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Natural selection. IV. The Price equation*

S. A. FRANK

Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, USA

The heart and soul of much mathematics consists of the fact

that the ‘same’ object can be presented to us in different

ways. Even if we are faced with the simple-seeming task of

‘giving’ a large number, there is no way of doing this

without also, at the same time, ‘giving’ a hefty amount of

extra structure that comes as a result of the way we pin

down—or the way we present—our large number. If we

write our number as 1729, we are, sotto voce, ordering a

preferred way of ‘computing it’ (add one thousand to seven

hundreds to two tens to nine). If we present it as 1 + 123,

we are recommending another mode of computation, and

if we pin it down—as Ramanujuan did—as the first number

expressible as a sum of two cubes in two different ways, we

are being less specific about how to compute our number,

but have underscored a characterizing property of it within

a subtle diophantine arena.…
This issue has been with us, of course, forever: the

general question of abstraction, as separating what we want

from what we are presented with. It is neatly packaged in

the Greek verb aphairein, as interpreted by Aristotle in the

later books of the Metaphysics to mean simply separation: if it

is whiteness we want to think about, we must somehow

separate it from white horse, white house, white hose and all

the other white things that it invariably must come along

with, in order for us to experience it at all

(Mazur, 2008, pp. 222–223).

Somewhere … between the specific that has no meaning

and the general that has no content there must be, for each

purpose and at each level of abstraction, an optimum

degree of generality

(Boulding, 1956, pp. 197–198).

Introduction

Evolutionary theory analyses the change in phenotype

over time. We may interpret phenotype broadly to include

organismal characters,variancesof characters, correlations

between characters, gene frequency, DNA sequence –

essentially anything we can measure.

How does a phenotype influence its own change in

frequency or the change in the frequencies of correlated

phenotypes? Can we separate that phenotypic influence
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Abstract

The Price equation partitions total evolutionary change into two components.

The first component provides an abstract expression of natural selection. The

second component subsumes all other evolutionary processes, including

changes during transmission. The natural selection component is often used in

applications. Those applications attract widespread interest for their simplicity

of expression and ease of interpretation. Those same applications attract

widespread criticism by dropping the second component of evolutionary

change and by leaving unspecified the detailed assumptions needed for a

complete study of dynamics. Controversies over approximation and dynamics

have nothing to do with the Price equation itself, which is simply a

mathematical equivalence relation for total evolutionary change expressed

in an alternative form. Disagreements about approach have to do with the

tension between the relative valuation of abstract versus concrete analyses.

The Price equation’s greatest value has been on the abstract side, particularly

the invariance relations that illuminate the understanding of natural selection.

Those abstract insights lay the foundation for applications in terms of kin

selection, information theory interpretations of natural selection and parti-

tions of causes by path analysis. I discuss recent critiques of the Price equation

by Nowak and van Veelen.
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from other evolutionary forces that also cause change?

The association of a phenotype with change in fre-

quency, separated from other forces that change pheno-

type, is one abstract way to describe natural selection.

The Price equation is that kind of abstract separation.

Do we really need such abstraction, which may seem

rather distant and vague? Instead of wasting time on

such things as the abstract essence of natural selection,

why not get down to business and analyse real problems?

For example, we may wish to know how the evolution-

ary forces of mutation and selection interact to determine

biological pattern. We could make a model with genes

that have phenotypic effects, selection that acts on those

phenotypes to change gene frequency, and mutation that

changes one gene into another. We could do some

calculations, make some predictions about, for example,

the frequency of deleterious mutations that cause dis-

ease, and compare those predictions to observations. All

clear and concrete, without need of any discussion of the

essence of things.

However, we may ask the following. Is there some

reorientation for the expression of natural selection that

may provide subtle perspective, from which we can

understand our subject more deeply and analyse our

problems with greater ease and greater insight? My

answer is, as I have mentioned, that the Price equation

provides that sort of reorientation. To argue the point,

I will have to keep at the distinction between the

concrete and the abstract, and the relative roles of those

two endpoints in mature theoretical understanding.

Several decades have passed since Price’s (1970,

1972a) original articles. During that span, published

claims, counter-claims and misunderstandings have

accumulated to the point that it seems worthwhile to

revisit the subject. On the one hand, the Price equation

has been applied to numerous practical problems and has

also been elevated by some to almost mythical status, as

if it were the ultimate path to enlightenment for those

devoted to evolutionary study (Box 2).

On the other hand, the opposition has been gaining

adherents who boast the sort of disparaging anecdotes

and slogans that accompany battle. In a recent book,

Nowak & Highfield (2011) counter

The Price equation did not, however, prove as useful as [Price

and Hamilton] had hoped. It turned out to be the mathe-

matical equivalent of a tautology. … If the Price equation is

used instead of an actual model, then the arguments hang in

the air like a tantalizing mirage. The meaning will always lie

just out of the reach of the inquisitive biologist. This mirage

can be seductive and misleading. The Price equation can fool

people into believing that they have built a mathematical

model of whatever system they are studying. But this is often

not the case. Although answers do indeed seem to pop out of

the equation, like rabbits from a magician’s hat, nothing is

achieved in reality.

Nowak & Highfield (2011) approvingly quote van

Veelen et al. (2012) with regard to calling the Price

equation a mathematical tautology. van Veelen et al. (2012)

emphasize the point by saying that the Price equation is

like soccer/football star Johan Cruyff’s quip about the

secret of success: ‘You always have to make sure that you

score one goal more than your opponent’. The statement

is always true, but provides no insight. Nowak &

Highfield (2011) and van Veelen et al. (2012) believe

their arguments demonstrate that the Price equation is

true in the same trivial sense, and they call that trivial

type of truth a mathematical tautology. Interestingly,

magazines, online articles and the scientific literature

have for several years been using the phrase mathematical

tautology for the Price equation, although Nowak &

Highfield (2011) and van Veelen et al. (2012) do not

provide citations to previous literature.

As far as I know, the first description of the Price

equation as a mathematical tautology was in the study of

Frank (1995). I used the phrase in the sense of the

epigraph from Mazur, a formal equivalence between

Box 1: Topics in the theory of natural selection

This article is part of a series on natural selection. Although

the theory of natural selection is simple, it remains

endlessly contentious and difficult to apply. My goal is to

make more accessible the concepts that are so important,

yet either mostly unknown or widely misunderstood.

I write in a nontechnical style, showing the key equations

and results rather than providing full derivations or

discussions of mathematical problems. Boxes list technical

issues and brief summaries of the literature.

Box 2: Price equation literature

A large literature introduces and reviews the Price equation.

I list some key references that can be used to get started

(Hamilton, 1975; Frank, 1995, 1997; Grafen, 2002; Page &

Nowak, 2002; Andersen, 2004; Rice, 2004; Okasha, 2006;

Gardner, 2008).

Diverse applications have been developed with the Price

equation. I list a few examples (Hamilton, 1970; Wade,

1985; Frank & Slatkin, 1990; Queller, 1992a,b; Michod,

1997a,b; Frank, 1998; Day & Gandon, 2006; Fox, 2006;

Grafen, 2007; Alizon, 2009).

Quantitative genetics theory often derives from the

covariance expression given by Robertson (1966), which

is a form of the covariance term of the Price equation. The

basic theory can be found in textbooks (Falconer & Mackay,

1996; Charlesworth & Charlesworth, 2010). Much of the

modern work can be traced through the widely cited article

by Lande & Arnold (1983).

Harman (2010) provides an interesting overview of

Price’s life and evokes an Olympian sense of the power

and magic of the Price equation. See the study of Schwartz

(2000) for an alternative biographical sketch.
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different expressions of the same object. Mathematics

and much of statistics are about formal equivalences

between different expressions of the same object. For

example, the Laplace transform changes a mathematical

expression into an alternative form with the same

information, and analysis of variance decomposes the

total variance into a sum of component variances. For

any mathematical or statistical equivalence, value

depends on enhanced analytical power that eases further

derivations and calculations and on the ways in which

previously hidden relations are revealed.

In the light of the contradictory points of view, the

main goal of this article is to sort out exactly what the

Price equation is, how we should think about it, and its

value and limitations in reasoning about evolution.

Subsequent articles will show the Price equation in

action, applied to kin selection, causal analysis in evolu-

tionary models and an information perspective of natural

selection and Fisher’s fundamental theorem.

Overview

The first section derives the Price equation in its full and

most abstract form. That derivation allows us to evaluate

the logical status of the equation in relation to various

claims of fundamental flaw. The equation survives

scrutiny. It is a mathematical relation that expresses the

total amount of evolutionary change in an alternative

and mathematically equivalent way. That equivalence

provides insight into aspects of natural selection and also

provides a guide that, in particular applications, often

leads to good approaches for analysis.

The second section contrasts two perspectives of

evolutionary analysis. In standard models of evolution-

ary change, one begins with the initial population state

and the rules of change. The rules of change include

the fitness of each phenotype and the change in

phenotype between ancestor and descendant. Given

the initial state and rules of change, one deduces the

state of the changed population. Alternatively, one may

have data on the initial population state, the changed

population state and the ancestor–descendant relations

that map entities from one population to the other.

Those data may be reduced to the evolutionary

distance between two populations, providing inductive

information about the underlying rules of change.

Natural populations have no intrinsic notion of fitness

or rules of change. Instead, they inductively accumu-

late information. The Price equation includes both the

standard deductive model of evolutionary change and

the inductive model by which information accumulates

in relation to the evolutionary distance between

populations.

The third and fourth sections discuss the Price equa-

tion’s abstract properties of invariance and recursion. The

invariance properties include the information theory

interpretation of natural selection. Recursion provides

the basis for analysing group selection and other models

of multilevel selection.

The fifth section relates the Price equation to various

expressions that have been used throughout the history

of evolutionary theory to analyse natural selection. The

most common form describes natural selection by the

covariance between phenotype and fitness or by the

covariance between genetic breeding value and fitness.

The covariance expression is one part of the Price

equation that, when used alone, describes the natural

selection component of total evolutionary change. The

essence of those covariance forms arose in the early

studies of population and quantitative genetics, had been

used extensively during much of the modern history of

animal breeding, and began to receive more mathemat-

ical development in the 1960s and 1970s. Recent critiques

of the Price equation focus on the same covariance

expression that has been widely used throughout the

history of population and quantitative genetics to analyse

natural selection and to approximate total evolutionary

change.

The sixth section returns to the full abstract form of the

equation. I compare a few variant expressions that have

been promoted as improvements on the original Price

equation. Variant forms are indeed helpful with regard to

particular abstract problems or particular applications.

However, most variants are simply minor rearrange-

ments of the mathematical equivalence for total evolu-

tionary change given by the original Price equation. The

recent extension by Kerr & Godfrey-Smith (2009) does

provide a slightly more general formulation by expand-

ing the fundamental set mapping that defines Price’s

approach. The set mapping basis for the Price equation

deserves more careful study and further mathematical

work.

The seventh section analyses various flaws that have

been ascribed to the Price equation. For example, the

Price equation in its most abstract form does not

contain enough information to follow evolutionary

dynamics through multiple rounds of natural selection.

By contrast, classical dynamic models of population

genetics are sufficient to follow change through time.

Much has been made of this distinction with regard to

dynamic sufficiency. The distinction arises from the fact

that classical dynamics in population genetics makes

more initial assumptions than the abstract Price equa-

tion. It must be true that all mathematical equivalences

for total evolutionary change have the same dynamic

status given the same initial assumptions. Each addi-

tional well-chosen assumption typically enhances the

specificity and reduces the scope and generality of the

analysis. The epigraph from Boulding emphasizes

that the degree of specificity versus generality is an

explicit choice of the analyst with respect to initial

assumptions.
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The Discussion considers the value and limitations of

the Price equation in relation to recent criticisms by

Nowak and van Veelen. The critics confuse the distinct

roles of general abstract theory and concrete dynamical

models for particular cases. The enduring power of the

Price equation arises from the discovery of essential

invariances in natural selection. For example, kin selec-

tion theory expresses biological problems in terms of

relatedness coefficients. Relatedness measures the asso-

ciation between social partners. The proper measure of

relatedness identifies distinct biological scenarios with the

same (invariant) evolutionary outcome. Invariance rela-

tions provide the deepest insights of scientific thought.

The Price equation

The mathematics given here applies not only to genetical

selection but to selection in general. It is intended mainly

for use in deriving general relations and constructing

theories, and to clarify understanding of selection phe-

nomena, rather than for numerical calculation (Price,

1972a, p. 485).

I have emphasized that the Price equation is a mathe-

matical equivalence. The equation focuses on separation

of total evolutionary change into a part attributed to

selection and a remainder term. That separation provides

an abstraction of the nature of selection. As Price wrote

sometime around 1970 but published posthumously in

Price (1995), ‘Despite the pervading importance of

selection in science and life, there has been no abstrac-

tion and generalization from genetical selection to obtain

a general selection theory and general selection mathe-

matics’.

It is useful first to consider the Price equation in this

most abstract form. I follow my earlier derivations

(Frank, 1995, 1997, 1998, 2009), which differ little from

the derivation given by Price (1972a) when interpreted

in the light of the study of Price (1995).

The abstract expression can best be thought of in terms

of mapping items between two sets (Frank, 1995; Price,

1995). In biology, we usually think of an ancestral

population at some time and a descendant population at

a later time. Although there is no need to have an

ancestor–descendant relation, I will for convenience refer

to the two sets as ancestor and descendant. What does

matter is the relations between the two sets, as follows.

Definitions

The full abstract power of the Price equation requires

adhering strictly to particular definitions. The definitions

arise from the general expression of the relations

between two sets.

Let qi be the frequency of the ith type in the ancestral

population. The index i may be used as a label for any

sort of property of things in the set, such as allele,

genotype, phenotype, group of individuals and so on. Let

q0i be the frequencies in the descendant population,

defined as the fraction of the descendant population that

is derived from members of the ancestral population that

have the label i. Thus, if i ¼ 2 specifies a particular

phenotype, then q02 is not the frequency of the phenotype

i ¼ 2 among the descendants. Rather, it is the fraction of

the descendants derived from entities with the pheno-

type i ¼ 2 in the ancestors. One can have partial

assignments, such that a descendant entity derives from

more than one ancestor, in which case each ancestor gets

a fractional assignment of the descendant. The key is that

the i indexing is always with respect to the properties of

the ancestors, and descendant frequencies have to do

with the fraction of descendants derived from particular

ancestors.

Given this particular mapping between sets, we can

specify a particular definition for fitness. Let

q0i ¼ qiðwi=�wÞ, where wi is the fitness of the ith type

and �w ¼
P

qiwi is average fitness. Here, wi=�w is propor-

tional to the fraction of the descendant population that

derives from type i entities in the ancestors.

Usually, we are interested in how some measurement

changes or evolves between sets or over time. Let the

measurement for each i be zi. The value z may be the

frequency of a gene, the squared deviation of some

phenotypic value in relation to the mean, the value

obtained by multiplying measurements of two different

phenotypes of the same entity and so on. In other words,

zi can be a measurement of any property of an entity with

label, i. The average property value is �z ¼
P

qizi, where

this is a population average.

The value z0i has a peculiar definition that parallels the

definition for q0i. In particular, z 0i is the average measure-

ment of the property associated with z among the

descendants derived from ancestors with index i. The

population average among descendants is �z0 ¼
P

q0iz
0
i .

The Price equation expresses the total change in the

average property value, D�z ¼ �z0 � �z, in terms of these

special definitions of set relations. This way of expressing

total evolutionary change and the part of total change

that can be separated out as selection is very different

from the usual ways of thinking about populations and

evolutionary change. The derivation itself is very easy,

but grasping the meaning and becoming adept at using

the equation is not so easy.

I will present the derivation in two stages. The first

stage makes the separation into a part ascribed to

selection and a part ascribed to property change that

covers everything beyond selection. The second stage

retains this separation, changing the notation into stan-

dard statistical expressions that provide the form of the

Price equation commonly found in the literature. I follow

with some examples to illustrate how particular set

relations are separated into selection and property

change components. The next section considers two

distinct interpretations of the Price equation in relation to

dynamics.
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Derivation: separation into selection and property
value change

We use Dqi ¼ q0i � qi for frequency change associated

with selection and Dzi ¼ z0i � zi for property value

change. Both expressions for change depend on the

special set relation definitions given above.

We are after an alternative expression for total change,

D�z. Thus,

D�z ¼ �z0 � �z

¼
X

q0iz
0
i �
X

qizi

¼
X

q0iðz0i � ziÞ þ
X

q0izi �
X

qizi

¼
X

q0iðDziÞ þ
X
ðDqiÞzi:

Switching the order of the terms on the right side of

the last line yields

D�z ¼
X
ðDqiÞzi þ

X
q0iðDziÞ; ð1Þ

a form emphasized by Frank (1997, eqn 1). The first term

separates the part of total change caused by changes in

frequency. We call this the part caused by selection,

because this is the part that arises directly from differential

contribution by ancestors to the descendant population

(Price, 1995). Because the set mappings define all of the

direct attributions of success for each i with respect to the

associated properties zi, it is reasonable to separate out this

direct component as the abstraction of selection. It is of

course possible to define other separations. I discuss one

particular alternative later. However, it is hard to think of

other separations that would describe selection in a better

way at the most abstract and general level of the

mappings between two sets. This first term has also been

called the partial evolutionary change caused by natural

selection (eqn 7).

The second term describes the part of total change

caused by changes in property values. Recall that

Dzi ¼ z0i � zi and that z¢i is the property value among

entities that descend from i. Many different processes may

cause descendant property values to differ from ancestral

values. In fact, the assignment of a descendant to an

ancestor can be entirely arbitrary, so that there is no reason

to assume that descendants should be like ancestors.

Usually, we will work with systems in which descendants

do resemble ancestors, but the degree of such associations

can be arranged arbitrarily. This term for change in

property value encompasses everything beyond selection.

The idea is that selection affects the relative contribution of

ancestors and thus the changes in frequencies of repre-

sentation, but what actually gets represented among the

descendants will be subject to a variety of processes that

may alter the value expressed by descendants.

The equation is exact and must apply to every

evolutionary system that can be expressed as two sets

with certain ancestor–descendant or mapping relations. It

is in that sense that I first used the phrase mathematical

tautology (Frank, 1995). The nature of separation and

abstraction is well described by the epigraph from Mazur

at the start of this article.

Derivation: statistical notation

Price (1972a) used statistical notation to write eqn 1. For

the first term, by following prior definitions, we have

Dqi ¼ q0i � qi

¼ qi

wi

�w
� qi

¼ qi

wi

�w
� 1

� �
;

so thatX
ðDqiÞzi ¼

X
qi

wi

�w
� 1

� �
zi ¼ Covðw; zÞ=�w;

using the standard definition for population covariance.

For the second term, we haveX
q0iðDziÞ ¼

X
qi

wi

�w
ðDziÞ ¼ EðwDzÞ=�w;

where E means expectation, or average over the full

population. Putting these statistical forms into eqn 1 and

moving �w to the left side for notational convenience

yields a commonly published form of the Price equation

�wD�z ¼ Covðw; zÞ þ EðwDzÞ: ð2Þ

Frank (1995) and Price (1995) present examples of set

mappings expressed in relation to the Price equation.

Dynamics: inductive and deductive
perspectives

The Price equation describes evolutionary change be-

tween two populations. Three factors express one itera-

tion of dynamical change: initial state, rules of change

and next state. In the Price equation, the phenotypes, zi,

and their frequencies, qi, describe the initial population

state. Fitnesses, wi, and property changes, Dzi, set the

rules of change. Derived phenotypes, z0i , and their

frequencies, q0i, express the next population state.

Models of evolutionary change essentially always

analyse forward or deductive dynamics. In that case,

one starts with initial conditions and rules of change and

calculates the next state. Most applications of the Price

equation use this traditional deductive analysis. Such

applications lead to predictions of evolutionary outcome

given assumptions about evolutionary process, expressed

by the fitness parameters and property changes.

Alternatively, one can take the state of the initial

population and the state of the changed population as

given. If one also has the mappings between initial and

changed populations that connect each entity, i, in the

initial population to entities in the changed population,

then one can calculate (induce) the underlying rules of
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change. At first glance, this inductive view of dynamics

may seem rather odd and not particularly useful. Why

start with knowledge of the evolutionary sequence of

population states and ancestor–descendant relations as

given, and inductively calculate fitnesses and property

changes? The inductive view takes the fitnesses, wi, to be

derived from the data rather than an intrinsic property of

each type.

The Price equation itself does not distinguish between

the deductive and inductive interpretations. One can

specify initial state and rules of change and then deduce

outcome. Or one can specify initial state and outcome

along with ancestor–descendant mappings and then

induce the underlying rules of change. It is useful to

understand the Price equation in its full mathematical

generality and to understand that any specific interpre-

tation arises from additional assumptions that one brings

to a particular problem. Much of the abstract power of

the Price equation comes from understanding that, by

itself, the equation is a minimal description of change

between populations.

The deductive interpretation of the Price equation is

clear. What value derives from the inductive perspective?

In observational studies of evolutionary change, we only

have data on population states. From those data, we use

the inductive perspective to make inferences about the

underlying rules of change. Note that inductive estimates

for evolutionary process derive from the amount of

change, or distance, between ancestor and descendant

populations. The Price equation includes that inductive,

or retrospective, view by expressing the distance between

populations in terms of D�z. I develop that distance

interpretation in the following sections.

Perhaps more importantly, natural selection itself is

inherently an inductive process by which information

accumulates in populations. Nature does not intrinsically

‘know’ of fitness parameters. Instead, frequency changes

and the mappings between ancestor and descendant are

inherent in a population’s response to the environment,

leading to a sequence of population states, each separated

by an evolutionary distance. That evolutionary distance

provides information that populations accumulate induc-

tively about the fitnesses of each phenotype (Frank,

2009). The Price equation includes both the deductive

and inductive perspectives. We may choose to interpret

the equation in either way depending on our goals of

analysis.

Abstract properties: invariance

The Price equation describes selection by the termP
ðDqiÞzi ¼ Covðw; zÞ=�w. Any instance of evolutionary

change that has the same value for this sum has the same

amount of total selection. Put another way, for any

particular value for total selection, there is an infinite

number of different combinations of frequency changes

and character measurements that will add up to the same

total value for selection. All of those different combina-

tions lead to the same value with respect to the amount

of selection. We may say that all of those different

combinations are invariant with respect to the total

quantity of selection. The deepest insights of science

come from understanding what does not matter, so that

one can also say exactly what does matter – what is

invariant (Feynman, 1967; Weyl, 1983).

The invariance of selection with respect to transfor-

mations of the fitnesses, w, and the phenotypes, z, that

have the same Cov(w,z) means that, to evaluate selec-

tion, it is sufficient to analyse this covariance. At first

glance, it may seem contradictory that the covariance,

commonly thought of as a linear measure of association,

can be a complete description for selection, including

nonlinear processes. Let us step through this issue, first

looking at why the covariance is a sufficient expression of

selection and then at the limitations of this covariance

expression in evolutionary analysis.

Covariance as a measure of distance: definitions

Much of the confusion with respect to covariance and

variance terms in selection equations arises from think-

ing only of the traditional statistical usage. In statistics,

covariance typically measures the linear association

between pairs of observations, and variance is a measure

of the squared spread of observations. Alternatively,

covariances and variances provide measures of distance,

which ultimately can be understood as measures of

information (Frank, 2009). This section introduces the

notation for the geometric interpretation of distance. The

next section gives the main geometric result, and the

following section presents some examples.

The identity
P
ðDqiÞzi ¼ Covðw; zÞ=�w provides the key

insight. It helps to write this identity in an alternative

form. Note from the prior definition q0i ¼ qiwi=�w that

Dqi ¼ q0i � qi ¼ qiðwi=�w � 1Þ ¼ qiai; ð3Þ

where ai ¼ wi=�w � 1 is Fisher’s average excess in fitness,

a commonly used expression in population and quanti-

tative genetics (Fisher, 1930, 1941; Crow & Kimura,

1970). A value of zero means that an entity has average

fitness, and therefore, fitness effects and selection do not

change the frequency of that entity. Using the average

excess in fitness, we can write the invariant expression

for selection asX
ðDqiÞzi ¼

X
qiaizi ¼ Covðw; zÞ=�w: ð4Þ

We can think of the state of the population as the

listing of character states, zi. Thus, we write the popula-

tion state as z ¼ (z1,z2,…). The subscripts run over every

different entity in the population, so the vector z is a

complete description of the entire population. Similarly,

for the frequency fluctuations, Dqi ¼ qiai, we can write

the listing of all fluctuations as a vector, Dq ¼
(Dq1, Dq2,…).
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It is often convenient to use the dot product notation

Dq � z ¼
X
ðDqiÞzi ¼ Covðw; zÞ=�w

in which the dot specifies the sum obtained by multiply-

ing each pair of items from two vectors. Before turning to

some geometric examples in the following section, we

need a definition for the length of a vector. Traditionally,

one uses the definition

kzk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiX

z2
i

q
;

in which the length is the square root of the sum of

squares, which is the standard measure of length in

Euclidean geometry.

Covariance as a measure of distance: examples

A simple identity relates a dot product to a measure of

distance and to covariance selection

Dq � z ¼ kDqk kzk cos / ¼ Covðw; zÞ=�w; ð5Þ
where / is the angle between the vectors Dq and z

(Fig. 1). If we standardize the character vector z ¼ z/||z||,

then the standardized vector has a length of one, ||z|| ¼ 1,

which simplifies the dot product expression of

selection to

Dq � �z ¼ kDqk cos /;

providing the geometric representation illustrated in

Fig. 1.

The covariance can be expressed as the product of a

regression coefficient and a variance term

Covðw; zÞ=�w ¼ bzwVarðwÞ=�w ¼ bwzVarðzÞ=�w; ð6Þ

where the notation bxy describes the regression coef-

ficient of x on y (Price, 1970). This identity shows

that the expression of selection in terms of a regres-

sion coefficient and a variance term is equivalent to

the geometric expression of selection in terms of

distance.

I emphasize these identities for two reasons. First, as

Mazur stated in the epigraph, ‘The heart and soul of

much mathematics consists of the fact that the ‘‘same’’

object can be presented to us in different ways’. If an

object is important, such as natural selection surely is,

then it pays to study that object from different perspec-

tives to gain deeper insight.

Second, the appearance of statistical functions, such

as the covariance and variance, in selection equations

sometimes leads to mistaken conclusions. In the selec-

tion equations, it is better to think of the covariance

and variance terms arising because they are identities

with geometric or other interpretations of selection,

rather than thinking of those terms as summary

statistics of probability distributions. The problem with

thinking of those terms as statistics of probability

distributions is that the variance and covariance are

not in general sufficient descriptions for probability

distributions. That lack of sufficiency for probability

may lead one to conclude that those terms are not

sufficient for a general expression of selection. How-

ever, those covariance and variance terms are suffi-

cient. That sufficiency can be understood by thinking of

those terms as identities for distance or measures of

information (Frank, 2009).

It is true that in certain particular applications of

quantitative genetics or stochastic sampling processes,

z

z

q

q

q
co

s 

q
co

s 

(a)

(b)

Fig. 1 Geometric expression of selection. The plots show the

equivalence of the dot product, the geometric expression and the

covariance, as given in eqn 5. For both plots, z ¼ (1,4) and

z ¼ z/||z|| ¼ (0.24, 0.97). The dashed line shows the perpendicular

between the pattern of frequency changes derived from fitnesses,

Dq, and the phenotypic pattern, z. The vertex of the two vectors

is at the origin (0,0). The distance from the origin to the

intersection of the perpendicular along z is the total amount of

selection, ||Dq|| cos /. (a) The vector of frequency changes that

summarize fitness is Dq ¼ ()0.4, 0.4). The angle between

the vector of frequency changes and the phenotypes is

/ ¼ arccos[(Dq Æ z)/||Dq||] which, in this example, is 1.03 radians

or 59s. In this case, the total selection is ||Dq|| cos / ¼ 0.29. (b) In

this plot, Dq ¼ (0.4, )0.4), yielding an angle / of 121s. The

perpendicular intersects the negative projection of the phenotype

vector, shown as a dashed line, associated with the negative

change by selection of ||Dq|| cos / ¼ )0.29.
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one does interpret the variances and covariances as

summary statistics of probability distributions, usually

the normal or Gaussian distribution. However, it is

important to distinguish those special applications from

the general selection equations.

Invariance and information

For the general selection expression in eqn 5, any

transformations that do not affect the net values

are invariant with respect to selection. For example,

transformations of the fitnesses and associated frequency

changes, Dq, are invariant if they leave unchanged the

distance expressed by Dq � z ¼ Covðw; zÞ=�w. Similarly,

changes in the pattern of phenotypes are invariant to the

extent that they leave Dq Æ z unchanged. These invariance

properties of selection, measured as distance, may not

appear very interesting at first glance. They seem to be

saying that the outcome is the outcome. However, the

history of science suggests that studying the invariant

properties of key expressions can lead to insight.

Few authors have developed an interest in the

invariant qualities of selection. Fisher (1930) initiated

discussion with his fundamental theorem of natural

selection, a special case of eqn 5 (Frank, 1997).

Although many authors commented on the fundamen-

tal theorem, most articles did not analyse the theorem

with respect to its essential mathematical insights about

selection. Ewens (1992) reviewed the few attempts to

understand the mathematical basis of the theorem and

its invariant quantities. Frank (2009) tied the theorem

to Fisher information (Frieden et al., 2001; Frieden,

2004), hinting at an information theory interpretation

that arises from the fundamental selection equation of

eqn 5.

In spite of the importance of selection in many fields of

science, the potential interpretation of eqn 5 with respect

to invariants of information theory has hardly been

developed. I briefly outline the potential connections

here (Frank, 2009). I develop this information perspec-

tive of selection in a later article, along with Fisher’s

fundamental theorem.

To start, define the partial change in phenotype caused

by natural selection as

Ds�z ¼ Dq � z ¼ Covðw; zÞ=�w: ð7Þ

The concept of a partial change caused by natural

selection arises from Fisher’s fundamental theorem

(Fisher, 1930; Price, 1972b; Ewens, 1989; Frank &

Slatkin, 1992). With this definition, we can use eqns 5

and 6 to write

Ds�z ¼ bzwVarðwÞ=�w ¼ �wbzwVarðw=�wÞ: ð8Þ

From eqn 3, we have the definition for the average

excess in fitness ai ¼ wi=�w � 1. Thus, we can expand the

expression for the variance in fitness as

Varðw=�wÞ ¼
X

qi

wi

�w
� 1

� �2

¼
X

qia
2
i :

From eqn 3, we also have the change in frequency in

terms of the average excess, Dqi ¼ qiai, and equivalently,

ai ¼ Dqi/qi, thus

Varðw=�wÞ ¼
X

qi

Dqi

qi

� �2

¼
X Dqiffiffiffiffi

qi
p
� �2

¼Dq̂ � Dq̂;

where Dq̂i ¼ Dqi=
ffiffiffiffi
qi
p

is a standardized fluctuation in

frequency and Dq̂ is the vector of standardized fluctua-

tions. These alternative forms simply express the variance

in fitness in different ways. The interesting result follows

from the fact that

Varðw=�wÞ ¼ Dq̂ � Dq̂ ¼ FðDq̂Þ

is the Fisher information, F, in the frequency fluctua-

tions, Dq̂. Fisher information is a fundamental quantity

in information theory, Bayesian analysis, likelihood

theory and the informational foundations of statistical

inference. Fisher information is a variant form of the

more familiar Shannon and Kullback–Leibler informa-

tion measures, in which the Fisherian form expresses

changes in information.

Once again, we have a simple identity. Although it is

true that Fisher information is just an algebraic rear-

rangement of the variance in fitness, some insight may

be gained by relating selection to information. The

variance form calls to mind a statistical description of

selection or a partial description of a probability distri-

bution. The Fisher information form suggests a relation

between natural selection and the way in which

populations accumulate information (Frank, 2009).

We may now write our fundamental expression for

selection as

Ds�z ¼ �wbzwFðDq̂Þ:

We may read this expression for selection as follows: the

change in mean character value caused by natural

selection, Ds�z, is equal to the total Fisher information in

the frequency fluctuations, F, multiplied the scaling b
that describes the amount of the potential information

that the population captures when expressed in units of

phenotypic change. In other words, the distance Ds�z
measures the informational gain by the population

caused by natural selection.

The invariances set by this expression may be viewed

in different ways. For example, the distance of evolu-

tionary change by selection, Ds�z, is invariant with respect

to many different combinations of frequency fluctua-

tions, Dq̂, and scalings between phenotype and fitness.

Similarly, any transformations of frequency fluctuations

that leave the measure of information, FðDq̂Þ, invariant

Price equation 1009

ª 2 0 1 2 T H E A U T H O R S . J . E V O L . B I O L . 2 5 ( 2 0 1 2 ) 1 0 0 2 – 1 0 1 9

J O U R N A L O F E V O L U T I O N A R Y B I O L O G Y ª 2 0 1 2 E U R O P E A N S O C I E T Y F O R E V O L U T I O N A R Y B I O L O G Y



do not alter the scaled change in phenotype caused by

natural selection. The full implications remain to be

explored.

Summary of selection identities

The various identities for the part of total evolutionary

change caused by selection include

Ds�z ¼ Covðw; zÞ=�w

¼ �wbzwVarðw=�wÞ
¼ Dq � z
¼ kDqkkzk cos /

¼ �wbzwðDq̂ � Dq̂Þ
¼ �wbzwFðDq̂Þ: ð9Þ

These forms show the equivalence of the statistical,

geometrical and informational expressions for natural

selection. These general abstract forms make no assump-

tions about the nature of phenotypes and the patterns of

frequency fluctuations caused by differential fitness. The

phenotypes may be squared deviations so that the

average is actually a variance, or the product of mea-

surements on different characters leading to measures of

association, or any other nonlinear combination of

measurements. Thus, there is nothing inherently linear

or restrictive about these expressions.

Selection versus evolution

The previous sections discussed the part of evolutionary

change caused by selection. The full Price equation

(eqn 2) gives a complete and exact expression of total

change, repeated here as

D�z ¼ Covðw; zÞ=�w þ EðwDzÞ=�w ð10Þ
or in terms of the dot product notation as

D�z ¼ Dq � zþ q0 � Dz: ð11Þ
The full change in the phenotype is the sum of the two

terms, which we may express in symbols as

D�z ¼ Ds�z þ DE�z:

Fisher (1930) called the term DE�z the change caused by

the environment (Frank & Slatkin, 1992). However, the

word environment often leads to confusion. The proper

interpretation is that DE�z encompasses everything not

included in the expression for selection. The term is

environmental only in the sense that it includes all those

forces external to the particular definition of the selective

forces for a particular problem.

The DE term is sometimes associated with changes in

transmission (Frank, 1995, 1997, 2012a; Okasha, 2006).

This interpretation arises because E(wDz) is the fitness-

weighted changes in character value between ancestor

and descendant. One may think of changes in character

values as changes during transmission.

It is important to realize that everything truly means

every possible force that might arise and that is not

accounted for by the particular expression for selection.

Lightning may strike. New food sources may appear. The

Price equation in its general and abstract form is a

mathematical identity–what I previously called a math-

ematical tautology (Frank, 1995).

In applications, one considers how to express DE�z, or

one searches for ways to formulate the problem so that

DE�z is zero or approximately zero. This article is not about

particular applications. Here, I simply note that when

one works with Fisher’s breeding value as z, near

equilibria (fixed points), one typically obtains Dz fi 0

and thus E(wDz) fi 0. In other cases, the search for a

good way to express a problem means finding a form of

character measurement that defines z such that charac-

ters tend to remain stable over time, so that Dz fi 0 and

thus E(wDz) fi 0. For applications that emphasize calcu-

lation of complex dynamics rather than a more abstract

conceptual analysis of a problem, methods other than the

Price equation often work better.

Abstract properties: recursion and group
selection

To iterate is human, to recurse, divine (Coplien, 1998).

Essentially, all modern discussions of multilevel selection

and group selection derive from Price (1972a), as

developed by Hamilton (1975). Price and Hamilton noted

that the Price equation can be expanded recursively to

represent nested levels of analysis, for example individ-

uals living in groups.

Start with the basic Price equation as given in eqn 10.

The left side is the total change in average phenotype, �z.

The second term on the right side includes the terms Dzi

in E(wDz) ¼
P

qiwiDzi.

Recall that in defining zi, we specified the meaning of the

index i to be any sort of labelling of set members, subject to

minimal consistency requirements. We may, for example,

label all members of a group by i and measure zi as some

property of the group. If the index i itself represents a set,

then we may consider the members of that set. For

example, zij may be the jth member of the ith set, or we may

say, the ith group. In the abstract mathematical expression,

there is no need to think of the ith group as having any

spatial or biological meaning. However, we may consider i

as a label for spatially defined groups if we wish to do so.

With i defining a group, we may analyse the selection

and evolution of that ith group. The term Dzi becomes the

average change in the z measure for the ith group,

composed of members with values zij. The terms z0ij are

the average property values of the descendants of the jth

entity in the ith group. The descendant entities that

derive from the ith group do not have to form any sort of

group or other meaningful structuring, just as the

original i labelling does not have to refer to group
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structuring in the ancestors. However, we may if we wish

consider descendants of i as retaining some sense of the

ancestral grouping.

Because zi represents an averaging over the entities

j in the ith group, we are assuming the notational

equivalence Dzi ¼ D�zi. From that point of view, for each

group i we may from eqn 10 express the change in the

group mean by thinking of each group as a separate set or

population, yielding for each i the expression

Dzi ¼ D�zi ¼ Covðwi; ziÞ=�wi þ EðwiDziÞ=�wi:

We may substitute this expression for each i into the

E(wDz) ¼
P

qiwiDzi term on the right side of eqn 10. That

substitution recursively expands each change in property

value, Dzi, to itself be composed of a selection term and

property value change term. For each group, i, we now

have expressions for selection within the group,

Covðwi; ziÞ=�wi, and average property value change within

the group, EðwiDziÞ=�wi. If we write out the full expression

for this last term, we obtain

EðwiDziÞ=�wi ¼
X

j

wijDzij=�wi:

In the term Dzij, each labelling, j, may itself be a subgroup

within the larger grouping represented by i. The recur-

sive nature of the Price equation allows another expan-

sion to the characters zijk for the kth entity in the jth

grouping that is nested in the ith group and so on. Once

again, the indexing for levels i, j and k do not have to

correspond to any particular structuring, but we may

choose to use a structuring if we wish.

One could analyse biological problems of group selec-

tion without using the Price equation. Because the Price

equation is a mathematical identity, there are always

other ways of expressing the same thing. However, in the

1970s, when group selection was a very confused subject,

the Price equation’s recursive nature and Hamilton’s

development provided the foundation for subsequent

understanding of the topic. All modern conceptual

insights about group selection derive from Price’s recur-

sive expansion of his abstract expression of selection.

History and alternative expressions
of selection

I have emphasized the general and abstract form of the

Price equation. That abstract form was first presented

rather cryptically by Price (1972a). In that article, Price

described the recursive expansion to analyse group selec-

tion. Apart from the recursive aspect, the more general

abstract properties were hardly mentioned in the study of

Price (1972a) and not developed by others until 1995.

While I was writing my history of Price’s contributions

to evolutionary genetics (Frank, 1995), I found Price’s

unpublished manuscript The nature of selection among

W. D. Hamilton’s papers. Price’s unpublished manuscript

gave a very general and abstract scheme for analysing

selection in terms of set relations. However, Price did not

explicitly connect the abstract set relation scheme to the

Price equation or to his earlier publications (Price, 1970,

1972a).

I had The nature of selection published posthumously as

Price (1995). In my own article, I explicitly developed the

general interpretation of the Price equation as the formal

abstract expression of the relation between two sets

(Frank, 1995).

Price (1970) wrote an earlier article in which he

presented a covariance selection equation that empha-

sized the connection to classical models of population

genetics and gene frequency change. That earlier covari-

ance form lacks the abstract set interpretation and

generally has narrower scope. Preceding Price, Robertson

(1966) and Li (1967) also presented selection equations

that are similar to Price’s (1970) covariance expression.

Robertson’s covariance form itself arises from classical

quantitative genetics and the breeder’s equation, ulti-

mately deriving from the foundations of quantitative

genetics established by Fisher (1918). Li’s form presents a

covariance type of expression for classical population

genetic models of gene frequency change.

One cannot understand the current literature without

a clear sense of this history. Almost all applications of the

Price equation to kin and group selection, and to other

problems of evolutionary analysis, derive from either the

classical expressions of quantitative genetics (Robertson,

1966) or classical expressions of population genetics (Li,

1967).

In the light of this history, criticisms can be confusing

with regard to the ways in which the Price equation is

commonly used. For example, in applications to kin or

group selection, the Price equation mainly serves to

package the notation for the Robertson form of quantita-

tive genetic analysis or the Li form of population genetic

analysis. The Price equation packaging brings no extra

assumptions. In some applications, critics may believe that

the particular analysis lacks enough assumptions to attain

a desired level of specificity. One can, of course, easily add

more assumptions, at the expense of reduced generality.

The following sections briefly describe some alternative

forms of the Price equation and the associated history.

That history helps to place criticisms of the Price equation

and its applications into clearer light.

Quantitative genetics and the breeder’s equation

Fisher (1918) established the modern theory of quanti-

tative genetics, following the early work of Galton,

Pearson, Weldon, Yule and others. The equations of

selection in quantitative genetics and animal breeding

arose from that foundation. Many modern applications of

the Price equation to particular problems follow this

tradition of quantitative genetics. A criticism of these

Price equation applications is a criticism of the central

approach of evolutionary quantitative genetics. Such
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criticisms may be valid for certain applications, but they

must be evaluated in the broader context of quantitative

genetics theory. This section shows the relation between

quantitative genetics and a commonly applied form of

the Price equation (Rice, 2004).

Evolutionary aspects of quantitative genetics devel-

oped from the breeder’s equation

R ¼ Sh2;

in which the response to selection, R, equals the selection

differential, S, multiplied by the heritability, h2. The

separation of selection and transmission is the key to the

breeder’s equation and to quantitative genetics theory.

The covariance term of the Price equation is equivalent

to the selection differential, S, when one interprets the

meaning of fitness and descendants in a particular way.

Suppose that we label each potential parent in the

ancestral population of size N with the index, i. The

initial weighting of each parent in the ancestral popula-

tion is qi ¼ 1/N. Assign to each potential parent a

weighting with respect to breeding contribution,

q0i ¼ qiwi, with fitnesses standardized so that �w ¼ 1

and the wi are relative fitnesses.

With this set-up, ancestors are the initial population of

potential parents, each weighted equally, and descen-

dants are the same population of parents, weighted by

their breeding contribution. The character value for each

individual remains unchanged between the ancestor and

descendant labellings. These assumptions lead to D�z� ¼
Covðw; zÞ, the change in the average character value

between the breeding population and the initial population.

That difference is defined as S, the selection differential.

To analyse the fraction of the selection differential

transmitted to offspring, classical quantitative genetics

follows Fisher (1918) to separate the character value as

z ¼ g + �, with a transmissible genetic component, g, and a

component that is not transmitted, which we may call the

environmental or unexplained component, �. Following

standardregressiontheoryforthissortofexpression,�� ¼ 0.

For a parent with z ¼ g + �, the average character

value contribution ascribed to the parent among its

descendants is z¢ ¼ g, following the idea that g represents

the component of the parental character that is trans-

mitted to offspring. If we assume that the only fluctua-

tions of average character value in offspring are caused

by the transmissible component that comes from parents,

then the genetic component measured by g is sufficient

to explain expected offspring character values. Thus,

Dz ¼ z¢)z ¼ )�, and E(wDz) ¼ )Cov(w,�).
Substituting into the full Price equation from eqn 2

and assuming �w ¼ 1 so that all fitnesses are normalized

D�z ¼ Covðw; zÞ þ EðwDzÞ
¼ Covðw; gÞ þ Covðw; �Þ � Covðw; �Þ
¼ Covðw; gÞ: ð12Þ

The expression D�z ¼ Covðw; gÞ was first emphasized by

Robertson (1966) and is sometimes called Robertson’s

secondary theorem of natural selection. Robertson’s

expression summarizes the foundational principles of

quantitative genetics, as conceived by Fisher (1918) and

developed over the past century (Falconer & Mackay,

1996; Lynch & Walsh, 1998; Hartl, 2006).

It is commonly noted that Robertson’s theorem is

related to the classic breeder’s equation. In particular,

R ¼ D�z ¼ Covðw; gÞ ¼ Covðw; zÞh2 ¼ Sh2;

where R is the response to selection, S ¼ Cov(w,z) is the

selection differential and h2 ¼ Var(g)/Var(z) is a form of

heritability, a measure of the transmissible genetic

component. Additional details and assumptions can be

found in several articles and texts (Crow & Nagylaki,

1976; Frank, 1997; Rice, 2004).

Population genetics and the covariance expression

Price (1970) expressed his original formulation in terms

of gene frequency change and classical population

genetics, rather than the abstract set relations that I have

emphasized. At that time, it seems likely that Price

already had the broader, more abstract theory in hand

and was presenting the population genetics form because

of its potential applications. The article begins

This is a preliminary communication describing applica-

tions to genetical selection of a new mathematical treat-

ment of selection in general.

Gene frequency change is the basic event in biological

evolution. The following equation… which gives frequency

change under selection from one generation to the next for

a single gene or for any linear function of any number of

genes at any number of loci, holds for any sort of

dominance or epistasis, for sexual or asexual reproduction,

for random or nonrandom mating, for diploid, haploid or

polyploid species, and even for imaginary species with

more than two sexes…

Using my notation, Price writes the basic covariance

form

DP ¼ Covðw; pÞ=�w ¼ bwpVarðpÞ=�w: ð13Þ

In a simple application, p could be interpreted as gene

frequency at a single diploid locus with two alleles. Then,

P ¼ �p is the gene frequency in the population, and bwp is

the regression of individual fitness on individual gene

frequency, in which the individual gene frequency is

either 0, 1/2 or 1 for an individual with 0, 1 or 2 copies of

the allele of interest. Li (1967) gave an identical gene

frequency expression in his eqn 4.

In more general applications, one can study a p-score

that summarizes the number of copies of various alleles

present in an individual or in whatever entities are being

tracked. In classical population genetics, the p-score

would be, in Price’s words above, ‘any linear function

of any number of genes at any number of loci’. Here,

linearity means that p is essentially a counting of presence

versus absence of various things within the ith entity.
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Such counting does not preclude nonlinear interactions

between alleles or those things being counted with

respect to phenotype, which is why Price said that the

expression holds for any form of dominance or epistasis.

Hamilton (1970) used Price’s gene frequency form in

his first clear derivations of the direct and the inclusive

fitness models of kin selection theory. Most early appli-

cations of the Price equation used this gene frequency

interpretation.

Price (1970) emphasized that the value of eqn 13 arises

from its benefits for qualitative reasoning rather than

calculation. The necessary assumptions can be seen from

the form given by Price, which is always exact, here

written in my notation

DP ¼ Covðw; pÞ=�w þ EðwDpÞ=�w;

where Dp is interpreted as the change in state between

parental gene frequency for the ith entity and the

average gene frequency for the part of descendants

derived from the ith entity.

In practice, Dp ¼ 0 usually means Mendelian segrega-

tion, no biased mutation and no sampling biases associ-

ated with drift. Most population genetics theory of traits

such as social behaviour typically make those assump-

tions, so that eqn 13 is sufficient with respect to analy-

sing change in gene frequency or in p-scores (Grafen,

1984). However, the direction of change in gene fre-

quency or p-score is not sufficient to predict the direction

of change in phenotype. To associate the direction of

change in p-score with the direction of change in

phenotype, one must make the assumption that pheno-

type changes monotonically with p-score. Such monoto-

nicity is a strong assumption, which is not always met.

For that reason, p-score models sometimes buy simplicity

at a rather high cost. In other applications, monotonicity

is a reasonable assumption, and the p-score models

provide a very simple and powerful approach to under-

standing the direction of evolutionary change.

The costs and benefits of the p-score model are not

particular to the Price equation. Any analysis based on

the same assumptions has the same limitations. The Price

equation provides a concise and elegant way to explore

the consequences when certain simplifying assumptions

can reasonably be applied to a particular problem.

Alternative forms or interpretations
of the full equation

The full Price equation partitions total evolutionary

change into components. Many alternative partitions

exist. A partition provides value if it improves conceptual

clarity or eases calculation.

Which partitions are better than others? Better is

always partly subjective. What may seem hard for me

may appear easy to you. Nonetheless, it would be a

mistake to suggest that all differences are purely

subjective. Some forms are surely better than others for

particular problems, even if better remains hard to

quantify. As Russell (1958, p. 14) said in another context,

‘All such conventions are equally legitimate, though not

all are equally convenient’.

Many partitions of evolutionary change include some

aspect of selection and some aspect of property or

transmission change. Most of those variants arise by

minor rearrangements or extensions of the basic Price

expression. A few examples follow.

Contextual analysis

Heisler & Damuth (1987) introduced the phrase contextual

analysis to the evolutionary literature. Contextual anal-

ysis is a form of path analysis, which partitions causes by

statistical regression models. Path analysis has been used

throughout the history of genetics (Li, 1975). It is a useful

approach whenever one wishes to partition variation

with respect to candidate causes. The widely used

method of Lande & Arnold (1983) to analyse selection

is a particular form of path analysis.

Okasha (2006) argued that contextual analysis is an

alternative to the Price equation. To develop a simple

example, let us work with just the selection part of the

Price equation

�wD�z ¼ Covðw; zÞ:
A path (contextual) analysis refines this expression by

partitioning the causes of fitness with a regression

equation. Suppose we express fitness as depending on

two predictors: the focal character that we are studying, z,

and another character, y. Then we can write fitness as

w ¼ bwzz þ bwyyþ �

in which the b terms are partial regressions of fitness on

each character, and � is the unexplained residual of

fitness. Substituting into the Price equation, we get the

sort of expression made popular by Lande & Arnold

(1983)

�wD�z ¼ bwzVarðzÞ þ bwyCovðy; zÞ:

If the partitioning of fitness into causes is done in a

useful way, this type of path analysis can provide

significant insight. I based my own studies of natural

selection and social evolution on this approach (Frank,

1997, 1998).

Authors such as Okasha (2006) consider the partition-

ing of fitness into distinct causes as an alternative to the

Price equation. If one thinks of the character z in

Cov(w,z) as a complete causal explanation for fitness,

then a partition into separate causes y and z does indeed

lead to a different causal understanding of fitness. In that

regard, the Price equation and path analysis lead to

different causal perspectives.

One can find articles that use the Price equation and

interpret z as a lone cause of fitness (see Okasha, 2006).

Thus, if one equates those specific applications with the
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general notion of the Price equation, then one can say that

path or contextual analysis provides a significantly different

perspective from the Price equation. To me, that seems

like a socially constructed notion of logic and mathemat-

ics. If someone has applied an abstract truth in a specific

way, and one can find an alternative method for the

same specific application that seems more appealing,

then one can say that the alternative method is superior

to the general abstract truth.

The abstract Price equation does not compel one to

interpret z strictly as a single-cause explanation. Rather,

in the general expression, z should always be interpreted

as an abstract placeholder. Path (contextual) analysis

follows as a natural extension of the Price equation, in

which one makes specific models of fitness expressed by

regression. It does not make sense to discuss the Price

equation and path analysis as alternatives.

Alternative partitions of selection and transmission

In the standard form of the Price equation, the fitness

term, w, appears in both components

�wD�z ¼ Covðw; zÞ þ EðwDzÞ:
Frank (1997, 1998) derived an alternative expression

D�z ¼
X

q0iz
0
i �
X

qizi

¼
X

qiðwi=�wÞz0i �
X

qizi

¼
X

qiðwi=�wÞz0i �
X

qiz
0
i þ
X

qiz
0
i �
X

qizi

¼
X

qiðwi=�w � 1Þz0i þ
X

qiðz0i � ziÞ
¼ Covðw; z0Þ=�w þ EðDzÞ: ð14Þ

This form sometimes provides an easier method to

calculate effects. For example, the second term now

expresses the average change in phenotype between

parent and offspring without weighting by fitness effects.

A biased mutational process would be easy to calculate

with this expression – one only needs to know about the

mutation process to calculate the outcome. The new

covariance term can be partitioned into meaningful

components with minor assumptions (Frank, 1997,

p. 1721), yielding

Covðw; z0Þ ¼ Covðw; zÞbz0z ;

where bz¢z is usually interpreted as the offspring–parent

regression, which is a type of heritability. Thus, we may

combine selection with the heritability component of

transmission into the covariance term, with the second

term containing only a fitness-independent measure of

change during transmission.

Okasha (2006) strongly favoured the alternative par-

tition for the Price equation in eqn 14, because it

separates all fitness effects in the first term from a pure

transmission interpretation of the second term. In my

view, there are costs and benefits for the standard Price

equation expression compared with eqn 14. One gains by

having both and using the particular form that fits a

particular problem.

For example, the term E(Dz) is useful when one has to

calculate the effects of a biased mutational process that

operates independently of fitness. Alternatively, suppose

most individuals have unbiased transmission, such that

Dz ¼ 0, whereas very sick individuals do not reproduce

but, if they were to reproduce, would have a very biased

transmission process. Then E(Dz) differs significantly

from zero, because the sick, nonreproducing individuals

appear in this term equally with the reproducing popu-

lation. However, the actual transmission bias that occurs

in the population would be zero, E(wDz) ¼ 0, because all

reproducing individuals have nonbiased transmission.

Both the standard Price form and the alternative in

eqn 14 can be useful. Different scenarios favour different

ways of expressing problems. I cannot understand why

one would adopt an a priori position that unduly limits

one’s perspective.

Extended set mapping expression

The Price equation’s power arises from its abstraction of

selection in terms of mapping relations between sets

(Frank, 1995; Price, 1995). Although the Price equation

is widely cited in the literature, almost no work has

developed the set mapping formalism beyond the

description given in the initial publications. I know of

only one article.

Kerr & Godfrey-Smith (2009) noted that, in the

original Price formulation, every descendant must derive

from one or more ancestors. There is no natural way for

novel entities to appear. In applications, new entities

could arise by immigration from outside the system or, in

a cultural interpretation, by de novo generation of an

idea or behaviour.

Kerr & Godfrey-Smith (2009) present an extended

expression to handle unconnected descendants. Their

formulation depends on making explicit the connection

number between each individual ancestor and each

individual descendant, rather than using the fitnesses of

types. Some descendants may have zero connections.

With an explicit description of connections, an

extended Price equation follows. The two core compo-

nents of covariance for selection and expected change for

transmission occur, plus a new factor to account for

novel descendants unconnected to ancestors.

The notation in Kerr & Godfrey-Smith (2009) is

complex, so I do not repeat it here. Instead, I show a

simplified version. Suppose that a fraction p of the

descendants are unconnected to ancestors. Then, we can

write the average trait value among descendants as

�z 0 ¼ p
X

ajz
�
j þ ð1� pÞ

X
q0iz
0
i ;

where z�j is the phenotype for the jth member of the

descendant population that is unconnected to ancestors

and aj is the frequency of each unconnected type, with
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P
aj ¼ 1. Given those definitions, we can proceed with

the usual Price equation expression

D�z ¼ �z0 � �z

¼ p
X

ajz
�
j þ ð1� pÞ

X
q0iz
0
i � ðpþ 1� pÞ

X
qizi

¼ ð1� pÞ
X

q0iz
0
i �
X

qizi

� �
þ p

X
ajz
�
j �

X
qizi

� �
:

Note that the term weighted by 1)p leads to the standard

form of the Price equation, so we can write

D�z ¼ ð1� pÞ Covðw; zÞ þ EðwDzÞð Þ=�w

þ p
X

ajz
�
j �

X
qizi

� �
¼ ð1� pÞ Covðw; zÞ þ EðwDzÞð Þ=�w þ p �z� � �zð Þ:

In the component weighted by p, no connections exist

between the descendant z�j and a member of the ancestral

population. Thus, we have no basis to relate those terms

to fitness, transmission or property change. Kerr &

Godfrey-Smith (2009) use an alternative notation that

associates all entities with their number of connections,

including those with zero. The outcome is an extended

set mapping theory for evolutionary change. The main

concepts and the value of the approach are best

explained by the application presented in the next

section.

Gains and losses in descendants and ancestors

Fox & Kerr (2012) analyse changes in ecosystem function

by modifying the method of Kerr & Godfrey-Smith

(2009). They measure ecosystem function by summing

the functional contribution of each species present in an

ecosystem. To compare ecosystems, they consider an

initial site and a second site. When comparing ecosys-

tems, the notion of ancestors and descendants may not

make sense. Instead, one appeals to the more general set

mapping relations of the Price equation.

Assume that there is an initial site with total function

T ¼
P

zi, where zi is the function of the ith species. At the

initial site, there are s different species; thus, we may also

express the total as T ¼ s�z, where �z is the average

function per species. At a second site, total function is

T 0 ¼
P

z0j , with s¢ different species in the summation and

T 0 ¼ s0�z0. Let the number of species in common between

the sites be sc. Thus, the initial site has S ¼ s ) sc unique

species, and the second site has S¢ ¼ s¢ ) sc unique species.

Fox & Kerr (2012) write the change in total ecosystem

function as

DT ¼ T 0 � T ¼ s0�z0 � s�z

¼ ðs0 � scÞ�z0 � ðs� scÞ�z þ sc �z0 � �zð Þ
¼ S0�z0 � S�z þ scðD�zÞ:

The term S0�z 0 represents the change in function that

caused the gain of an average species, in which S¢ is the

number of newly added species, and �z0 is the average

function per species. Fox & Kerr (2012) suggest that a

randomly added species would be expected to function as

an average species, and so interpret this term as the

contribution of random species gain. The term S�z is

interpreted similarly as random species loss with respect

to the S unique species in the first ecosystem not present

in the second ecosystem.

Fox & Kerr (2012) partition the term scðD�zÞ into three

components of species function: deviation from the

average for species gained at the second site; deviation

from the average for species lost from the first site; and

the changes in function for those species in common

between sites.

The point here concerns the approach rather than the

theory of ecosystem function. To analyse changes

between two sets, one often benefits by an explicit

decomposition of the relations between the two sets. The

original Price equation is one sort of decomposition,

based on tracing the ways in which descendants derive

from and change with respect to ancestors. Fox & Kerr

(2012) extend the decomposition of change by set

mapping to include specific components that make sense

in the context of changes in ecosystem function.

More work on the mathematics of set mapping and

decomposition would be very valuable. The Price equa-

tion and the extensions by Kerr, Godfrey-Smith and

Fox show the potential for thinking carefully about the

abstract components of change between sets and how to

apply that abstract understanding to particular problems.

Other examples

No clear guidelines determine what constitutes an exten-

sion to the Price equation. From a broad perspective, many

different partitions of total change have similarities,

because they separate something like selection from other

forces that alter the similarity between populations.

For example, the stochastic effects of sampling and drift

create a distribution of descendant phenotypes around

the ancestral mean. In the classical Price formulation,

there is only the single realization of the actual descen-

dants. A stochastic version analyses a collection of

possible descendant sets over some probability distribu-

tion and a mapping from the ancestor set to each possible

realization of the descendant set.

In other cases, partitions will split components more

finely or add new components not in Price’s formulation.

I do not have space to review every partition of total

change and consider how each may be related to Price’s

formulation. I list a few examples here.

Grafen (1999) and Rice (2008) developed stochastic

approaches. Grafen (2007) based a long-term project on

interpretations and extensions of the Price equation. Page &

Nowak (2002) related the Price equation to various other

evolutionary analyses, providing some minor extensions.

Wolf et al. (1998), Bijma & Wade (2008), and many

others developed extended partitions by splitting causes

with regression or similar methods such as path analysis.
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Various forms of the Price equation have been applied in

economic theory (Andersen, 2004).

Difficulties with various critiques
of the Price equation

A reliable way to make people believe in falsehoods is

frequent repetition, because familiarity is not easily distin-

guished from truth (Kahneman, 2011, p. 62).

One must distinguish the full, exact Price equation from

various derived forms used in applications. The derived

forms always make additional assumptions or express

approximate relations (Frank, 1997). Each assumption

increases specificity and reduces generality in relation to

particular goals.

Critiques of the Price equation rarely distinguish the

costs and benefits of particular assumptions in relation to

particular goals. I use van Veelen’s recent series of papers

as a proxy for those critiques. That series repeats some of

the common misunderstandings and adds some new ones.

Nowak recently repeated van Veelen’s critique as the basis

for his commentary on the Price equation (van Veelen,

2005; Nowak et al., 2010; van Veelen et al., 2010; Nowak &

Highfield, 2011; van Veelen, 2011; van Veelen et al.,

2012).

Dynamic sufficiency

The Price equation describes the change in some mea-

surement, expressed as D�z. Change is calculated with

respect to particular mapping relations between ancestor

and descendant populations. We can think of the

mappings and the beginning value of �z as the initial

conditions or inputs and D�z as the output.

The output, �z0 ¼ �z þ D�z, does not provide enough

information to iterate the calculation of change to get

another value of D�z starting with �z0. We would also need

the mapping relations between the new descendant

population and its subsequent descendants. That infor-

mation is not part of the initial input. Thus, we cannot

study the dynamics of change over time without addi-

tional information.

This limitation with regard to repeated iteration is

called a lack of dynamic sufficiency (Lewontin, 1974).

Confusion about the nature of dynamic sufficiency in

relation to the Price equation has been common in the

literature. In Frank (1995, pp. 378–379), I wrote

It is not true, however, that dynamic sufficiency is a

property that can be ascribed to the Price Equation—this

equation is simply a mathematical tautology for the

relationship among certain quantities of populations.

Instead, dynamic sufficiency is a property of the assump-

tions and information provided in a particular problem, or

added by additional assumptions contained within numer-

ical techniques such as diffusion analysis or applied

quantitative genetics. … What problems can the Price

equation solve that cannot be solved by other methods?

The answer is, of course, none, because the Price Equation

is derived from, and is no more than, a set of notational

conventions. It is a mathematical tautology.

I showed how the Price equation helps to define the

necessary conditions for dynamic sufficiency. Once

again, the Price equation proves valuable for clarifying

the abstract structure of evolutionary analysis.

Compare my statement with that of van Veelen et al.

(2012)

Dynamic insufficiency is regularly mentioned as a draw-

back of the Price equation (see for example Frank, 1995;

Rice, 2004). We think that this is not an entirely accurate

description of the problem. We would like to argue that the

perception of dynamic insufficiency is a symptom of the

fundamental problem with the Price equation, and not just

a drawback of an otherwise fine way to describe evolution.

To begin with, it is important to realize that the Price

equation itself, by its very nature, cannot be dynamically

sufficient or insufficient. The Price equation is just an

identity. If we are given a list of numbers that represent a

transition from one generation to the next, then we can fill

in those numbers in both the right and the left hand side of

the Price equation. The fact that it is an identity guarantees

that the numbers that appear on both sides of the equality

sign are the same. There is nothing dynamically sufficient

or insufficient about that (this point is also made by

Gardner et al., 2007, p. 209). A model, on the other hand,

can be dynamically sufficient or insufficient.

This quote from van Veelen et al. (2012) demonstrates

an interesting approach to scholarship. They first

cite Frank as stating that dynamic insufficiency is a

drawback of the Price equation. They then disagree with

that point of view and present as their own interpretation

an argument that is nearly identical in concept and

phrasing to my own statement in the very paper that

they cited as the foundation for their disagreement.

In this case, I think it is important to clarify the

concepts and history, because influential and widely

cited authors, such as Nowak, are using van Veelen’s

articles as the basis for their own critiques of the Price

equation and approaches to fundamental issues of

evolutionary analysis.

With regard to dynamics, any analysis achieves the same

dynamic status given the same underlying assumptions.

The Price equation, when used with the same underlying

assumptions as population genetics, has the same attri-

butes of dynamic sufficiency as population genetics.

Interpretation of covariance

van Veelen et al. (2012) claim that

Maybe the most unfortunate thing about the Price equa-

tion is that the term on the right hand side is denoted as a

covariance, even though it is not. The equation thereby

turns into something that can easily set us off in the wrong

direction, because it now resembles equations as they

feature in other sciences, where probabilistic models are

used that do use actual covariances.
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One can see the covariance expression in the standard

form of the Price equation given in eqn 2. In the Price

equation, the covariance is measured with respect to the

total population; in other words, it expresses the associ-

ation over all members of the population. In many

statistical applications, one only has data on a subset of

the full population, that subset forming a sample. It is

important to distinguish between population measures

and sample measures, because they refer to different

things.

Price (1972a, p. 485) made clear that his equation is

about total change in entire populations, so the covari-

ance is interpreted as a population measure

[W]e will be concerned with population functions and

make no use of sample functions, hence we will not

observe notational conventions for distinguishing popula-

tion and sample variables and functions.

In addition to population and sample measures, covari-

ance also arises in mathematical models of process.

Suppose, for example, that I develop a model in which

random processes influence fitness and random processes

influence phenotype. If the random fluctuations in

fitness and the random fluctuations in phenotype are

associated, the random variables of fitness and phenotype

would covary. All of these different interpretations of

covariance are legitimate; they simply reflect different

situations.

Discussion

In Frank (1995), I wrote: ‘What problems can the Price

equation solve that cannot be solved by other methods?

The answer is, of course, none, because the Price

Equation is derived from, and is no more than, a set of

notational conventions. It is a mathematical tautology’.

Nowak & Highfield (2011) and van Veelen et al. (2012)

emphasize the same point in their critique of the Price

equation, although they present the argument as a novel

insight without attribution. Given that the Price equation

is a set of notational conventions, it cannot uniquely

specify any predictions or insights. A particular set of

assumptions leads to the same predictions, no matter

what notational conventions one uses. The Price equa-

tion is a tool that sometimes helps in analysis or in seeing

general connections between apparently disparate ideas.

For many problems, the Price equation provides no

value, because it is the wrong tool for the job.

If the Price equation is just an equivalence, or

tautology, then why am I enthusiastic about it? Math-

ematics is, in its essence, about equivalences, as

expressed beautifully in the epigraph from Mazur. Not

all equivalences are interesting or useful, but some are,

just as not all mathematical expressions are interesting or

useful, but some are.

That leads us to the question of how we might know

whether the Price equation is truly useful or a mere

identity? It is not always easy to say exactly what makes an

abstract mathematical equivalence interesting or useful.

However, given the controversy over the Price equation,

we should try. Because there is no single answer, or even a

truly unique and unambiguous question, the problem

remains open. I list a few potential factors.

‘[A] good notation has a subtlety and suggestiveness

which at times make it seem almost like a live teacher’

(Russell, 1922, pp. 17–18). Much of creativity and

understanding comes from seeing previously hidden

associations. The tools and forms of expression that we

use play a strong role in suggesting connections and are

inseparable from cognition (Kahneman, 2011). Equiva-

lences and alternative notations are important.

The various forms of the covariance component from

the Price equation given in eqn 9 show the equivalence

of the statistical, geometrical and informational expres-

sions for natural selection. The recursive form of the full

Price equation provides the foundation for all modern

studies of group selection and multilevel analysis. The

Price equation helped in discovering those various

connections, although there are many other ways in

which to derive the same relations.

Hardy (1967) also emphasized the importance of seeing

new connections between apparently disparate ideas:

We may say, roughly, that a mathematical idea is ‘signif-

icant’ if it can be connected, in a natural and illuminating

way, with a large complex of other mathematical ideas.

Thus a serious mathematical theorem, a theorem which

connects significant ideas, is likely to lead to important

advances in mathematics itself and even in other sciences.

What sort of connections? One type concerns the

invariances discovered or illuminated by the Price equa-

tion. I discussed some of those invariances in an earlier

section, particularly the information theory interpreta-

tion of natural selection through the measure of Fisher

information (Frank, 2009). Fisher’s fundamental theo-

rem of natural selection is a similar sort of invariance

(Frank, 2012b). Kin selection theory derives much of its

power by identifying an invariant informational quantity

sufficient to unify a wide variety of seemingly disparate

processes (Frank, 1998, Chapter 6). The interpretation of

kin selection as an informational invariance has not been

fully developed and remains an open problem.

Invariances provide the foundation of scientific

understanding: ‘It is only slightly overstating the case

to say that physics is the study of symmetry’ (Anderson,

1972). Invariance and symmetry mean the same thing

(Weyl, 1983). Feynman (1967) emphasized that invari-

ance is The Character of Physical Law. The commonly

observed patterns of probability can be unified by the

study of invariance and its association with measure-

ment (Frank & Smith, 2010, 2011). There has been little

effort in biology to pursue similar understanding of

invariance and measurement (Frank, 2011; Houle et al.,

2011).
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Price argued for the great value of abstraction, in the

sense of the epigraph from Mazur. In Price (1995)

[D]espite the pervading importance of selection in science

and life, there has been no abstraction and generalization

from genetical selection to obtain a general selection theory

and general selection mathematics. Instead, particular

selection problems are treated in ways appropriate to

particular fields of science. Thus one might say that

‘selection theory’ is a theory waiting to be born—much as

communication theory was 50 years ago. Probably the

main lack that has been holding back any development of a

general selection theory is lack of a clear concept of the

general nature or meaning of ‘selection’.

This article has been about the Price equation in

relation to its abstract properties and its connections to

various topics, such as information or fundamental

invariances. Some readers may feel that those aspects

of abstraction and invariance are nice, but far from

daily work in biology. What of the many applications

of the Price equation to kin or group selection? Do

those applications hold up? How much value has been

added?

Because the Price equation is a tool, one can always

arrive at the same result by other methods. How well the

Price equation works depends partly on the goal and

partly on the fit of the tool to the problem. There is

inevitably a strongly subjective aspect to deciding about

how well a tool works. Nonetheless, hammers truly are

good for nails and bad for screws. For valuing tools, there

is a certain component that should be open to agreement.

For example, the Robertson (1966) form of the Price

equation is widely regarded as the foundational method

for analysing models of evolutionary quantitative genetics.

However, not all problems in quantitative genetics are

best studied with the Robertson–Price equation. And not

all problems in social evolution benefit from a Price

equation approach.

The Price equation or descendant methods have led to

many useful models for kin selection (Frank, 1998). The

most powerful follow a path analysis decomposition of

causes or use a simple maximization method to analyse

easily what would otherwise have been difficult. I will

return to those applications in subsequent articles.
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