
Generative models versus underlying symmetries to explain
biological pattern

S. A. FRANK

Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, USA

Keywords:

evolutionary genetics;

extreme value theory;

limiting distributions;

mathematical models;

systems biology;

theoretical biology.

Abstract

Mathematical models play an increasingly important role in the interpreta-

tion of biological experiments. Studies often present a model that generates

the observations, connecting hypothesized process to an observed pattern.

Such generative models confirm the plausibility of an explanation and make

testable hypotheses for further experiments. However, studies rarely con-

sider the broad family of alternative models that match the same observed

pattern. The symmetries that define the broad class of matching models are

in fact the only aspects of information truly revealed by observed pattern.

Commonly observed patterns derive from simple underlying symmetries.

This article illustrates the problem by showing the symmetry associated with

the observed rate of increase in fitness in a constant environment. That

underlying symmetry reveals how each particular generative model defines

a single example within the broad class of matching models. Further pro-

gress on the relation between pattern and process requires deeper consider-

ation of the underlying symmetries.

Introduction

In a recent experiment, bacterial fitness increased stea-

dily over time (Wiser et al., 2013). The logarithm of the

rate of increase in fitness declined approximately line-

arly with respect to the logarithm of time. Such a sim-

ple pattern contains information about the underlying

processes that determine how fitness increases. But

exactly what sort of information?

To evaluate the match between an observed pattern

and a hypothesized process, mathematical models have

become the standard in biology. Typically, one puts

together a set of plausible assumptions about process

and then studies the resulting model for how well it

generates the target outcome. A successful match

implies a plausible generative model of process. Ideally,

the generative model will make additional testable

hypotheses, which can be studied in further experi-

ments.

But does a successful generative model, by itself,

really provide much information about underlying

process? Probably not. The more commonly a pattern is

observed, the more important it is to understand the

underlying process. At the same time, it is almost

always true that the more common a pattern, the

greater the number of underlying generative models

that match the pattern. The simple law of nature is that

the commonness of a pattern associates with the num-

ber of distinctive underlying processes that lead to that

pattern (Jaynes, 2003). Put another way, it is over-

whelmingly easy to make a generative model that

matches a simple, common pattern, but the match pro-

vides little information about the true underlying pro-

cess (Frank, 2009).

What is the real information in a pattern about

underlying process? The real information is the con-

straints that define the underlying class of matching

generative models (Jaynes, 2003). Such constraints

express the fundamental symmetries that determine

pattern (Feynman, 1967; Anderson, 1972). In this case,

symmetry means the group of alternative models that

produce the same pattern. Symmetry defines alterna-

tive states that are the same with regard to some mea-

sure (Weyl, 1983). For example, a square is the same

after it is rotated by ninety degrees, so a square is

symmetric with respect to ninety degree rotations.

Similarly, one may change many assumptions of an
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evolutionary model and still generate a linear decline

in the logarithm of fitness increase with respect to the

logarithm of time. The rate of increase in fitness is sym-

metric with respect to such changes in underlying gen-

erative assumptions.

If we knew all of the symmetries with respect to the

rate of increase in fitness, then we would know the full

class of underlying generative models consistent with

that pattern. We would know the essence of process

required to generate the pattern, and those aspects of

particular generative models that do not matter. For

simple patterns, the associated symmetries tend to be

simple, and most details of particular generative models

do not matter. However, we can only distinguish those

aspects that matter from those that do not if we know

the defining symmetries.

Why are most studies limited to expressing the exis-

tence of a matching generative model? Because finding

a matching model is easy, whereas discovering the

underlying symmetries that truly define the relations

between pattern and process is often difficult. In conse-

quence, it has become common to ignore the inherent

structure of the problem, and to be satisfied with a gen-

erative match. Indeed, the very idea that one should

look for underlying symmetries rather than a genera-

tive match is rarely acknowledged and perhaps not

widely understood.

I do not have a solution to the difficulty of discover-

ing the underlying symmetries. However, to have a

chance, one must first recognize the problem. With the

proper goal in mind, certain steps often help in learning

about the underlying symmetries of process that lead to

observed pattern. In this article, I use the example of

increasing bacterial fitness to illustrate some of these

issues.

Overview

The argument in this article is a bit more abstract than

usual. A brief overview may help before starting. A

common sequence of science is hypothesis, test by

observation and updated hypothesis in light of observed

pattern. How well one does with that sequence depends

on how good one is at finding useful updated hypothe-

ses. An updated hypothesis must, of course, be con-

strained by the observed pattern. But consistency with

observed pattern may often be, by itself, a rather weak

way of generating new hypotheses.

For example, if one observed a Gaussian (Normal)

distribution of measurements, then a detailed hypothe-

sis about why the specific natural history or biochemis-

try of certain processes led to that Gaussian pattern

could easily be constructed to generate the pattern. But

such a detailed explanation of process would almost

certainly be wrong, because the central limit theorem

tells us that Gaussian patterns arise inevitably when

underlying processes tend to add up to make final

pattern, irrespective of almost all of the details concern-

ing the underlying processes.

The phrase ‘irrespective of almost all of the details

concerning the underlying processes’ means that pat-

tern in that case is symmetric or invariant to many

changes in details. One must know that, otherwise the

hypothetico-deductive process is almost certain to lead

one to false paths, because one may mistakenly put too

much weight on hypothesized details of process that in

fact do not matter. The same problem arises for many

patterns that are not Gaussian in shape. The difficulty

is that the underlying symmetries are not always imme-

diately obvious and so require some thought in order

to avoid false paths. To illustrate those points, I have

structured this article as follows.

The first section introduces a particular observed pat-

tern for the increase in fitness over time in bacterial

populations. I express that observed pattern in a variety

of alternative ways. Those alternative expressions allow

one to see the pattern from a variety of perspectives.

Those different perspectives provide a deeper sense of

the pattern and its ‘shape’. A sense of shape helps to

see what may matter and may not with regard to

underlying process, that is, the underlying symmetries.

The second and third sections introduce the particu-

lar symmetries that may explain the form of the

observed pattern for the increase in fitness. In this case,

the symmetries arise from extreme value theory. That

theory has the same structure as the central limit theo-

rem. In particular, a wide variety of seemingly different

processes turn out to lead to the same pattern, when

the pattern depends primarily on rare or extreme

events. At first glance, it may seem that rare events

would be particularly difficult to predict and so be diffi-

cult to analyse with regard to the consequences for pat-

tern. However, although each rare event is hard to

predict, in the aggregate over several rare events, the

outcomes tend to converge to a very regular form. One

must recognize that symmetry to find meaningful

hypotheses about the generation of certain types of pat-

tern.

The fourth section applies extreme value theory to

the observed pattern for the increase in fitness in bacte-

rial populations. The final sections interpret the particu-

lar results with respect to the broader problem of

understanding symmetries and their role in generating

useful hypotheses for the interpretation of commonly

observed patterns.

Observed power law scaling for the
increase in fitness

Wiser et al. (2013) studied the change in fitness over

time in experimental populations of bacteria main-

tained in a constant environment. They showed that

the observed fitnesses over time follow a power law

relation
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w ¼ ð1þ btÞa; (1)

where w is mean fitness at time t, estimated from 12

replicate populations, and a and b are fitted parameters.

For my purposes, it will be useful to express Wiser

et al.’s relation in a variety of alternative ways to high-

light the related forms of simplicity that define the

essential pattern. Most of the simple forms begin with

logarithmic scaling

logw ¼ a logð1þ btÞ; (2)

which, for bt ≫1, approaches

logw ¼ a log bþ a log t: (3)

Rate of change in mean fitness

From eqn (3)

d logw

d log t
¼ a; (4)

which shows a very simple relation between the

change in log mean fitness and the change in the loga-

rithm of time.

We can also write the change in log fitness with

respect to time as

d logw

dt
¼ c (5)

where c � c(t) is a function of time that describes the rate

of increase in log mean fitness at any time. Note that if

selection is the only force, then c � J from Frank (2012),

and c is the increase in information accumulated by a

population from the action of natural selection.

It follows from eqn (2) that the increase in informa-

tion at any point in time is

c ¼ ab

1þ bt
! a

t
; (6)

where the limiting value on the right arises when bt ≫1.

Decay in the rate of change in log fitness

From eqn (6), it follows that

d log c
d log t

¼ �1; (7)

which shows that the logarithm of the rate of increase in

fitness declines directly in proportion to log t, the loga-

rithm of the amount of time that has passed.

Time required for a fixed change in log fitness

We can write eqn (4) as

d logw

d log t
¼ ct ¼ a; (8)

because dt = td log t, and from eqn (6), ct = a.

How much time must pass for a fixed change in log

fitness, d log w = k? From eqn (8),

d log t ¼ k=a: (9)

Because d log t = dt/t, we have

dt ¼ kt=a / t; (10)

where the symbol / means ‘is proportional to’. Thus,

the time increment, dt, needed to obtain a fixed change

in log fitness is proportional to the amount of time, t,

that has passed since the first measurement of fitness.

Interpretation of simple scaling relations

Observation of such simple and elegant scaling relations

implies a powerful underlying force. That underlying

force must erase all the details of selection and evolu-

tion that are particular to each population, exposing

the minimal symmetry that constrains pattern. No par-

ticular generative or dynamical model can make a pri-

mary claim to explaining such simplicity. Rather, one

must search for the way in which aggregation and the

loss of the particular information in each population

causes the simple underlying symmetry to dominate

(Frank, 2009).

Extreme values and the increase in
fitness

Several prior studies have analysed the accumulation of

beneficial mutations in a constant environment. Fitness

increases over time as each beneficial mutation gets

added to a population by selection. The most interesting

studies with regard to underlying symmetries empha-

size extreme value theory ( Gillespie, 1983, 1984, 1994;

Orr, 2003, 2010; Beisel et al., 2007; Joyce et al., 2008).

That theory describes the probability distribution for

the maximum observed value in a sample.

For the case of increasing fitness, one can think of a

sample as the mutations that occur during a fixed time

period. The most beneficial mutation that spreads

through a population during a particular period would

often be the extreme value, which would determine

the advance in fitness over that time increment. The

overall rate of increase in fitness depends primarily on

the sequence of extreme values over sequential time

periods.

The prior studies used extreme value theory to show

that many details of underlying models do not matter

with regard to the distribution of the effects of benefi-

cial mutations. Because the distribution of beneficial

mutations influences the rate of increase in fitness,

many details of underlying models do not matter with

regard to the increase in fitness. Here, I build on the

insight of those prior applications of extreme value the-

ory. In particular, I use extreme value theory to expose
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the underlying symmetries that may explain why the

observed pattern of increase in fitness follows the sim-

ple scaling law observed by Wiser et al. (2013).

Extreme value theory

This section summarizes extreme value theory. I limit

my presentation here to essential aspects that illustrate

the concepts. Frank (2009) provides a full introduction

and citations to comprehensive treatises on extreme

value theory.

I begin with a few definitions. Write the probability

that a random process, Y, takes on a value above the

given constant y, as

PðY [ yÞ ¼ F̂ðyÞ:
This expression describes the probability of observing a

value in the upper tail of the distribution, that is, a

value greater than y. However, our primary interest

concerns the maximum value, Mn, in a sample of size

n, which we may also think of as the extreme value of

a sample. The probability that Mn is less than y is the

probability that none of the n samples is greater than y,

which is

PðMn\yÞ ¼ 1� F̂ðyÞ� �n
: (11)

This expression is the right idea, because it tells us

about the probability that the extreme value in a sam-

ple is bounded by a particular upper value, y. However,

there is a mathematical problem. As the sample size, n,

becomes large, the probability that the maximum value

is bounded by y becomes zero, as long as there is some

chance that an observation could be above y. In a big

enough sample, eventually some observation will be

above the bound y. So this expression by itself is not

very helpful with regard to general principles, because

the expression depends on the sample size, n, which

will vary in each particular study.

To obtain a useful general expression for extreme

values, we need to find a form that does not depend on

sample size. Put another way, we want an expression

for the probability of observing a particular extreme

value that is symmetric, or invariant, with respect to

changes in sample size. If we can find that underlying

symmetry, we can greatly expand our understanding of

the general underlying principles that determine the

distribution of extreme values.

The form of eqn (11) suggests that the following

mathematical identity will help in finding an expression

that is independent of sample size

1� F̂ðyÞ
n

� �n
�! e�F̂ðyÞ; (12)

in which the right hand side does not depend on the

sample size, n, and is an increasingly good approximation

for the left hand side as F̂ðyÞ=n decreases. The problem

now becomes how to express the probability for the

maximum in a sample, given in eqn (11), in the form

given by eqn (12). In particular, the problem is that the

maximum of the sample, Mn, depends on the sample

size, n. How can we standardize Mn to remove the

dependence on sample size? One possibility is to

account for the increase in the expected maximum

value with n by using the value for the upper bound

any + bn, in which the coefficients an and bn depend on

n in a way that accounts for the expected increase in

the upper bound. In particular, if we can find values of

an and bn such that

F̂ðanyþ bnÞ ¼
F̂ðyÞ
n

;

then we can rewrite the form in eqn (11) as

PðMn\anyþ bnÞ ¼ 1� F̂ðyÞ
n

� �n
�! e�F̂ðyÞ: (13)

The probability of obtaining a particular extreme

value depends on how F̂ðyÞ, the upper tail probability

of observing a value above y, declines with an increase

in y. One commonly observed pattern is a power law

decline in the upper tail probability with increasing y,

such that the expected probability in the upper tail is

approximately proportional to F̂ðyÞ ¼ y�1=a.

Given a power law scaling in the upper tail, we must

choose an=n
a and bn=0 to satisfy eqn (13), because

F̂ðnayÞ ¼ F̂ðyÞ=n. Those constants lead to the extreme

value distribution of the Fr�echet form

PðMn\nayÞ ¼ e�y�1=a

:

For our purposes, we only need to use the fact that,

for a sufficiently small F̂ðyÞ=n, the expected value of

the maximum, Mn, increases with the sample size n in

proportion to na. Using angle brackets to denote

expected values, we can express this key fact in sym-

bols as

hMni ¼ nahyi; (14)

under the assumption that a < 1, so that Mn increases

at a diminishing rate with n.

The increase in fitness

Our goal is to understand the observed power law scal-

ing between relative fitness and time. That scaling was

given in eqn (1), repeated here for convenience

w ¼ ð1þ btÞa: (15)

My claim is that eqn (14) captures the essence of the

observed power law scaling for fitness. To support that

claim, we must fill in some gaps to show how the

extreme value result in eqn (15) expresses the simple

underlying symmetries that lead to eqn (15).
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To start, we must show the essential equivalence of

the extreme value theory expression in eqn (14) and

the observed scaling of fitness with time in eqn (15).

Then, we must express the underlying symmetries in

the extreme value theory and how those symmetries

may clarify the types of generative processes that could

lead to the observed pattern.

To establish the equivalence, we start by letting 〈Mn〉
� w, where w in this context is the expected relative

fitness. The idea is that the best potentially selected

mutant, Mn, has spread through the population and is

the maximum observation, or extreme value. Other

mutants may have had a higher value but, for what-

ever reason, were constrained from spreading and do

not enter into the set of potentially selected mutants.

The expression 〈Mn〉 is the expected maximum value

as a function of the sample size, n. We will interpret

the sample size as an increasing function of the time

that has passed. The relative fitness, w, at any time, is

equivalent to the best mutant that has spread through

the population up to that time.

The equivalence between fitness and the extreme

value means that

w ¼ hMni ¼ nahyi:
Because w is relative fitness, which we may scale by

any constant, we may choose 〈y〉 � 1 without loss of

generality. We thus obtain the expression for the

expected value of relative fitness

w ¼ na: (16)

This very simple result requires only that the probabil-

ity distribution for potentially selected mutants has an

upper tail that decays as a power law. A power law decay

in the upper tail for fitness, w, is equivalent to an expo-

nentially decaying upper tail when values for the

mutants are expressed on a logarithmic scale of fitness,

log w. The actual shape of an upper tail is a difficult

empirical problem (Clauset et al., 2009). A power law

may be a good approximation, because fitness has a nat-

ural tendency to scale logarithmically (Wagner, 2010).

Logarithmic scaling typically corresponds to power laws

(Frank, 2009). For specific discussion of alternative tail

shapes of mutational effects in relation to extreme value

theory, see the excellent analysis in Joyce et al. (2008).

The result in eqn (16) describes fitness in terms of

sample size, n. However, the observed pattern of fitness

in eqn (15) expresses the change in fitness with respect

to time, t, rather than with respect to sample size, n.

Thus, we must define a reasonable relation between

sample size, n, and time, t. The relation that transforms

eqn (16) into eqn (15) is

n ¼ 1þ bt: (17)

This equivalence works mathematically, but can

we justify it biologically? In fact, the equivalence is

inevitable if we take the simplest interpretation of two

necessary relations. First, at t = 0, the biologically

observed expression in eqn (15) uses the arbitrary

assumption that relative fitness is one. Using that same

assumption, we must have t = 0 corresponding to n = 1,

for which eqn (17) uses the simplest expression of that

assumption. Second, if we follow the inevitable fact

that sample size increases with time, then the simplest

assumption is that the number of samples increases lin-

early with time. In eqn (17), the assumption is that the

sample size, n, increases linearly with time as bt. For

these two reasons, eqn (17) seems the simplest, fully

justified way to express the relation between sample

size and time.

Using the relation between sample size and time

from eqn (17) in the universal extreme value scaling

law in eqn (16), we obtain the observed pattern for the

change in fitness with time in eqn (15). The only

assumptions are upper tail events are relatively rare;

upper tail events that increase fitness decay as a power

law; and sample size increases linearly with time. The

observed power law pattern contains only the informa-

tion in those three assumptions. For any generative

process that matches the observed pattern, no addi-

tional information can be added beyond those key

assumptions.

Symmetry interpretation versus
generative models

For the observed power law increase in fitness with

time in Wiser et al. (2013), all matching generative

models are symmetric with regard to details beyond

the two key aspects of information contained in the

observed pattern. To repeat the above conclusion, the

key aspects of information are upper tail events that

increase fitness decay as a power law and upper tail

events are relatively rare (Gillespie, 1994; Joyce et al.,

2008; Orr, 2010). Here, symmetry means invariance, in

the sense that the pattern generated by a matching

model is invariant with regard to any details beyond

the two components of information contained in the

observed pattern.

The central limit theorem provides the best known

example of symmetry and invariance (Jaynes, 2003).

When summing up a series of random processes, one

often observes a normal, or Gaussian, distribution. The

reason is that the particular details in each component

process tend to average out, exposing only the underly-

ing information about the mean and variance of the

aggregate process. Thus, the mean and variance are suf-

ficient statistics to define a Gaussian distribution. Put

another way, given the mean and the variance, all

other details of a particular generative process get

washed away in the aggregate. The Gaussian pattern is

symmetric, or invariant, to the other particular details

of the great many generative processes that lead to that
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outcome. Indeed, the Gaussian is so very common

because there are so many different generative pro-

cesses that satisfy the key underlying symmetry.

The central limit theorem is well known. Thus, an

observed Gaussian pattern rarely motivates anyone to

produce a detailed generative model to match that pat-

tern. The fact that so many different generative models

lead to that pattern is understood. By contrast, in biol-

ogy, almost any other observed pattern often motivates

the production of a detailed generative model. But

many other patterns besides the Gaussian share the

essential feature of attracting a wide class of underlying

generative processes to the same pattern. The extreme

value pattern is one of the most powerful attractors, on

the same level as the Gaussian pattern (Embrechts

et al., 1997; Kotz & Nadarajah, 2000; Frank, 2009;

Frank & Smith, 2011). If the set of attracting patterns

were better known, the widespread tendency of

explaining simple general patterns by overly particular

and often misleading generative models would not be

so common (Gutenkunst et al., 2007; Frank, 2011,

2013; Machta et al., 2013).

The philosophical literature contains a distinct analy-

sis of similar problems. As Stanford (2013) puts it: ‘At

the heart of the underdetermination of scientific theory

by evidence is the simple idea that the evidence avail-

able to us at a given time may be insufficient to deter-

mine what beliefs we should hold in response to it’.

Focus on symmetries provides a way forward, by telling

us something about the particular nature of underde-

termination.

Discussion

In this section, I first provide additional context about

symmetries in relation to explanation. I then discuss

how my approach to the particular example of fitness

relates to past work.

Underlying symmetries do not explain all of the

details of observed pattern. Rather, the symmetries

express the main force that sets the broad features of

pattern. In the same way, the average value over a

range of outcomes does not express all of the variabil-

ity, but rather the expected outcome or the general

location of pattern. Thus, my argument is not that the

details of particular models are necessarily uninteresting

or unhelpful. Instead, one must first locate the primary

cause of pattern before one can understand the causes

of variation around that primary location. The first step

in explanation is to figure what does not matter in set-

ting the main shape of pattern. One may then fill in

the details of how, in particular situations, additional

processes set the variations around the primary shape.

Often, a complicated and detailed generative model,

which appears to capture many aspects of realism,

attracts strongly to the very simple pattern set by the

basic underlying symmetries. The many details act like

random perturbations relative to the core pattern. The

greater the number of random perturbations, the more

likely they tend to cancel in the aggregate, leaving only

the core pattern.

Wiser et al. (2013) present a detailed generative

model to explain their observed power law scaling of

fitness with time. They assume that beneficial muta-

tions follow an exponential distribution when mea-

sured with respect to log w, which is equivalent to a

distribution with a power law upper tail for w. They

also make many particular assumptions, leading to a

relatively complicated model and analysis. Their pri-

mary conclusion is that their model matches the simple

power law pattern for the increase in fitness with

respect to time. They also include analysis and discus-

sion of many potentially realistic and informative

details of evolutionary process. Those details could pro-

vide much insight. The main limitation is that, by not

expressing the underlying symmetry and the simplicity

of the relation between pattern and process, it is hard

to see what matters and what does not matter with

respect to the primary pattern. Therefore, it is hard to

know how the particular details do or do not influence

variation around the primary trend set by the underly-

ing symmetry.

Much past work has promoted the power of extreme

value theory for analysing the distribution of beneficial

mutations and the rate of increase in fitness (Gillespie,

1994; Joyce et al., 2008; Orr, 2010). That work does

emphasize the importance of underlying symmetries in

understanding the relation between pattern and pro-

cess. However, the particular analyses from the past

work have sometimes focused on rather detailed and

specific patterns or assumptions (Joyce et al., 2008).

Those details could, in theory, matter a lot when analy-

sing the actual patterns of mutation, selection and the

increase in fitness.

The great value of the data and analysis from Wiser

et al. (2013) is the simplicity of observed pattern. My

main goal has been to match that observed simplicity

to a theory that captures the underlying symmetry, in a

way that could explain the primary cause of such sim-

plicity of pattern. Of course, other general models

besides extreme value theory could match the same

observed pattern. But that is exactly my point. Simple,

common patterns tend to be attractors for many under-

lying models. Extreme value theory does have a privi-

leged position, shared only with the central limit

theorem and its generalization to a broad family of

related patterns (Frank, 2009, 2011; Frank & Smith,

2011). Many common patterns arise from those few

families of special attractors.
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