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A computational model of cancer progression is used to study how
mutations in genes that control tumor initiation and progression
accumulate in populations. The model assumes that cancer occurs
only after a cell lineage has progressed through a series of stages.
The greater the number of stages, the more strongly the individual
is protected against cancer. It is shown that an extra stage initially
improves the survival of individuals by decreasing mortality from
cancer. However, the additional buffering by an extra stage re-
duces the impact of any single hereditary mutation and therefore
allows the accumulation of more nonlethal mutations in the
population. Extra stages thereby lead to the evolution of partially
decreased cancer mortality and significantly increased genetic
predisposition to disease in the population as a whole. In general,
the model illustrates how all robust control networks allow the
accumulation of deleterious mutations. An increase in the number
of buffering components leads to significant mutational decay in
the protection provided by each buffering component and in-
creased genetic predisposition to disease. An extra buffering
component’s net contribution to survival and reproduction is often
small.

Cancer develops after somatic mutations overcome the mul-
tiple checks and balances on cellular proliferation (1–3).

Those normal checks and balances define a robust genetic
control system that protects against perturbations. For example,
DNA damage enhances expression of p53, a transcription factor
that in turn modulates the expression of many other genes (4).
If the DNA damage is moderate, p53 causes the cellular system
to slow the cell cycle, repair the damage, and then proceed with
replication. If the DNA damage is severe, p53 triggers an
apoptotic pathway that leads to cell suicide.

p53 functions mainly to protect against damage that arises
from the environment during the lifetime of the individual.
However, a system that protects against the environment may
also buffer against the negative effects of inherited mutations
(5). For example, mutations that slow DNA repair or allow
greater DNA damage may have less effect because p53 com-
pensates by adjusting the repair process and cell cycle progres-
sion. Thus, the buffering effects of p53 can reduce the negative
consequences of some inherited mutations, slowing the rate at
which natural selection removes those mutations from the
population.

It has been noted many times that buffering traits allow the
accumulation of mutations (5–8). In this paper, I address two
issues. First, I study the process of buffering and mutation
accumulation in a computational model of cancer. This study
leads to a better understanding of genetic predisposition to
cancer and to predictions about the relative levels of genetic
predisposition in different cancers.

Second, I study the consequences of different amounts of
buffering against environmental perturbation. I use a multi-
stage model of cancer progression (9), in which cancer occurs
only after a cellular lineage has passed through a series of
stages. The number of stages measures the amount of buffering
provided by various checks and balances because cancer arises

only after a sufficient number of the checks and balances have
been bypassed.

I show that an increase in the number of stages causes a small
increase in fitness, a large mutational decay in the performance
of each stage, and an increase in the total fraction of cancer risk
caused by inherited genetic variation. In Conclusions, I consider
how this particular model of cancer progression provides hy-
potheses about other robust genetic control systems.

The Model
Cancer Progression Within Each Individual. I use the classic Armit-
age and Doll (9) model of cancer progression. In this model,
cancer occurs only after n rate-limiting steps have been passed.
Initially, there are x0(0) cell lineages in a tissue. Each cell lineage
begins life having passed zero of the n steps. A cell lineage
progresses through the first step at rate u0; a cell lineage passes
the second step at a rate u1; and so on. These assumptions lead
to a simple dynamical system for the progression of cell lineages
toward cancer,

ẋ0�t� � � u0x0�t�

ẋi�t� � ui�1xi�1�t� � uixi�t� i � 1, . . ., n � 1

ẋn�t� � un�1xn�1�t� ,

where the dots are the derivatives with respect to time, the ui are
the constant rates of transition within a particular individual and
the xi are the number of cell lineages at age t that have passed
i steps. Age is measured in years. I use ‘‘cell lineages’’ rather than
‘‘cells’’ because this model of cancer progression depends on the
accumulation of mutations over time in a genome passed down
from parent cell to daughter cells; that is, the mutations accu-
mulate in lineages over time rather than to particular cells at a
fixed point in time (see ref. 10 for further discussion of this
model).

An individual develops cancer if any single cellular lineage
passes all n steps. Thus, we can interpret xn(t) as the cumulative
probability at age t that an individual has developed cancer. If
xn(�) � 1, then the individual has cancer by age � with probability
one, and ẋn(t) � 0 for t � �. In other words, once an individual
has died of cancer with probability one by age �, the further rate
of change in mortality is zero.

Although a multistage model of progression is generally
accepted as the best description of cancer progression (11), the
exact meaning of the stages and the transition rates between
stages remains poorly understood for most cancers. In colon
cancer, there is a tendency for certain morphological stages of
tumor formation to follow one after the other (12). Each stage
may be associated with particular somatic mutations, or, put
another way, the transition rates between stages may be deter-
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mined in part by the rates of somatic mutations to particular
genes.

There are not enough data to argue too finely about the
meaning of stages and transitions. For my purposes, I am
analyzing the population genetic consequences of a multistage
model of progression with regard to the maintenance of inher-
ited deleterious mutations balanced by natural selection.

Age-Specific Fitness Consequences of Cancer. To study how natural
selection affects the frequencies of inherited mutations, I need
a measure of the fitness consequences of those mutations. I do
not need a highly realistic set of assumptions to link genetic
variation to cancer mortality because my goal is limited to
analyzing how the change in the number of stages or barriers in
cancer progression affects genetic variability. At present, there
are not enough data to define how all types of mutations
influence mortality. In the absence of such data, detailed
assumptions are more likely to be wrong than helpful.

Death at different ages has different consequences for fitness.
We need an expression, f(t), for the force of selection, the
fraction of total fitness lost if an individual dies of cancer at age
t. Assume that first reproduction occurs at age F � 15 and
maximum age occurs at T � 80. Then, f(t) � 1 for t � F and f(t) �
0 for t � T. Define z � (t � F)�(T � F) as the fraction of
reproductive lifespan that has passed between first reproduction,
F, and certain death, T. Then, for F � t � T, I set the force of
selection at age t to the function f(t) � 1 � 6z2 � 8z3 � 3z4. The
curve is shown in Fig. 1. I derived the formula for this shape from
a general family of curves based on the beta distribution (see Fig.
1 legend). It is possible to give a family of curves controlled by
a shape parameter, but this single curve is sufficient for this
particular study.

Loss in fitness caused by cancer is the force of selection
averaged over the probabilities for death at different ages. This
loss is

L � �
0

T

ẋn�t�f�t�dt ,

and fitness is defined as 1 � L. Here, L can be interpreted as
follows. The loss in fitness for death at age t is f(t), and the
relative probability of death at age t is ẋn(t), so the integral sums

up the loss at each age weighted by the relative chance of death
at each age.

Genetic Basis of Transition Rates Between Stages. The rates of
transition between stages, ui, determine the dynamics of pro-
gression within each individual. To study how genetic variation
may cause differences between individuals in progression dy-
namics, I assume that several genes affect each transition rate.

The logarithm of each rate varies over the range [�b,1], where
log10(ui) � �b is the slowest rate, and therefore provides the
lowest cancer incidence and the highest fitness. When a transi-
tion is at its highest rate, log10(ui) � 1, the transition happens so
quickly that it is no longer a rate-limiting step in progression.

Each of the n transitions is affected by a single major diploid
locus. This locus suffers recessive loss-of-function mutations,
acting as a tumor suppressor gene. If both alleles at the major
locus for the ith transition have loss-of-function mutations, then
log10(ui) � 1. Typically, if an individual has a single transition at
this high rate, that individual would die of cancer at a relatively
early age. Alternatively, I could have assumed dominant onco-
genic mutations at this single major locus, such that if either
allele was mutated to an oncogene, then the transition for the
associated step would effectively be passed at birth. Once again,
such an individual with the loss of a protective step would tend
to die of cancer at a relatively early age. The difference between
recessive tumor suppressor loci and dominant oncogenic loci has
little effect on this model because dominant and recessive loci
would have roughly the same net effect on mortality under the
combination of mutation and selection.

Each transition is also affected by k minor diploid loci; thus,
there are 2k minor alleles. Each allele has an integer value r in
the range [0,255]. Larger values are more deleterious so y �
r�255 is the fraction of maximum deleterious effect of an allele.
The average value of y over all 2k loci affecting the ith transition,
ui, is y�i, the total deleterious contribution of the minor loci. The
actual transition is calculated as log10(ui) � �b � 2by�i. I used the
range (0,255) because that allowed each allele to be stored in one
computer byte, which can store integers in the range 0,. . . ,28 �
1, where 28 � 1 � 255.

If log10(ui) � 1, then the value is set to log10(ui) � 1 because
this rapid rate of transition is sufficient to make the step very fast
and not rate limiting, and larger values make numerical calcu-
lations more difficult. This truncation is made only for its
computational efficiency and has almost no effect on the quan-
titative or biological interpretation of the model.

There are a total of n(k � 1) diploid loci. All loci recombine
freely. Each allele mutates with probability v during transmission
to a gamete. Functional alleles at major loci mutate to loss-of-
function alleles. Loss-of-function alleles back-mutate to func-
tional alleles with probability v�255. Minor loci alleles mutate to
a different integer value in the range [0,255]; each integer not
equal to the current allelic value has the same probability of
arising by mutation.

At the start of a computer run, the genotype of each individual
was initialized as follows. At major loci, each allele is set to the
functional state with probability 0.95 and to the loss-of-function
state with probability 0.05. At minor loci, each allele is set to the
optimum value of zero with probability 0.95; with probability
0.05, each minor allelic value is sampled randomly from the
uniform distribution over the integers in the range [0,255].

Note that the transition rates within an individual are not
determined by somatic mutation rates or the loss of function of
particular tumor suppressors. Instead, the inherited genotype
determines the rate at which certain limiting steps occur in
progression, without any explicit description or assumptions
concerning what those rate-limiting steps are or how they may be
passed. It would be easy to make the model in terms of the rates
of explicit somatic mutations and genomic changes. But the goal

Fig. 1. The force of selection at different ages. A general family of curves can
be derived by using a form of the beta cumulative distribution function to give
different shapes. I used f(t) � 1 � 0.5[(a � 1)(a � 2)za � 2a(a � 2)za�1 � a(a �
1)za�2], with f(t) � 0 for t � F or t � T, and z � (t � F)�(T � F). The equation
for f(t) in the text and the curve illustrated here are obtained with a � 2. The
curve shifts to the right as a rises, increasing the force of selection and causing
natural selection to push cancer incidence to later ages.
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here is to understand how germ-line mutations affect rates of
transition through rate-limiting steps, no matter what the details
of the rate-limiting steps are and how they are passed. So
additional detailed assumptions would detract from the main
goal.

Description of the Computer Simulations. I used the following
parameters for all runs unless noted otherwise. The population
was initialized with genotypes as described above, with 20,000
males and 20,000 females. Fitness was calculated as described
above for each individual. Then, an offspring generation was
built with 20,000 sons and 20,000 daughters.

For each offspring, a mother was chosen randomly with
probability in proportion to fitness relative to the population of
females, and a father was chosen randomly with probability in
proportion to fitness relative to the population of males. Each
mother and father make a haploid gamete by recombining their
maternally and paternally inherited alleles. The haploid gametes
combine to form the offspring. A simulation continues for 10,000
generations, after which statistics are collected on the final
population.

The maximum age of an individual is T � 80 yr, with age of
first reproduction at F � 15 yr. An individual starts life with
x0(0) � 108 cell lineages, which is approximately the number of
stem cells in a human colon. The slowest transition possible is
log10(ui) � �b, where b � 3. The minimum transition is not
particularly important because mutation will usually decay
(raise) the transition rate independently of the minimum set by
assumption. The more important consequence of the minimum
transition is that it influences the average effect of each mutation
(see above).

This study focuses on how the number of steps, n, affects the
performance of each component and the level of genetic vari-
ation. Component performance in this case is measured by
log10(ui), the transition rate for each step on a logarithmic scale.
I varied the number of steps over the values n � 6, 7, 8, 9, and
10 in different runs.

To study how the number of minor loci affects genetic
variation and component performance, I varied the number of
minor loci per step over the values k � 20, 40, and 80.

The five values of n and the three values of k form 15 different
combinations. I repeated each of these 15 combinations in 3
replicates, for a total of 45 runs.

Results and Discussion
The performance of a system depends on the performance of its
individual components. In this case, fitness measures system
performance, and the rates of transition between steps measure
component performance. Faster transitions correspond to
greater cancer mortality and lower component performance.

Fig. 2 shows that, as the number of components, n, increases,
system performance improves and component performance
declines. The total improvement in system performance (fitness)
is small, on the order of one percent. This small increase in
system performance as n rises is associated with a large drop in
the performance of individual components.

The transition rates of log10(u) � �2.6 for n � 8 illustrate the
decline in component performance as n increases. Those tran-
sition rates cause negligible fitness loss for n � 8, but those same
transition rates with n � 6 would cause widespread cancer
mortality early in life and a large loss in fitness. In particular, with
n � 6 and log10(u) � �2.6 for all transition rates, everyone dies
of cancer by age 57, and fitness is 1 � s � 0.69. Thus, the fitness
loss is s � 0.31, and �log10(s) � 0.51, which is nearly two orders
of magnitude below the smallest values in Fig. 2 A.

These results show that a rise in component number drives
individual components to a poorly adapted state by the accu-
mulation of deleterious mutations. Here, poor adaptation is

measured relative to the higher level of component performance
attained by systems with fewer components.

Fig. 3 illustrates the increase in genetic variability for cancer
risk with a rise in the number of components, n. Fig. 3A plots the
percentage of cancer mortality risk concentrated in the 30% of
the population most at risk. For example, with n � 8, as much
as 85% of the risk concentrates in the top 30% of the population.
Fig. 3B shows the standard deviation in log10(ui) values averaged
over the n different u values. These results are consistent with a
recent study of genetic susceptibility to breast cancer, which
found that the half of the population most genetically susceptible
to breast cancer accounted for 88% of all cases (13).

The results in Fig. 3 demonstrate an increase in genetic
variability as the system becomes more buffered against pertur-
bations. Increased buffering is a consequence of a rise in the
number of components, n. It has been suggested that such
increase in genetic variability occurs because buffering against
mutational perturbation causes variable alleles to be nearly
neutral in their effects (5). The results here do show that system
performance (fitness) changes relatively little as buffering and
genetic variability increase. However, the variation in perfor-
mance rises as buffering increases because the enhanced genetic
variability is not entirely neutral and causes significant differ-
ences between individuals.

Fig. 2. The rise in fitness and decline in component performance as the
number of components, n, increases. (A) Average fitness in the population is
shown as the deviation from the maximum value of 1.0. The height of the plot
shows �log10(s), where average fitness is 1 � s and s measures the deviation
from the maximum. As �log10(s) rises, the fitness deviation from the maximum
approaches zero at a logarithmic rate. (B) Component performance is shown
as �log10(u), where u is the average transition rate between stages and
maximum performance occurs when log10(u) is at its minimum value of �3. As
�log10(u) declines, component performance declines logarithmically. Differ-
ent symbols show the varying levels of k (the number of minor loci): k � 20 (#),
k � 40 (O), and k � 80 (X).
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Fig. 3 also suggests that a rise in the number of minor loci
contributing to quantitative variation causes a decrease in ge-
netic variability. This relation occurs because the sampling
variance is higher when a smaller number of loci are sampled.

Fig. 4 shows the frequency of cancer in populations. As n
increases, the incidence declines. Major epithelial cancers have

mortalities roughly on the order of 10�2, matching the results
for n in the range of 6–8. However, not too much should be
made of this match because actual progression probably
depends on various factors not studied here that modulate
transition rates.

One commonly discussed aspect of progression concerns
perturbations of DNA repair control systems, leading to faster
accumulation of somatic mutations and chromosomal abnor-
malities as lineages progress toward cancer (14, 15). Similarly,
clonal expansion of cellular lineages raises the number of cells
that can make the transition into the next stage of progression,
raising the effective transition rate (16).

If passing a particular stage in progression did lead to a
mutator phenotype or chromosomal instability, then later
changes in progression to cancer or disease might happen very
rapidly. In that case, the later changes would not be rate-
limiting stages in progression; instead, the main rate limiting
stages would be the formation of the rapidly mutating phe-
notype. Thus, the key would be to understand the accumula-
tion of germ-line mutations in DNA repair and cell cycle
control systems that determine the rate at which individuals
progress to mutator phenotypes or chromosomal instability.

It would be easy to add factors such as mutator phenotypes and
chromosomal instability into the computational model used
here. But those issues do not change the main conclusions of this
article, which focus on how the number of components or
rate-limiting stages affect mutational decay and the heritability
of disease. Those general issues do not depend on the details of
what determines the particular components or rate-limiting
stages of a system.

Conclusions
An extra stage in cancer progression initially improves the
survival of individuals by decreasing mortality from cancer.
However, the additional buffering by an extra stage reduces
the impact of any single hereditary mutation and therefore
allows the accumulation of more nonlethal mutations in the
population. Extra stages thereby lead to the evolution of
partially decreased cancer mortality and significantly in-
creased genetic predisposition to disease in the population as
a whole.

These conclusions can be put in more abstract terms, to
allow comparison with other robust genetic control systems. If
a system improves its performance by adding additional buff-
ering components, the evolution of improved system perfor-
mance leads to an evolutionary decline by mutational decay in
the performance of individual components. This decline in
component performance maintains significant maladaptation
in subsystems of a larger functional system. As systems add
additional buffering components and then equilibrate in the
face of mutational pressure on components, the net improve-
ment in system performance may be small. In some cases,
system performance may ultimately equilibrate to a lower
level.

The weakened selective pressure per component with
greater buffering also leads to an increase in genetic variability
for the performance of each component. Thus, a rise in the
number of buffering components may lead to an increase in the
genetic variability of system performance.

Turning back to cancer, the model makes some interesting
predictions about genetic variability in risk. Some cancers arise
after deterioration of a small number of buffering steps
whereas progression to other cancers seems to require passing
a greater number of buffering stages (1). For example, the
age-specific incidence curves for retinoblastoma seem to de-
pend on only two rate-limiting steps whereas the major
epithelial cancers seem to depend on roughly six or seven steps.
The model here predicts much greater quantitative genetic

Fig. 3. Rise in the inherited genetic component of cancer predisposition as
the number of components, n, increases. (A) The fraction of all cancer mor-
tality among the 30% of the population with the greatest genetic predispo-
sition, labeled as the genetic predisposition index. (B) The standard deviation
between individuals in transition rates, log10(ui), averaged over the n different
u values. Different symbols show the varying levels of k (the number of minor
loci): k � 20 (#), k � 40 (O), and k � 80 (X).

Fig. 4. The frequency of individuals in populations that die from cancer,
shown as incidence on a log10 scale. Different symbols show the various levels
of k (the number of minor loci): k � 20 (#), k � 40 (O), and k � 80 (X).
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variability from several minor loci in the multistage epithelial
cancers than in cancers with fewer stages, such as retinoblas-
toma. In addition, there should be greater maladaptation in
the components that buffer the multistage cancers than in the
components that buffer cancers with fewer stages.

In general, greater robustness of system performance leads to
greater maladaptation of component performance.
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