, which defines fitness. The results presented in this
article and earlier studies also showed that time discounting also can strongly influence
fitness in the context of microbial tradeoffs in the regulatory control of metabolism. Time
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discounting is a particular kind of demographic process. Evolutionary analyses of life
history generally show strong effects of many demographic processes.

Interaction between demography and genetic structure are common and potentially
very strong (Frank, 1998; Frank, 2010a; Frank, 2010d). Further progress in using
optimality to study microbial regulation and metabolism will require wider use of
demographically and genetically realistic objective functions.

APPENDIX. NONDIMENSIONAL DEFINITIONS
The dynamics of Eqs. (1a)–(1c) expressed in terms of dimensional variables and
parameters are

Ṅ = [σ(1 − N/K ) − d]N (3a)

Ḃ = v + cdNI − kNαB − mB (3b)

İ = (αB + γ ) − pI − σ(1 − N/K )I (3c)

with maximum birth rate

σ = b
(

I
s + I

)
− (aα + gγ /s).

The actual birth rate is the maximum, σ , devalued by 1 − N/K . The discount arises by
the competition among cells over resources not explicitly included in the model.

All variables and parameters here are dimensional, and the time scaling is with respect
to the dimensional measure of time, τ . The following substitutions transform the
nondimensional system in Eqs. (1a)–(1c) to the dimensional system in Eqs. (3a)–(3c).

The nondimensional timescale is t = τb. For each of the following substitutions, the
left side is a nondimensional expression and the right side is a dimensional expression:
N = N/K ; B = B/s; I = I/s; α = α/b; γ = γ /sb; d = d/b; v = v/sb; c = cK ; k = kK ;
m = m/b; and p = p/b. The terms a and g are nondimensional cost scalings. We can
express the nondimensional value of σ in terms of the nondimensional definitions for the
other terms as

σ =
(

I
1 + I

)
− (aα + gγ ).

The parameter c is a scaling factor for the number of molecules released when a cell
dies, and the parameter k is a scaling factor for the number of molecules removed from
the external source when taken up by cells. Those scaling factors can be helpful in
analyzing the details of particular systems. In this article, I emphasize the general
structure of the problem rather than the quantitative details of particular systems.
Therefore, I have set c = k = 1 in the main text, dropping those parameters from the
analysis.

The patch death rate is u. The text uses the nondimensionally scaled expression
u = u/b, where the left-hand side is by convention the nondimensional version of the
dimensional scale on the right-hand side.
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