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Abstract

The classical model of mutation–selection balance for quantitative characters

sums the effects of individual sites to determine overall character value. I

develop an alternative version of this classical model in which character value

depends on the averaging of the effects of the individual sites. In this new

averaging model, the equilibrium patterns of variance in allelic effects and

character values change with the number of sites that affect a character in a

different way from the classical model of summing effects. Besides changing

the patterns of variance, the averaging model favours the addition of loci to the

control of character values, perhaps explaining in part the recent observation

of widespread genetic degeneracy.

Introduction

Genetic regulatory networks control the activation and

repression of coordinated effects. Quantitative characters

are the consequence of the structure of genetic regula-

tory networks and the parameters that control the

dynamics of those networks. The details of regulatory

networks are just now being worked out for a few

characters (Carroll et al., 2001; Davidson, 2001; Ptashne

& Gann, 2002). Going forward, we may eventually be

able to replace the black box of polygenic control for

quantitative characters with a more accurate description

of how genes interact to determine phenotype.

At present, no clear generalizations have emerged

about the consequences of network structures for

polygenic control of quantitative characters. Two ideas

– degeneracy and robustness – have been put forward as

candidate principles for genetic regulatory networks.

Degeneracy occurs when loss of a gene has little effect

because the network retains a backup system (Edelman

& Gally, 2001). The observation that knockout muta-

tions often do not have detectable phenotypic con-

sequences (Melton, 1994; Winzeler et al., 1999) in the

lab has led to the idea that degeneracy (Edelman &

Gally, 2001) is a common property of biological

networks. Theories of degeneracy face the challenge

that natural selection does not easily favour degeneracy

because an existing functional system prevents any

direct advantage to an organism carrying an extra

backup system. Recent theory shows various ways in

which backup systems can be exposed to selection and

favoured to spread in populations (Nowak et al., 1997).

This theory relies on protection against complete loss-

of-function mutations in Mendelian traits and does

not consider degeneracy in quantitative traits under

polygenic control.

Robustness occurs in the dynamical control of a

complex trait when large changes in the parameters that

govern the dynamics have relatively little effect on the

quantitative character. For example, Barkai & Leibler

(1997) showed that the network structure regulating

bacterial chemotaxis provides robust performance with

low sensitivity to the individual parameters.

Clearly, robustness is an important property of a well-

designed network. However, a robust biological network

must accumulate extensive genetic variability because

genetic changes have relatively little effect on perform-

ance and fitness. No matter how robust the control,

genetic variation accumulates until the rate at which

natural selection removes variation equals the rate at

which mutation adds variation. Most work on robustness

of genetic networks has taken an engineering perspec-

tive, in which the self-evident property that robust

networks must decay by mutation pressure has received

little attention.
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These issues of network structure and mutational

decay lead to two questions. First, what are the conse-

quences of network architecture for the accumulation of

polygenic variation in quantitative characters? Second,

what is the optimal network structure to protect against

mutational decay?

To make a start on these important questions, I have

chosen to study the classical mutation–selection balance

model for quantitative traits under stabilizing selection

(Kimura, 1965; Lande, 1975; Turelli, 1984; Frank &

Slatkin, 1990). I show that by altering the classical model

in a minor way, significant differences arise in the

equilibrium genetic variance under the balance between

mutation and selection.

The classical model sums the effects of individual loci

to obtain the deviation of the character value from the

average value in the population. Instead, I average the

effects of the individual loci. Averaging simply means

that I divide the contribution by each locus to the

deviation from average value by the number of genes

that contribute to the trait.

Averaging has interesting consequences because it

creates a negative association between the number of

genes affecting a character and the contribution of each

gene to character value. The averaging model leads to

more genetic variation at each locus because selection per

locus is weaker. For character values, the averaging model

has the same genetic variance as the summation model

when stabilizing selection is relatively strong. When

stabilizing selection on each locus is relatively weak,

characters controlled by averaging accumulate less genetic

variance than characters controlled by summed effects.

I show that under the classical summation model,

natural selection favours a reduction in the number of

genes that contribute to character value. By contrast,

under the averaging model natural selection may often

favour an increase in the number of genes that control a

character.

Neither the classical summation model nor the avera-

ging model provide a realistic description of genetic

regulatory networks and the genetic effects of individual

loci within such networks. Rather, different network

architectures will combine genetic effects in different

ways, some architectures more like the summation model

and some more like the averaging model. My analyses

show that different architectures have different conse-

quences for the accumulation of genetic variation. This

conclusion will help in understanding how different

network structures accumulate variation and in how

networks may be designed by natural selection and by

engineers.

The classical model of additive effects

In my model, I use the word sites for the n pieces of DNA

that contribute to the character. In a diploid model, there

are n/2 loci, with two sites per locus; in a haploid model,

there is one site at each locus. I use sites without

distinguishing ploidy level because I will add across sites,

so it does not matter if there are two sites at one diploid

locus or two sites at two haploid loci. Each site has alleles

xi for i ¼ 1,…,n sites, where each xi is a random variable

taking on different values that describe the contribution

of the ith site to character value. Note that the word site

is sometimes used for a variable amino acid position.

Here, the number of sites n is NL, where N is the ploidy

level and L is the number of loci.

Fisher (1918) developed the classical model for com-

bining the effects of individual sites. Fisher’s regression

approach used least squares to maximize the proportion

of the observed phenotypic variation explained by

genotype. For example, consider a phenotypic character

z affected by alleles xi. The different kinds of alleles may

be encoded by categorical values, for example, xi ¼ 0,1

when each site has two different allelic forms. Then, by

standard regression, we can write ẑz � �zz ¼
P

i biðxi � �xxiÞ,
where ẑz is the expected character value for individuals

with a particular genotype. This regression equation can

be read as: the expected deviation of a character from its

population average equals the sum of the average effect

of each site, bi, multiplied by the deviation of the allelic

value from its population average, xi � �xxi. The average

effects of sites are simply the partial regression coeffi-

cients obtained by using the standard theory of least

squares to fit the regression model. This summing model

for character value forms the foundation for measuring

heritability and the design of agricultural breeding

programs (Falconer & Mackay, 1996).

Classical regression provides the best approach for

prediction, which is the aim of heritability measures and

breeding programmes. The ubiquity of the summation

model made it the standard choice when theoreticians

began to study evolutionary models of quantitative

characters. However, summation of genetic effects in

theoretical models of mutation and selection assume

fixed, additive effects for each gene rather than estimat-

ing average (additive) effects from a regression model. In

other words, the summation of additive effects in models

of mutation and selection is based on a loose analogy

with regression models of prediction – there is in fact no

formal correspondence. My point here is that summing is

an arbitrary choice for theoretical models of mutation

and selection, based on the classical approach for studies

of heritability.

Below, I present a new model for the control of

quantitative characters based on the averaging of the

effects of individual sites rather than the summing of

their effects. Genetic effects will often aggregate in an

averaging way when phenotype depends on the fre-

quency of encounter with the protein products of each

site. To show the contrast between the standard summa-

tion model and my averaging model, it is useful to begin

with the classical summation approach for models of

mutation and selection.
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A balance between the influx of deleterious alleles by

mutation and the removal of deleterious alleles by

stabilizing natural selection maintains genetic variation

in quantitative characters. Under such stabilizing selec-

tion, there is an optimum character value, z*, and

characters that deviate from z* suffer a reduction in

fitness. Previous theoretical models (Kimura, 1965;

Lande, 1975; Turelli, 1984; Frank & Slatkin, 1990)

assume that character value is determined by summing

genetic effects, by analogy with the classical regression

approach of quantitative genetics. For example, we can

write z ¼ c
P

i xi ¼ cX, where xi ¼ 0, ±1, ±2,…, the value

of c gives the phenotypic effect of a mutation that

transforms an allele to an adjacent type, and X is the sum

of the allelic values (Slatkin, 1987; Frank & Slatkin,

1990). Assuming that allelic values are independent, the

variance in the character value is Vz ¼ c2nVx, where Vx is

the variance in allelic values for each site.

The standard model of stabilizing selection sets the

optimum at z* ¼ 0 and describes fitness losses in terms

of the distance from the optimum (Lande, 1975; Turelli,

1984). Fitness is w(z) ¼ e)z2/2Vs

, where Vs is inversely

proportional to the intensity of selection acting on

squared deviations from the optimum. When z2/2Vs is

small, then w(z) � 1)z2/2Vs ¼ 1)sX2, where s ¼ c2/2Vs is

the strength of selection acting on a unit change in the

squared sum of allelic values.

In the stepwise mutation model (Slatkin, 1987), l is

the probability in each generation that an allele

mutates to an adjacent allelic class. The equilibrium

variance in allelic values, Vx, and the character

variance, Vz, depend on the relative intensity of

selection and mutation. Approximations can be

obtained for the two bounding conditions s >> l and

s << l. When s >> l, we have approximately (Turelli,

1984; Frank & Slatkin, 1990)

Vx ¼ l=s ¼ 2lVs=c2 ð1Þ
Vz ¼ c2nl=s ¼ 2nlVs: ð2Þ

When s << l (Kimura, 1965; Lande, 1975; Frank &

Slatkin, 1990),

Vx ¼
ffiffiffiffiffiffiffiffiffiffi
l=2s

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lVs=c2

p
ð3Þ

Vz ¼ c2n
ffiffiffiffiffiffiffiffiffiffi
l=2s

p
¼ n

ffiffiffiffiffiffiffiffiffiffiffi
c2lVs

p
: ð4Þ

Averaging genetic effects

Now suppose that the character depends on the average

of the allelic values rather than the sum, that is,

z ¼ (c/n)X. The results for the previous model are

changed by two opposing forces. First, averaging rather

than summing reduces the character variance by n2,

Vz ¼ c2Vx/n. Second, averaging reduces the strength of

selection on each site by n2 relative to the summing

model because the contribution of each site is reduced by

1/n and selection changes by the square of character

value. With these two factors, we can write the equilib-

rium variances under the averaging model. For s/n2 >> l,

Vx ¼ n2l=s ¼ 2n2lVs=c2 ð5Þ
Vz ¼ c2nl=s ¼ 2nlVs: ð6Þ

Compared with the summing model, the variance of

allelic effects at each site is much larger – weighted by an

additional factor n2 because of the reduced selection per

site. However, the total character variance remains the

same because the averaging process reduces the total

character variance by the same factor as the increase in

the variance per site.

When s/n2 << l,

Vx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2l=2s

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2lVs=c2

p
ð7Þ

Vz ¼ c2
ffiffiffiffiffiffiffiffiffiffi
l=2s

p
¼

ffiffiffiffiffiffiffiffiffiffiffi
c2lVs

p
: ð8Þ

In this case, averaging increases allelic variances per site

by a factor of n. This makes the total character variance

independent of the number of sites under the averaging

model.

We could also consider sets of characters that combine

in a summing or averaging way to make an aggregate

character that affects fitness. For example, a single

character in an averaging suite of characters may have

high character variance in the same way that a single site

has high variance when contributing in an averaging

way to a character.

Consequences of the genetic control
of characters

We can now study how natural selection affects the

number of sites that determine a character. Suppose that

some individuals have n sites affecting the character and

other individuals have n + a sites affecting the character. If

the average fitness of those individuals with n + a sites is

greater than the average fitness of those individuals with n

sites, then the population evolves towards control of the

character by the higher number of sites. In particular, the

condition for the spread of additional sites affecting the

character is Eðŵw � ~wwÞ > 0, where the hat denotes the class

with n + a sites and the tilde denotes the class with n sites.

Under the summing model, adding more sites increases

the variance of the character and reduces fitness, so

selection favours a reduction in the number of sites

contributing to character value. Under the averaging

model, if the two classes with n sites and n + a sites are

both at mutation–selection equilibrium, then there are

two cases. First, for relatively strong selection, s/n2 >> l,

the class with more sites has higher character variance

and lower fitness because character variance rises line-

arly with the number of sites. Selection therefore favours

a reduction in the number of sites controlling the

character. Second, for relatively weak selection,

s/n2 << l, character variance is independent of the
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number of sites. Thus, the number of sites is a neutral

character that can drift higher or lower.

The time to achieve mutation–selection equilibrium

can be long because mutation is a weak force. The

competition between the classes with n and n + a sites

may often depend on the process that generates the extra

a sites and the dynamics of mutation and selection within

each class. For example, consider the case of the

averaging model with relatively weak selection,

s/n2 << l. Suppose a population initially has n sites at

mutation–selection equilibrium. A single individual then

adds a sites to the control of the character z, for a total of

n + a sites. The initial success of the additional sites

depends on whether those extra sites occur in a relatively

successful genotype.

If the extra sites do increase initially, they will

recombine with the other n sites, reducing linkage

disequilibrium with those sites. The new sites will also

mutate, accumulate genetic variation, and evolve so

that their average allelic value moves toward the

optimum of zero. For a diploid case with n sites and

n/2 loci, adding another locus sets a ¼ 2. Under the

assumption that the new a sites are in approximate

linkage equilibrium with the original n sites, the

condition for the increase of an additional diploid locus

is nðVy þ 2�yy2Þ< 2ðn þ 1ÞVx, where Vx is the variance in

allelic effects at the original n sites, Vy is the variance in

allelic effects at the new a sites, and �yy is the average

allelic value at the new sites (see Appendix).

Assuming that the new sites have an average value

near the optimum, �yy � 0, a sufficient condition for the

increase of the new locus is approximately Vy < 2Vx.

This is an easy condition to satisfy because the variance

at the new sites, Vy, should not be twice the variance at

the old sites, Vx. Thus, selection favours a steady

increase in the number of sites controlling the character

value. As each additional site spreads through the

population, the equilibrium character variance remains

constant because, for averaging control and s/n2 << l,

the character variance is independent of the number of

sites.

Conclusions

Allelic effects will often aggregate in an averaging way

when phenotype depends on the frequency of encounter

with the protein products of each site. This sort of

phenotypic averaging probably happens in many cases.

However, the relative occurrence of summing, averaging,

and other more complex patterns of aggregating effects

can only be determined by empirical study. The value of

the theory here is to show clearly that this is an

important problem for understanding the nature of

quantitative variation. This understanding has conse-

quences for the evolution of the genetic control of

characters and for the distribution of allelic effects and

character values in complex, polygenic traits.
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Appendix

The criteria that favour the addition of an extra diploid

locus to the control of a trait are derived as follows.

Fitness is w ¼ 1)z2/2Vs. Denote the fitness of genotypes

with n sites as ~ww and the fitness of genotypes with n + a

sites as ŵw. The additional sites spread if Eðŵw � ~wwÞ > 0,

which is equivalent to Eðẑz2Þ < Eð~zz2Þ. Expanding this

condition with the definition of z gives

Polygenic control 141

J . E V O L . B I O L . 1 6 ( 2 0 0 3 ) 1 3 8 – 1 4 2 ª 2 0 0 3 B L A C K W E L L S C I E N C E L T D



c2=ðn þ aÞ2
� �

nVx þ E
Xa

j¼1

yj

 !2 !
< c2Vx=n;

where I have assumed that the n original sites have

means �xx ¼ 0 and each has a distribution independent of

the other sites. This condition simplifies to

nEð
Pa

j¼1 yjÞ2 < ð2na þ a2ÞVx. The new sites with values

yj may not have had time to evolve toward the optimum

�yy ¼ 0. We can take account of deviations in mean values

by writing yj ¼ �yyj þ dj, where d describes the random

deviations of y about its mean and thus d has a mean of

zero.

The transition to add an additional diploid locus, with

a ¼ 2, is nE(y1+y2)2 < 4(n+1)Vx. Here y1 and y2 are

alternative alleles at the same diploid locus and would

therefore likely have the same distribution and, under

random mating, would have independent distributions.

Thus, Eðy1 þ y2Þ2 ¼ 2Vy þ 4�yy2, giving the condition

nðVy þ 2�yy2Þ < 2ðn þ 1ÞVx. Assuming �yy � 0, a sufficient

condition is Vy < 2Vx, as in the text.
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