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Introduction

Natural selection favours traits that enhance fitness. But

how does one measure fitness? Several studies have

shown that it is not just average reproductive success that

matters. Variation in reproductive success also plays an

important role in determining long-term evolutionary

trends. To understand the basic notions of fitness and

evolutionary change by natural selection, one must

understand the particular consequences of different kinds

of variation.

The literature on variation splits into two groups. On

the one side, bits of folk wisdom dominate thinking. The

slogan that natural selection maximizes geometric mean

fitness is one example. Such folk wisdom is true in special

cases. But as a guiding principle, the simple geometric

mean slogan misleads as often as it helps.

On the other side, a technically demanding specialist

literature divides into numerous distinct ways of framing

the problem. Each technical expression emphasizes a

particular aspect of variation, refining unique examples

at the expense of providing a coherent view of the whole.

This article provides a tutorial on the different kinds of

variation and their evolutionary consequences. I empha-

size simple examples to develop understanding of

temporal, spatial, developmental and trait variation.

Each type of variation was originally studied as a separate

problem. In this tutorial, I follow Frank & Slatkin (1990),

who showed that these seemingly different types of

variation can be understood in a unified way. The unified

framework arises from two steps.
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Abstract

Many studies have analysed how variability in reproductive success affects

fitness. However, each study tends to focus on a particular problem, leaving

unclear the overall structure of variability in populations. This fractured

conceptual framework often causes particular applications to be incomplete or

improperly analysed. In this article, I present a concise introduction to the two

key aspects of the theory. First, all measures of fitness ultimately arise from the

relative comparison of the reproductive success of individuals or genotypes

with the average reproductive success in the population. That relative measure

creates a diminishing relation between reproductive success and fitness.

Diminishing returns reduce fitness in proportion to variability in reproductive

success. The relative measurement of success also induces a frequency

dependence that favours rare types. Second, variability in populations has a

hierarchical structure. Variable success in different traits of an individual

affects that individual’s variation in reproduction. Correlation between

different individuals’ reproduction affects variation in the aggregate success

of particular alleles across the population. One must consider the hierarchical

structure of variability in relation to different consequences of temporal,

spatial and developmental variability. Although a complete analysis of

variability has many separate parts, this simple framework allows one to see

the structure of the whole and to place particular problems in their proper

relation to the general theory. The biological understanding of relative success

and the hierarchical structure of variability in populations may also contribute

to a deeper economic theory of returns under uncertainty.
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First, it is relative reproduction that matters. Only

those traits associated with relatively greater success than

average increase over time. Relative measures of success

induce diminishing returns: a doubling of reproduction

provides less than a doubling of relative success (Gilles-

pie, 1977; Frank & Slatkin, 1990). With diminishing

returns, increasing variation in reproductive success

reduces fitness.

Second, the different types of variation can be

expressed as different levels within a unified hierarchy

(Frank & Slatkin, 1990). Variable success in different

traits of an individual affects that individual’s variation in

reproduction. Correlation between different individuals’

reproduction affects variation in the aggregate success of

particular alleles across the population. Temporal, spatial

and developmental variation affect the way in which

individual variations combine to determine the overall

variability in the number of copies produced by a

particular allele.

I also discuss the relation of economic theories of risk

and uncertainty to evolutionary theories of variability.

Relative success induces diminishing
returns

The success of genes and of traits must ultimately be

measured by their relative frequency in a population.

The calculation of relative frequency leads to surprising

consequences when there is variability (Gillespie, 1977;

Frank & Slatkin, 1990; Orr, 2007).

To illustrate the problem, consider two alternative

types in a population, A1 and A2. I will often refer to the

alternative types as alleles at a genetic locus. However,

the same analysis would apply to any heritable alterna-

tive types in a population that have the same essential

properties as alleles.

Some simple notation helps to express the argument.

Each definition uses subscripts to associate with the

alternative alleles, A1 and A2, respectively. Define q1 and

q2 as the allele frequencies, such that q1 + q2 ¼ 1. Let R1

and R2 measure reproductive success, the average num-

ber of descendant copies produced by each parental

allele. The average reproductive success in the popula-

tion is �R ¼ q1R1 þ q2R2. The success of individual

parental copies has a random component. Thus, all of

the measures of reproductive success fluctuate randomly.

Throughout, the unqualified words average and mean

refer to the arithmetic average.

The frequency of A1 after one round of reproduction is

q01 ¼ q1ðR1=�RÞ ¼ q1F1; ð1Þ

where F measures relative success. I use the word fitness

for relative success. This equation shows that fitness

ultimately determines the success of an allele. Repro-

ductive success, R, influences fitness. But the key

relationship between reproductive success and fitness is

mediated through the definition for fitness

F1 ¼ R1=�R ¼ R1

q1R1 þ q2R2

: ð2Þ

Figure 1 illustrates the two key properties of fitness.

First, fitness increases at a diminishing rate with a rise in

reproductive success (Gillespie, 1977; Frank & Slatkin,

1990). Put another way, the fact that fitness is a relative

measure means that linear changes in reproductive

success translate into nonlinear changes in fitness.

Second, the curvature of the relation between repro-

ductive success and fitness is frequency dependent

(Frank & Slatkin, 1990). A rare type has a nearly linear

relation between reproduction and fitness. A common

type has a very strongly diminishing relation between

reproduction and fitness. This means that rare and

common types are influenced differently by the conse-

quences of variability, because more strongly diminishing

returns cause variability in reproductive success to

impose a greater penalty on fitness.
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Fig. 1 The curvature of fitness vs. reproductive success depends on

allele frequency. The plots here illustrate eqn (2). The numbers

above each curve show q1, the frequency of the allele for which the

relationship is plotted. If q1 ¼ 0.1, the relationship follows the upper

curve for allele A1; the lower curve can then be interpreted as the

relationship for allele A2 with frequency q2 ¼ 0.9. The difference

between the upper and lower curves illustrates the frequency

dependence of the relation between fitness and reproductive success.

Note that there is little curvature when an allele is rare, which leads

to an advantage for rare types. Redrawn from Frank & Slatkin

(1990).

Box 1: Topics in the theory of natural selection

This article is the first in a series on natural selection.

Although the theory of natural selection is simple, it remains

endlessly contentious and difficult to apply. My goal is to

make more accessible the concepts that are so important, yet

either mostly unknown or widely misunderstood. I write in a

nontechnical style, showing the key equations and results

rather than providing full derivations or discussions of

mathematical problems. Boxes list technical issues and brief

summaries of the literature.
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Figure 2 shows that diminishing returns cause a loss of

fitness. In the figure, expected reproductive success, R, is

l. Deviations of ± d occur, with increases and decreases

at equal frequencies. The gain in relative fitness, F, for an

increase of d units of reproductive success is less than the

corresponding loss in fitness when reproductive success is

reduced by d. Expected fitness therefore declines as the

frequency and magnitude of deviations increase. Note

that the discount to fitness rises as the curvature between

fitness and reproductive success increases.

Reproduction multiplies and variation
reduces success

Suppose an individual has two offspring. Each of those

offspring has two offspring. The original individual has

four grandchildren. Compare that output to a second

individual that has three offspring, and each of those

offspring has one offspring. The second individual has

three grandchildren. In each case, the average reproduc-

tion per generation is two offspring. However, the

individual with less variable reproduction has greater

success than the individual with more variable repro-

duction.

The difference occurs because reproduction multiplies

over time. The value 2 · 2 ¼ 4 is greater than 3 · 1 ¼ 3,

even though the arithmetic averages are the same in

each case. In multiplicative series, variation reduces the

multiplicative product. Rather than measuring success by

the arithmetic average, such as (3 + 1)/2 ¼ 2, the proper

average in a multiplicative series is the number that,

when used to multiply in each generation, gives the total

output. In the reproductive series over two generations of

3 · 1 ¼ 3, we need a number that when multiplied by

itself gives three. This works out as
ffiffiffi
3
p
�

ffiffiffi
3
p
¼ 3, so the

multiplicative mean is
ffiffiffi
3
p
� 1:73. The multiplicative

mean is usually called the geometric mean.

Approximation for the geometric mean

A simple approximation of the geometric mean is often

useful. Suppose the arithmetic mean of a series is l, and

the variance of the series is r2. Then, the geometric mean

is approximately l ) r2/2l. This approximation shows

clearly how the variance reduces the geometric mean.

For example, in the series 3 · 1 ¼ 3, the mean is 2,

the variance is 1, the true geometric mean is 1.73, and

the approximation gives the geometric mean as 1.75. The

smaller the variance is in relation to the mean, the better

the approximation. In evolutionary models, one often

makes the assumption that average reproductive success

is close to one, l � 1, so that the approximation for the

geometric mean often appears as l ) r2/2.

The geometric mean principle

Reproduction multiplies. The greatest multiplicative

series has the highest geometric mean reproduction.

Thus, the type with greatest long-term fitness would

appear to be the type with the highest geometric mean

reproductive success. That conclusion is often called the

geometric mean principle.

The highest geometric mean is sometimes associated

with greatest evolutionary success. However, geometric

mean reproductive success by itself often misleads,

because it hides more than it helps. The problem of

evolutionary success and fitness turns out to be more

subtle and more interesting. The following sections

explain why.

Population regulation and relative
success

The total resources available to the population limit

reproductive success. That density-dependent competi-

tion causes the reproductive success of each type to be

influenced by the reproduction of other types. For that

reason, one cannot simply multiply the reproductive

successes of each type independently and then compare

the long-term geometric means. Instead, each bout

of density-dependent competition causes interactions

between the competing types. Those interactions depend

on frequency. Reproduction of a rare type has little

competitive effect on a common type. Reproduction of a

common type has a strong competitive effect on a rare

type (Fig. 1).

The fitness measure of relative success in eqn (2)

accounts for density-dependent interactions. The partic-

ular way in which density-dependent competition arises

has important consequences.

Expected change in frequency

We can circumscribe the main conceptual issues by

focusing on the expected (average) change in allele
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Fig. 2 Increasing variation in reproductive success reduces fitness.

Expected reproductive success is l. Fluctuations of ± d occur.

Positive fluctuations return a smaller gain in fitness than the loss

suffered from a negative fluctuation. Thus, equally frequent positive

and negative fluctuations return a net loss. Redrawn from Frank &

Slatkin (1990).
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frequency. Each process can be studied with respect to

whether it tends to increase or decrease the expected

frequency change.

Equation (1) gives the definition for the allele fre-

quency in the following generation, q01 ¼ q1F1. The

change in allele frequency is Dq1 ¼ q01 � q1 ¼ q1ðF1 � 1Þ.
Using the definition for fitness in eqn (2) allows us to

write the change in frequency as

Dq1 ¼ q1q2

R1 � R2

�R

� �
: ð3Þ

The reproductive successes fluctuate randomly.

Because those random fluctuations occur in both the

numerator and the denominator, there is no simple way

to express the exact change in frequency. If we assume

that the fluctuations in success are small relative to the

average success, and we normalize all of the successes so

that they are close to one, then we can write the

approximate expected change in frequency as

EðDq1Þ � q1q2 ðl1 � l2Þ þ covðR2; �RÞ � covðR1; �RÞ½ �f g;
ð4Þ

where l1 and l2 are the expected reproductive successes

for types 1 and 2, respectively. This equation, from Frank

& Slatkin (1990), is equivalent to an approximation given

by Gillespie (1977).

The expected change is the average tendency. Because

of the inherent fluctuations in success, the actual

change in frequency in any generation may be in the

opposite direction of the expected change. Over long

time periods, three different patterns of evolutionary

dynamics occur.

First, if the random fluctuations in the average repro-

ductive successes of the types are large relative to the

directional bias in eqn (4), then randomness dominates.

The type frequencies will bounce up and down in a

nearly neutral way. Eventually, one type will become

fixed, and the other will disappear from the population. If

we start at frequency q1, then the probability that type A1

fixes is q1, and the probability that type A2 fixes is

q2 ¼ 1 ) q1. True fixation only occurs in finite popula-

tions. In infinite populations, the related notion of quasi-

fixation arises as the frequency of a type becomes very

close to one. To keep things simple, I ignore important

technical distinctions between finite and infinite popu-

lations (Gillespie, 1994; Ewens, 2010).

Second, if the directional bias is much larger than the

fluctuations in the average reproductive successes of

the types, then the type frequencies change in an almost

deterministic way. If the direction of change remains the

same across the range of type frequencies, then the type

with the greater expected success will usually become

fixed in a relatively short period of time. If frequency

dependence provides a sufficient advantage to the rare

type, then the direction of change may shift with type

frequency in a way that tends to maintain both types in

the population.

Third, if random fluctuations are of roughly the same

magnitude as the directional bias, then frequency

changes combine both directional and random aspects.

In some cases, frequencies will fluctuate, and both types

will remain in the population for a very long time. In

other cases, frequencies may fluctuate for a significant

period of time, but eventually one type or the other will

become fixed. Fixation will be biased towards the type

favoured by the directional tendency set by eqn (4).

However, the other type may occasionally fix because of

the random fluctuations.

I emphasize the major processes that influence the

directional tendency in eqn (4). In particular, the

hierarchical structure of variability sets the directional

tendency, which in turn shapes the qualitative patterns

of dynamics. I make only brief comments on long-term

evolutionary dynamics, which require technical analysis

of mathematical models to evaluate fully (Gillespie,

1994; Ewens, 2010). As noted in the previous para-

graphs, long-term dynamics include issues such as the

probability that a particular genotype becomes fixed and

the maintenance of polymorphism.

Hierarchical structure of variability

Populations have a naturally nested hierarchical struc-

ture when considering genetics. Populations are com-

posed of genotypes, and genotypes are composed of

individuals. In a haploid model with two alternative

alleles, there are two genotypes in the population, and

numerous copies (individuals) of each allelic type. The

hierarchical structure of variability makes explicit the

variances and the correlations at different levels in

the hierarchy.

For example, the reproductive success R1 is the average

success taken over all copies of the allele A1. Similarly, R2

is the average over all copies of A2. To analyse the

variability in the aggregate success of allele A1, one must

consider the variability in the success of each copy of A1

and the correlations in success between different copies.

The analysis for A2 must consider the variability in the

success of each allelic copy and the correlations in success

between the alleles.

We can relate the variances of individual reproductive

success to the variances and covariances for the different

allelic types by writing

varðR1Þ ¼ q1r
2
1 ð5aÞ

varðR2Þ ¼ q2r
2
2 ð5bÞ

covðR1;R2Þ ¼ q12r1r2 ð5cÞ
where q1, q2 and q12 are the correlations in reproductive

success between randomly chosen pairs of A1, A2 or A1

and A2 individuals, respectively.
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Frank & Slatkin (1990) introduced this explicit parti-

tioning of variances and covariances for types into their

individual components. Any realistic analysis of variabil-

ity must make explicit the individual-level fluctuations

and the associations between individuals. Although this

explicit treatment of variability is fundamental, the

partitioning of variances and covariances in eqn (5) has

often been regarded as some sort of highly technical or

specialized analysis. This mistake has limited progress in

understanding fitness with respect to spatial and tempo-

ral fluctuations in success.

If we combine eqns (4) and (5) and keep things simple

by assuming that the correlation between types is zero,

q12 ¼ 0, we obtain

EðDq1Þ � q1q2 ðl1 � q1q1r
2
1Þ � ðl2 � q2q2r

2
2Þ

� �
; ð6Þ

which means that, on average, type A1 increases in

frequency when

l1 � q1q1r
2
1 > l2 � q2q2r

2
2: ð7Þ

The following sections show that different kinds of

variability can be understood by the hierarchical parti-

tioning of associations between traits within an individ-

ual and associations between different individuals.

Variability interacts with the processes of density-depen-

dent population regulation.

Temporal variability

Dempster (1955) introduced a model of temporal varia-

tion in which all alleles of the same type have the iden-

tical reproductive success within a generation, q1 ¼ q2¼ 1,

and there is no correlation between types, q12 ¼ 0. In

this haploid model, each individual has one allele, either

A1 or A2. The condition for the expected increase of type

1 from eqn (7) is

l1 � q1r
2
1 > l2 � q2r

2
2: ð8Þ

This equation illustrates the rare-type advantage

induced by density-dependent population regulation.

When the frequencies are equal, q1 ¼ q2 ¼ 1/2, then

the condition favours the type with the higher geometric

mean fitness, l1 � r2
1=2 vs. l2 � r2

2=2.

As the frequencies approach one boundary, q1 fi 0

and q2 fi 1, the condition to favour A1 becomes

l1 > l2 � r2
2. At the other boundary, the condition

favouring A1 becomes l1 � r2
1 > l2. Thus, the direc-

tional tendency often shifts with frequency.

In spite of the inherent rare-type advantage, polymor-

phism is not maintained in this haploid model (Gillespie,

1973; Hartl & Cook, 1973; Karlin & Lieberman, 1974).

The high variance in fluctuations eventually causes one

of the types to fix (or to become nearly fixed in an

infinite population). The type with the higher geometric

mean success has the advantage at the frequency

midpoint. That type fixes with higher probability. If the

geometric means for the two types are close to each

other, then frequencies may fluctuate for a long time,

and the bias towards fixing the favoured type is relatively

weak. If the geometric means for the two types are

significantly different, then fixation happens sooner and

with a stronger bias towards the favoured type.

Correlations and genotypic homoeostasis

In the previous section, I assumed that all individuals

carrying the same allele have the same reproductive

success in each generation. In that case, all of the variation

arises from the response of an allele to environmental

fluctuations, with no variation between individuals of the

same genotype. No variation means that individuals of the

same type are perfectly correlated, q1 ¼ q2 ¼ 1.

Alternatively, different individuals of the same type

may respond differently to environmental fluctuations.

There are many ways to express individual variation. For

example, individual responses may fluctuate about the

long-term arithmetic mean, l, and the pairwise correla-

tion between individuals in each generation may be q
(Frank & Slatkin, 1990). In that case, the variance in the

average reproductive success of A1 is q1r
2, with a similar

expression for A2.

Reduced correlation between individuals lowers the

variation in the average success of a type. That relation

arises from the fact that the variance of an average is

reduced by the number of uncorrelated observations in

the sample. We can express the effective sample size of

uncorrelated observations as n* ¼ 1/q, so that the vari-

ance of the mean, r2/n*, is qr2.

One can think of the pairwise correlations between

individuals of the same genotype as the genotypic homoeo-

stasis. If all individuals of a genotype respond in exactly

the same way to each environmental state, then the

correlation between pairs of individuals is perfect, q ¼ 1.

That perfect correlation increases the variance in the

average reproductive success of the genotype. One can

think of such strong correlation as strong homoeostasis or

canalization of development for the genotype. By

contrast, weak correlation between individuals of the

same genotype, with low values of q, corresponds to

greater developmental fluctuations and relatively weaker

genotypic homoeostasis.

Given the variances in the average reproductive

successes of the types as qr2, the condition for A1 to be

favoured is given in eqn (7). In a haploid model, the

long-term bias in fixation depends on the relative

geometric means derived when frequencies are equal,

q1 ¼ q2 ¼ 1/2, yielding the condition for A1 to be

favoured as

l1 � q1r
2
1=2 > l2 � q2r

2
2=2: ð9Þ

This expression shows that temporal fluctuations

favour reduced genotypic homoeostasis, with low values
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of q. A type with low average reproductive success, l, can

be favoured if it also has low genotypic homoeostasis, q,

reducing its variance in average reproductive success

sufficiently to give it a higher geometric mean fitness

than its competitor. Reduced genotypic homoeostasis is a

general expression of the widely discussed problem of bet

hedging (see Box 2).

Developmental variability

Gillespie (1974a) introduced a model in which the repro-

ductive success of each of the N haploid individuals in the

population depends on its interactions with the environ-

ment during development. The reproductive successes of

different individuals are independent because, by

Gillespie’s assumptions, different individuals experience

different conditions and develop in an uncorrelated way.

Nevertheless, the finite population size ensures that an

individual’s reproductive success correlates with the

average reproductive success of its genotype.

The correlation of two randomly chosen A1 alleles is

q1 ¼ 1/(Nq1), because there are Nq1 individuals of type

A1, and hence a chance 1/(Nq1) of choosing the same

individual twice. By the same reasoning, q2 ¼ 1/(Nq2).

The correlation between types is zero, because different

individuals experience different conditions. Substituting

these values into eqn (8), we find that A1 increases for

any allele frequency when

l1 � r2
1=N > l2 � r2

2=N:

Because this condition no longer depends on allele

frequencies, it is sufficient to describe long-term evolu-

tionary advantage without the need to consider

frequency dependence. An allele with a long-term

advantage is more likely to become fixed than a neutral

allele with the same initial gene frequency.

Gillespie (1974a) presented this model of individual

developmental variation as a separate problem from the

general analysis of fluctuations in reproductive success.

The analysis here, from Frank & Slatkin (1990), shows

that individual variation is just a special case of the

general model of temporal variation. One obtains the

case of individual variation by properly calculating

the correlations in reproductive success between indi-

viduals.

Spatial variability and local population
regulation

The classical Dempster (1955) model of temporal varia-

tion assumes that density-dependent regulation occurs in

one large population. In that model, density regulation

induces frequency dependence that favours the rare

genotype. I mentioned earlier that, in spite of the rare-

type advantage, one of the types eventually becomes

fixed, because the random fluctuations in frequency are

Box 2: Optimal phenotypes in response to
environmental variability

Individuals may be able to match their phenotype to partic-

ular environments. Phenotypic plasticity occurs when an

organism can sense the particular environmental state and

adjust its traits accordingly. If organisms do not adjust their

phenotypes in response to the particular environmental state,

then they may produce a stochastic response tuned to the

pattern of fluctuation. A stochastic response is sometimes

called bet hedging.

Bet hedging can increase the aggregate success of a

genotype or strategy. Suppose, for example, that the envi-

ronment is equally likely to be in one of two states. For each

state, there is a different optimal phenotypic response.

However, the organism cannot adjust its phenotype in

response to the particular state. If each individual of the

genotype has a random component to its phenotypic expres-

sion, then in each generation, some individuals will match the

environment with the best phenotype and some will not. The

mixture of phenotypic expressions reduces the variance of the

aggregate success of the genotype by reducing the correlation

between individuals of that genotype.

The concept of reduced correlation between individuals of a

genotype highlights an essential aspect of the bet hedging

problem. Frank & Slatkin (1990) emphasized the general

point about correlations between members of a genotype, as

shown in eqn (5). McNamara (1995) independently described

a similar interpretation, but referred to the process as kin

selection, a label that I would avoid in this case. Correlations

between relatives do matter, but not in the way that one

usually associates with the costs and benefits of social

behaviour in kin selection.

Bet hedging can also arise within an individual. For

example, the individual’s alternative traits may be expressed

stochastically in separate bouts of resource acquisition, in a

way that reduces the overall variance in success. Reduced

variance in resource acquisition typically provides increased

expected reproductive success, because success rises in a

diminishing way with resources.

To get started on the literature, here are a few recent

overviews for phenotypic plasticity (Stearns, 1989; Houston &

McNamara, 1992; Moran, 1992; Scheiner, 1993; Via et al.,

1995; Pigliucci, 2001; West-Eberhard, 2003; DeWitt & Schei-

ner, 2004) and bet hedging (Cooper & Kaplan, 1982; Seger &

Brockmann, 1987; Sasaki & Ellner, 1995; Grafen, 1999;

Wilbur & Rudolf, 2006; King & Masel, 2007; Donaldson-

Matasci et al., 2008). An interesting information theory

approach may provide a useful connection between these

subjects (Kussell & Leibler, 2005).

All of these cases analyse phenotypic adjustment or

phenotypic stochasticity. In these cases, one must also account

for the diminishing relation between reproductive success and

fitness (Fig. 1) and the ways in which the correlations

between individuals determine the mean and variance of

aggregate success for each type (eqn 5).
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too strong relative to the directional tendency of evolu-

tionary change. Fixation is biased towards the type with

the highest geometric mean.

In a different model, Levene (1953) showed that

spatial variation does maintain genetic polymorphism. In

the Levene model, there are many independent spatial

locations. Each location has its own independent density-

dependent competition for resources.

Gillespie (1974b, 1978) showed that one can think of

the Levene model of spatial variation as the sum of K

independent models of temporal variation. If there is

only one patch, K ¼ 1, then reproductive successes

fluctuate over time in that patch, and all competition

occurs in that single patch. This model is identical to the

classical Dempster model for temporal variation.

As K increases, each independent patch fluctuates with

the same rare-type advantage of the classical Dempster

model. The total fluctuation in each generation is the

average of the fluctuations over all patches. Because

the patches fluctuate independently, the variance of the

average fluctuation over the entire population is reduced

by 1/K. This reduction arises because the variance of the

mean for K independent observations is the variance of

each observation divided by K.

Gillespie (1974b, 1978) provided the full analysis for

this averaging over K patches. However, he did not

provide a simple interpretation or a simple expression for

how fluctuations lead to a particular level of polymor-

phism when the number of patches is large.

Frank & Slatkin (1990) noted that, as K becomes large,

the population-wide fluctuations in each generation

become small because of the averaging effect over the

many patches. Thus, we can treat eqn (6) as an essen-

tially deterministic process. The rare-type frequency

dependence now dominates. The equilibrium frequency

of types can be obtained by solving E(Dq1) ¼ 0, which

yields

q1

q2

¼ l1 � l2 þ q2r
2
2

l2 � l1 þ q1r
2
1

as given by Frank & Slatkin (1990). Here, each q is the

correlation between copies of an allelic type measured

within each patch. This result shows that naive compar-

ison of geometric mean success is not sufficient to

understand evolutionary outcome.

Trait variability within individuals

The theory above takes an individual’s average and

variance in reproductive success as given parameters.

However, the actual processes that lead to individual

means and variances arise from the way that individuals

acquire resources and produce offspring, including

acquisition of food, protection from predators and so

on. To analyse the full hierarchy of causes for variability,

we should begin with the question: How does the

allocation of an individual’s resources among alternative

traits influence that individual’s mean and variance in

reproductive success?

I use the example of traits for resource acquisition. The

same analysis applies to any trait that influences repro-

ductive success, such as defence against parasites.

One trait

Let us start with a single trait. The return of resources on

investment has a random component, d. The random

component of resource acquisition affects reproductive

success by an amount f(d). Then, a simple way to write

the reproductive success is

R ¼ 1þ f ðdÞ:
If we assume that the random fluctuations, d, have a

mean of zero and a variance of Vx, and that the

fluctuations are relatively small, then the average repro-

ductive success is approximately

l � 1þ f 00Vx=2;

where f 00 is the second derivative of f evaluated at zero

(Real, 1980; Stephens & Krebs, 1986). Typically, one

assumes that fluctuations in traits for resource acquisition

have a diminishing return shape as in Fig. 2, in which case

f 0 0 < 0. Thus, greater fluctuations, Vx, reduce expected

reproductive success. All else equal, resource acquisition

strategies with less variability yield higher average repro-

ductive success than those strategies with more variability.

The variance in an individual’s reproductive success is

approximately

r2 � varðf 0dÞ ¼ f 02Vx; ð10Þ
where f 0 is the first derivative of f evaluated at zero.

A full evaluation of fitness requires specifying the

means, variances and correlations between all individ-

uals in the population. The correlations must be

evaluated in relation to the heritable types we are

following over time. The earlier sections provided the

methods for studying evolutionary dynamics in relation

to fitness.

Here, to keep the focus on trait variability within

individuals, I give only the geometric mean reproductive

success for an individual. The geometric mean for each

individual accounts for the average and variance in

individual reproductive success but neither the correla-

tions between types nor the role of density dependence

in fitness. Assuming that the fluctuations in returns, Vx,

are relatively small, the geometric mean reproductive

success is approximately

G ¼ l� r2=2l � 1þ f 00 � f 02
� �

Vx=2: ð11Þ

Two traits

How should an individual invest in two different traits

that provide additive returns? Let reproductive success be
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R ¼ x 1þ f ðdÞ½ � þ y ð1� cÞ þ gð�Þ½ � ð12Þ
for investment amounts x + y ¼ 1, with x and y the

fractions of total resources invested in each trait. Here, c
is the discount in expected return for the second trait,

and � is the random fluctuation associated with the

second trait. The discount, c, and the fluctuation, �, are

small relative to the baseline return of one. The mean of �
is zero, and the variance is Vy. I assume that d and � are

uncorrelated. Box 3 lists some of the intermediate steps.

Here, I focus on the key result.

If we assume that the random component of each trait is

the same, Vx ¼ Vy, and f ” g, then the geometric mean is

l� r2=2l � Gþ Bðx; yÞ; ð13Þ
where G is the geometric mean given in eqn (11) for

allocating all resources to the first trait, x ¼ 1, and B(x,y) is

the benefit obtained when mixing allocation of resources

between the two traits such that x + y ¼ 1, with

Bðx; yÞ ¼ f 02 1� ðx2 þ y2Þ
	 


Vx=2� yc:

If we optimize B to obtain the best mixture of

allocations between the two traits, we obtain

x� ¼ 1

2
1þ c

r2

� �
ð14aÞ

y� ¼ 1

2
1� c

r2

� �
; ð14bÞ

where c is the discount in expected return for the second

trait given in eqn (12), and r2 is the variance in individual

reproductive success per trait given in eqn (10).

It pays to invest some resources in the trait with lower

expected return as long as c/r2 < 1. The lower expected

return is offset by the reduced variance obtained from

averaging the returns over two uncorrelated traits. In

both biology and financial investing, returns tend

to multiply over time. Thus, reduced fluctuations

enhance the multiplicative (geometric) average return.

In financial investing, the central role of the geo-

metric mean is well known in theory (Bernstein &

Wilkinson, 1997), but often ignored in practice (MacBeth,

1995).

An example

The concepts in the previous section are simple. The

variance of an average declines with additional uncor-

related components. Reduced variance provides a

benefit when success multiplies over time. The technical

expressions of those results may obscure the simplicity

of the concepts. This section provides a numerical

example.

Suppose an organism has two different behaviours by

which it can obtain calories. To keep the problem simple,

assume that there is a linear relation between calories

and reproduction, f 0 ¼ 1. For the first behaviour, the

return is on average l1 ¼ 1.0 calories, with a variance in

return of r2 ¼ 0.1. The second behaviour has a lower

average return of l2 ¼ 1.0 ) 0.02 ¼ 0.98 calories, with

the same variance of r2 ¼ 0.1.

If all investment is devoted to the first behaviour, then

the geometric mean success is l1 ) r2/2 ¼ 0.95. If all

investment is devoted to the second behaviour, then the

geometric mean success is l2 ) r2/2 ¼ 0.93.

In this case, I have assumed c ¼ 0.02 and r2 ¼ 0.1.

From eqn (14), the optimal allocation to the two traits is

x* ¼ 0.6 and y* ¼ 0.4. If the individual devotes a fraction

0.6 of its investment to the first behaviour and a fraction

0.4 of its investment to the second behaviour, then it

obtains an average return of

a ¼ 0:6l1 þ 0:4l2 ¼ 0:992:

The variance in return is obtained by noting that,

when one splits allocation between two uncorrelated

returns, R1 and R2, each with variance r2, the variance is

b ¼ varðxR1 þ yR2Þ ¼ ½x2 þ y2�r2:

Using the optimal split 0.6 vs. 0.4 for x and y, and the

value r2 ¼ 0.1 above, the variance is b ¼ 0.052. The

geometric mean is now approximately

a� b=2 ¼ 0:992� 0:052=2 ¼ 0:966:

This mixture of behaviours therefore returns a higher

geometric mean of 0.966 than when all investment is

devoted to the higher yielding first behaviour, which has

a geometric mean of 0.95, or when all investment is

devoted to the lower yielding behaviour, which has a

geometric mean of 0.93. This example illustrates the

benefit of diversification when success multiplies over

time.

Box 3: Trait variability with two traits

This box shows the details that lead from eqns (12–13).

Starting with eqn (12) for R, the average reproductive

success is approximately

l � 1� ycþ xf 00Vx=2þ yg00Vy=2:

The variance in success is approximately

r2 � varðxf 0dþ yg0�Þ
¼ x2f 02Vx þ y2g02Vy:

The geometric mean is approximately

l� r2=2l � 1� ycþ x f 00 � xf 02
� �

Vx=2þ y g00 � yg02
� �

Vy=2:

If we assume that the random component of the two

traits is the same, Vx ¼ Vy, and f ” g, then the geometric

mean is

l�r2=2l� 1�ycþ f 00Vx=2�ðx2þy2Þf 02Vx=2

¼ 1þ f 00 � f 02
� �

Vx=2þ f 02 1�ðx2þy2Þ
	 


Vx=2�yc:

The substitutions given in the text lead directly to

eqn (13).
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Note that reproductive returns are linear in this

example. The entire benefit of diversification arises from

the multiplicative nature of long-term success, which

discounts variance.

The limitation of using individual geometric mean
success

I used the individual’s geometric mean success in this

section. That assumption is valid only when we are

interested in an absolute measure of an individual’s long-

term success in the absence of competition and relative

comparison with others. However, it often does not make

sense to measure success independently of others. Evo-

lutionary success depends on the relative contribution to

the population by a heritable type. The earlier sections of

this article showed several different measures of success

that arise from the temporal and spatial structure of

competition and from the correlations in success between

different types of individuals.

Suppose, for example, that the correlation between

individual copies of an allele is low, q fi 0, as in the

model of developmental variation in which q ¼ 1/N and

population size, N, is large. Then, from eqn (9), we see

that natural selection favours the type with the highest

arithmetic average, l, independently of the individual

variance in reproductive success, r2. In that case, it does

not make sense to analyse the geometric mean of

individual reproductive success. Instead, success depends

almost entirely on the arithmetic mean return taken over

the two traits. If returns per trait are linear, f 0 0 ¼ 0, then

the arithmetic mean is

xl1 þ yl2 ¼ x þ yð1� cÞ:

In this case, individuals will be favoured to allocate all

resources to the higher yielding trait, labelled as trait one

in this example.

Economic theories of variability and risk

Economic theories of risk and uncertainty typically focus

on the absolute success of individuals or single agents.

Relative success in economics concerns market share

(Frank, 1990). However, there seems to be little economic

theory about risk and uncertainty in relation to market

share. Problems of market share lead to many issues

discussed in this article. For example, relative success

induces diminishing returns. The temporal and spatial scale

of competition determines the proper measure of success.

One must also consider the proper unit of analysis to

measure success and dynamics. If one is interested in the

absolute currency value accumulated by an individual

investor over a long period of time, then the individual’s

geometric mean success in return over successive inter-

vals is often a good measure. If one is interested in an

individual’s purchasing power, then one must track the

individual’s currency valuation relative to the currency

valuation among the population of individuals compet-

ing for the same goods.

If the individual has only a small fraction of the total

pool of goods, then the individual’s geometric mean

return provides a good measure of success. However, if

one is tracking a corporation or agent that controls a large

fraction of the total resource pool, then the correlation

between individual and total success may have a signif-

icant impact on outcome.

In some economic analyses, one is interested in

behaviours or strategies. For example, what is the

relative success of those following a particular financial

strategy in the investment markets? The answer depends

in part on whether all individuals following the same

strategy have highly correlated returns or uncorrelated

returns. A high correlation in returns between individ-

uals following a strategy increases the variance in the

aggregate success of that strategy. Higher variance usu-

ally leads to lower long-term success.

Box 4: Reviews and technical issues

Gillespie (1994) and Ewens (2010) provide excellent technical

overviews of genetic theory for variable environments. Recent

reviews (Hedrick, 2006; Proulx & Adler, 2010) and new

theory (Taylor, 2008) continue to appear.

Lande (2008) developed a comprehensive approach to the

theory of fluctuating selection. He emphasized an adaptive

topography method arising from the key insight that expected

fitness depends on average reproductive success minus the

covariance of reproductive success with population mean

success. That expression for fitness is the same as developed in

eqn (4), following from Gillespie (1977) and Frank & Slatkin

(1990).

Lande (2008) also summarized the complexities that arise in

diploid genetic systems under fluctuating selection. In general,

diploid and multilocus models require one to pay attention to

two issues (Frank & Slatkin, 1990). First, how do the fluctu-

ations contributed by different alleles combine within individ-

uals to determine the average and variance in individual

reproductive success? Second, how do multiple alleles per

individual induce correlations in reproductive success between

copies of alleles in different individuals? The specific results

that I gave in the text concern haploid models. Diploid and

multilocus models must account for these additional complex-

ities.

Rice (2008) introduced an exact expression for evolution-

ary change in stochastic models by expanding the scope and

interpretation of the Price Equation. Tuljapurkar et al. (2009)

review the theory of variable environments in relation to

demography and life-history evolution. For economics theory,

introductory microeconomics texts include overviews of the

theory of risk and uncertainty. For investments, see Marko-

witz (1991). Okasha (2011) provides an entry to the philo-

sophical literature on the theory of uncertainty in evolution

and economics.
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The frequency of the competing strategies also matters.

Relatively rare strategies have a low correlation with the

population average level of success, providing a rare-type

advantage. The consequences of the rare-type advantage

depend on whether competition occurs globally or locally

over a series of isolated markets. These problems of

relative success have received little attention in the study

of economic competition.

Conclusions

Nearly all aspects of success include a variable compo-

nent. To understand the consequences of that variability,

one must study the hierarchical structure of traits within

populations. Each individual has multiple traits. Each

genotype or strategy has multiple individuals. Fluctua-

tion in the success of particular traits has consequences

that depend on the correlations between traits and the

correlations between individuals. The aggregate variabil-

ity of competing types affects relative success in ways that

depend on density-dependent competition, which causes

diminishing returns and induces an intrinsic frequency

dependence that tends to favour rare types over common

types.

The extensive biological theory of variability has dealt

with particular aspects of the overall problem. But few

analyses have set out the entire range of fluctuations,

how those fluctuations are structured in populations, and

the particular nature of competition that shapes the

consequences of fluctuations. By considering the struc-

ture of the entire problem, one obtains a richer under-

standing of biological fitness and its consequences for

evolutionary dynamics.

Many of the biological problems of variability also arise

in economics. The theoretical literature in economics

made the first analyses of success when there is a variable

component of returns. But the biological literature has

advanced further in the analysis of variability, particu-

larly with respect to the importance of relative success

and the hierarchical structure of competing types or

strategies in populations.
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