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Abstract

The equations of evolutionary change by natural selection are commonly

expressed in statistical terms. Fisher’s fundamental theorem emphasizes the

variance in fitness. Quantitative genetics expresses selection with covari-

ances and regressions. Population genetic equations depend on genetic vari-

ances. How can we read those statistical expressions with respect to the

meaning of natural selection? One possibility is to relate the statistical

expressions to the amount of information that populations accumulate by

selection. However, the connection between selection and information the-

ory has never been compelling. Here, I show the correct relations between

statistical expressions for selection and information theory expressions for

selection. Those relations link selection to the fundamental concepts of

entropy and information in the theories of physics, statistics and communi-

cation. We can now read the equations of selection in terms of their natural

meaning. Selection causes populations to accumulate information about the

environment.

There are difficulties in applying information theory

in genetics. They arise principally, not in the transmis-

sion of information, but in its meaning (Maynard

Smith, 2000, p. 181).

Introduction

I show that natural selection can be described by the

same measure of information that provides the concep-

tual foundations of physics, statistics and communica-

tion. Briefly, the argument runs as follows. The

classical models of selection express evolutionary rates

in proportion to the variance in fitness. The variance in

fitness is equivalent to a symmetric form of the Kull-

back–Leibler information that the population acquires

about the environment through the changes in gene

frequency caused by selection.

Kullback–Leibler information is closely related to

Fisher information, likelihood and Bayesian updating

from statistics, as well as Shannon information and the

measures of entropy that arise as the fundamental

quantities of communication theory and physics. Thus,

the common variances and covariances of evolutionary

models are equivalent to the fundamental measures of

information that arise in many different fields of study.

In Fisher’s fundamental theorem of natural selection,

the rate of increase in fitness caused by natural selec-

tion is equal to the genetic variance in fitness. Equiva-

lently, the rate of increase in fitness is proportional to

the amount of information that the population acquires

about the environment (Frank, 2009).

In my view, information is a primary quantity with

intuitive meaning in the study of selection, whereas

the genetic variance just happens to be an algebraic

equivalence for the measure of information. The history

of evolutionary theory has it backwards, using statistical

expressions of variances and covariances in place of the

equivalent and more meaningful expressions of infor-

mation. To read the fundamental equations of evolu-

tionary change, one must learn to interpret the

standard expressions of variances and covariances as

expressions of information.
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Box 1: Topics in the theory of natural selection

This article is part of a series on natural selection.

Although the theory of natural selection is simple, it

remains endlessly contentious and difficult to apply. My

goal is to make more accessible the concepts that are so

important, yet either mostly unknown or widely misun-

derstood. I write in a nontechnical style, showing the key

equations and results rather than providing full deriva-

tions or discussions of mathematical problems. Boxes list

technical issues and brief summaries of the literature.

Overview

The first section reviews the classic statistical expressions

for selection. Evolutionary change caused by selection is

the covariance between fitness and character value.

That covariance equals the regression of character value

on fitness multiplied by the variance in fitness.

The second section expresses selection in terms of

the classic equations from information theory (Box 2).

I show that the change in the mean logarithm of fitness

is the Jeffreys information divergence. That divergence

measures the accumulation of information by natural

selection between the initial population and the

population after it has been updated by selection. The

relations between the statistical and information

perspectives follow by connecting the classic statistical

expressions of selection to the new information descrip-

tion for selection.

The third section analyses the Jeffreys divergence as

the measure of information in the fundamental equa-

tions of selection. The Jeffreys divergence is the sum of

two expressions for relative entropy. Relative entropy,

known as the Kullback–Leibler divergence, measures

the gain in information with regard to an abstract and

universal notion of encoding, independently of the

meaning of that information. A universal, abstract mea-

sure of information in terms of encoding allows a gen-

eral theory of information to provide the foundation

for the deepest concepts in communication, physics and

statistics.

The fourth section concerns the meaning of informa-

tion. Although encoding provides a useful measure with

regard to information theory, we must also interpret the

meaning of that information in terms of selection. Mean-

ing arises by the relation of encoded information to

whatever scale we use to interpret a particular problem.

For selection, we interpret meaning with regard to char-

acters. Characters may be gene frequencies or measure-

ments made on individuals. Characters lead to a general

notion of the scale for meaning with respect to the scale

of encoded information.

Box 2: Information, entropy and complexity

Cover & Thomas (1991) give an excellent introduction to

information theory and its applications. Jaynes (2003) is a

fascinating analysis of the connections between information,

entropy, probability, Bayesian analysis and statistical infer-

ence. Kullback (1959) is a broad synthesis of information

theory in relation to classical statistics. Fisher’s (1922, 1925)

original papers on the theoretical foundations of statistics set

the basis for all future work on information and statistics,

with the 1925 paper showing the key role of Fisher

information.

Entropy arose in the study of thermodynamics (Clausius,

1867; Boltzmann, 1872; Gibbs, 1902). Ben-Naim (2008a)

gives a simple introduction. Hill (1987) provides a classical

text. Information theory arose in Fisher’s work and sepa-

rately in the study of communication through the analyses

of Hartley (1928) and Shannon (1948a, b). The underlying

concepts of entropy and information are very close. Some

think the concepts are identical, but controversy remains

(Jaynes, 2003; Ben-Naim, 2008b).

Jeffreys (1946) divergence first appeared in an attempt to

derive prior distributions for use in Bayesian analysis rather

than as the sort of divergence used in this article. Kullback

& Leibler (1951) and Kullback (1959) presented both the

asymmetric divergence D, given in eqn 10, which is now

known as the Kullback–Leibler divergence, and the symmet-

ric form, J, given in eqn 12, which is now known as the

Jeffreys divergence. They noted Jeffreys’ previous usage of J

in the context of Bayesian priors and then developed the

importance of the divergence interpretation for statistical

theory, particularly the asymmetric form, D.

I do not discuss Kolmogorov complexity in this article.

However, it is an important concept that may ultimately

prove as interesting for biological applications as the classic

analyses of entropy and information. Kolmogorov com-

plexity measures the information content of an object

(individual) by the shortest binary computer program that

fully describes the object (Cover & Thomas, 1991; Li &

Vitányi, 2008). At the population level, the average Kol-

mogorov complexity often has a close association with the

formal theories of entropy and information, but it is not

exactly the same.

With respect to selection, fitness is, in essence, the match of

characters to environmental challenge. That match depends

on the algorithmic relation between the information content

of an organism and the interpretation of that information

through the development of phenotype. Development is not

exactly like running a computer program encoded in the

genes, but the analogy is not so far off. I suspect that, some-

day, Kolmogorov complexity or related measures will help to

understand biochemical, developmental and evolutionary

processes. A few authors have taken the first steps (Gell-Mann

& Lloyd, 1996; Adami & Cerf, 2000; Adami, 2002).
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The fifth section explicitly connects the abstract scale

of encoded information to the meaningful scale of

information in problems of selection. The analysis leads

to the relation between the Jeffreys divergence, the

most general expression for selection, and Fisher infor-

mation as the limiting form of the Jeffreys divergence

when changes in magnitude are small. Fisher informa-

tion is the sensitivity of changes in abstract encoded

information relative to the distance that one moves

along a scale of meaning. Encoded information is

equivalent to the log-likelihood ratio, which is why

Fisher information provides the conceptual foundations

for the theory of statistics.

The sixth section uses Fisher information to derive

various elegant expressions for selection. For example,

suppose that changes in the average value of a char-

acter sufficiently describe the changes caused by

selection. Then, mean log fitness increases by the

Fisher information in an observation about the aver-

age character value multiplied by the squared change

in the average character value. This expression con-

nects the scale of encoded information, which is

mean log fitness, to the scale of meaning, which in

this case is the average value of a character in the

population.

The seventh section relates the parametric description

of characters to a more general nonparametric expres-

sion. In the previous example, the change caused by

selection was described fully by a change in a parame-

ter, the mean. In the general case, no parametric sum-

mary statistics fully capture the change in populations.

Instead, one must use the full range of different types

in the population, providing a nonparametric descrip-

tion of the change in the distribution of frequencies

caused by selection. The full nonparametric expression

shows the universal applicability of the equations selec-

tion and information.

The eighth section distinguishes changes by selection

from total evolutionary change. Numerous extrinsic

and unpredictable forces beyond selection can change

the characteristics of populations and their fit to the

environment. I show the full expression for evolution-

ary change, placing selection in the broader evolution-

ary context. No general conclusion about total

evolutionary change is possible, because the complete

range of forces that can perturb populations remains

unpredictable. However, we can express an elegant

equilibrium condition. At equilibrium, the gain in

information by selection must be exactly balanced by

the decay in information caused by other evolutionary

forces.

The discussion reviews the main argument. Classic

equations for selection describe the change by statistical

expressions of covariances, variances and regressions.

In terms of encoded information, the change caused by

selection is the Jeffreys divergence. A generalized notion

of Fisher information connects encoded information to

the scale of meaning. By equating the statistical descrip-

tion with the information description, we learn how to

read the fundamental equations of selection in terms of

information.

Classic equations of natural selection

Equations of natural selection are often expressed in

the statistical language of population variances, covari-

ances and regressions. In this section, I show how these

statistical expressions arise from the simplest models of

selection. Later sections connect these classic equations

to the amount of information that a population accu-

mulates by selection.

Textbooks on population genetics and quantitative

genetics present the classic equations of selection (Crow

& Kimura, 1970; Falconer & Mackay, 1996; Roff, 1997;

Futuyma, 1998; Lynch & Walsh, 1998; Charlesworth &

Charlesworth, 2010; Ewens, 2010). Lande developed

the statistical nature of selection equations (Lande,

1979; Lande & Arnold, 1983; Frank, 1997c).

Selection

A simple model starts with n different types of individu-

als. The frequency of each type is qi. Each type has wi

offspring, where w expresses fitness. In the simplest

case, each type is a clone producing wi copies of itself

in each round of reproduction.

The frequency of each type after selection is

q0i ¼ qi
wi

�w

� �
; (1)

where �w ¼ P
qiwi is average fitness. The summation

is over all of the n different types indexed by

the i subscripts. See Box 3 for the proper interpretation

of q0i.
This equation is called a haploid model in classical

population genetics, because it expresses the dynamics

of different alleles at a haploid genetic locus. Recently,

economists, mathematicians and game theorists have

called this expression the replicator equation, because it

expresses in the simplest way the dynamics of replica-

tion (Taylor & Jonker, 1978; Hofbauer & Sigmund,

1998, 2003).

It is often convenient to rewrite eqn 1 as the change

in the frequency of each type, Dqi ¼ q0i � qi. Subtracting

qi from both sides of eqn 1 yields

Dqi ¼ qi
wi

�w
� 1

� �
: (2)

Box 3 describes a universal interpretation of these

equations for selection that transcends the narrow

haploid and replicator models.
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Box 3: Interpretation of q′ and z′

Classical population genetics and replicator equation analyses

interpret q0i in eqn 1 as the frequency of type i in the descen-

dant population. However, selection theory in its most

abstract and general form requires a set mapping interpreta-

tion, in which q0i is the frequency of descendants derived from

type i in the ancestral population. The set mapping interpre-

tation arises from the Price equation (Price, 1972a; Frank,

1995, 1997c, 1998).

Similarly, z0i , developed in eqn 26 and mentioned earlier,

is the average value of the property associated with z among

the descendants derived from ancestors with index i, rather

than the usual interpretation of the character value of i

types in the descendant population. Here, I elaborate briefly

on these interpretations of q0 and z0 by adapting the presen-

tation in Frank (2012b).

Let qi be the frequency of the ith type in the ancestral pop-

ulation. The index i may be used as a label for any sort of

property of things in the set, such as allele, genotype, pheno-

type, group of individuals and so on. Let q0i be the frequencies

in the descendant population, defined as the fraction of the

descendant population that is derived from members of the

ancestral population that have the label i. Thus, if i = 2 speci-

fies a particular phenotype, then q02 is not the frequency of the

phenotype i = 2 among the descendants. Rather, it is the frac-

tion of the descendants derived from entities with the pheno-

type i = 2 in the ancestors. One can have partial assignments,

such that a descendant entity derives from more than one

ancestor, in which case each ancestor gets a fractional assign-

ment of the descendant. The key is that the i indexing is

always with respect to the properties of the ancestors, and

descendant frequencies have to do with the fraction of

descendants derived from particular ancestors.

Given this particular mapping between sets, we can spec-

ify a particular definition for fitness. Let q0i ¼ qiðwi=�wÞ,

where wi is the fitness of the ith type and �w ¼ P
qiwi is

average fitness. Here, wi=�w is proportional to the fraction of

the descendant population that derives from type i entities

in the ancestors.

Usually, we are interested in how some measurement

changes or evolves between sets or over time. Let the mea-

surement for each i be zi. The value z may be the frequency

of a gene, the squared deviation of some phenotypic value

in relation to the mean, the value obtained by multiplying

measurements of two different phenotypes of the same

entity and so on. In other words, zi can be a measurement

of any property of an entity with label, i. The average prop-

erty value is �z ¼ P
qizi, where this is a population average.

The value z0i has a peculiar definition that parallels the

definition for q0i. In particular, z0i is the average measurement

of the property associated with z among the descendants

derived from ancestors with index i. The population average

among descendants is �z 0 ¼ P
q0izi

0.
The Price equation (eqn 26) expresses the total change

in the average property value, D�z ¼ �z 0 � �z, in terms of

these special definitions of set relations. This way of

expressing total evolutionary change and the part of total

change that can be separated out as selection is very dif-

ferent from the usual ways of thinking about populations

and evolutionary change. The set mapping interpretation

allows one to generalize equations of selection theory and

total evolutionary change to a much wider array of prob-

lems than would be possible under the common interpre-

tations of the terms. By following the set mapping

approach, our evaluation of selection and information can

be presented in a much simpler and more general way.

Note that the classic interpretations of the haploid and

replicator models are special cases of the generalized set

mapping expressions.

Characters

Equation 2 describes the change in frequency. How

does selection change the value of characters? Suppose

that each type, i, has an associated character value, zi.

The average character value in the initial population is

�z ¼ P
qizi. The average character value in the descen-

dant population is �z 0 ¼ P
q0iz

0
i , where z0i is the character

value in the descendants (Box 3). For now, assume

that descendants have the same character value as their

parents, z0i ¼ zi. Then, �z
0 ¼ P

q0izi, and the change in the

average value of the character caused by selection is

�z 0 � �z ¼ Ds�z ¼
X

q0izi �
X

qizi ¼
X

q0i � qi
� �

zi;

where Ds means the change caused by selection (Price,

1972b; Ewens, 1989; Frank & Slatkin, 1992). We may

simplify this expression by using Dqi ¼ q0i � qi for

frequency changes

Ds�z ¼
X

Dqizi: (3)

This equation expresses the fundamental concept of

selection (Frank, 2012b). Frequencies change according

to differences in fitness, as given by eqn 2. Thus, eqn 3

is the change in character value caused by differences

in fitness, holding constant the character values, zi.

Later, we will also include the changes in character

values during transmission from parent to offspring,

Dzi ¼ z0i � zi.

Variance, covariance and regression

Many of the classic equations of selection are expressed

in terms of variances, covariances and regressions. I show

the relation between the expression for frequency

changes in eqn 3 and the common statistical expressions

for selection.

Combining eqns 2 and 3 leads to

Ds�z ¼
X

Dqizi ¼
X

qi
wi

�w
� 1

� �
zi:
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On the right-hand side, move the �w term outside

Ds�z ¼
X

qi
wi

�w
� 1

� �
zi ¼

X
qi wi � �wð Þzi=�w: (4)

The definition of the population covariance allows us

to rewrite this equation. Given a population of paired

values ðxi; yiÞ, where each particular pair subscripted by

i occurs at frequency qi, and writing �x as the mean

value in the population of the x values, the population

covariance has the general form

X
qiðxi � �xÞyi ¼ Covðx; yÞ:

Note that the right-hand expression in eqn 4 has

the form of the covariance definition, so we can

write

Ds�z ¼
X

qi wi � �wð Þzi=�w ¼ Covðw; zÞ=�w; (5)

following Price (1970). The standard definition of a

regression coefficient of y on x is the covariance of y

and x divided by the variance of x. Thus, the regression

of fitness, w, on character, z, is
bwz ¼

Covðw; zÞ
Vz

(6)

where Vz denotes the variance of z. This expression

implies Covðw; zÞ ¼ bwzVz . We can also reverse the order

of the regression, Covðw; zÞ ¼ bzwVw. Thus, eqn 5 is

equivalently

Ds�z ¼ bwzVz=�w ¼ bzwVw=�w: (7)

Because z can be the value of any character, we can

use fitness, w, in place of z, yielding

Ds �w ¼ Vw=�w; (8)

where the regression has disappeared because the

regression of a variable on itself is one, thus bww ¼ 1.

This expression shows that the change in mean fitness

is the variance in fitness, normalized by the initial

mean value.

All of these expressions assume that character values

do not change between parent and offspring, Dzi ¼ 0.

As I mentioned, I will take up changes during transmis-

sion in a later section.

Selection expressed as change in
information

This section derives a new result that connects the

change in fitness caused by natural selection to the

amount of information accumulated by the population.

In particular, I express the change caused by selection

in terms of a classical measure of information from for-

mal information theory. Those readers unfamiliar with

information theory will find some new expressions in

this section, presented without explanation. The follow-

ing sections explain the meaning of the expressions

from information theory and the connection to natural

selection. (See Boxes 4–6 for prior work on selection

and information.)

Change in log fitness

Fitness captures the notion of a match between a type

and the environment. We may therefore expect that

fitness is, in some way, an expression of the informa-

tion in the population about the environment. Those

types with high fitness increase in frequency, increasing

the fitness (information) contained in the population.

From eqn 1, we can write the fitness of a type, wi, in

terms of current frequencies, qi, and updated frequencies

after selection, q0i, as

wi ¼ �w
q0i
qi

� �
:

Fitness depends on the ratio of frequencies, q0i=qi.
Entities that depend on ratios have a natural logarithmic

scaling (Hand, 2004). Therefore, we should use the loga-

rithmic scale when analysing fitness (Wagner, 2010).

It is traditional to describe the logarithm of fitness as the

Malthusian expression, mi ¼ logðwiÞ, yielding

mi ¼ logðwiÞ ¼ logð�wÞ þ log
q0i
qi

� �
:

Using z ≡ m as our character in the selection expres-

sion of eqn 4, we have the increase in mean log fitness

by natural selection as

Ds �m ¼
X

Dqilog
q0i
qi

� �
: (9)

An information measure for the change in fitness

Perhaps the most important measure of information in

communication, statistics and physics is the Kullback–
Leibler divergence

Dðq0kqÞ ¼
X

q0ilog
q0i
qi

� �
: (10)

This divergence has directionality from the initial

population, q, to the updated population after selec-

tion, q0 (Box 2). Using this definition for D in the

expression for the change in fitness given in eqn 9,

we obtain

Ds �m ¼ Dðq0kqÞ þ Dðqkq0Þ: (11)

This expression is the sum of Kullback–Leibler diver-

gences taken in each direction between the initial

population, q, and the updated population after selec-

tion, q0. In information theory, this sum is known as

the Jeffreys divergence
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Box 4: Selection and information

No one seems to have provided a full development of the

relations between selection and information. In many

respects, R.A. Fisher created the key concepts. However,

before I start listing aspects of the problem and related cita-

tions, I cannot resist quoting from Li & Vitányi (2008, p. 96)

about the difficulties of attribution. In discussing the name

‘Kolmogorov complexity’ for the discipline of the algorithmic

analysis of complexity, they note that Solomonoff published

the key idea before Kolmogorov, although Kolmogorov later

discovered the idea independently and developed it more

deeply and thoroughly. Ultimately, Kolmogorov got almost

all the credit, perhaps because he was much more famous

than Solomonoff. Li & Vitányi summarize as follows.

Associating Kolmogorov’s name with the area may

be viewed as an example in the sociology of sci-

ence of the Matthew effect, first noted in the Gos-

pel according to Matthew, 25: 29–30, ‘For to every

one who has more will be given, and he will have

in abundance; but from him who has not, even

what he has will be taken away’.

Fisher (1930) discussed the relation of his fundamental

theorem of natural selection to the second law of thermody-

namics, a universal law about changes in entropy. However,

Fisher never came around to an information perspective in

this discussion and, perhaps for that reason, was restrained

in his enthusiasm for the analogy. Alternatively, Fisher’s

restraint may have had to do with the high dimensionality

of the evolutionary problem (Edwards, 2000). However, one

of Fisher’s great contributions in his book was his use of the

average effect to reduce the dimensionality required for

analysing selection. Although Fisher never developed an

information analysis of selection, one must remember that

the modern field of information theory only began with

Shannon’s work on communication (Shannon, 1948a,b).

The use of Fisher information outside of statistical problems

developed later.

The analogy between selection and information is obvious

and has been mentioned often. However, brief mention of

the analogy does not, by itself, provide any real insight

about the connections between information and selection or

new ways in which to understand selection.

Edwards (2000) noted that, in the continuous-time limit,

the fundamental equations of selection can be expressed in

terms of Fisher information. However, he concluded that

the analogy between selection and Fisher information pro-

vides little insight. By contrast, Frieden et al. (2001) argued

that selection expressed in terms of Fisher information is

indeed significant. Although I believe Frieden et al. were on

the right track, their particular analysis and presentation did

not add much. Fisher information is always information

about an underlying scale. Frieden et al. concluded that nat-

ural selection provides a measure of Fisher information

about time, which I think is the wrong scale on which to

interpret meaning. The present article extends the start

made in Frank (2009).

Jðq0; qÞ ¼ Dðq0kqÞ þ Dðqkq0Þ: (12)

Thus, we have the simple expression for the change

in mean log fitness caused by natural selection as

Ds �m ¼ J (13)

where J is shorthand for Jðq0; qÞ. Equating this expres-

sion with eqn 7, using m ≡ z, we have

J ¼ bwmVm=�w ¼ bmwVw=�w; (14)

Thus, the variance in fitness is proportional to the

information divergence, J. The regression terms divided

by �w give the constants of proportionality that adjust for

the different scales of measurement for fitness, w or

m=log(w). This expression shows the relation between

the information accumulated by natural selection, J, and

the traditional statistical expressions of natural selection

in terms of variances and regression coefficients.

The encoding of information

Before continuing to discuss the relation between selec-

tion and information, we need some additional back-

ground about the nature of information. I first describe

an example in which an observation provides informa-

tion. I then discuss how to quantify the amount of infor-

mation. Finally, I analyse the amount of information in a

comparison, which provides the basis for comparing the

information in a population before and after selection.

Statistics and information

In statistical problems, the divergence, D, measures the

amount of information in an observation with respect

to discriminating between two distributions (Kullback,

1959; Cover & Thomas, 1991). Suppose the true under-

lying probability distribution is q0. However, we do not

know whether we are sampling from q0 or an alterna-

tive distribution q. The different distributions may

be associated with different values of a parameter, h0

and h. The parameter may, for example, be the mean

or the variance.

When we take a sample from the true underlying

distribution, q0, how much information do we obtain

about whether the sampled distribution is q0 or q? In

the parametric case, how much information do we

obtain about whether the parameter of the distribution

from which we sampled is h0 or h?
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Box 5: Entropy, information and stochastic evolutionary models

The most interesting development of the theory arises from

stochastic models of evolutionary change framed in terms of

entropy and statistical mechanics. Iwasa (1988) derived a

general expression for ‘free fitness’ by analogy with free

energy and entropy. Iwasa showed the analogy between the

continual increase in free fitness in evolutionary models and

the second law of thermodynamics, by which entropy con-

tinually increases. He also calculated the distributions in

population characteristics as they change under various sto-

chastic models of evolutionary change.

These kinds of stochastic evolutionary models require cer-

tain assumptions in order to achieve continual increase in

entropy or free fitness. There is certainly no universal law

about the increase in fitness in evolution, whereas restricted

notions of selection may have universal properties. I have

drawn a sharp distinction between selection and evolution

in my own analyses. The evolutionary literature does not

always make that distinction so clearly.

de Vladar & Barton (2011a) reviewed the significant

advances in the use of entropy and statistical mechanics to

study evolutionary dynamics, including their own contribu-

tions to the subject (Barton & de Vladar, 2009; de Vladar &

Barton, 2011b). This work on stochastic evolutionary models

may eventually converge with general studies of entropy,

information and dynamics. For example, there has been

recent discussion about a maximum entropy production

(MEP) principle for dynamics (Dewar, 2005; Kleidon, 2010;

Volk & Pauluis, 2010). In the MEP theory, the most likely

dynamical path is associated with the greatest production of

entropy. Further, the probability distribution over dynamical

paths may be a function of the relative entropy production

associated with the different paths.

One may be able to use the distribution of entropy

changes over paths to calculate the stochastic evolution of

populations. Under some conditions, one may be able to

specify the expected probability distribution over types when

the population achieves certain kinds of equilibrium. How-

ever, a full understanding of MEP and its limitations has yet

to be achieved. There may be some relation between

dynamics analysed in terms of Fisher information (Frieden,

2004) and MEP. However, I do not understand the similari-

ties and differences of those approaches.

For each observation, with value associated with the

index i, the relative likelihood of obtaining that obser-

vation from the true distribution, q0, versus the alterna-

tive distribution, q, is the ratio q0i=qi. The log of the

likelihood ratio is logðq0i=qiÞ. Because the true distri-

bution is q0, the actual probability of observing i is q0i.
Thus, averaging the log-likelihood ratio over the proba-

bility of each observed i value gives the average

log-likelihood ratio, which is

Dðq0kqÞ ¼
X

q0ilog
q0i
qi

� �
:

The divergence D is simply the average log-likelihood

ratio, which means an average of the relative weight of

evidence in favour of q0 as the true distribution

compared with q. The greater the ratio of likelihoods,

the greater the divergence between distributions and

the greater the information in each observed value to

discriminate between the distributions.

The scale of information

Clearly, D gives a measure of information provided by

an observed value. But what sort of scale, or units, does

that measure have? If, for example, D ¼ 2, then what

does the value ‘two’ mean?

The Shannon measure of information is commonly

used. That measure is related to entropy, which means

randomness. The more random something is, the less

information we have about it. For example, if a flipped

coin comes up on either side with equal probability, we

say that it is completely random. We also say that we

have no information about which side is likely to come

up. The Shannon measure captures this duality between

increasing randomness and decreasing information or,

equivalently, between decreasing randomness and

increasing information.

The Shannon measure is

HðqÞ ¼ �
X

qi logðqiÞ: (15)

We can use any base for the logarithm. It is some-

times convenient to use base 2, in which case H is the

average number of bits required to encode a message.

This bit-encoding interpretation arises from the fact that

�log2ðqiÞ ¼ log2ð1=qiÞ

expresses the number of bits required to encode a prob-

ability. For example, if qi is 1/32, then �log2ð1=32Þ ¼
log2ð32Þ ¼ 5 bits. A bit is the number of digits in base

two required to express a number. The number 32 in

base 2 is 10000, a bit-string with 5 digits. Each digit is a

bit that takes on a value of either 0 or 1.

To encode a probability 1/32 requires five bits. By

contrast, to encode a probability of 1/2 requires only

log2ð2Þ ¼ 1 bit. It takes four bits more to encode 1/32

compared with 1/2. The key idea is that a rarer event,

with lower probability, q, provides greater surprise

when the event actually occurs. A greater surprise

means a greater distinction from what was expected, a

lower ability to predict, more randomness and less

information. Thus, more bits means more randomness

and less information, providing a scale for measuring

information in terms of bits.
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Box 6: Bayesian interpretations of selection

Bayesian updating combines prior information with new

information to improve prediction. The Bayesian process

makes an obvious analogy with selection. The initial popula-

tion encodes predictions about the fit of characters to the

environment. Selection through differential fitness provides

new information. The updated population combines the

prior information in the initial population with the new

information from selection to improve the fit of the new

population to the environment. I am sure this Bayesian

analogy has been noted many times. But it has never devel-

oped into a coherent framework that has contributed signifi-

cantly to understanding selection.

Part of the problem is that the analogy, as currently

developed, provides little more than a match of labels

between the theory of selection and Bayesian theory. As

Harper (2010) shows, if one begins with the replicator

equation (eqn 1), then one can label the set fqig as the

initial (prior) population, fwi=�wg as the new information

through differential fitness and fq0ig as the updated (pos-

terior) population. Shalizi (2009) presents a similar view.

The analogy provides a useful correspondence between

the structure of the theories but, by itself, does not pro-

vide any truly significant insight into selection. It may be

possible to develop the analogy in useful ways, a chal-

lenge that remains open.

Another Bayesian line of study analyses how individuals

adjust their characters in response to information obtained

directly from the environment. Those studies include learn-

ing, phenotypic plasticity, and various aspects of conditional

development. By one view, learning and other processes

that accumulate information follow Popper’s (1972) dictum

that all new knowledge must ultimately derive from trial

and error, in effect, from selection.

Vast literatures discuss information theoretic and Bayes-

ian interpretations of learning, which are beyond our

scope. In an explicitly selectionist view, Fernando et al.

(2012) analyse theories of neural development in relation

to Bayesian updating – part of the wider field of develop-

mental selection (Frank, 1996, 1997a,b). Closer to the stan-

dard evolutionary interpretation of selection, Donaldson-

Matasci et al. (2010) provide an interesting discussion of

information directly acquired from the environment in

relation to fitness. Frank (1998, section 6.3) used a Bayes-

ian analysis to combine selectively acquired information by

the population as a prior state with new information

acquired directly from the environment (learning).

The number of bits associated with each probability

concerns only that particular probability. How should

we measure the randomness and information over a set

of different possible outcomes? For a distribution, q,

with different probabilities qi for each outcome, i, we

must combine the randomness (bits) associated with

each probability, �log2ðqiÞ, and the chance that the

event i occurs, qi.

In particular, the randomness associated with each

event is the product of how often the event happens

multiplied by the randomness of that event,

�qilog2ðqiÞ. The total over all events is the sum given

in the definition for H(q) in eqn 15, which measures

the total randomness over a set of events.

To understand the notion of total randomness over a

set, we can think of each i as a symbol to be communi-

cated or an event that may occur. A message, or a set

of events, has frequencies qi. In such a set, each

�log2ðqiÞ is the number of bits required to encode each

i, and the event i occurs with frequency qi, so

�qi log2ðqiÞ is the relative cost in terms of bits required

to encode event i. If the message, or set, is highly ran-

dom, it takes more bits to encode the message. High

randomness corresponds to a high average level of sur-

prise per event, which means that we have relatively

little information.

Note that information is the opposite of randomness

and entropy. The measurement of information can be

expressed as the negative entropy, �H.

The information in a comparison

The problem with �H as a measure of information is

that, by itself, it does not give a sense of comparison or

information gain. In the statistical example, we com-

pared two distributions and the information gained to

discriminate between those distributions provided by an

observation. In terms of selection, we will be concerned

with the information gain by a population before and

after evolutionary change, requiring a comparison

between the initial and updated probability distributions

that describe the population before and after selection.

In a comparison, one way to measure a gain in infor-

mation is by the reduction in the number of bits required

to encode, or to predict, the distribution of outcomes in

one population relative to another. A reduced number of

bits corresponds to reduced randomness, and reduced

randomness corresponds to improved prediction and

more information. Thus, we can measure information

gain by the reduction in the number of bits.

To make comparisons, we need an expanded defini-

tion of entropy

Hðr; pÞ ¼ �
X

rilog2ðpiÞ; (16)

where H(r,p) is the entropy in the probability distribu-

tion r when encoded by the associated probabilities p.

This expression may be interpreted by thinking of the

different i values as symbols in an alphabet, the ri as

ª 2 01 2 THE AUTHOR . J . E VOL . B I OL . 2 5 ( 2 0 12 ) 2 37 7 – 2 39 6

JOURNAL OF EVOLUT IONARY B IOLOGY ª 2012 EUROPEAN SOC I E TY FOR EVOLUT IONARY B IO LOGY

2384 S. A. FRANK



the frequency of the symbols in a message and the pi as

the frequencies used to determine the encoding of the

symbols i. Then, H(r,p) is the average number of bits

required to encode a message r in a code based on p.

To compare populations, suppose an updated popula-

tion has probabilities of types (events) q0i, and entropy

Hðq0; q0Þ ¼ Hðq0Þ. By contrast, the entropy of the new

population, when using the encoding of the old

population, q, before new information was acquired, is

Hðq0; qÞ, which is the randomness in the new popula-

tion when encoded by the old frequencies.

In the updated population, the change in information

obtained from the updated encoding is the average

number of bits to encode q0 based on the new frequen-

cies, Hðq0; q0Þ, minus the average number of bits to

encode q0 based on the old frequencies, Hðq0; qÞ, which is

� Hðq0; q0Þ � Hðq0; qÞð Þ ¼
X

q0ilog2ðq0iÞ �
X

q0ilog2ðqiÞ

¼
X

q0ilog2
q0i
qi

� �

¼ Dðq0kqÞ; ð17Þ

where the initial minus sign is used to express negative

entropy, which is information. The term log2ðq0i=qiÞ is

the number of extra bits to encode q0i given a prior

assumption that event i happens with probability qi.

The expression D measures the average number of

extra bits needed when encoding the new population

by the old frequencies rather than with the new,

updated frequencies. Thus, D is the average gain in

information in a population update when measured in

terms of number of bits. A value of D ¼ 2 means that

an efficiency gain of two bits has been achieved by the

extra information provided. Alternatively, we may say

that the new information enhances predictability, such

that the remaining randomness, or unpredictability, has

been reduced by two bits.

Selection and the meaning of information

The encoding interpretation of information is well

known and widely accepted (Kullback, 1959; Cover &

Thomas, 1991). By contrast, a formal interpretation of

natural selection in terms of information has never

been developed in a simple, clear and widely agreed

manner. Here, I give my interpretation of natural selec-

tion and information.

Why J rather than D ?

To analyse the meaning of information with regard to

natural selection, we must begin with the fundamental

expression of selection in terms of information diver-

gence given in eqn 13 as Ds �m ¼ J. That expression

states that the change in mean log fitness is the Jeffreys

divergence, J. Recall the definition of J from eqn 12 as

Jðq0; qÞ ¼ Dðq0kqÞ þ Dðqkq0Þ:

In most statistical and physical applications, measures

of divergence and information typically use D (Cover &

Thomas, 1991). For example, Bayesian updating can

often be expressed in terms of a prior distribution, q, an

updated distribution based on new data, q0, and the

divergence of the updated distribution from the prior,

Dðq0kqÞ. In the Bayesian expression, D describes the

gain in information measured in terms of bits and

interpreted with regard to the efficiency of encoding

information or, equivalently, the reduced randomness

and increased predictability of outcomes.

The measure D is asymmetric, because Dðq0kqÞ 6¼
Dðqkq0Þ. By contrast, J is symmetric, because it is the

sum of the divergence in each direction. The symmetry

in the selection equation arises because, from eqn 9,

we have

Ds �m ¼
X

Dqilog
q0i
qi

� �

¼
X

Dqi logðq0iÞ � logðqiÞ
� 	

¼
X

Dqi DlogðqiÞ½ �: ð18Þ

If we switch q0i and qi, then Dqi changes sign and

DlogðqiÞ also changes sign. The two sign changes cancel.

Thus, we obtain the same information gain when selec-

tion moves a population as q ! q0 or in the reverse

direction as q0 ! q.

Fitness in terms of encoded information

The information expression for fitness in eqn 18 is in

terms of logðq0i=qiÞ. Thus, the information gain contin-

ues to be about efficiency of encoding or, equivalently,

the reduced randomness and increased predictability of

outcomes. We could, for example, think of an increase

in mean log fitness as an increase in the population’s

prediction of, or match to, the state of nature – the fit

of the population to the environmental challenge.

This interpretation of fitness in terms of encoding is

universal, in the sense that the particular environmen-

tal challenges and the particular meaning of the gain in

fitness with respect to particular characters do not enter

into the expressions. The universal expression of fitness

and selection in terms of probabilities and encoding

yields the match between changes in mean log fitness

and changes in the classical expressions of information.

Encoding versus meaning

The great power and universality of the classic theory

of information arises because it does not depend on

meaning. Information is formulated strictly in terms of

encoding, bits, randomness and predictability, indepen-

dently of what is being encoded or predicted. Fitness
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obtains the same universality, because fitness uses the

same expressions of relative frequency as the classic

information measures. That universality for fitness

makes sense, because fitness is a general expression for

the way in which populations accumulate information,

independent of the characters and environmental chal-

lenges that distinguish particular cases.

Although it is certainly beneficial to have a universal

expression of fitness in terms of information, we pay for

that universality by the limited scope of fitness expressed

only in terms of encoding. Information is about predict-

ability, and predictability is always predictability about

something. Natural selection must, in some way, be about

the increased information with respect to the environ-

mental challenges that shape success. How can we bring

this particular meaning of the information about envi-

ronmental challenges into the formulation of fitness?

There is perhaps no universal way to express meaning

with respect to information. That may be why the

encoding interpretation has been so valuable. The foll-

owing sections explore two related ways in which to

bring meaning into the information interpretation of fit-

ness. The next section develops the notion of Fisher

information. Later sections present the idea of a coordi-

nate system for information and evolutionary change – a

connection between the Price equation and information.

Natural selection and Fisher information

Shannon information is not really information as

such, but rather the capacity to transmit information,

whereas Fisher information is truly a measure of

informativeness about something specific, the value of

a parameter. Shannon’s refers to the medium, Fisher’s

to the message (Edwards, 2000, p. 6).

We have been working on the scale of encoded infor-

mation. That scale depends only on probability distribu-

tions, without any explicit connection to what sort of

events or meaning attach to the probabilities. Units of

encoded information can be measured in terms of bits.

The following extends Frank (2009).

One way to interpret meaning is to change the scale.

Suppose we could relate bits of encoded information to

a new scale on which we interpret meaning. To relate

the change in information to the change in meaning,

we could evaluate

Dinformation ¼ Dinformation

Dmeaning

� �
Dmeaning: (19)

The relation is trivial when expressed in this way.

However, we can see that the ratio of change in infor-

mation to change in meaning provides the translation

between the two scales.

To make this expression for the relations between

the scales useful, we must connect each of the terms to

our prior discussion of information and to a new way

of describing meaning. That connection leads us to

expressions of natural selection in terms of the fit

of characters to the environment, rather than the

efficiency of encoding information in terms of bits.

Up to this point, I have been writing qi or q0i for the

probability of event i, whatever sort of event or charac-

teristic i may be. The probability distribution is the set of

qi values over the range of possible characters, each pos-

sible character associated with a label i. In this formula-

tion, one can think of the probability distributions as

interpreted nonparametrically, in the sense that we work

directly with the actual distribution of probabilities with-

out reference to any underlying parameters or causes.

Now suppose we associate a set of values, h, with

each probability distribution (Amari & Nagaoka, 2000).

We could think of h as a parameter, for example the

mean of the distribution. Or we could think of h as the

predictions about the environment associated with a

probability distribution. The predictions might be

expressed as characters. The quality of the predictions

could be associated with fitness.

For now, we take h in the general sense of some

values associated with a distribution. To express the

association, we expand our notation for probabilities to

write qijh, the probability of event i given the associated

value h. An updated population may have a new

associated value, h0, such as a new mean or a new

prediction about the environment, so we write q0ijh0.
The change in probability is now expressed as

Dqijh ¼ q0ijh0 � qijh:

To express the scaling of probability changes relative

to changes on the new h scale, we can divide both sides

by the change on the h scale, yielding

Dqijh
Dh

¼ q0ijh0 � qijh
h0 � h

:

This expression gives us a way to match changes on

the scale of meaning, h, to changes on the scale of

probability and encoded information, q.

We can now follow eqn 19 to express the change in

information as the change on the scale of meaning multi-

plied by the change of information scaled relative to the

change in meaning. To develop this expression, we must

continue to match our previous work on information

and selection to the new notation in relation to meaning.

The log-likelihood ratio, logðq0i=qiÞ, can be written as

logðq0iÞ � logðqiÞ, which may be abbreviated as DlogðqiÞ,
as in eqn 18. This difference of logarithms expresses the

change in the number of bits required to encode the

probabilities associated with i (as described below

eqn 17). If we now express probabilities in relation to

h, as q|h, and divide by Dh, we obtain the change in the

number of bits in relation to the change on our scale of

meaning
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logðq0ijh0Þ � logðqijhÞ
h0 � h

¼ DlogðqijhÞ
Dh

:

We can now put the pieces together by relating these

new expressions with the expression in eqn 18 for the

change in mean log fitness, yielding a form equivalent

to the intuitive description in eqn 19 as

Ds �m ¼ JðhÞ
Dh2

Dh2; (20)

in which I write Dh2 ¼ ðDhÞ2 for the square of the change

in the parameter, and the term J(h) is the Jeffreys

divergence, which is now a function of the scale of

meaning, h, and is written as

JðhÞ ¼
X

Dqijhð Þ DlogðqijhÞ½ �: (21)

These expressions simply repeat our prior derivation

of Ds �m ¼ J, but with explicit consideration of h.
As the changes become small, Dh?0, the Jeffreys

divergence, J(h), divided by the squared change in

scale, Dh2, converges to the important quantity in

statistical theory known as Fisher information, F(h),
which we write as

JðhÞ
Dh2

! FðhÞ;

as shown in Appendix A. Thus, for small changes on

the scale of meaning, Dh?0, we may write the change

in average log fitness as

Ds �m ¼ FðhÞDh2: (22)

This derivation provides a more general way to arrive

at my earlier statement that changes in mean fitness

are proportional to Fisher information (Frank, 2009).

Fisher information is the information in an observation

about a parameter, or a set of parameters. In our case,

h represents the parameters, which is our scale of

meaning.

One can also think of Fisher information as the Jeff-

reys divergence between populations, J(h), relative to

the squared divergence on the scale of meaning, Dh2.
Thus, Fisher information is the sensitivity of change in

the encoded information in populations, J(h), relative

to change on the parametric scale of meaning. The

greater the sensitivity, the more information in an

observation with respect to the divergence between

populations on the underlying parametric scale. See

Appendix B for ways in which Fisher information has

been used in previous models of selection.

Parametric coordinates for selection and
information

The change in mean log fitness measures the amount

of information that the population accumulates by

selection. Because fitness describes changes in relative

frequencies, fitness concerns encoding of information,

which can be measured in numbers of bits.

The previous section showed how to convert from

bits to an alternative scaling of information in terms of

h. We may interpret the parameters h as a scale that

has meaning with respect to the fit of the population’s

characteristics to the environment. This section further

analyses the notion of parametric coordinates for selec-

tion and information, followed by an example.

Parametric coordinates and Fisher information

From eqn 20, the key result for the change in mean log

fitness in terms of a parametric scale can be rewritten as

Ds �m

Dh2
¼ JðhÞ

Dh2
! FðhÞ: (23)

Change in mean log fitness is the amount of informa-

tion gained by selection. The ratio Ds �m=Dh2 is the

change in information per unit change in squared dis-

tance on the parametric scale. Because we consider the

parametric scale as the scale of meaning, this ratio is

the change in information relative to the change in

squared distance on the scale of meaning (Amari &

Nagaoka, 2000). The arrow on the right-hand side states

that the relative change in information per unit of

squared parametric distance is the Fisher information in

an observation about the parameter, h.
The interpretation of ‘observation’ with respect to

natural selection is interesting. Each interaction of an

individual with the environment leads to a realized fit-

ness. That realized individual fitness is an observation,

by the population, of the fit between certain character-

istics and the environment. For a particular type, i, the

average information in each observed individual fitness

is logðq0i=qiÞ ¼ DlogðqijhÞ. Thus, the ratio DlogðqijhÞ=Dh is

the change, or sensitivity, of information in an observa-

tion relative to a change in h. To get the average over

all types, i, we weight this information per type by qijh.
To analyse selection, we need the change in frequen-

cies, or sensitivity of those changes, relative to changes

in h, which is Dqijh=Dh. Combining these terms yields

JðhÞ=Dh2 ! FðhÞ.

Change in the mean or variance of a character

A few examples clarify the abstract expressions for infor-

mation. To keep things simple, I assume small changes

so that we can use the Fisher information simplification

in eqn 23. With larger changes, we could make exact

calculations using J(h) instead of Fisher information.

Change in the mean of a normal distribution under
directional selection
Suppose the character values in a population, zi, follow

a normal distribution with mean, l, and variance, v.
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An observation from that population provides informa-

tion about the mean of the population. It is well known

that an observation from a normal population provides

Fisher information about the mean of F(l)=1/v. The

more variable the population, the larger v and the less

information in an observation about the average value.

Put another way, the precision in measurement is

proportional to 1/v. More variable populations yield less

precise measurements and thus less information per

observation about the average value.

We interpret natural selection as obtaining informa-

tion through the observed fitnesses associated with

character values. Suppose that the population retains a

normal shape and a fixed variance before and after

selection and changes only in its mean value. Then, the

change in the mean, Dl, is sufficient to describe the

effects of selection. From eqn 22, the increase in infor-

mation by natural selection is

Ds �m ¼ FðlÞDl2 ¼ Dl2

v
:

This expression provides the relation between the

change in information, Ds �m, which is a universal

abstract quantity about encoding, and the scaling of the

character that gives meaning for this particular case,

Dl2=v.

Change in the variance of a normal distribution under
stabilizing selection
The previous example described directional selection on

the average trait value, holding the variance constant.

This section considers stabilizing selection. In this case,

the population begins with its centre at the optimum.

Selection reduces the variance, but leaves the mean

unchanged. For a normal distribution, the Fisher infor-

mation in an observation about the variance, v, is

1=2v2. Thus,

Ds �m ¼ FðvÞDv2 ¼ Dv2

2v2
;

which is the gain in information when stabilizing selec-

tion reduces the variance of a normally distributed

character.

Change in the mean of an exponential distribution
Suppose the character follows an exponential distribu-

tion before and after selection. An observation from an

exponential population provides Fisher information of

1/v about the mean, l. The variance of an exponential

distribution is v ¼ l2. The change in information by

selection is

Ds �m ¼ FðlÞDl2 ¼ Dl2

v
;

which matches the case of the normal distribution.

However, the variance of the exponential distribution

changes with the mean. By contrast, the normal

distribution has a separate parameter for the variance,

which we held constant by assumption.

Change in allele frequency
Suppose q1 ¼ p is the frequency of a particular allele

and q0 ¼ 1� p is the frequency of the alternative allele.

The distribution of allele frequencies is binomial with a

single observation. The mean allelic value is l = p, and

the variance is v = p(1�p) The Fisher information in an

observation about the mean of a binomial population is

1/v. The change in information by selection is

Ds �m ¼ FðlÞDl2 ¼ Dl2

v
:

Using p for gene frequency to match the familiar

notation of population genetics

Ds �m ¼ FðpÞDp2 ¼ Dp2

pð1� pÞ ;

which holds when Dl=Dp is small. For larger changes,

we can obtain an exact expression by using the Jeffreys

divergence rather than the Fisher information, as in

eqn 23.

Character coordinates and selection

The previous section assumed that the parameters, h,
summarize all differences in the frequency distributions

before and after selection. We can think of h as defining

the coordinate system for evolutionary change. The

reduction of frequencies to a parametric description,

such as the mean of the distribution, typically requires

character values to be associated with the i values. By

convention, we use zi for character values. Thus, if

changes in the mean are sufficient to describe the

changes in the probability distribution of characters in

the population before and after selection, then

l ¼ �z ¼ P
qizi is a reduction of the full distribution of

character values to a single parametric dimension.

Parametric character coordinates

Let us review the use of parametric coordinates before

discussing nonparametric coordinates. In a parametric

example, suppose that frequencies before and after

selection are normally distributed, with parameters (l,v)
for the mean and the variance. Selection moves the

population from the initial location, defined by the

parameters (l,v), to the location after selection, ðl0; v0Þ.
The two parametric dimensions provide a complete

description of change by selection. If we hold one

parameter constant, such as the variance, and only

allow the mean to change, then change in the single

parametric dimension from l to l0 fully describes the

population before and after selection.

Parametric expressions describe the total change in

information by
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Ds �m ¼ DJ

Dh2
Dh2 ! FðhÞDh2:

For example, let the parameter be the mean, h = l.
The term JðlÞ=Dl2 ! FðlÞ reduces the change in the

average information per observation to the single

dimension of l. If we multiply the information per

observation by the distance moved in the parametric

dimension, Dl2, we obtain the total change in infor-

mation. Thus, the calculation for the change in infor-

mation is made along the single parametric dimension

of l.
The parametric dimension of l can be thought of as

the coordinate system in which we evaluate the change

by selection. Each change in position along the coordi-

nate of l corresponds to changes by selection, because

l is a sufficient description for the full frequency distri-

bution of character values. In general, when we can

reduce the description of frequency distributions to a

sufficient set of parameters, h, those parameters form

the coordinates in which we evaluate the changes by

selection.

Nonparametric character coordinates

We can think of our fundamental expression for selection

Ds�z ¼
X

Dqizi

as a nonparametric expression. Each term includes the

actual frequencies in the population. The calculation is

made over the full dimensionality of the frequency

distribution.

The character values, fzig ¼ z1; z2; . . ., form a non-

parametric coordinate system. For the population fre-

quencies, fqig, the point fqizig locates the population

before selection and the point fq0izig locates the popula-

tion after selection. The movement of the population

caused by selection is given by fDqizig.
The expression for the total change in information

caused by selection is

Ds �m ¼ J ¼
X

DqiD logðqiÞ ¼
X

Dqi log
q0i
qi

� �
:

Each frequency change, Dqi, associates with the char-

acter zi ¼ D logðqiÞ, the change in information for the

ith type. This is a nonparametric expression, because

the calculation is made over the full frequency

distribution.

Character coordinates and information

The character values provide the coordinates of meaning

in an analysis of selection. We can derive the relations

between information and the coordinates of meaning by

using the results of eqns 7 and 8. From those equations,

we obtain the relation between the change given the

coordinates of meaning, Ds�z, and the change given the

coordinates of information, Ds �m, as

Ds�z ¼ bzw
bmw

� �
Ds �m: (24)

The term bzw is the regression coefficient of the char-

acter values, z, on the fitnesses, w. The term bmw is the

regression coefficient of the log fitnesses, m, on the fit-

nesses, w. These regressions provide an exact expression

for changing the coordinates from information, Ds �m, to

characters, Ds�z. When the magnitudes of the changes

are small, w?m+1, thus

Ds�z ! bzmDs �m: (25)

To repeat, it is important to recognize a regression

coefficient as an exact expression for the change in

scale associated with a change in coordinates. The

regression is sufficient when evaluating the conse-

quences for a change in coordinates with respect to a

change in mean value.

The underlying values, zi, may themselves be nonlin-

ear functions of other values (Frank, 2012b). For exam-

ple, zi could be the product of different character values

measured on each individual, or the square of some

underlying character. What matters is that we average

over the zi values to get Ds�z.

Character coordinates and total
evolutionary change

The previous analyses have focused on the selection

part of total evolutionary change. I defined selection as

the change caused by frequency differences

Ds�z ¼
X

Dqizi:

The subscript s emphasizes that this expression is the

partial change caused by selection (Price, 1972b; Ewens,

1989; Frank & Slatkin, 1992).

Total change in characters

The partial change arises by holding constant the char-

acter values, such that Dzi ¼ z0i � zi ¼ 0. This assump-

tion fixes the coordinates, zi, and evaluates the

meaning of changing frequencies in the context of that

fixed set of coordinates.

If the coordinates that give meaning also change,

Dzi 6¼ 0, then we must account for that change in

coordinates with respect to the total evolutionary

change. In particular, the total change is the sum of the

change, Ds, caused by selection through varying fre-

quencies, q, holding constant the coordinates, z, plus

the change in coordinates, Dc, holding constant the

new frequencies in the updated population, q0. We

write the total change as
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D�z ¼ Ds�z þ Dc�z ¼
X

Dqizi þ
X

q0iDzi: (26)

This expression is a form of the Price equation.

I devoted the prior article to a full discussion of this equa-

tion (Frank, 2012b). Here, I focus only on those aspects

that concern information. In particular, I emphasize the

interpretation of z as a coordinate system that gives

meaning to the information basis of natural selection.

Total change in information

The total evolutionary change in eqn 26 can be used to

evaluate information. Let z = m, where the log fitness,

m, provides a measure of the information accumulated

by a population. Thus,

D�m ¼ Ds �mþ Dc �m: (27)

From eqn 13, the selection component of change is

Ds �m ¼ J. In general, no simplified reduction or particu-

lar interpretation is possible for the change in coordi-

nates, Dc �m. That change in coordinates arises from any

environmental or extrinsic factors that may change,

altering the fit of the characters to the environment.

The changes in the frequencies themselves can be an

‘environmental’ change that alters fitnesses (Price,

1972b; Ewens, 1989; Frank & Slatkin, 1992). Thus, no

general expression for total evolutionary change in

fitness is possible other than

D�m ¼ J þ Dc �m:

One can, of course, analyse particular models such as

mutation–selection balance. Mutation decays informa-

tion through changes in fitness that are, on average,

negative, causing a loss of information through the

term Dc �m ¼ P
q0iDmi. The particular loss of information

through Dc �m depends on the specific assumptions. By

contrast, the gain in information through selection is

always Ds �m ¼ J.

Equilibrium balance between information
gain and loss

Many processes lead to an equilibrium balance between

gain of information by selection and decay of informa-

tion by an opposing force (Frank, 2012a). Mutation–
selection balance is one example. Frequency-dependent

selection is another, in which the gain in information

by selection is balanced by the decay of information

(fitness) caused by frequency changes. For example, in

the evolution of sex ratios, making more daughters

may be favoured by selection. But as the number

of daughters increases by selection, the advantage of

making extra daughters decays.

Although we cannot, in general, specify the change

in the coordinate term, Dc �m, we can express the equi-

librium condition, D�m ¼ 0. Under a balance between

information gain by selection and information decay by

change in coordinates,

J ¼ �Dc �m:

It is sometimes possible to analyse particular prob-

lems by using that universal expression for the balance

of forces (Frank & Slatkin, 1990; Frank, 1995).

Evolution of the coordinate system

In the previous sections, I have fixed the particular

dimensions that define the coordinate system. Although

the coordinates may change, Dzi, each dimension i

remained. From a broader perspective, the evolution of

the various dimensions in the coordinate system itself is

perhaps among the most interesting evolutionary prob-

lems. One aspect concerns the origin of new characters

(West-Eberhard, 2003). More generally, one may con-

sider the evolution of the optimal set of characters with

respect to the capture of information.

There is an interesting literature in engineering about

optimal design of sensors with respect to capturing

information. That literature sometimes uses Fisher

information as the optimality criterion with respect to

design (Borguet & Léonard, 2008). Application of that

design perspective with regard to information may pro-

vide insight into biological problems. For example, mul-

tiple cellular receptors may respond to the same sort of

information, such as the concentration of a hormone.

But those receptors may be tuned differently with

regard to sensitivity to signals. A related idea concerns

the common trade-off between informativeness and

simplicity in classification (Kemp & Regier, 2012).

A second aspect of coordinates concerns the paramet-

ric reduction of the full nonparametric distribution of

characters. Reducing the full distribution to the mean is

an extreme reduction and probably not justified in gen-

eral. However, there often may be some suitable reduc-

tion of dimensionality to a sufficient set of parameters

with respect to the acquisition of information (Carter

et al., 2009; Goh et al., 2011). That sufficient set defines

the coordinates of information and meaning followed

by an evolving population. It may be that an improved

parametric representation of information in the envi-

ronment by a set of characters enhances fitness. Thus,

it may be the parametric representation itself that is

under the strongest selection or, at least, a particularly

interesting form of selection.

Discussion

The fundamental equations of selection are often writ-

ten in the statistical terms of variances, covariances and

regressions. I have argued that one obtains a deeper

understanding of selection if one learns to read the

fundamental equations in terms of information. Here,

I review my argument by listing the key steps derived
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in previous sections. I start with the classic statistical

equations of selection. I then show the connection of

those statistical expressions of selection to expressions

for the information that populations accumulate about

the fit of characters to the environment.

Statistical expressions of selection

To understand where the classic statistical expressions

of selection come from and what they mean, let us start

with the basic equation for evolutionary change by

natural selection

Ds�z ¼
X

Dqizi

given in eqn 3. Here, Ds�z is the change caused by selec-

tion in the average value of a character, �z. This expres-

sion applies generally to selection of any value. For

example, z could be gene frequency, leading to popula-

tion genetics expressions, or z could be a quantitative

trait such as weight, or z could be a nonlinear function

of several characters. The Dqi terms are the changes

caused by selection in the frequency of the ith charac-

ter value, zi. Total selection is the total change in

frequencies, with each change caused by selection, Dqi,
weighted by its associated character value, zi.

I showed that one can rewrite the association

between the change caused by selection and the char-

acter value as X
Dqizi ¼ Covðw; zÞ=�w; (28)

a form known as the Price equation and also related to

Robertson’s secondary theorem of natural selection

(Frank, 2012b). This form provides the foundation for

quantitative genetics theory and also arises in standard

models of population genetics. The definition of covari-

ance allows us to rewrite the covariance as the product

of a regression coefficient and a variance term

Ds�z ¼ Covðw; zÞ=�w ¼ bzwVw=�w; (29)

where bzw is the regression of character value, z, on fit-

ness, w, and Vw is the variance in fitness. These sorts of

regression and variance terms arise repeatedly in the

fundamental equations of selection.

One can easily understand why selection depends on

an association between fitness, w, and character value,

z. Those character values associated with higher fitness

will increase, whereas those character values associated

with lower fitness will decrease. But why should the

expression for selection be exactly the covariance, or

the regression multiplied by the variance, which cap-

ture only the linear component of association? The rea-

son is that Ds�z describes selection by a change in

average values. To calculate a change in the average,

we need only the linear component of association

between character and fitness.

These statistical expressions of selection in terms of

covariances, variances and regressions have been very

useful throughout the history of evolutionary theory.

However, these expressions give no sense of what

selection means. To say that selection is the covariance

of fitness and character value is simply to express an

algebraic relation. That algebraic relation is very useful,

but it does not give a sense of what selection is actually

doing with regard to adaptation or how selection relates

to processes in other fields of study. The statistical

expressions do not tell us how to read the fundamental

equations of selection with regard to the meaning of

the underlying process.

Selection in terms of information

In this article, I argued that selection causes populations

to accumulate information about the fit of characters to

the environment. I gave a precise definition of ‘infor-

mation’. That definition of information with respect to

selection matches exactly the classic usage of informa-

tion and entropy from the fundamental theories of

physics, statistics and communication. By showing the

exact relations between selection and information, I

tied the theory of natural selection to the broader con-

ceptual framing of problems at the foundation of many

key scientific disciplines.

I will not repeat the whole argument here. Instead, I list

a few steps to emphasize the essential points. To under-

stand the information associated with selection and fitness,

we must analyse fitness on a logarithmic scale

mi ¼ logðwiÞ ¼ logð�wÞ þ log
q0i
qi

� �
:

The logarithmic scale compares relative magnitudes.

We need relative magnitudes because there is no mean-

ing in the number of babies or the number of copies

produced with regard to whether a type, i, is increasing

or decreasing in the population. We need to know the

relative success. The logarithmic scale is the natural

scale of relative magnitudes.

Using log fitness, m, as the character value of interest

in eqn 28, we obtain

Ds �m ¼
X

Dqimi ¼
X

Dqi log
q0i
qi

� �
:

We recognize the fundamental expression for the

change in information given by the Kullback–Leibler
divergence, or relative entropy, as

Dðq0kqÞ ¼
X

q0i log
q0i
qi

� �
:

Using this definition for change in information, D,

we can express the change in mean log fitness caused

by selection as

Ds �m ¼ Dðq0kqÞ þ Dðqkq0Þ:
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This sum of the changes in information in each direc-

tion is known as the Jeffreys divergence, J. Thus, we

can write the fundamental expression for the accumu-

lation in information by natural selection as

Ds �m ¼ J:

Because z in eqn 29 is just a placeholder for any

character, we can use m in place of z in that equation,

yielding

Ds �m ¼ bmwVw=�w:

Thus, the information accumulated by natural selec-

tion is equivalently expressed in terms of the regression

coefficient and variance

J ¼ bmwVw=�w: (30)

The value of J is the gain in information. The variance

in fitness, Vw, is therefore a measure of the separation

between the initial population and the population after

selection, when the separation between populations is

expressed on a scale of information. The regression

divided by the mean fitness, bmw=�m, is a scaling factor

that translates the measure of information in Vw to the

scale of log fitness, m. That scaling change is required

because log fitness is the proper measure of information

in expressions of selection.

Equation 30 shows the equivalence between the

expression of information gain and the expression of it

in terms of statistical quantities. There is nothing in the

mathematics to favour either an information interpreta-

tion or a statistical interpretation.

I have argued that, when reading the fundamental

equations of selection for meaning, we should prefer

the information interpretation. The information per-

spective makes sense intuitively. Selection is the process

by which populations accumulate information about

the environment.
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Appendix A: Fisher information as the
limiting form of the Jeffreys divergence

A large family of divergence measures converges to

Fisher information in the limit of small changes (Amari

& Nagaoka, 2000; Amari & Cichocki, 2010; Cichocki &

Amari, 2010; Cichocki et al., 2011). In this appendix,

I show that the limit of the Jeffreys divergence is the

Fisher information multiplied by a scaling factor for

parametric distance.

I also show that the chi-square divergence becomes

the Fisher information metric in the limit of small

changes. The different forms of divergence can be con-

fusing if one does not realize that all of the different

divergence measures in the Fisher family are equivalent

in the limit, but differ when changes are not small.

My main point is that the Jeffreys divergence holds

the unique position as the only correct divergence mea-

sure for models of selection. It is the only measure that

is correct both for large changes and, in the limit, for
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small changes. As far as I know, my derivation in this

article of the Jeffreys divergence in relation to selection

has not been shown previously. The clear relation of

the Jeffreys divergence to changes in information is

essential to make the proper connection between selec-

tion and information.

Limiting form of Jeffreys divergence

I show JðhÞ ! FðhÞDh2 as the distance in the parametric

coordinates Dh2 ! 0. Notationally, Dh2 � ðDhÞ2. Using

the standard differential notation for small differences,

we write Dh2 ! dh2. Thus, I show JðhÞ ! FðhÞdh2.
I use the vector h as parametric coordinates for prob-

ability distributions, following standard analysis in

information geometry (Amari & Nagaoka, 2000). For

simplicity, I usually treat the parametric vector as a sin-

gle dimension. The extension to multiple dimensions is

standard.

The Jeffreys divergence in parametric form, from

eqn 21, is

JðhÞ ¼
X

Dqijhð Þ D logðqijhÞ½ �:

As the changes become small, Dqijh ¼ q0ijh0 � qijh ! 0

and Dh ¼ h0 � h ! 0, we write

Dqijh !dqijh

¼ dqijh
dh

� �
dh

¼ _qidh;

where _qi is the derivative of qijh with respect to h. Next,

D logðqijhÞ !d logðqijhÞ

¼ d logðqijhÞ
dh

� �
dh

¼ _qi
qi

� �
dh;

where, to make the notation more concise, I use

qi � qijh. Thus,

JðhÞ !
X _q2i

qi

� �
dh2:

Below, I show that
P

_q2i =qi is Fisher information,

F(h). Thus, JðhÞ ! FðhÞdh2.

Pearson’s chi-square divergence

We have from the previous expression

JðhÞ !
X _q2i

qi

� �
dh2 ¼

Xdq2i
qi

: (31)

Pearson’s chi-square divergence, or chi-square test

statistic, is usually described as follows. Given an

expected probability distribution, fqig, and an observed

probability distribution, fq0ig, the chi-square statistic is

the sum of observed minus expected squared over

expected. Writing the observed minus expected squared

as Dq2i ¼ ðq0i � qiÞ2, we have

v2ðhÞ ¼
XDq2i

qi
:

As the changes become small,

v2ðhÞ !
X dq2i

qi
¼

X _q2i
qi

� �
dh2;

demonstrating that the Jeffreys and chi-square diver-

gences have the same limiting form. The next section

shows that the limiting form is related to the Fisher

information metric.

When changes are large, only the Jeffreys divergence

gives the correct expression for changes by selection in

mean log fitness, Ds �m. The chi-square divergence is the

change in mean fitness on a linear scale

Ds �w ¼
X

Dqiwi ¼
XDq2i

qi
:

As I discussed in the text, the correct scale for analy-

sing the changes in fitness is logarithmic, because fit-

ness is a relative measure, and logarithmic scaling is the

correct scale for relative measures (Wagner, 2010). In

addition, the relations between selection and informa-

tion are only clear on the logarithmic scale, because it

is only on that scale that one can see the connections

to the classic theories of entropy and information. In

the limit of small changes, the logarithmic scale

becomes linear, and thus, Ds �m ! Ds �w.

Alternative expressions for Fisher information

One can think of Fisher information as the change in a

probability distribution with respect to a change in a

parameter that specifies the distribution. The more rap-

idly a distribution changes with respect to a parameter,

the more information each observation provides about

the value of the parameter. For example, if the distribu-

tion changes very slowly, then small differences in the

distribution of observed values may translate into big

differences in parameter values. Thus, approximately

similar distributions of observations map to widely dif-

ferent parameter values, so each observation provides

relatively little information about the parameter. If, by

contrast, the distribution changes rapidly with respect

to a parameter, then the distribution of observations is

very different for small changes in the parameter, and

each observation provides much information about the

likely value of the parameter.
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Mathematically, Fisher information is the negative

value of the expected curvature of the log-likelihood

function

FðhÞ ¼ �
X

qi
d2 logðqijhÞ

dh2

� �
:

Doing the differentiation, and noting (Amari & Naga-

oka, 2000) that

X d2qijh
dh2

¼ d

dh

X dqijh
dh

¼ 0;

because the sum of changes in frequencies must be zero

over a distribution, we obtain

FðhÞ ¼
X _q2i

qi
:

A large number of different divergence measures

converge to Fisher information in the limit. Thus,

knowing only that the limiting form of a divergence is

Fisher information only weakly constrains the associ-

ated form of divergence. For example, from the expres-

sion above for the chi-square divergence

v2ðhÞ !
X dq2i

qi
¼

X _q2i
qi

� �
dh2;

it might be tempting, in a particular application in which

Fisher information arises, to think of the chi-square

divergence as somehow the natural measure of change,

because the chi-square form for large changes most clo-

sely resembles the limiting Fisher information form for

small changes. In the case of selection, that conclusion

would not be correct. The Jeffreys divergence is in fact

the natural measure of change, because the logarithmic

scale is the natural scale for changes in fitness and for

changes in information.

Appendix B: Historical aspects

Kimura (1958) noted that the change in fitness in

certain models of selection is

Ds �m ¼
X _q2i

qi
: (32)

Kimura used the standard notion of change with

respect to time in his study of continuous dynamics

with respect to small changes. Thus, the parameter is

h≡t for time, and _q ¼ dq=dt.
Ewens (1992) and Edwards (2000) provide compre-

hensive syntheses of the literature on the various uses

of Kimura’s expression,
P

_q2i =qi. The main use con-

cerned information geometry expressions of selection

dynamics on a Riemannian manifold. Neither Ewens

nor Edwards found that discussion of information

geometry particularly useful. Edwards did note that the

Kimura’s expression is in fact just an expression for

Fisher information. But Edwards did not think that

association was useful.

I agree with the criticisms by Ewens and Edwards

within the context of how the literature had been

framed. From Kimura (1958) through the various

developments in the literature, the emphasis had

always been on dynamics with respect to time. I agree

with Edwards that one cannot say anything very inter-

esting about the temporal dynamics of evolutionary

change from the simple expression in eqn 32 for selec-

tion. That expression is the partial change caused by

selection (Price, 1972b; Ewens, 1989; Frank & Slatkin,

1992), not the total evolutionary change. The partial

change gives a clear sense of what selection is doing at

any moment, but provides no insight by itself about

evolutionary dynamics.

My presentation in this article is also based on Fisher

information and, more generally, on the Jeffreys diver-

gence. Two aspects of my presentation go beyond the

past work and, in my view, provide a compelling case

for framing our understanding of selection in these

terms.

First, I connected selection to information theory

through the general result Ds �m ¼ J, the Jeffreys diver-

gence. This result does not depend on the limit of small

changes, but instead is a general description of the

nature of selection. This result establishes the proper

measure for the amount of information accumulated by

selection.

Second, I related the change in information to vari-

ous underlying parametric and nonparametric scales.

Those scales provide the meaning with respect to the

abstract scale for encoded information that forms the

basis for classical information theory. As Edwards

(2000) emphasized, Fisher information is information

about meaning with respect to underlying parameters

(Frank, 2009). Earlier work implicitly used time as the

parameter, which is not a meaningful way of express-

ing the accumulation of information. One does not

think of selection as providing information about time.

In addition to making the parametric basis for selection

and information explicit, my use of the Jeffreys

divergence clarified the relation of selection to classical

information theory.

Finally, I achieved greater generality than past work

by respecting the fundamental distinction between

selection and evolution. Past work often tried to make

general statements about evolutionary dynamics, which

is not possible. It is possible to make strong and com-

pletely general statements about the partial change

caused by selection. Such statements clarify the relations

between selection and information. One can achieve

that depth and generality only by working within the

fundamental limitations imposed by the distinction

between selection and total evolutionary change.

I mentioned that Ewens (1992) and Edwards (2000)

concluded that past work based on the Kimura’s result
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did not contribute significantly to understanding selec-

tion. Ewens (1992) did develop his own extension to

that theory, in which he showed an optimization prin-

ciple in relation to Fisher’s fundamental theorem.

Frank (2009) developed a similar idea but with a differ-

ent approach that emphasized information and the

Fisher information metric. Those studies derive from a

partitioning of the causes of fitness, which is the topic

of a future article in this series.
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