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Abstract

Three steps aid in the analysis of selection. First, describe phenotypes by

their component causes. Components include genes, maternal effects, sym-

bionts and any other predictors of phenotype that are of interest. Second,

describe fitness by its component causes, such as an individual’s phenotype,

its neighbours’ phenotypes, resource availability and so on. Third, put the

predictors of phenotype and fitness into an exact equation for evolutionary

change, providing a complete expression of selection and other evolutionary

processes. The complete expression separates the distinct causal roles of the

various hypothesized components of phenotypes and fitness. Traditionally,

those components are given by the covariance, variance and regression

terms of evolutionary models. I show how to interpret those statistical

expressions with respect to information theory. The resulting interpretation

allows one to read the fundamental equations of selection and evolution as

sentences that express how various causes lead to the accumulation of infor-

mation by selection and the decay of information by other evolutionary

processes. The interpretation in terms of information leads to a deeper

understanding of selection and heritability, and a clearer sense of how to

formulate causal hypotheses about evolutionary process. Kin selection

appears as a particular type of causal analysis that partitions social effects

into meaningful components.

The path method … is not so much concerned with

prediction as [it is with] the proposal of a plausible

interpretation of the relationships between the vari-

ables. In other words, path analysis is concerned with

erecting a causal structure compatible with the

observed data (Li, 1975, p. 3).

Introduction

Populations accumulate information by natural selec-

tion. The amount of information may be expressed by

classical information theory (Frank, 2012b). That purely

informational expression describes phenotypes and

fitness abstractly, without consideration of the explicit

causes that determine phenotypic traits and their asso-

ciation with fitness. Here, I partition phenotypes and

fitness into their component causes.

For phenotypes, we must track the influence of genes,

symbionts, maternal effects and other potential causes.

The components of phenotype lead to explicit models of

character expression and heritability. For fitness, we

must track how different characters and external forces

combine to determine success. An individual’s fitness

may, for example, depend on a combination of its own

phenotype and the phenotypes of its neighbours.

I put those explicit causal components of phenotype

and fitness into the fundamental expressions of selec-

tion and evolutionary change. I recover an expanded

concept of heritability, a precise understanding of Fish-

er’s fundamental theorem and a general form of the

equations of selection for multiple characters. With

those tools, the following article clarifies kin selection

and other social processes (Frank, 2013).
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I presented much of this material in Frank (1997b,

1998). Here, I pursue four goals. First, I express the

key partitions of phenotypes and fitness with respect

to my new information theory interpretation of selec-

tion (Frank, 2012b). Second, the information expres-

sions translate the traditional regression and variance

terms of selection into more meaningful descriptions

of cause and consequence. Third, the partitions of

phenotype and fitness provide the basis for replacing

outdated concepts of kin selection with a solid concep-

tual foundation (in Frank, 2013). Fourth, I emphasize

simplicity, presenting the mathematical material at the

most basic level consistent with the concepts. The

original publications contain more detail (Frank,

1997b, 1998).

Mathematically, little is required beyond simple

forms of statistical regression and the location of points

in coordinate systems. Although I use only basic math-

ematics, the article is nonetheless challenging. I cover a

wide array of problems at a very general level, with

emphasis on the connections between seemingly differ-

ent topics. That sustained abstraction and synthesis

provide both significant rewards and demanding chal-

lenges.

It may seem that the basic problems of selection

and kin interactions were solved long ago. Why do

we need to revisit those topics? In fact, our under-

standing of natural selection and kin selection has

continued to advance over the past few decades.

Those advances have developed while the old formu-

lations have remained. The core of the subject has

become cluttered with incompatible expressions from

different eras, derived in different contexts. One

can no longer go forward without first resetting the

foundations.

Selection

I briefly review the general equations for selection and

evolution. Recent articles in this series provide full

details (Frank, 2012a, b).

The Price equation

Consider an initial population. Let �z be the average in

the population of some value (phenotype). A second

population has average value �z0. Total change between

the populations is D�z ¼ �z0 � �z. Split the total change

into two components

D�z ¼ Ds�z þ Dc�z: (1)

The first term, Ds, is the part of the total change

caused by selection. The second term, Dc, is the remain-

ing part of total change by all other causes.

To evaluate these terms, we write the average value

as �z ¼ P
qizi. The index i divides the population in any

way that we choose. We may use i to label by different

individuals, by different groups, by genotype or by any

other partition of the population. The frequency of a

type i in the population is qi. The phenotype associated

with i is zi. The average value in the second population

is �z0 ¼ P
q0iz

0
i .

We define selection as changes in frequency, holding

constant phenotype

Ds�z ¼
X

q0izi �
X

qizi:

Here, the populations differ in their frequencies,

Dqi ¼ q0i � qi, but we have held the phenotype values

constant at zi in both populations. Using Dqi for

frequency change, we write

Ds�z ¼
X

Dqizi: (2)

To obtain the total change, we need the changes in

phenotype holding constant the frequencies

Dc�z ¼
X

q0iz
0
i �

X
q0izi:

Here, the populations differ in their phenotype,

Dzi ¼ z0i � zi, but we have fixed the frequency at q0i.
We use the final frequencies in the second population,

q0, because they provide the proper reference for final

phenotype after change (Box 2). Using Dzi for pheno-

typic changes, we write

Dc�z ¼
X

q0iDzi:

The total change from eqn 1 can now be written (Box

2) as a form of the Price equation

D�z ¼
X

Dqizi þ
X

q0iDzi: (3)

Box1: Topics in the theory of natural selection

This article is part of a series on natural selection. Although

the theory of natural selection is simple, it remains endlessly

contentious and difficult to apply. My goal is to make more

accessible the concepts that are so important, yet either

mostly unknown or widely misunderstood. I write in a non-

technical style, showing the key equations and results rather

than providing full derivations or discussions of mathemati-

cal problems. Boxes list technical issues and brief summaries

of the literature.

ª 2 0 13 THE AUTHOR . J . E VOL . B I OL . 2 6 ( 2 0 1 3 ) 4 5 7 – 47 1

JOURNAL OF EVOLUT IONARY B IOLOGY ª 2013 EUROPEAN SOC I E TY FOR EVOLUT IONARY B IO LOGY

458 S. A. FRANK



Box 2: Price equation: difference of a product

The Price equation simply expands a difference into multiple

terms. Consider, for example, the difference of the product

of x and y, which we write as DðxyÞ ¼ x0y0 � xy. We can

expand the difference of the product as

DðxyÞ ¼ ðx þ DxÞðyþ DyÞ � xy

which yields

DðxyÞ ¼ ðDxÞyþ xðDyÞ þ DxDy:

This expression shows that the difference of a product is

the difference of the first term holding the second term con-

stant, plus the difference of the second term holding the first

term constant, plus the product of the two differences.

We can simplify the difference expansion by combining a

pair of terms on the right-hand side. Noting that

x0 ¼ x þ Dx, we can combine the last two terms into one,

yielding

DðxyÞ ¼ ðDxÞyþ x0ðDyÞ:

The derivation of the Price equation follows the rule for

the difference of a product

D�z ¼ D
X

qizi

¼
X

DðqiziÞ
¼

X
ðDqiÞzi þ

X
q0iðDziÞ:

The value of the Price equation arises from identifyingPðDqiÞzi as the part of total change caused by selection.

Selection acts on phenotype at a fixed point in time, so it

makes sense to consider selection as the partial difference in

frequency holding phenotype constant. When we use log fit-

ness for the phenotype, m ≡ z, we get an exact correspon-

dence between the selection term and the increase in

information expressed by classical information theory (eqn 8).

That correspondence supports interpreting
PðDqiÞzi as

selection.

Classical expressions of covariance, regression and
variance

The definition of fitness is

q0i ¼ qi
wi

�w
; (4)

where wi is the fitness of type i, and �w is average fit-

ness. The change in frequency is

Dqi ¼ qi
wi

�w
� 1

� �
:

Thus, the change caused by selection can be written as

a covariance between fitness and phenotypeX
Dqizi ¼

X
qi

wi

�w
� 1

� �
zi ¼ Covðw; zÞ=�w: (5)

We can rewrite a covariance as a product of a regres-

sion coefficient and a variance term

Ds�z ¼ Covðw; zÞ=�w ¼ bzwVw=�w; (6)

where bzw is the regression of phenotype, z, on fitness,

w and Vw is the variance in fitness. Selection equations

are often expressed with these covariance, regression

and variance terms. Classical population genetics

expressions for change in gene frequency also have this

form, in which we let �z ¼ p be the frequency of a gene

in a population.

Information

Frank (2012b) showed that selection can be expressed

in terms of information theory. I briefly review the key

points in this section.

Fitness and the gain in encoded information

Fitness, w, describes relative changes in frequency.

Logarithms provide the natural scaling for relative

changes. Using the expression for fitness in eqn 4, we

write log fitness as

mi ¼ logðwiÞ ¼ logð�wÞ þ log
q0i
qi

� �
:

Using z ≡ m in the expression for selection (eqn 2), we

have

Ds �m ¼
X

Dqimi ¼
X

Dqi log
q0i
qi

� �
:

The classic information theory expression for the

change in encoded information between two popula-

tions with frequencies q0 and q is

Dðq0kqÞ ¼
X

q0i log
q0i
qi

� �
: (7)

With that definition, we have

Ds �m ¼ Dðq0kqÞ þ Dðqkq0Þ;
in which the right-hand side is known as the Jeffreys

information divergence, J. Thus, we can write the fun-

damental expression for the accumulation of informa-

tion by natural selection as

Ds �m ¼ J: (8)

Because z in eqn 6 is just a placeholder for any character,

we can use m in place of z in that equation, yielding
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Ds �m ¼ bmwVw=�w:

Thus, the information accumulated by natural selec-

tion, J, is equivalently expressed in terms of the regres-

sion coefficient and the variance,

J ¼ bmwVw=�w: (9)

Variance, regression and information

The variance in fitness, Vw, is proportional to the infor-

mation gain by natural selection, J (eqn 9). It is easy to

understand why selection may be expressed in terms of

information. Selection is, in essence, a process by which

populations gain information about the environment.

But, why should the variance arise as an alternative

description of selection?

The usual view is that selection acts on differences

within the population. The greater the differences, the

larger the variance and the greater the opportunity for

selection. But, why exactly is the variance the correct

measure of differences within the population, rather

than some other measure of variation?

Consider the definition of fitness (eqn 4) given earlier

wi

�w
¼ q0i

qi
;

in which the relative fitness is the ratio of frequencies

between the new and old population. Relative fitness is,

in essence, a measure of the separation between the new

population and the old population, a comparison of q0

vs. q. Because the frequencies in each population must

add to one, each separation between a pair q0i and qi must

be balanced by opposite separations in other pairs.

Thus, the variation in the q0i=qi ratios measures the

total separation of the new population from the old

population. In particular, the variance in those ratios –
the variance in fitness – is like a distance between the

new population and the old population. That distance-

like measure has units in terms of the information gain

(Frank, 2012b). The variance in fitness expresses an

informational distance, the amount of information

gained by selection.

Information gain is measured on the logarithmic

scale of frequency changes (eqn 7). The regression

coefficient, bmw, transforms fitness from the linear scale,

w, to the log scale, m, yielding the key expression given

earlier for the change in log fitness (information)

caused by selection

Ds �m ¼ J ¼ bmwVw=�w:

It is common to think of a regression coefficient as a

linear prediction estimated from data. That interpretation

misleads with regard to understanding the fundamental

equations of selection. Instead, the regression coeffi-

cient describes the consequence for the change in aver-

age value when transforming from one scale to

another scale (Boxes 3 and 4). The proper way to read

bmw is a change in scale from w to m when evaluating

the averages �w and �m.

Phenotype as a change in the scaling of information

Selection causes populations to accumulate informa-

tion. The measure of information is related to log fit-

ness. In the analysis of selection, we often focus on

phenotypes rather than fitness. Here, I show that, with

respect to selection, one can think of the phenotypic

scale simply as an alternative scale on which to mea-

sure information.

Begin with the expression given earlier for the

change in log fitness

Ds �m ¼ bmwVw=�w:

The regression coefficient, bmw, changes scale from fit-

ness, w, to log fitness, m. If we divide by bmw, we obtain

Ds �m

bmw

¼ Vw=�w:

The factor 1=bmw reverses the scale change, transform-

ing from the logarithmic scale, m, to the linear scale, w.

The change in phenotype from eqn 6 can be written

as

Ds�z ¼ bzwVw=�w:

The regression bzw changes scale from fitness, w, to

phenotype, z, and 1=bzw reverses the direction of the

change in scale. Thus

Ds�z

bzw
¼ Vw=�w ¼ Ds �m

bmw

:

Because the information accumulated by natural selec-

tion is Ds �m ¼ J, we have

Ds�z ¼ bzw
bmw

� �
J:

This expression describes the change in phenotype by

selection in relation to the information gain, J, rescaled

by the transformation from the scale of information, m,

to the scale of phenotype, z. We may describe the scal-

ing between the gain in information, J, and change in

phenotype caused by selection, Ds�z, as

az ¼ bzw
bmw

: (10)

Thus we can write the relation between the change in

phenotype and the gain in information as

Ds�z ¼ azJ: (11)
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Causes of phenotype

This section partitions the causes of phenotype into

components. The next section connects the causes of

phenotype to the capture and transmission of informa-

tion. The following section partitions fitness into com-

ponents, dividing the gain in information by selection

into different causes. Boxes 3–6 provide background

on regression. Box 7 provides citations to the litera-

ture.

Overview

Heritability describes the expected similarity in pheno-

type between different individuals (Falconer & Mackay,

1996). For example, we may define the predictors of

phenotype as the set of alleles in an individual, and the

heritability as the part of similarity between ancestors

and descendants ascribed to those alleles. Because sex

and recombination break up particular combinations of

alleles, adding up the effects of each individual allelic

predictor often provides a good estimate of the similar-

ity between different relatives caused by genetics.

Alternatively, we may expand the set of predictors

to include certain nonlinear combinations of alleles.

For example, we may have a predictor for the pres-

ence of allele A, another for the presence of allele B,

and a third for the presence of both alleles. Certain

expanded predictor sets may give a more accurate

description of similarity between closely related ances-

tor–descendant pairs that are likely to share the allelic

combinations, but may give a less accurate description

when the allelic pairs tend to be broken up during

transmission.

Here, I am primarily interested in the information

that a population accumulates by selection, and how

different processes may reduce or alter the transmission

of accumulated information. My expressions include

the classic genetic measures as special cases. But, I do

not emphasize the connection to traditional genetics –
the genetic interpretations are discussed in every basic

textbook of genetics (Falconer & Mackay, 1996).

Instead, I focus on general equations for selection and

the transmission of information. In my expressions, any

predictors can be used including, but not limited to, all

of the traditional genetic forms.

Why bother with such abstractions? Because many

extensions to basic genetic theory have been developed

to cope with nongenetic effects or to analyse selection

independently of genetics (Lynch & Walsh, 1998). The

Box 3: Regression

Simple regression is based on the equation for a line

z ¼ aþ by;

in which z is the outcome of interest, y is a variable

that is used to predict z, the term b is the slope of the

line relating z to y and a is the intercept, which is the

value of z when y = 0. The simple regression model is

usually written as

zi ¼ aþ bzyyi þ di;

in which the i subscripts denote values associated

with different observations, and di is the residual as

described below. In some applications, it is conve-

nient to make the intercept a disappear, which we

achieve by yi ¼ xi � a=bzy, which gives

zi ¼ bzxxi þ di:

This expression is equivalent to the previous one. The

only change is that x differs from y by a constant value. The

second expression uses bzx in place of bzy. Those terms have

the same value, but I use the term with x to emphasize that

the relation is now between z and x. In any regression

model, we can make a similar substitution in which we

change y by a constant factor to get an x value that makes

the intercept disappear.

From the perspective of regression analysis, bzxx provides

a prediction of z given x. The difference between the actual

value and the predicted value is the residual (error),

di ¼ zi � bzxx. Two changes in notation provide a cleaner

expression. Write the regression coefficient as b ¼ bzx, and
drop the i subscript, yielding

z ¼ bx þ d;

where the variables implicitly range over i.
Regression has a natural asymmetry. In prediction, the

value of z is the predicted value given the predictor, x. In a

causal interpretation, in the sense of path analysis (Box 5),

the effect z depends on the cause, x. One must keep this

asymmetry in mind to interpret regression equations cor-

rectly. Proper notation helps. We may write

z j x ¼ bx þ d;

which emphasizes that the outcome, z, depends on

the given fixed value of x. We read z | x as ‘z given x’.

If we take the average of both sides

Eðz j xÞ ¼ bx;

where E(z | x) is the expectation of z given x, in

which ‘expectation’ means the average value. On the

right side, d disappears because the regression coeffi-

cient, b, is chosen so that the average value of the

residual is zero, �d ¼ 0.
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literature tends to deal with each particular problem as

a novel challenge that requires special theory. For

example, maternal effects, kin selection, cultural evolu-

tion and institutional evolution in economics all have

their distinct literatures and ways of framing problems.

Yet all of those problems are just examples of a general

theory of selection and transmission. In any particular

application, the key is to express the causes of pheno-

types (characteristics) and the causes of fitness (success)

by a model, or hypothesis, of how various predictors

combine to determine outcome. A general theory

expressed in terms of any choice of predictors defines

the unifying conceptual framework ( Frank, 1997b,

1998).

Fisher’s average effect

We can separate phenotype into components by

zi ¼
X
j

bjxij þ di:

Each type, i, has n different associated xi values,

xi1; xi2; . . .; xin. From the perspective of multiple regres-

sion, the x’s are predictors, or independent variables,

with respect to the phenotype, z. Each bj is a partial

regression coefficient of z on xj. Roughly speaking, a

partial regression coefficient, bj, describes the average

change in phenotype, z, for a change in the associated

predictor variable, xj.

Box 4: Change in scale

In the regression model (Box 3) with subscripts used explic-

itly for labelling types

Eðzi j xiÞ ¼ bxi:

If we consider subscripts for two different types, k and i,

we can write Eðzk j xkÞ ¼ bxk and Eðzi j xiÞ ¼ bxi. Subtracting

these two equations from each other gives

Eðzk � zi j xk � xiÞ ¼ bðxk � xiÞ:

Using D to denote a change between the k and i values

EðDz jDxÞ ¼ bðDxÞ;

which we can write equivalently as

b ¼ bzx ¼
EðDz jDxÞ

Dx
;

which we read as: ‘the regression of z on x is the expected

change in z for a given change in x divided by the change in

x’. From this expression, we see that a regression coefficient is

the expected change in scale for one variable in relation to

another variable. One can also think of the regression coeffi-

cient as a sort of generalization of differentiation. For situa-

tions in which we can consider z and x as continuous variables

with an underlying functional relationship, z(x), it will often

be the case that as the changes become small, Dz ? 0 and

Dx ? 0 with x confined to a small range of values, then the

regression coefficient approaches the derivative, bzx ! dz=dx.

Finally, the variables x and d are uncorrelated, so that

Cov(x,d) = 0. Regression uses all of the available information

in x about z. Thus, any left over deviations, d, cannot con-

tain information about z, which is reflected in the lack of

correlation between those variables.

When we have multiple predictors, or causes,

xj ¼ x1; x2; . . .; xn, then the regression equation is

z ¼
X
j

bjxj þ d;

where each bj is the partial regression of z on xj, holding

constant the other predictor values. Suppose, for example,

that we have two predictors, x1 and x2. For notational con-

venience, let x � x1 and y � x2, so that the regression

equation is

z ¼ bxx þ byyþ d:

If, as above, we take the difference between two x values,

holding y constant, we obtain

bx ¼ bzx�y ¼
EðDzjDx; yÞ

Dx
;

which we read as: ‘the regression of z on x, holding y

constant, is the expected change in z for a given change

in x and a fixed value of y, divided by the change in x’.

This expression gives the expected change in scale

between z and x for a given value of y. If z, x and y are

continuous variables with an underlying functional rela-

tionship, z(x,y), then for small changes confined to a small

range of predictor values for x and y, it will often be the

case that the regression approaches the partial derivative

bzx�y ! @z=@x.

These properties of regression follow from least squares.

The squared distance between predicted and observed val-

ues is the sum of squares,
P

d2i . Minimizing that distance

gives the least value for the sum of squares – the least

squares. All properties here follow from that minimization.

Further aspects of regression depend on other assump-

tions. For example, many tests of statistical significance

assume that the residuals have a normal distribution. Cer-

tain interpretations require that the observations be line-

arly related to the predictors. I do not use those further

aspects and therefore do not require any assumptions

about linearity or the distribution of observations and

residuals.
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We often focus on the general relation of a pheno-

type, z, to its components, xj, rather than on the partic-

ular phenotype, zi, of a particular type, i, in relation to

its particular components, xij. Thus, we may express the

general relation between a phenotype and its compo-

nents as
z ¼

X
j

bjxj þ d;

in which one understands that the particular values of

z, xj and d vary for the different types, i, whereas the

average effect of a predictor, bj, is a property of the

population.

The regression expression applies to any predictors,

xj. We could use temperature, neighbours’ behaviour,

another phenotype, epistatic interactions given as the

product of allelic values, symbiont characters or an

individual’s own genes. Fisher first presented this

regression for phenotype in terms of alleles. Suppose

each xj is the presence or absence of an allelic type.

Then each bj describes the average contribution to pheno-

type for adding or subtracting the associated allelic type,

and bj is called the average effect (Fisher, 1930; Crow &

Kimura, 1970; Falconer & Mackay, 1996).

Predicted phenotype is

g ¼
X
j

bjxj: (12)

In genetic contexts, g is often called the breeding value

(Falconer & Mackay, 1996). Using g, we can partition

phenotype into a predicted component and a residual

component

z ¼ gþ d; (13)

where d = z � g is the difference between the actual

value and the predicted value. If we take the average of

both sides, we get �z ¼ �g, because �d ¼ 0.

Box 5: Causes and predictors

Since path analysis depends on structure, and structure

in turn depends on the cause-and-effect relationship

among the variables, we shall first say a few words

about the way these terms will be used … There are a

number of formal definitions as to what constitutes a

cause and what an effect. For instance, one may think

that a cause must be doing something to lead to some-

thing else (effect). While this is clearly one type of

cause-and-effect relationship, we shall not limit our-

selves to that type only. Nor shall we enter into philo-

sophical discussions about the nature of cause-and-

effect. We shall simply use the words ‘cause’ and

‘effect’ as statistical terms similar to independent and

dependent variables, or [predictor variables and

response variables] (Li, 1975, p. 3).

I analyse causes of phenotypes and causes of fitness. Here,

I briefly comment on the word ‘cause’. The above quote and

the epigraph come from Li’s book on Path Analysis. Li’s point

concerns the distinction between three levels of analysis.

First, true causality describes the relations between actual

forces and actual effects. Whether such things can ever be

studied or known directly remains a philosophical problem

beyond our scope.

Second, at the other extreme, multiple regression analysis

from classical statistical theory concerns only correlations

and variances. The standard theory explicitly disavows cau-

sal interpretation – correlation is not causation. Regression

arises by minimizing the distance between predicted out-

comes and actual outcomes – an attempt at optimal predic-

tion. One thinks of the variables used to predict outcome

simply as predictors that, in the past, would have helped

one to make a better guess about what actually happened.

The predictors may have direct effects themselves or be cor-

related with some other unseen causal factor. However,

those notions of direct and unseen cause are irrelevant to

the method.

Third, path analysis takes an intermediate approach. One

chooses the predictors for a model as a hypothesis about

cause. Rather than aim for optimal prediction, one aims for a

set of variables that consistently describe the observed pat-

terns of variation. The quality of the causal interpretation is

primarily evaluated by the consistency of the hypothesized

pathways in capturing the observed variance in outcome.

Consistency roughly means relative stability in the magnitude

of a pathway’s effect under different circumstances. Although

that interpretation potentially offers some insight into cause

and effect, the analytical method remains multiple regression.

One simply emphasizes the quality of a model as a potential

causal interpretation rather than as an attempt at optimal pre-

diction.

Consider a model in which we use genes as predictors of

phenotype. In a breeding programme to improve yield, we

want to predict offspring phenotype to make the best choice

of breeding design. Causality is irrelevant, we aim only for a

good outcome. By contrast, in a theoretical analysis of adap-

tation by natural selection, we want to understand the cau-

sal processes. How do the genes that affect phenotype

combine to determine morphology or behaviour? How does

selection influence the underlying genes and the resulting

phenotypic design in relation to performance? We are after

an understanding of the process. The quality of prediction

will, of course, be the primary way to interpret the causal

model. But a good prediction arising from the wrong under-

lying causal model is what we most want to avoid. Predic-

tion becomes a method for evaluation rather than the goal.

This article analyses natural selection in relation to causal

interpretations. For that reason, I think of my models of

multiple regression as models of path analysis. In a different

context, the same models could be thought of strictly as

analyses of regression and prediction.
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The components of heritability

The part of phenotype not transmitted
Typically, we only follow the transmission of the pre-

dictors. For example, we may follow transmission of

genes plus any other variables we choose. Those effects

that we include explicitly end up as part of the pre-

dicted phenotype, g, and as candidates for the transmit-

ted phenotype. All effects on phenotype not explicitly

included as predictors end up in the residual, d. The

split between the predicted phenotype and the residual

is arbitrary. If we add a new predictor, any additional

effect of that predictor moves from the residual, d, to

the predicted phenotype, g. Usually, we wish to give

the best description of the causes of phenotype that we

can. Thus, our choice of predictors defines our hypoth-

esis about the causes of phenotype, in the sense of path

analysis discussed in Box 5.

The part of phenotype associated with the particular

set of predictors, g, defines one component of herita-

bility. Aspects of phenotype not associated with the

particular predictors in our model appear as a nontrans-

mitted component of phenotype, d, reducing the simi-

larity of phenotype between ancestors and descendants

associated with the predictors.

Change in transmitted components of phenotype
A second component of heritability arises from the sta-

bility of the effects associated with the predictors. If a

predictor has effect bx in the original population and

effect b0x0 in the second population, then the transmis-

sion of that predictor is associated with a change in

Box 6: Nonlinearity

Regression and path analysis are sometimes thought to be lim-

ited to linear and additive effects. However, that is misleading.

Consider z = bx + d. Here, b is the linear relation between

x and z. However, it may be that x ¼ y2, in which the true

underlying cause is y. Thus, we are actually regressing on a

nonlinear function of a causal variable, y. Or, it may be that

we start with z ¼ b1x1 þ b2x2 þ b3x3 þ d. This appears to be

an additive model. However, the underlying cause may be

x1 ¼ y1, and x2 ¼ y2 and x3 ¼ y1 � y2. Thus, our model

expresses nonlinearity and nonadditivity in the causes, y.

In general, any nonlinear relation can be expressed by

an additive sum of terms, in which the individual terms

may be nonlinear. Thus, regression can fully account for

any nonlinearity by an additive sum of terms. In practice,

limitations arise because we may not know the correct

nonlinear relation, and so cannot express the proper sum

of nonlinear terms. However, that is not a limitation of

regression, but rather a limitation that arises from our igno-

rance. Another method of analysis does not solve the prob-

lem of our ignorance. The point is that one must

distinguish limitations arising from method from limitations

arising from ignorance. Confusing those different limitations

is a common mistake.

Box 7: Brief history of evolutionary partitions

Fisher (1918, 1930) partitioned phenotype into its various

genetic causes. Quantitative genetics extended the partition-

ing of phenotype by genetic and nongenetic causes

(Falconer & Mackay, 1996; Lynch & Walsh, 1998). Models

of cultural evolution use culturally transmissible attributes

as predictors of phenotype (Dawkins, 1976; Cavalli-Sforza &

Feldman, 1981; Boyd & Richerson, 1985).

Quantitative genetic models may also consider partitions

of fitness into component causes. Recent work on partitions

of fitness was stimulated by Lande & Arnold (1983). Many

subsequent studies expanded that approach, including vari-

ous explicit descriptions based on path analysis (Heisler &

Damuth, 1987; Crespi & Bookstein, 1989; Crespi, 1990;

Kingsolver & Schemske, 1991; Scheiner et al., 2000). I uni-

fied the different lines of study on partitions of phenotype

and partitions of fitness (Frank, 1997b, 1998), motivated ini-

tially by Queller’s quantitative genetic models of kin selec-

tion (Queller, 1992a, b).

In the text, I mentioned that rB � C > 0 can sometimes

be interpreted in terms of group selection. For example,

if neighbours’ phenotype, y, is an average character value

in a local group, then r can be defined as the regression of

individual character value on group character value. That

group regression can be considered in a path analysis

model, which is roughly the way in which Heisler &

Damuth (1987) analysed group selection. In their article,

they emphasized ‘contextual analysis’ similarly to the way

in which I have emphasized ‘path analysis’. Frank (1995b)

and Taylor & Frank (1996) also calculated r by regressing

group value on individual value in several models, follow-

ing a long tradition that blurred the mathematical distinc-

tion between kin and group selection (Hamilton, 1975;

Frank, 1986).

Some of the multivariate analyses of fitness attempt

to predict evolutionary dynamics, and therefore must

make explicit assumptions about the distribution of pheno-

types and the nature of heritability. I do not discuss

dynamics; my models do not require any of those extra

assumptions.
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phenotype DðbxÞ ¼ b0x0 � bx. Box 2 shows that we can

express this change as

DðbxÞ ¼ ðDbÞx þ b0ðDxÞ:
Summing over the j different predictors and using

the definition of g from eqn 12 yields

Dg ¼
X

ðDbjÞxj þ
X

b0jðDxjÞ: (14)

On the right side, the first term describes the change in

the predicted value of a type that arises from the changes

in the average effects of the predictors, Dbj, holding con-

stant the predictor values, xj. For example, the average

effect of an allele on phenotype may be frequency

dependent. Thus, the average effect will change over

time as the frequency of the allele changes in the popula-

tion. The second term describes the change in the trans-

mitted predictor values, Dxj, evaluated in the context of

the average effects from the second population, b0j. For
example, an allele may mutate into another form, thus

weighting the average effect by a different amount.

The smaller the Db and Dx values, the less the pheno-

type changes with respect to the transmitted predictors,

and the higher the heritability associated with those

predictors. Equivalently, the more stable the predictors

and their average effects, the greater the fidelity at

which those particular predictors transmit the informa-

tion accumulated by selection to the new population.

The change in the predictors, Dx, includes mutation as

well as any other process that alters predictor values

(Frank, 1995a, 1997b, 1998; Price, 1995). For example,

predictors in a descendant may derive from multiple

ancestors. We can think of the mixing of predictors by

considering the change in predictor values when derived

from different sources. In some cases, we may wish to

alter the assignment of descendants to ancestors. For

example, a behaviour may influence the frequency of

nondescendant types. To associate the behavioural phe-

notype with the change in frequency, we could assign

those nondescendants to the ancestral behaviour respon-

sible for their presence (Hamilton, 1970). In general, we

can make such assignments in any way that we choose.

The key is that assigning different descendants to an

ancestor may alter the change in predictor values

between a descendant and its assigned ancestor. Such

changes may alter the fidelity at which information is

transmitted (Frank, 1998). I will take up that topic in the

next article (Frank, 2013).

The part transmitted and the change during
transmission
The full, exact expression from eqn 3 for the total evo-

lutionary change is

D�z ¼
X

Dqizi þ
X

q0iDzi:

We can partition phenotype as z = g+d, the split

between the part explained by the predictors of pheno-

type, g, and the part that is not explained by the set of

predictors in our model for phenotype, d. From eqn 13,

D�z ¼ D�g because �d ¼ 0, thus

D�z ¼ D�g ¼
X

Dqigi þ
X

q0iDgi:

With gi ¼ zi � di, we get

D�z ¼
X

Dqizi �
X

Dqidi þ
X

q0iDgi: (15)

We can express each of these terms with a particular

notation that emphasizes its interpretation

D�z ¼ Ds�z � Dn�z þ Dt�z: (16)

On the right side, the terms are the change caused by

selection, the change caused by the part of phenotype

that is not associated with a transmitted predictor, and

the change in the effects of the predictors during trans-

mission.

Heritability and information

This section focuses on the amount of information

that populations accumulate by selection, and the

various processes that degrade or alter the transmis-

sion of that information. Some of the forms given

here include the classic genetic measures of heritabil-

ity as special cases. However, I do not emphasize

those connections. Rather, I focus on general expres-

sions given in terms of the full Price equation for

total evolutionary change and based on predictors

that may be chosen in any way. Different problems

and goals will lead one to choose different sets of

predictors or underlying causal schemes for pheno-

types. The results here apply to any choice of predic-

tors and causal scheme.

We start with eqn 15, the partition of phenotypic

change into components

D�z ¼
X

Dqizi �
X

Dqidi þ
X

q0iDgi:

The first term on the right side is the selection compo-

nent, Ds�z. From eqn 11, Ds�z ¼ azJ, where az changes

scale between phenotype, z, and the gain in informa-

tion by selection, J. Thus,

D�z ¼ azJ �
X

Dqidi þ
X

q0iDgi:

Here, selection happens in the initial (parental) popula-

tion, causing a gain in information, J. On the pheno-

typic scale, that gain in information is azJ. The

remaining terms include processes that cause loss of

information during transmission or cause other changes

to phenotype.
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The part of phenotype not transmitted

Start by assuming that the predictors and their effects

do not change during transmission, Dgi ¼ 0. That

assumption reduces total change to

Dh�z ¼ azJ �
X

Dqidi

where Dh ¼ Ds � Dn denotes the heritable component of

selection, which is the total selection, Ds, minus the part

of selective change that is not associated with predictors,

Dn. The part not associated with predictors is not explicitly

transmitted within the given model of phenotype.

The second term,
P

Dqidi, has the general form (eqn

11) of the change in informationX
Dqizi ¼ azJ;

which holds for any choice of z. Thus, letting z ≡ d, we

obtain
P

Dqidi ¼ adJ. Putting this into the original

expression yields

Dh�z ¼ azJ � adJ ¼ ðaz � adÞJ:

The scale change terms, a, have the important additiv-

ity property that, in general, aa þ ab ¼ aaþb. Thus,

az � ad ¼ az�d ¼ ag;

because g = z � d. The expression for the change in

phenotype, ignoring the change during transmission in

the predictors and their effects, is

Dh�z ¼ agJ: (17)

This expression is the information gain by selection, J,

scaled by ag, which relates the predicted phenotype, g,

to the information accumulated by selection. Because

g = z � d, we see that the amount of information trans-

mitted is degraded by d, the fraction of the phenotype, z,

that is not explained by the predictors.

Change in transmitted components of phenotype

When we add back the remaining term to eqn 17, we

obtain the full expression for phenotypic change as

D�z ¼ agJ þ
X

q0iDgi:

The last term is the change in the transmitted compo-

nents of phenotype. From eqn 14, those components

include changes in the predictors and changes in the

effects of the predictors. A predictor’s effect is its associ-

ated multiple regression coefficient. Multiple regression

coefficients often change with context. On the one

hand, the true underlying causal effect may change. On

the other hand, our model of causality may not be

exactly right, in which case shifting context will cause

the assigned role of different predictors to change, even

though the underlying causal effects of those predictors

may not have changed.

Various approaches may be taken to evaluate the

accuracy of the causal model, such as the stability of

the predictor effects under changing context (Li, 1975).

Typically, a better causal model has predictors with

greater stability, shifting the components of total

change more strongly to the agJ information term. That

increase in the information term is usually advanta-

geous with respect to interpretation, because it is often

hard to evaluate the meaning of changes in predictors

and their effects in the second term.

Suppose, for example, that a significant component

of phenotype is not explained by a stable set of predic-

tors. Is the information accumulated by selection in the

initial population lost during transmission because it is

not associated with any transmissible component? Or,

is that information transmitted by other predictors that

are not included in our model? If the information does

transmit by predictors not in our model, that informa-

tion contributes to the second term with changing

values of the predictors and their effects. Such changes

are hard to interpret, because many different processes

can potentially alter the predictors and their effects.

These fundamental equations of selection and evolu-

tion are, in a way, rather arbitrary, because they

depend so strongly on the particular set of predictors

that one chooses. What can we conclude? First, the

equations are always true, and so give us a clear sense

of the essential nature of selection, information and

evolution. Second, a key part of understanding any

problem concerns choosing the right set of predictors.

Third, simple genetic models provide a good starting

point in many cases, but rarely define a complete set of

predictors and an accurate expression of causality. If

one is able to model the causal scheme well, the analy-

sis will often be simple and natural. I have emphasized

a path analysis interpretation for the regression expres-

sions, because path analysis emphasizes the choice of a

good causal model.

Fisher’s fundamental theorem

If we hold the predictors and their effects constant,

then using eqn 17, the change in mean log fitness is

Dh �m ¼ agJ

for m = g + d. This expression for change in fitness,

holding constant the predictors and their average

effects, provides a generalization of Fisher’s fundamen-

tal theorem of natural selection. Fisher used the pres-

ence or absence of allelic types as predictors, and the

associated value of predicted fitness, g, as the genic

value of fitness. With those definitions, the expression

here is equivalent to Fisher’s theorem. To translate back

to the particular notation that Fisher used, one would

translate the definitions for ag and J into Fisher’s forms.

Frank (1997b) provides the tools for the translation,

following Price (1972) and Ewens (1989). The point
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here is that Fisher’s theorem holds for any choice of

predictors, as emphasized in Frank (1997b).

Causes of fitness

The expression Ds�z ¼ azJ associates the accumulation

of information by selection, J, with the selective com-

ponent of phenotypic change. But that expression does

not tell us why the association occurs. The phenotype

may directly influence fitness. Alternatively, the pheno-

type may have no direct effect on fitness, but instead

may be associated with some other process that influ-

ences fitness. A significant part of evolutionary analysis

concerns evaluating the causes of fitness (Box 7).

We may analyse the causes of fitness in the same

way that we analysed the causes of phenotype. We

write our model, or hypothesis, for the causes of fitness

as the regression equation

w ¼ /þ pz þ
X

akyk þ �: (18)

Here, / is the baseline fitness when all other terms are

zero; p is the average direct effect of the phenotype z on

fitness, holding constant the other predictors of fitness;

and ak is the average effect of the other predictors of fit-

ness, yk. We may use any number of other predictors,

and those predictors may be defined in any way, includ-

ing factors in the model for phenotype. For example, pre-

dictors yk can be alleles, nonlinear interactions between

combinations of alleles, symbionts, maternal effects, cul-

tural or environmental attributes, other phenotypes,

phenotypes of neighbours and so on. The residual, �, is
the difference between the predicted value of fitness for

a given set of predictors and the actual fitness.

A simple example

To study the role of different predictors of fitness, it is

useful to reduce the model to just the direct effect, z,

and one indirect effect, y, yielding

w ¼ /þ pz þ ayþ �:

In this partial regression equation, it is helpful to write

out the regression coefficients in full notation to

emphasize their interpretation. The partial regression

coefficient p ¼ bwz�y is the average effect of z on w

holding y constant, and a ¼ bwy�z is the average effect

of y on w holding z constant, thus

w ¼ /þ bwz�yz þ bwy�zyþ �: (19)

Condition for the increase of a phenotype by
selection

Using the standard covariance form for selection based

on eqn 6, the partial change in z caused by selection is

�wDs�z ¼ Covðw; zÞ;

which simply states that z increases by selection when

it is positively associated with fitness. However, we

now have the complication shown in eqn 19 that fit-

ness also depends on another predictor, y. If we expand

the covariance using the full expression for fitness in

eqn 19, we obtain

�wDs�z ¼ bwz�yVz þ bwy�zCovðy; zÞ:

If we replace the covariance term by the product of a

regression coefficient and a variance, byzVz , we have

Ds�z ¼ ðbwz�y þ bwy�zbyzÞVz=�w: (20)

The condition for the increase of z by selection is

Ds�z > 0. The same condition using the terms on the

right side is

byzbwy�z þ bwz�y > 0: (21)

Let us use an abbreviated notation for the three terms

byz ¼ r

bwy�z ¼ B

bwz�y ¼ �C:

The first term, byz ¼ r, describes the association

between the phenotype, z, and the other predictor, y.

An increase in z by the amount Dz corresponds to an

average increase of y by the amount (see Box 4)

Dy ¼ rDz:

The second term, bwy�z ¼ B, describes the direct effect of

the other predictor, y, on fitness, holding constant the

focal phenotype, z. The third term, bwz�y ¼ �C, describes

the direct effect of the phenotype, z, on fitness, w, hold-

ing constant the effect of the other predictor, y.

Using the abbreviated notation, the condition for the

increase in z by selection is

rB� C > 0:

The following sections interpret this condition in terms

of three different biological scenarios.

Interactions between two species

I trace the effects of phenotype z in species A and phe-

notype y in species B on the fitness of types from spe-

cies A (Frank, 1994, 1995c, 1997a). One may think of

species B as an ecological partner that can influence

the fitness of types from species A. Here, fitness always

refers to effects on species A.

Unknown cause of association
I follow the path diagram in Fig. 1a. Increases in the

phenotype, z, by an amount Dz, reduce fitness by �CDz.
Increases in the phenotype y directly benefit fitness by

BDy. The z and y phenotypes are associated by r,
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although no specific cause is known. It may be that

similar phenotypes tend to settle in the same area, or

that a common environment of temperature and nutri-

ents causes a phenotypic association. In any case, as z

increases, the associated value of y changes on average

by Dy = rDz and, equivalently, BDy = rBDz.
Tracing the pathways in Fig. 1a, an increase in the

direct phenotype by Dz causes a change in fitness pro-

portional to (rB � C)Dz, which is greater than zero

when rB � C > 0. Thus, selection may favour an

increase in z even though z directly decreases fitness,

because the benefit from species B’s phenotype, y, in

proportion to rB, may outweigh the direct cost, �C.

Direct cause of association
Alternatively, suppose that the phenotype z directly

enhances the vigour of its partners from species B. That

direct effect of z on species B causes an increase in the

benefit, y, that species B provides back to those with

phenotype z. Fig. 1b shows this direct cause of y by z.

The condition for z to be positively associated with fit-

ness and to increase by selection remains rB � C > 0.

However, the interpretation differs. In this case, z

directly influences its neighbours’ phenotype, y, rather

than being associated with y by some unknown cause.

Body temperature

Suppose z is body temperature, which imposes a direct

effect �Cz on fitness. That direct cost may arise because

body temperature raises the rate at which energy is

used. Let y be speed of response to a challenge, such as

a predator attack. Faster response provides a direct bene-

fit, By. An unknown cause may associate temperature, z,

and response rate, y, by an amount r (Fig. 1a). For

example, sunshine may directly raise temperature and

simultaneously increase response to attack by providing

better visual opportunities. Alternatively, temperature, z,

may directly raise response rate, y, by increasing the

responsiveness of muscles (Fig. 1b). In either case,

selection favours an increase in body temperature if

rB � C > 0.

Social evolution and group selection

The phenotype z may be a costly altruistic behaviour that

helps neighbouring individuals (Hamilton, 1970; Quel-

ler, 1992a, b; Frank, 1998). The direct effect on fitness is

�Cz. Neighbours have phenotype y that provides a bene-

fit, By, back to the original individual. An association, r,

between z and y may arise in a variety of ways.

Some unknown cause may associate z and y (Fig. 1a).

For example, shared cultural, environmental or genetic

variation may cause related behaviour. Or a shared

symbiont may cause an association. In general, any

association in the predictors of phenotype will cause an

association of phenotypic values.

In other cases, the altruistic phenotype, z, may directly

enhance neighbours’ beneficial behaviour, y, in propor-

tion to r (Fig. 1b). For example, the level of y in the

neighbours may depend on the probability of the neigh-

bours’ survival. If an increase in z raises neighbours’ sur-

vival in proportion to r, that increase in survival

enhances the expression of the neighbours’ behaviour,

y, which has a beneficial effect on fitness of By.

Whether r arises from unknown causes (Fig. 1a) or

from the direct effect of z on y (Fig. 1b), we can

trace the effect of an increase in z on fitness. The

condition for an increase in z to raise fitness is

rB � C > 0.

In some cases, we may interpret the condition

rB � C > 0 in terms of group selection (Hamilton,

1975). For example, z may measure individual restraint

in the harvesting of nonrenewable resources (Frank,

1995b). Greater restraint reduces the direct benefit to

the individual, because it means less resource har-

vested, with an effect on fitness of �Cz. Neighbours’

phenotype, y, may be the average restraint among indi-

viduals in a local group with regard to harvesting

nonrenewable resources.

Greater group restraint provides a benefit to all mem-

bers of the group, including our focal individual, by

providing greater local productivity through mainte-

nance of nonrenewable resources. The benefit of group

restraint on individual fitness is By. The association

between an individual’s phenotype, z, and the group

phenotype, y, is r. Thus, when rB � C > 0, individual

restraint evolves and provides a joint benefit to all

group members. Here, the two predictors of fitness are

individual behaviour, z, and average group behaviour, y.

This type of group selection is just a special case of

partitioning the causes of fitness, in which one of the

predictors is a group attribute (Box 7).

Causal structure

All of these examples share a common causal structure.

We are interested in the change in a phenotype, z,

z

y

w

B

r

z

y

w

Br

(a) (b)

Fig. 1 Path diagrams for the effects of phenotype, z, and

secondary predictor, y, on fitness, w. (a) An unknown cause

associates y and z. The arrow connecting those factors points both

ways, indicating no particular directionality in the hypothesized

causal scheme. (b) The phenotype, z, directly affects the other

predictor, y, which in turn affects fitness. The arrow pointing from

z to y indicates the hypothesized direction of causality.

ª 2 0 13 THE AUTHOR . J . E VOL . B I OL . 2 6 ( 2 0 1 3 ) 4 5 7 – 47 1

JOURNAL OF EVOLUT IONARY B IOLOGY ª 2013 EUROPEAN SOC I E TY FOR EVOLUT IONARY B IO LOGY

468 S. A. FRANK



caused by selection. Fitness depends on two predictors:

the phenotype of interest, z, and another predictor, y.

In all cases, the condition for the increase in z by selec-

tion is rB � C > 0. This condition is just the partition of

the causes of fitness into two components. The direct

effect on fitness of z is �C, and the direct effect of y is B.

We multiply y by r to change the scale of the effect

from y to z, because the net effect must be the relation

between z and fitness, w.

We can see the logical relations and the units for the

various scales by writing out the full notation

rB� C ¼ byzbwy�z þ bwz�y: (22)

Box 3 shows that a regression coefficient, bxy, has units

Dx/Dy. Taking the terms of the above equation in order

from left to right, the units are

byzbwy�z þ bwz�y �
Dy
Dz

Dw
Dy

þ Dw
Dz

� Dw
Dz

: (23)

The ratio Dw/Dz is the change in fitness, w, per unit

change in the phenotype, z. That ratio is the slope of

fitness on phenotype. When the slope is positive, selec-

tion favours the increase of the phenotype. In any anal-

ysis of this sort, the term

r ¼ byz ¼
Dy
Dz

(24)

rescales changes of the secondary predictor, Dy, with

respect to changes in the primary scale, Dz.
The key point is that rB � C > 0 simply partitions fit-

ness into the direct effect of a phenotype plus the indi-

rect effect through a secondary predictor. The true

causal structure will, of course, frequently depend on

multiple secondary causes, as in eqn 18. Multiple

causes lead to an expanded expression for the increase

of z caused by selection, Ds�z, asX
riBi � C > 0;

in which each ri is the regression of yi on z, and each

Bi is the partial regression of w on yi holding constant

the other factors. One may also need to consider cas-

cading causes or hidden factors in the sense of path

analysis (Li, 1975). The simple expression rB � C > 0

should be thought of as a convenient example to illus-

trate the logic of partitioning the causes of fitness, or as

the expression of simplified models that isolate two

opposing processes.

In this section, I have analysed the partitioning of fit-

ness. I have not discussed the partition of phenotype

into components, z = g + d, where g is the sum of the

predictors of phenotype. The amount of information

accumulated by selection that can be transmitted

depends on the slope of fitness, w, relative to the trans-

missible predictors of phenotype, g. If we think of g in

terms of the genetic predictors of phenotype, then r can

be interpreted as a genetic relatedness coefficient, and

rB � C > 0 calls to mind Hamilton’s rule from the the-

ory of kin selection (Hamilton, 1970). The next article

takes up the relations between kin selection and the

general analysis of the causes of fitness and the causes

of phenotype (Frank, 2013). A full evolutionary analy-

sis also requires attention to other causes of change,

Dt�z, in eqn 16 (Frank, 1997b, 1998).

It is important to relate the causes of fitness to infor-

mation, which is the ultimate scale for selection. Box 8

connects the partitions of fitness in this section to the

expressions of information given earlier in this article.

Discussion

I first partitioned phenotype with respect to a set of

hypothesized causes. I then partitioned fitness with

respect to a different set of hypothesized causes. Finally,

I placed those partitions of phenotype and fitness into a

general expression for selection and evolutionary

change. Those steps allowed me to express heritability,

selection and evolutionary change in terms of causal

components.

I also translated the standard expressions of selection

and evolution, given in terms of regressions, covari-

ances and variances, into expressions for the change in

information. In my view, selection is best interpreted as

the accumulation of information by populations (Frank,

2012a). Other evolutionary processes often cause a

decay in the transmission of information. The informa-

tion expressions allow one to read the equations of

selection and evolution as if they were sentences. Those

sentences express the fundamental relations between

the causes of phenotypes and fitness and the conse-

quences for the change in information by evolutionary

processes.

I showed that the commonly used regressions coeffi-

cients in models of selection and evolution can be

understood as coefficients for the change in scale with

respect to the ultimate scale of information (Box 4).

For example, the change in a phenotype caused by

selection can be understood as a rescaling of the change

in information accumulated by selection. Certain

measures of heritability, often expressed as regression

coefficients, are the change in the scaling of informa-

tion from one phenotype to another. For example, a

parent–offspring regression may describe the change in

scale between parent and offspring phenotype with

respect to the underlying information content in those

phenotypes.

My extended development in terms of causal com-

ponents and information may, at first, seem like a lot

of technical complication. We are, after all, simply

modelling selection, heritability and other widely

studied evolutionary processes. Many models of those

processes seem more direct and concise. My goal is to

go beyond common calculations or common applica-
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tions. The more abstract and exact models here

provide a conceptual guide for understanding how

selection actually works, how populations accumulate

information, and how that information is transmitted

or lost.

I have also traded the certainty of the standard mod-

els of genetics for the uncertainty that arises when we

freely choose our predictors as causal hypotheses. In

my view, the apparent certainty of genetics is often

misleading. We know that many factors influence phe-

notypes in addition to the narrowly defined allelic types

of genes. Traditionally, a specific extended model deals

with each additional factor: cytoplasmic inheritance,

nonlinear genetic interactions, maternal effects, social

interactions and so on. By describing each of those

aspects as a special situation, one ends up with a cata-

logue of special models.

The models here show how to think in general about a

variety of causal structures. Those models are only as

good as the particular hypothesized system of causality

that we choose. But that is also true for genetic models

and for every other model, whether or not we admit it

openly. Here, I have traded the false sense that there are

a few standard models for the more realistic view that

one has to bring a good hypothesis to an analysis to get a

good understanding of phenotypes and selection.

Hamilton (1970) made clear the central role of causal

analysis in kin selection theory

Considerations of genetical kinship can give a statistical

reassociation of the [fitness] effects with the individuals

that cause them.

The seemingly endless debates about kin selection

arise from failure to recognize that the theory is

ultimately a way of framing causal hypotheses (Frank,

1997b, 1998). The following article develops kin selec-

tion as a method of causal modelling.
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