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Age-Specific Acceleration of Cancer

accumulation of mutations within cell lineages [3]. TheSteven A. Frank*
Department of Ecology and Evolutionary Biology basic model for mutation accumulation is
University of California

ẋ0 (t) � �u0 (t) x0 (t)Irvine, California 92697

ẋi (t) � ui � 1 (t) xi � 1 (t) � ui (t) xi (t) i � 1,…,n � 1

ẋn (t) � un � 1 (t) xn � 1 (t),
Summary

where xj(t ) is the number of cell lineages with j mutations
One of the great challenges of cancer research is to at time t, uj(t ) is the rate at which lineages move from
explain the epidemiological patterns of cancer inci- having j mutations to having j � 1 mutations, and the
dence based on the molecular processes that lead to dot is the derivative with respect to time. I assumed that
uncontrolled cellular proliferation. The epidemiologi- once an individual had a single lineage with n mutations,
cal data demonstrate that the age-specific incidence that person had cancer. Thus, xn(t ) is the cumulative
of many cancers increases in an approximately linear probability that an individual develops cancer between
way with age when plotted on a log-log scale, with ages 0 and t.
different slopes for different cancers [1]. However, The simplest models assumed the uj values do not
those epidemiological data also show that cancers of change with time [1, 4]. Then xn(t ) � Utn, where U de-
various tissues depart from log-log linearity in particu- pends on the various constant transition (mutation) rates
lar ways [2]. Here, I illustrate those departures from uj. The first derivative is the age-specific rate (incidence),
log-log linearity by introducing plots of the age-spe- ẋn � Untn � 1, and so log(ẋn) � log(Un) � (n � 1) log(t).
cific acceleration of cancer. I then develop a very gen- Thus, with constant mutation rates, the log-log plot of
eral model of cancer progression, which I use to explain age-specific incidence is approximately linear with time
the observed differences between tissues in age-spe- and has a slope of n � 1. The derivative of log(ẋn) with
cific acceleration. In one application of the model, I respect to log(t ) is n � 1. This log-log second derivative
show that the spectacular rise and fall in age-specific is used in Figure 1 as a measure of acceleration. With
acceleration observed in prostate cancer may be ex- the simple model of constant mutation, the standard
plained by multiple rounds of clonal expansion. In a approximation yielded a constant log-log acceleration
second application, I demonstrate that the steady de- of n � 1 that is independent of time.
cline in age-specific acceleration of breast cancer may The goal here is to understand the observed depar-
occur because precancerous mutations accumulate tures from constant log-log acceleration. Two qualitative
in many cellular lineages. patterns in the epidemiological data appear in Figure 1.

First, a decline in acceleration occurs throughout life for
breast cancer and at later ages for colorectal, lung, andResults and Discussion
prostate cancers. Second, acceleration rises until 40–50
years in colorectal, lung, and prostate cancers, with aThe standard log-log plots of age-specific incidence in
particularly strong increase for the prostate.Figure 1A show the increase in cancer rates with age

I used the model to show two new aspects of howfor four adult-onset epithelial cancers. We get a better
molecular and cellular processes affect epidemiologicalview of the differences between tissues by replotting
patterns. The first new aspect was the decline in acceler-the data. Figures 1B and 1C show the same data, plot-
ation at later ages. One possible explanation that hasting the slope in Figure 1A at each age. The slope of
not been discussed concerns how the frequency distri-cancer rate (incidence) at each age measures the age-
bution of lineages with different numbers of mutationsspecific acceleration of cancer. For example, breast
changes with time. Let pj(t ) � xj(t )/X be the frequencycancer accelerates most quickly at early ages, and the
of lineages with j mutations at time t, where X is theacceleration declines steadily throughout life. By con-
total number of lineages summed over all xj. Supposetrast, acceleration in prostate cancer rises rapidly in
at birth that all cellular lineages have zero mutations,early life, peaking at a very high level near 40 years, and
p0(0) � 1. Then all lineages are n steps from cancer, andthen the acceleration drops rapidly through later life at
the log-log acceleration is n � 1. As time passes, itthe same time as the number of cases increases greatly.
could be that many lineages accumulate a mutations,These striking epidemiological differences between tis-
so that the typical number of steps to cancer is n � asues remain unexplained in terms of molecular and cel-
and the log-log acceleration is n � 1 � a. As a riseslular processes.
with time, the acceleration declines. We can study thisI developed a general set of equations to link muta-
process by solving the model above, using the simplesttional processes at the cellular level to the epidemiologi-
case of constant mutation rates.cal patterns. The model follows the commonly accepted

The plots in Figure 2 illustrate the decline in log-logassumption that cancer arises through the sequential
acceleration. The initial number of lineages per individ-
ual, x0(0), strongly affects the nature of the decline. When
this value is high, then only very rare lineages become*Correspondence: safrank@uci.edu
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number of steps per lineage that remain before cancer.
Note that the blue line in Figure 2A shows roughly the
same sort of decline as the observed pattern in breast
cancer in Figure 1B.

The second new issue concerns an extended model
of clonal expansion. Previous models have contributed
much to understanding departures from linearity in the
log-log incidence plots [5–8]. Most of those models as-
sumed only a single round of clonal expansion. Fisher
[9] proposed a model with two rounds of clonal expan-
sion, but under his special assumptions, the log-log plot
of incidence versus age remains linear.

In precancerous lineages, a mutation may lead to
clonal expansion, followed by another mutation in one
cell of the clone. The new mutant may then give rise to
another round of clonal expansion. Several rounds of
expansion, mutation, and new clonal growth seem pos-
sible, given that cancer ultimately arises as uncontrolled
clonal growth following the acquisition of several muta-
tions.

To study clonal expansion, it was useful to rewrite the
model above as

x0 (t) � x0 (0) D0 (t,0)

xi (t) � �
t

0
ui �1 (s) xi � 1 (s) Di (t,s) ds i � 1,…,n � 1

xn (t) � �
t

0
un � 1 (s) xn � 1 (s) ds,

under the assumption that at t � 0, all cells started in
the class with zero mutations, so that we could study

Figure 1. Age-Specific Incidence and Acceleration of Cancer for
the changes in each class by measuring the influx andDifferent Tissues
outflux of cells into that class. For example, ui � 1 (s )(A) Age-specific incidence for four adult-onset epithelial cancers.
xi � 1(s ) is the influx at time s, and(B and C) Age-specific log-log acceleration, which are slopes of the

plots in (A) at different ages. All data are from the SEER database
Di(t,s) � e��

t

s
ui ( y )dy

(www.seer.cancer.gov) using the nine SEER registries, year of diag-
nosis 1992–2000. Breast cancer data for all females, colorectal can-
cer for all males, lung cancer for all males, and prostate cancer for is the decay or outflux of that component over the re-
white males.

maining period from s to t. In this case, the ui(t ) values
varied with time, in part because transition rates be-
tween classes depended on clonal expansion. I summedtransformed, and the majority of lineages remain in or
over all influx and outflux by integrating from 0 to t.near the class with zero mutations. When the number of

Let clonal expansion follow the logistic model, whichlineages is smaller, then a greater proportion of lineages
has the well-known solution that starting with a singlemust progress toward cancer to give the same overall
cell and after a time period of length t, the number ofcancer rate. The number of lineages may be relatively
cells in the clone islower in some tissues either because there are fewer

initial stem lineages or because a precancerous lineage
expands and kills off neighboring lineages, lowering the yi (t) �

Ki erit

Ki � erit � 1
,

effective number of lineages and decreasing the average

Figure 2. Decline in Age-Specific Accelera-
tion with Age Calculated from the Model

(A) Fewer long-lived cell lineages in a tissue
cause a greater decline with age. The num-
bers of initial lineages, x0(0), from top to bot-
tom are 106 (red), 104 (cyan), 102 (green), and
100 (blue). There are n � 10 mutational steps
to cancer. The transition (mutation) rate per
year was adjusted so that the total incidence
of cancer over all ages up to 80 years is 10%,
requiring transition rates for the lines from
top to bottom of ui � 0.0124, 0.021, 0.037,
0.078 for all i.

(B) Age-specific decline in acceleration is caused by a rise over time in the number of mutations per lineage, leaving fewer steps to cancer.
The plot shows the frequency distribution for the number of mutations per cell lineage at age 80.
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where K is the carrying capacity and r is the intrinsic rate
of increase of the clone [10]. The subscripts describe
the class according to the number of mutations so that
clones with different numbers of mutations may have
different carrying capacities and rates of increase.

Let the total mutational capacity of a cell lineage be
the mutation rate per cell, v, multiplied by the clone size,
Y. Then we have

Di (t,s) � e��
t

s
viYi(�)d� � � Ki

Ki � eri (t � s) � 1�
viKi/ri

.

The total transition rate from class i to class i � 1 is the
mutation rate per cell, vi, multiplied by the average clone
size for members of the class, Yi(t). Thus,

ui (t) � viYi (t) �

vi �
t

0
ui � 1 (s) xi � 1 (s) Di (t,s) Yi (t � s) ds / xi (t).

With expressions for ui and Di, we can use the model
to study multiple rounds of clonal expansion. This model
is general enough to fit many different shapes of log-
log acceleration. However, the goal here is not to fit but
to emphasize that a few general processes can explain
the differences between tissues in their log-log accelera-
tion curves.

Most prior models studied a single round of clonal
Figure 3. Patterns of Age-Specific Acceleration for Different Param-expansion. The new model developed here allows multi-
eters of the Modelple rounds of clonal expansion. To illustrate the conse-
(A) Slower clonal expansion shifts peak acceleration to later ages.quences of multiple clonal expansions and to compare
Parameters for all curves are n � 4, x0(0) � 108, Ki � 1 for i � 0, …,with earlier studies, it is useful to begin with a single
n � 2, and Kn � 1 � 106. The curves from left to right have values of

round of expansion in the n � 1 class [8]. rn � 1 � 0.4, 0.2, 0.1 for the blue, green, and red curves, respectively.
Figure 3A illustrates the effect of changing the rate of The mutation rate per year was adjusted so that the total incidence

clonal expansion, r, in the single round of clonal expan- of cancer over all ages up to 80 years is 10%, requiring mutation
rates for the curves from left to right of vi � 10�5 multiplied by 3.15,sion. Slower clonal expansion causes the acceleration
4.35, and 8.0 for all i. Note that a rapid round of clonal expansionin cancer to happen more slowly and to be spread over
effectively reduces by one the number of steps, n, so that for n �more years, because slow clonal expansion causes a
4, one round of rapid clonal expansion yields a nearly constant

slow increase in the rate at which a lineage acquires acceleration of n � 2 � 2 over all ages. By contrast, slow clonal
the final mutation that leads to cancer. Figure 3B shows expansion often causes a midlife peak in acceleration.
that an increase in maximum clone size raises the peak (B) An increase in the maximum size of a clone raises peak accelera-

tion until the clone becomes sufficiently large that a mutation islevel of acceleration until the clone becomes large
almost certain in a relatively short time period. Parameters as in (A),enough that a mutation likely occurs in a short time
except that rn � 1 � 0.2, and for the blue, green, and red curves,interval, after which further clonal expansion does not
respectively, Kn � 1 � 106, 104, 102, and vi � 10�5 multiplied by 4.35,

increase the rate of progress through the mutational 4.45, 6.8 for all i to keep the total incidence of cancer at 10%.
steps. (C) Multiple rounds of clonal expansion greatly increase peak accel-

Figure 3C makes the key point that multiple rounds eration and shift peak acceleration to a later age. Parameters are
n � 4, x0(0) � 104, ri � 0.5 for all i, K0 � 1, and Kn � 1 � 106. For theof clonal expansion can greatly increase the peak accel-
lower (blue) curve, clonal expansion occurs only in the last rounderation of cancer. The curves from bottom to top have
before cancer, so Kn � 2 � Kn � 3 � 1. For the middle (green) curve,one, two, or three rounds of clonal expansion. With three
clonal expansion occurs in the last two rounds before cancer, with

rounds of clonal expansion, the red curve looks roughly Kn � 2 � 106 and Kn � 3 � 1. For the upper (red) curve, clonal expansion
like the spectacular increase and decline in acceleration occurs in the last three rounds before cancer, with Kn � 2 � Kn � 3 �
observed in prostate cancer (Figure 1C). 106. The mutation rates for the blue, green, and red curves, respec-

tively, are vi � 5.8 � 10�4, 9.3 � 10�5, and 1.55 � 10�6 for all i toThe acceleration plots discussed in this paper focus
keep the total incidence of cancer at 10%.attention on the different epidemiological patterns that

occur in epithelial cancers. Based on these observed
patterns, I developed two hypotheses about cancer pro-
gression in individuals that link mutational and cellular individuals that affect cancer progression. Those pro-

cesses may be alternatives that could link individualprocesses to population-wide epidemiology. The match
between the theoretical curves from my models and progression to epidemiological pattern. At present, no

one has formulated a plausible model to link alternativethe observed epidemiological patterns establish these
ideas as plausible hypotheses that deserve further processes of progression to the observed variation in

the age-specific acceleration of different epithelial can-study.
There are, of course, many other processes within cers—indeed, one benefit of the acceleration plots is
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to stimulate new thought along these lines and new celerations to the aggregate population through the
early to middle years of life, after which most of thoseempirical tests to sort out the alternatives. Here, I list a

few factors in individual progression that provide more individuals have suffered cancer or died. Loss of the
predisposed, low-acceleration group in midlife may leadrealistic detail for the role of somatic mutation or have

been discussed as important complements to somatic to a midlife rise in acceleration as cases become domi-
nated by the nonpredisposed part of the population.mutation and clonal expansion.

Many studies emphasize the importance of environ- Ascertainment may change in age-specific ways, af-
fecting the age-specific accelerations in the epidemiol-mental factors in progression [11–13], including chronic

irritation of tissues and changes in hormonal status. ogy curves. For example, increased testing for prostate
cancer in midlife could cause a midlife rise in accelera-Irritation may, for example, increase tissue renewal and

cell division, which would feed back on the rate of muta- tion. However, the observed peak in acceleration for
prostate cancer occurs at about age 40, just as testingtional accumulation [14]. It would be interesting to look

at particular types of chronic irritation, such as prostati- generally begins to increase, suggesting that ascertain-
ment alone may not be a sufficient explanation.tis, to study if there may be a plausible link between

the acceleration in the epidemiological patterns and the
processes of progression promoted by irritation. Simi- Conclusions
larly, are there known hormonal syndromes that could In summary, various tissues show different patterns of
explain differences in age-specific acceleration be- age-specific acceleration in cancer. These epidemiolog-
tween breast and prostate cancer? The ideas presented ical patterns of acceleration have not been emphasized
here should stimulate new alternative explanations and before and may provide important clues about the differ-
approaches for empirical study. ences between tissues in molecular and cellular pro-

I assumed that each tissue has a fixed number of rate- cesses that determine cancer progression.
limiting mutational steps required for cancer, but the The models here emphasize two new points. First, a
actual number required is likely to vary from case to rise in the number of mutations per cellular lineage with
case [15, 16]. Although certain genes are frequently mu- age may explain a decline in age-specific acceleration,
tated in the cancers of particular tissues, no tumor has as seen in breast cancer (compare the blue curves in
the same spectrum of mutations. For example, different Figures 1B and 2A). This can be tested by measuring
mutational pathways probably can lead to similar pat- the age-specific accumulation of mutations in cellular
terns of genetic instability. At present, no one has estab- lineages and calculating, at different ages, empirical fre-
lished even a plausible link between variation in the quency distributions of the sort shown in Figure 2B.
number of rate-limiting mutations that can lead to cancer Such tests will become easier to do as more is learned
progression and the epidemiological patterns of variable about which genes are mutated in cancers and as rapid
age-specific acceleration. Again, the data and ideas pre- methods for genotyping cells improve in efficiency.
sented here should stimulate new work. The second new point concerns multiple rounds of

Reduced tissue renewal and cell division at later ages clonal expansion. Multiple expansions may explain high
may explain a decline in the rate at which mutations age-specific accelerations in midlife, followed by a rapid
accumulate and, thus, a reduction in late-age accelera- drop in acceleration in later life, as observed in prostate
tion. This may be particularly important in the oldest cancer (compare the red curves Figures 1C and 3C).
age classes but probably does not explain the steady The susceptibility of different tissues to multiple clonal
decline in breast cancer acceleration at all ages or the expansions can be tested empirically. One could, for
extreme drop in acceleration in prostate cancer just after example, study the frequency and size of precancerous
midlife. The key here may be to understand more about clonal expansions by genotyping cells and measuring
age-specific fluctuations in cellular turnover and how the spatial spread that follows from particular mutational
those fluctuations relate to the epidemiological patterns events. Multiple clonal expansions may also be studied
of acceleration. by modifying the techniques of phylogenetic analysis

Mathematical models have studied how chromosomal and molecular evolution that have been used to study
instability affects mutation rates and progression within multiple demographic expansions in populations [19, 20].
individuals [17], but those dynamics within individuals The rough matches between observation and theory
have not been connected to the aggregate patterns of shown here establish new hypotheses for cancer pro-
incidence in the population (epidemiology). It seems gression. The models should stimulate new empirical
likely that an increase in mutation rate caused by chro- tests and help to foster closer ties between epidemiol-
mosomal instability would lead to fewer rate-limiting ogy, the molecular processes that drive cancer progres-
steps, but the nearly instantaneous change in mutation sion, mathematical models of cellular dynamics, and
rate would not lead to the slow rise and fall in accelera- statistical analyses of DNA sequences to infer the cellu-
tion over many years as might happen for slow pro- lar evolution of cancers.
cesses of clonal expansion (see Figure 3).

Experimental ProceduresSomatic mutations during development [18] and in-
herited genetic predisposition cause heterogeneities

Cell Lineagesbetween individuals in rates of progression, which will
The intestine provides the clearest example of how to define a cellaffect the age-specific acceleration curves at early ages.
lineage. The intestine is renewed from basal stem cells [21]. Stem

This has not been studied mathematically, but it seems cell division gives rise to one stem cell that maintains the lineage
that genetically predisposed individuals are born with and one transit cell. The transit cell divides a number of times,

pushing cells above up to the surface of the tissue. Cells at thefewer steps, n, remaining and, so, contribute lower ac-
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surface slough off. The net effect is renewal of cells from below and for renal cell carcinoma from comparative genomic hybridiza-
tion data. Cancer Res. 60, 6503–6509.loss from the surface. The model presented here requires that, at

any time, cell lineages be taken as those cells that will be progenitors 17. Nowak, M.A., Komarova, N.L., Sengupta, A., Jallepalli, P.V.,
Shih, Ie-M., Vogelstein, B., and Lengauer, C. (2002). The role ofof the tissue at a future time. How to turn this into a practical

approach for measurement will depend on the experimental meth- chromosomal instability in tumor initiation. Proc. Natl. Acad.
Sci. USA 99, 16226–16231.ods and the particular tissue. In the intestine, any cell can be mea-

sured to assess the distribution of mutations over time because 18. Frank, S.A., and Nowak, M.A. (2003). Developmental predisposi-
tion to cancer. Nature 422, 494.each cell is either a progenitor or a recent descendant from a pro-

genitor. Some other epithelial tissues, such as the skin, also have 19. Slatkin, M. (2001). Simulating genealogies of selected alleles in
a population of variable size. Genet. Res. 78, 49–57.clear stem-transit architectures [22]. In other tissues, such as the

prostate, the nature of tissue architecture and cell lineages remains 20. Shibata, D. (2002). Molecular tumour clocks and colorectal can-
cer: seeing the unseen. Pathology 34, 534–540.controversial; some have argued for a stem-transit division [23], but

more work is needed. 21. Bach, S.P., Renehan, A.G., and Potten, C.S. (2000). Stem cells:
the intestinal stem cell as a paradigm. Carcinogenesis 21,
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